1
|
Gao X, Zhang G, Wang F, Ruan W, Sun S, Zhang Q, Liu X. Emerging roles of EGFL family members in neoplastic diseases: Molecular mechanisms and targeted therapies. Biochem Pharmacol 2025; 236:116847. [PMID: 40044051 DOI: 10.1016/j.bcp.2025.116847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Epidermal growth factor-like proteins (EGFLs) contain more than a single EGF/EGF-like domain within their protein structure. To date, ten EGFL family members (EGFL1-10) have been characterized across diverse tissues and developmental stages under different conditions. In this review, we conclude that EGFLs are instrumental in regulating biological activities and pathological processes. Under physiological conditions, EGFLs participate in angiogenesis, neurogenesis, osteogenesis, and other processes. Under pathological conditions, EGFLs are linked with different diseases, particularly cancers. Furthermore, we highlight recent advancements in the study of EGFLs in biological conditions and cancers. In addition, the regulatory role and key underlying mechanism of EGFLs in mediating tumorigenesis are discussed. This paper also examines potential antagonists that target EGFL family members in cancer therapeutics. In summary, this comprehensive review elucidates the critical role of EGFLs in neoplastic diseases and highlights their potential as therapeutic targets.
Collapse
Affiliation(s)
- Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Guopeng Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Feitong Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Wenhui Ruan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China
| | - Shishuo Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China; Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China.
| |
Collapse
|
2
|
Hamze Sinno S, Imperatore JA, Bai S, Gomes-Jourdan N, Mafarachisi N, Coronnello C, Zhang L, Jašarević E, Osmanbeyoglu HU, Buckanovich RJ, Cascio S. Egfl6 promotes ovarian cancer progression by enhancing the immunosuppressive functions of tumor-associated myeloid cells. J Clin Invest 2024; 134:e175147. [PMID: 39312740 PMCID: PMC11527450 DOI: 10.1172/jci175147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) play a critical role in resistance to immunotherapy. In this study, we identified epidermal growth factor-like 6 (Egfl6) as a regulator of myeloid cell functions. Our analyses indicated that Egfl6, via binding with β3 integrins and activation of p38 and SYK signaling, acts as a chemotactic factor for myeloid cell migration and promotes their differentiation toward an immunosuppressive state. In syngeneic mouse models of ovarian cancer (OvCa), tumor expression of Egfl6 increased the intratumoral accumulation of polymorphonuclear (PMN) MDSCs and TAMs and their expression of immunosuppressive factors, including CXCL2, IL-10, and PD-L1. Consistent with this, in an immune 'hot' tumor model, Egfl6 expression eliminated response to anti-PD-L1 therapy, while Egfl6 neutralizing antibody decreased the accumulation of tumor-infiltrating CD206+ TAMs and PMN-MDSCs and restored the efficacy of anti-PD-L1 therapy. Supporting a role in human tumors, in human OvCa tissue samples, areas of high EGFL6 expression colocalized with myeloid cell infiltration. scRNA-Seq analyses revealed a correlation between EGFL6 and immune cell expression of immunosuppressive factors. Our data provide mechanistic insights into the oncoimmunologic functions of EGFL6 in mediating tumor immune suppression and identified EGFL6 as a potential therapeutic target to enhance immunotherapy in patients with OvCa.
Collapse
Affiliation(s)
- Sarah Hamze Sinno
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Shoumei Bai
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Linan Zhang
- Department of Applied Mathematics, School of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang, China
| | - Eldin Jašarević
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, Pittsburgh, Pennsylvania, USA
| | - Hatice U. Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine
- UPMC Hillman Cancer Center
- Department of Bioengineering, School of Engineering, and
| | - Ronald J. Buckanovich
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sandra Cascio
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center
| |
Collapse
|
3
|
Hsu HT, Lin YM, Hsing MT, Yeh KT, Lu JW, Yang SF. Cytoplasmic Expression of the EGFL6 Protein Is an Independent Prognostic Factor for Shortened Patient Survival in Human Hepatocellular Carcinoma. In Vivo 2024; 38:2455-2463. [PMID: 39187367 PMCID: PMC11363759 DOI: 10.21873/invivo.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM Hepatocellular carcinoma (HCC) is the most common primary liver tumor and the second leading cause of cancer-related deaths worldwide. The current study aimed to investigate the clinical relevance of the epidermal growth factor-like domain multiple 6 (EGFL6) expression in HCC and to evaluate whether the expression of EGFL6 in HCC has diagnostic and prognostic significance. PATIENTS AND METHODS This study aimed to investigate EGFL6 protein expression levels in 260 HCC tissue specimens using immunohistochemical analyses. The immunohistochemical study demonstrated strong EGFL6 expression in the cytoplasm of non-tumor or normal hepatocytes. RESULTS The findings revealed that 98 patients exhibited low EGFL6 expression, while 162 patients displayed high EGFL6 expression. We explored the associations between cytoplasmic EGFL6 expression and the clinicopathological features of HCC. Decreased cytoplasmic EGFL6 expression exhibited significant correlations with worse cellular differentiation, higher T classification, vascular invasion, higher stage, and tumor recurrence. Survival analyses, using Kaplan-Meier survival curves for HCC patients, revealed that those with reduced cytoplasmic EGFL6 expression experienced significantly worse disease-free survival (DFS) and disease-specific survival (DSS). Univariate and multivariate analyses identified EGFL6 as an independent predictor for decreased expression, differentiation grade, vascular invasion, stage, or recurrence in cases of DFS or DSS in HCC. CONCLUSION This study represents, to the best of our knowledge, the first investigation into the expression of EGFL6 protein in HCC. Taken together, our findings strongly suggest that EGFL6 likely plays a crucial role in the pathogenesis of HCC and indicates that targeting EGFL6 could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Hui-Ting Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- School of Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Ming-Tai Hsing
- Department of Neurosurgery, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Jeng-Wei Lu
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark;
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
4
|
McAndrews KM, Mahadevan KK, Kalluri R. Mouse Models to Evaluate the Functional Role of the Tumor Microenvironment in Cancer Progression and Therapy Responses. Cold Spring Harb Perspect Med 2024; 14:a041411. [PMID: 38191175 PMCID: PMC11216184 DOI: 10.1101/cshperspect.a041411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Garrett AA, Bai S, Cascio S, Gupta N, Yang D, Buckanovich RJ. EGFL6 promotes endometrial cancer cell migration and proliferation. Gynecol Oncol 2024; 185:75-82. [PMID: 38368816 PMCID: PMC11179989 DOI: 10.1016/j.ygyno.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE EGFL6, a growth factor produced by adipocytes, is upregulated in and implicated in the tumorigenesis of multiple tumor types. Given the strong link between obesity and endometrial cancer, we sought to determine the impact of EGFL6 on endometrial cancer. METHODS EGFL6 expression in endometrial cancer and correlation with patient outcomes was evaluated in the human protein atlas and TCGA. EGFL6 treatment, expression upregulation, and shRNA knockdown were used to evaluate the impact of EGFL6 on the proliferation and migration of 3 endometrial cancer cell lines in vitro. Similarly, the impact of EGFL6 expression and knockdown on tumor growth was evaluated. Western blotting was used to evaluate the impact of EGFL6 on MAPK phosphorylation. RESULTS EGFL6 is upregulated in endometrial cancer, primarily in cony-number high tumors. High tumor endometrial cancer expression of EGFL6 predicts poor patient prognosis. We find that EGFL6 acts to activate the MAPK pathway increasing cellular proliferation and migration. In xenograft models, EGFL6 overexpression increases endometrial cancer tumor growth while EGFL6 knockdown decreases endometrial cancer tumor growth. CONCLUSIONS EGFL6 is a marker of poor prognosis endometrial cancers, driving cancer cell proliferation and growth. As such EGFL6 represents a potential therapeutic target in endometrial cancer.
Collapse
Affiliation(s)
- Alison A Garrett
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Cascio
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Navneet Gupta
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Rai V, Le H, Agrawal DK. Novel mediators regulating angiogenesis in diabetic foot ulcer healing. Can J Physiol Pharmacol 2023; 101:488-501. [PMID: 37459652 DOI: 10.1139/cjpp-2023-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A non-healing diabetic foot ulcer (DFU) is a debilitating clinical problem amounting to socioeconomic and psychosocial burdens. DFUs increase morbidity due to prolonged treatment and mortality in the case of non-treatable ulcers resulting in gangrene and septicemia. The overall amputation rate of the lower extremity with DFU ranges from 3.34% to 42.83%. Wound debridement, antibiotics, applying growth factors, negative pressure wound therapy, hyperbaric oxygen therapy, topical oxygen, and skin grafts are common therapies for DFU. However, recurrence and nonhealing ulcers are still major issues. Chronicity of inflammation, hypoxic environment, poor angiogenesis, and decreased formation of the extracellular matrix (ECM) are common impediments leading to nonhealing patterns of DFUs. Angiogenesis is crucial for wound healing since proper vessel formation facilitates nutrients, oxygen, and immune cells to the ulcer tissue to help in clearing out debris and facilitate healing. However, poor angiogenesis due to decreased expression of angiogenic mediators and matrix formation results in nonhealing and ultimately amputation. Multiple proangiogenic mediators and vascular endothelial growth factor (VEGF) therapy exist to enhance angiogenesis, but the results are not satisfactory. Thus, there is a need to investigate novel pro-angiogenic mediators that can either alone or in combination enhance the angiogenesis and healing of DFUs. In this article, we critically reviewed the existing pro-angiogenic mediators followed by potentially novel factors that might play a regulatory role in promoting angiogenesis and wound healing in DFUs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Hoangvi Le
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
7
|
Tang H, Fayomi AP, Bai S, Gupta N, Cascio S, Yang D, Buckanovich RJ. Generation and characterization of humanized affinity-matured EGFL6 antibodies for ovarian cancer therapy. Gynecol Oncol 2023; 171:49-58. [PMID: 36804621 PMCID: PMC10040429 DOI: 10.1016/j.ygyno.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
OBJECTIVES Epidermal growth factor EGF-like domain multiple-6 (EGFL6) is highly expressed in high grade serous ovarian cancer and promotes both endothelial cell proliferation/angiogenesis and cancer cell proliferation/metastasis. As such it has been implicated as a therapeutic target. As a secreted factor, EGFL6 is a candidate for antibody therapy. The objectives of this study were to create and validate humanized affinity-matured EGFL6 neutralizing antibodies for clinical development. METHODS A selected murine EGFL6 antibody was humanized using CDR grafting to create 26 variant humanized antibodies. These were screened and the lead candidate was affinity matured. Seven humanized affinity-matured EGFL6 antibodies were screened for their ability to block EGFL6 activity on cancer cells in vitro, two of which were selected and tested their therapeutic activity in vivo. RESULTS Humanized affinity matured antibodies demonstrated high affinity for EGFL6 (150 pM to 2.67 nM). We found that several humanized affinity-matured EGFL6 antibodies specifically bound to recombinant, and native human EGFL6. Two lead antibodies were able to inhibit EGFL6-mediated (i) cancer cell migration, (ii) proliferation, and (iii) increase in ERK phosphorylation in cancer cells in vitro. Both lead antibodies restricted growth of an EGFL6 expressing ovarian cancer patient derived xenograft. Analysis of treated human tumor xenografts indicated that anti-EGFL6 therapy suppressed angiogenesis, inhibited tumor cell proliferation, and promoted tumor cell apoptosis. CONCLUSIONS Our studies confirm the ability of these humanized affinity-matured antibodies to neutralize EGFL6 and acting as a therapeutic to restrict cancer growth. This work supports the development of these antibody for first-in-human clinical trials.
Collapse
Affiliation(s)
- Huijuan Tang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adetunji P Fayomi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Navneet Gupta
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Cascio
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Su G, Wang W, Xu L, Li G. Progress of EGFL6 in angiogenesis and tumor development. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:436-443. [PMID: 36507067 PMCID: PMC9729941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022]
Abstract
The epidermal growth factor (EGF) superfamily includes the protein 6 with an epidermal growth factor-like protein (EGFL6). EGFL6 has a signal peptide domain with an amino terminus and a MAM domain with a carboxy terminus. There are four whole EGF-like repeat regions and one partial EGF-like repeat region. Three of these regions include calcium-binding structures and an arg-gly-asp (RGD) integrin interaction motif. The epidermal growth factor-like (EGFL) and EGF domains have identical amino acid residues. Cell division, differentiation, mortality, cell adhesion, and migration are all affected by EGFL6. EGFL proteins are involved in a broad range of biological activities, making it important in tumor development and angiogenesis. We highlighted the latest development of EGFL6 research on tumor proliferation, invasion, and migration in this review.
Collapse
Affiliation(s)
- Guanyu Su
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| | - Wei Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| |
Collapse
|
9
|
Ruiz M, Zhang N, Sood AK, An Z. Antibody therapeutics for epithelial ovarian cancer. Expert Opin Biol Ther 2022; 22:1379-1391. [PMID: 36302510 PMCID: PMC10375545 DOI: 10.1080/14712598.2022.2141565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION High-grade serous ovarian carcinoma (HGSC) is an aggressive subtype of epithelial ovarian carcinoma (EOC) and remains the most lethal gynecologic cancer. A lack of effective and tolerable therapeutic options and nonspecific symptoms at presentation with advanced stage of disease are among the challenges in the management of the disease. AREAS COVERED An overview of ovarian cancer, followed by a discussion of the current therapeutic regimes and challenges that arise during and after the treatment of EOC. We discuss different formats of antibody therapeutics and their usage in targeting validated targets implicated in ovarian cancer, as well as three emerging novel proteins as examples recently implicated in their contribution to adaptive resistance in ovarian cancer. EXPERT OPINION Antibody therapeutics allow for a unique and effective way to target proteins implicated in cancer and other diseases, and have the potential to radically change the outcomes of patients suffering from ovarian cancer. The vast array of targets that have been implicated in ovarian cancer and yet the lack of effective therapeutic options for patients further stresses the importance of discovering novel proteins that can be targeted, as well as predictive biomarkers that can inform the stratification of patients into treatment-specific populations.
Collapse
Affiliation(s)
- Mason Ruiz
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Yamada Y, Onda T, Hagiuda A, Kan R, Matsunuma M, Hamada K, Kikkawa Y, Nomizu M. RGDX 1 X 2 motif regulates integrin αvβ5 binding for pluripotent stem cell adhesion. FASEB J 2022; 36:e22389. [PMID: 35657599 DOI: 10.1096/fj.202200317r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
The arginine-glycine-aspartic acid (RGD) motif is a cell adhesion sequence that binds to integrins. Some RGD-containing peptides promote adhesion of both embryonic stem cells and induced pluripotent stem cells (iPSCs); however, not all such RGD-containing peptides are active. In this study, we elucidated the role of RGD-neighboring sequences on iPSC adhesion using diverse synthetic peptides and recombinant proteins. Our results indicate that iPSC adhesion requires RGDX1 X2 sequences, such as RGDVF and RGDNY, and that the X1 X2 residues are essential for the adhesion via integrin αvβ5 but not αvβ3. iPSCs express integrin αvβ5 but not αvβ3; therefore, iPSC adhesion requires the RGDX1 X2 -containing sequences. The importance of the X1 X2 residues was confirmed with both HeLa and A549 cells, which express integrin αvβ5 but not αvβ3. Analysis of RGD-neighboring sequences provides important insights into ligand-binding specificity of integrins. Identification of integrin αvβ5-binding motifs is potentially useful in drug development, drug delivery, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Toru Onda
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Ayami Hagiuda
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Ryuji Kan
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Masumi Matsunuma
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Keisuke Hamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
11
|
Transcriptome Analyses of Adipose Tissue Samples Identify EGFL6 as a Candidate Gene Involved in Obesity-Related Adipose Tissue Dysfunction in Children. Int J Mol Sci 2022; 23:ijms23084349. [PMID: 35457174 PMCID: PMC9033114 DOI: 10.3390/ijms23084349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity develops early in childhood and is accompanied by early signs of adipose tissue (AT) dysfunction and metabolic disease in children. In order to analyse the molecular processes during obesity-related AT accumulation in children, we investigated genome-wide expression profiles in AT samples, isolated adipocytes, and stromal vascular fraction (SVF) cells and assessed their relation to obesity as well as biological and functional AT parameters. We detected alterations in gene expression associated with obesity and related parameters, i.e., BMI SDS, adipocyte size, macrophage infiltration, adiponectin, and/or leptin. While differential gene expression in AT and adipocytes shared an enrichment in metabolic pathways and pathways related to extracellular structural organisation, SVF cells showed an overrepresentation in inflammatory pathways. In adipocytes, we found the strongest positive association for epidermal growth factor-like protein 6 (EGFL6) with adipocyte hypertrophy. EGFL6 was also upregulated during in vitro adipocyte differentiation. In children, EGFL6 expression was positively correlated to parameters of AT dysfunction and metabolic disease such as macrophage infiltration into AT, hs-CRP, leptin levels, and HOMA-IR. In conclusion, we provide evidence for early alterations in AT gene expression related to AT dysfunction in children and identified EGFL6 as potentially being involved in processes underlying the pathogenesis of metabolic disease.
Collapse
|
12
|
A single-cell atlas of non-haematopoietic cells in human lymph nodes and lymphoma reveals a landscape of stromal remodelling. Nat Cell Biol 2022; 24:565-578. [PMID: 35332263 PMCID: PMC9033586 DOI: 10.1038/s41556-022-00866-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
The activities of non-haematopoietic cells (NHCs), including mesenchymal stromal cells and endothelial cells, in lymphomas are reported to underlie lymphomagenesis. However, our understanding of lymphoma NHCs has been hampered by unexplained NHC heterogeneity, even in normal human lymph nodes (LNs). Here we constructed a single-cell transcriptome atlas of more than 100,000 NHCs collected from 27 human samples, including LNs and various nodal lymphomas, and it revealed 30 distinct subclusters, including some that were previously unrecognized. Notably, this atlas was useful for comparative analyses with lymphoma NHCs, which revealed an unanticipated landscape of subcluster-specific changes in gene expression and interaction with malignant cells in follicular lymphoma NHCs. This facilitates our understanding of stromal remodelling in lymphoma and highlights potential clinical biomarkers. Our study largely updates NHC taxonomy in human LNs and analysis of disease status, and provides a rich resource and deeper insights into LN and lymphoma biology to advance lymphoma management and therapy. Abe et al. profile, characterize and compare non-haematopoietic cells in normal human lymph nodes versus nodal lymphomas from patients, providing insights into stromal modelling in health and disease.
Collapse
|
13
|
Wen Y, Chelariu-Raicu A, Umamaheswaran S, Nick AM, Stur E, Hanjra P, Jiang D, Jennings NB, Chen X, Corvigno S, Glassman D, Lopez-Berestein G, Liu J, Hung MC, Sood AK. Endothelial p130cas confers resistance to anti-angiogenesis therapy. Cell Rep 2022; 38:110301. [PMID: 35081345 PMCID: PMC8860355 DOI: 10.1016/j.celrep.2022.110301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/02/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Anti-angiogenic therapies, such as anti-VEGF antibodies (AVAs), have shown promise in clinical settings. However, adaptive resistance to such therapies occurs frequently. We use orthotopic ovarian cancer models with AVA-adaptive resistance to investigate the underlying mechanisms. Genomic profiling of AVA-resistant tumors guides us to endothelial p130cas. We find that bevacizumab induces cleavage of VEGFR2 in endothelial cells by caspase-10 and that VEGFR2 fragments internalize into the nucleus and autophagosomes. Nuclear VEGFR2 and p130cas fragments, together with TNKS1BP1 (tankyrase-1-binding protein), initiate endothelial cell death. Blockade of autophagy in AVA-resistant endothelial cells retains VEGFR2 at the membrane with bevacizumab treatment. Targeting host p130cas with RGD (Arg-Gly-Asp)-tagged nanoparticles or genomic ablation of vascular p130cas in p130casflox/floxTie2Cre mice significantly extends the survival of mice with AVA-resistant ovarian tumors. Higher vascular p130cas is associated with shorter survival of individuals with ovarian cancer. Our findings identify opportunities for new strategies to overcome adaptive resistance to AVA therapy.
Collapse
Affiliation(s)
- Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA.
| | - Anca Chelariu-Raicu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Sujanitha Umamaheswaran
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Alpa M Nick
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Pahul Hanjra
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Dahai Jiang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Deanna Glassman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Chen K, Liao S, Li Y, Jiang H, Liu Y, Wang C, Kuek V, Kenny J, Li B, Huang Q, Hong J, Huang Y, Chim SM, Tickner J, Pavlos NJ, Zhao J, Liu Q, Qin A, Xu J. Osteoblast-derived EGFL6 couples angiogenesis to osteogenesis during bone repair. Am J Cancer Res 2021; 11:9738-9751. [PMID: 34815781 PMCID: PMC8581413 DOI: 10.7150/thno.60902] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/02/2021] [Indexed: 01/07/2023] Open
Abstract
Rationale: Angiogenesis and osteogenesis are highly coupled processes which are indispensable to bone repair. However, the underlying mechanism(s) remain elusive. To bridge the gap in understanding the coupling process is crucial to develop corresponding solutions to abnormal bone healing. Epidermal growth factor-like protein 6 (EGFL6) is an angiogenic factor specifically and distinctively up-regulated during osteoblast differentiation. In contrast with most currently known osteoblast-derived coupling factors, EGFL6 is highlighted with little or low expression in other cells and tissues. Methods: In this study, primary bone marrow mesenchymal stem cells (MSCs) and osteoblastic cell line (MC3T3-E1) were transduced with lentiviral silencing or overexpression constructs targeting EGFL6. Cells were induced by osteogenic medium, followed by the evaluation of mineralization as well as related gene and protein expression. Global and conditional knockout mice were established to examine the bone phenotype under physiological condition. Furthermore, bone defect models were created to investigate the outcome of bone repair in mice lacking EGFL6 expression. Results: We show that overexpression of EGFL6 markedly enhances osteogenic capacity in vitro by augmenting bone morphogenic protein (BMP)-Smad and MAPK signaling, whereas downregulation of EGFL6 diminishes osteoblastic mineralization. Interestingly, osteoblast differentiation was not affected by the exogenous addition of EGFL6 protein, thereby indicating that EGFL6 may regulate osteoblastic function in an intracrine manner. Mice with osteoblast-specific and global knockout of EGFL6 surprisingly exhibit a normal bone phenotype under physiological conditions. However, EGFL6-deficiency leads to compromised bone repair in a bone defect model which is characterized by decreased formation of type H vessels as well as osteoblast lineage cells. Conclusions: Together, these data demonstrate that EGFL6 serves as an essential regulator to couple osteogenesis to angiogenesis during bone repair.
Collapse
|
15
|
Identification of Specific Cell Subpopulations and Marker Genes in Ovarian Cancer Using Single-Cell RNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1005793. [PMID: 34660776 PMCID: PMC8517627 DOI: 10.1155/2021/1005793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023]
Abstract
Objective Ovarian cancer is the deadliest gynaecological cancer globally. In our study, we aimed to analyze specific cell subpopulations and marker genes among ovarian cancer cells by single-cell RNA sequencing (RNA-seq). Methods Single-cell RNA-seq data of 66 high-grade serous ovarian cancer cells were employed from the Gene Expression Omnibus (GEO). Using the Seurat package, we performed quality control to remove cells with low quality. After normalization, we detected highly variable genes across the single cells. Then, principal component analysis (PCA) and cell clustering were performed. The marker genes in different cell clusters were detected. A total of 568 ovarian cancer samples and 8 normal ovarian samples were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes were identified according to ∣log2fold change (FC) | >1 and adjusted p value <0.05. To explore potential biological processes and pathways, functional enrichment analyses were performed. Furthermore, survival analyses of differentially expressed marker genes were performed. Results After normalization, 6000 highly variable genes were identified across the single cells. The cells were divided into 3 cell populations, including G1, G2M, and S cell cycles. A total of 1,124 differentially expressed genes were identified in ovarian cancer samples. These differentially expressed genes were enriched in several pathways associated with cancer, such as metabolic pathways, pathways in cancer, and PI3K-Akt signaling pathway. Furthermore, marker genes, STAT1, ANP32E, GPRC5A, and EGFL6, were highly expressed in ovarian cancer, while PMP22, FBXO21, and CYB5R3 were lowly expressed in ovarian cancer. These marker genes were positively associated with prognosis of ovarian cancer. Conclusion Our findings revealed specific cell subpopulations and marker genes in ovarian cancer using single-cell RNA-seq, which provided a novel insight into the heterogeneity of ovarian cancer.
Collapse
|
16
|
Wei J, Gilboa E, Calin GA, Heimberger AB. Immune Modulatory Short Noncoding RNAs Targeting the Glioblastoma Microenvironment. Front Oncol 2021; 11:682129. [PMID: 34532286 PMCID: PMC8438301 DOI: 10.3389/fonc.2021.682129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are heterogeneous and have a poor prognosis. Glioblastoma cells interact with their neighbors to form a tumor-permissive and immunosuppressive microenvironment. Short noncoding RNAs are relevant mediators of the dynamic crosstalk among cancer, stromal, and immune cells in establishing the glioblastoma microenvironment. In addition to the ease of combinatorial strategies that are capable of multimodal modulation for both reversing immune suppression and enhancing antitumor immunity, their small size provides an opportunity to overcome the limitations of blood-brain-barrier (BBB) permeability. To enhance glioblastoma delivery, these RNAs have been conjugated with various molecules or packed within delivery vehicles for enhanced tissue-specific delivery and increased payload. Here, we focus on the role of RNA therapeutics by appraising which types of nucleotides are most effective in immune modulation, lead therapeutic candidates, and clarify how to optimize delivery of the therapeutic RNAs and their conjugates specifically to the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eli Gilboa
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - George A Calin
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
17
|
Landscape of Immune Microenvironment in Epithelial Ovarian Cancer and Establishing Risk Model by Machine Learning. JOURNAL OF ONCOLOGY 2021; 2021:5523749. [PMID: 34484333 PMCID: PMC8416376 DOI: 10.1155/2021/5523749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/03/2021] [Indexed: 12/25/2022]
Abstract
Background Epithelial ovarian cancer (EOC) is an extremely lethal gynecological malignancy and has the potential to benefit from the immune checkpoint blockade (ICB) therapy, whose efficacy highly depends on the complex tumor microenvironment (TME). Method and Result We comprehensively analyze the landscape of TME and its prognostic value through immune infiltration analysis, somatic mutation analysis, and survival analysis. The results showed that high infiltration of immune cells predicts favorable clinical outcomes in EOC. Then, the detailed TME landscape of the EOC had been investigated through “xCell” algorithm, Gene set variation analysis (GSVA), cytokines expression analysis, and correlation analysis. It is observed that EOC patients with high infiltrating immune cells have an antitumor phenotype and are highly correlated with immune checkpoints. We further found that dendritic cells (DCs) may play a dominant role in promoting the infiltration of immune cells into TME and forming an antitumor immune phenotype. Finally, we conducted machine-learning Lasso regression, support vector machines (SVMs), and random forest, identifying six DC-related prognostic genes (CXCL9, VSIG4, ALOX5AP, TGFBI, UBD, and CXCL11). And DC-related risk stratify model had been well established and validated. Conclusion High infiltration of immune cells predicted a better outcome and an antitumor phenotype in EOC, and the DCs might play a dominant role in the initiation of antitumor immune cells. The well-established risk model can be used for prognostic prediction in EOC.
Collapse
|
18
|
Abstract
RNA interference (RNAi) has rapidly become a powerful tool for target discovery and therapeutics. Small interfering RNAs (siRNAs) are highly effective in mediating sequence-specific gene silencing. However, the major obstacle for using siRNAs for cancer therapeutics is their systemic delivery from the administration site to target cells in vivo. This chapter describes approaches to deliver siRNA effectively for cancer treatment and discusses in detail the current methods to assess pharmacokinetics and biodistribution of siRNAs in vivo.
Collapse
|
19
|
Sung TY, Huang HL, Cheng CC, Chang FL, Wei PL, Cheng YW, Huang CC, Lee YC, HuangFu WC, Pan SL. EGFL6 promotes colorectal cancer cell growth and mobility and the anti-cancer property of anti-EGFL6 antibody. Cell Biosci 2021; 11:53. [PMID: 33726836 PMCID: PMC7962215 DOI: 10.1186/s13578-021-00561-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of a reliable tumor target for advanced colorectal cancer (CRC) therapeutic approaches is critical since current treatments are limited. Epidermal growth factor-like domain 6 (EGFL6) has been reported to be associated with cancer development. Here, we focused on the role of EGFL6 in CRC progression and its clinical relevance. In addition, an anti-EGFL6 antibody was generated by phage display technology to investigate its potential therapeutic efficacy in CRC. RESULTS EGFL6 expression significantly increased in the colon tissues from CRC patients and mice showing spontaneous tumorigenesis, but not in normal tissue. Under hypoxic condition, EGFL6 expression was enhanced at both protein and transcript levels. Moreover, EGFL6 could promote cancer cell migration invasion, and proliferation of CRC cells via up-regulation of the ERK/ AKT pathway. EGFL6 also regulated cell migration, invasion, proliferation, and self-renewal through EGFR/αvβ3 integrin receptors. Treatment with the anti-EGFL6 antibody EGFL6-E5-IgG showed tumor-inhibition and anti-metastasis abilities in the xenograft and syngeneic mouse models, respectively. Moreover, EGFL6-E5-IgG treatment had no adverse effect on angiogenesis and wound healing CONCLUSIONS: We demonstrated that EGFL6 plays a role in CRC tumorigenesis and tumor progression, indicating that EGFL6 is a potential therapeutic target worth further investigation.
Collapse
Affiliation(s)
- Ting-Yi Sung
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan
| | - Han-Li Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan.,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Chun-Chun Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Fu-Ling Chang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Po-Li Wei
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, 11031, Taipei, Taiwan.,Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, 11031, Taipei, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Wen Cheng
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chiao Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, No. 252, Wuxing St., 11031, Taipei, Taiwan.
| | - Yu-Ching Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan.
| | - Wei-Chun HuangFu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Shiow-Lin Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
20
|
Khurana N, Pulsipher A, Ghandehari H, Alt JA. Meta-analysis of global and high throughput public gene array data for robust vascular gene expression discovery in chronic rhinosinusitis: Implications in controlled release. J Control Release 2021; 330:878-888. [PMID: 33144181 PMCID: PMC7906912 DOI: 10.1016/j.jconrel.2020.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chronic inflammation is known to cause alterations in vascular homeostasis that directly affects blood vessel morphogenesis, angiogenesis, and tissue permeability. These phenomena have been investigated and exploited for targeted drug delivery applications in the context of cancers and other disease processes. Vascular pathophysiology and its associated genes and signaling pathways, however, have not been systematically investigated in patients with chronic rhinosinusitis (CRS). Understanding the interplay between key vascular signaling pathways and top biomarkers associated with CRS may facilitate the development of new targeted delivery strategies and treatment paradigms. Herein, we report findings from a gene meta-analysis to identify key vascular pathways and top genes involved in CRS. METHODS Proprietary software (Illumina BaseSpace Correlation Engine) and open-access data sets were used to perform a gene meta-analysis to systematically determine significant differences between key vascular biomarkers and vascular signaling pathways expressed in sinonasal tissue biopsies of controls and patients with CRS. RESULTS Thirteen studies were initially identified, and then reduced to five after applying exclusion principle algorithms. Genes associated with vasculature development and blood vessel morphogenesis signaling pathways were identified to be overexpressed among the top 15 signaling pathways. Out of many significantly upregulated genes, the levels of pro angiogenic genes such as early growth response (EGR3), platelet endothelial cell adhesion molecule (PECAM1) and L-selectin (SELL) were particularly significant in patients with CRS compared to controls. DISCUSSION Key vascular biomarkers and signaling pathways were significantly overexpressed in patients with CRS compared to controls, suggesting a contribution of vascular dysfunction in CRS pathophysiology. Vascular dysregulation and permeability may afford opportunities to develop drug delivery systems to improve efficacy and reduce toxicity of CRS treatment.
Collapse
Affiliation(s)
- Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Abigail Pulsipher
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeremiah A Alt
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
21
|
Shi S, Ma T, Xi Y. A Pan-Cancer Study of Epidermal Growth Factor-Like Domains 6/7/8 as Therapeutic Targets in Cancer. Front Genet 2021; 11:598743. [PMID: 33391349 PMCID: PMC7773905 DOI: 10.3389/fgene.2020.598743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
With highly homologous epidermal growth factor (EGF)-like (EGFL) domains, the members of the EGFL family play crucial roles in growth, invasion, and metastasis of tumors and are closely associated with the apoptosis of tumor cells and tumor angiogenesis. Furthermore, their contribution to immunoreaction and tumor microenvironment is highly known. In this study, a comprehensive analysis of EGFL6, -7, and -8 was performed on the basis of their expression profiles and their relationship with the rate of patient survival. Through a pan-cancer study, their effects were correlated with immune subtypes, tumor microenvironment, and drug resistance. Using The Cancer Genome Atlas pan-cancer data, expression profiles of EGFL6, -7, and -8, and their association with the patient survival rate and tumor microenvironment were analyzed in 33 types of cancers. The expression of the EGFL family was different in different cancer types, revealing the heterogeneity among cancers. The results showed that the expression of EGFL8 was lower than EGFL6 and EGFL7 among all cancer types, wherein EGFL7 had the highest expression. The univariate Cox proportional hazard regression model showed that EGFL6 and EGFL7 were the risk factors to predict poor prognosis of cancers. Survival analysis was then used to verify the relationship between gene expression and patient survival. Furthermore, EGFL6, EGFL7, and EGFL8 genes revealed a clear association with immune infiltrate subtypes; they were also related to the infiltration level of stromal cells and immune cells with different degrees. Moreover, they were negatively correlated with the characteristics of cancer stem cells measured by DNAs and RNAs. In addition, EGFL6, -7, and -8 were more likely to contribute to the resistance of cancer cells. Our systematic analysis of EGFL gene expression and their correlation with immune infiltration, tumor microenvironment, and prognosis of cancer patients emphasized the necessity of studying each EGFL member as a separate entity within each particular type of cancer. Simultaneously, EGFL6, -7, and -8 signals were verified as promising targets for cancer therapies, although further laboratory validation is still required.
Collapse
Affiliation(s)
- Shanping Shi
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, School of Medicine, Institute of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| | - Ting Ma
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, School of Medicine, Institute of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| | - Yang Xi
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, School of Medicine, Institute of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| |
Collapse
|
22
|
Tang CT, Zhang QW, Wu S, Tang MY, Liang Q, Lin XL, Gao YJ, Ge ZZ. Thalidomide targets EGFL6 to inhibit EGFL6/PAX6 axis-driven angiogenesis in small bowel vascular malformation. Cell Mol Life Sci 2020; 77:5207-5221. [PMID: 32008086 PMCID: PMC7671996 DOI: 10.1007/s00018-020-03465-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Small bowel vascular malformation disease (SBVM) is the most common cause of obscure gastrointestinal bleeding (OGIB). Several studies suggested that EGFL6 was able to promote the growth of tumor endothelial cells by forming tumor vessels. To date, it remains unclear how EGFL6 promotes pathological angiogenesis in SBVM and whether EGFL6 is a target of thalidomide. METHODS We took advantage of SBVM plasma and tissue samples and compared the expression of EGFL6 between SBVM patients and healthy people via ELISA and Immunohistochemistry. We elucidated the underlying function of EGFL6 in SBVM in vitro and by generating a zebrafish model that overexpresses EGFL6, The cycloheximide (CHX)-chase experiment and CoIP assays were conducted to demonstrate that thalidomide can promote the degradation of EGFL6 by targeting CRBN. RESULTS The analysis of SBVM plasma and tissue samples revealed that EGFL6 was overexpressed in the patients compared to healthy people. Using in vitro and in vivo assays, we demonstrated that an EMT pathway triggered by the EGFL6/PAX6 axis is involved in the pathogenesis of SBVM. Furthermore, through in vitro and in vivo assays, we elucidated that thalidomide can function as anti-angiogenesis medicine through the regulation of EGFL6 in a proteasome-dependent manner. Finally, we found that CRBN can mediate the effect of thalidomide on EGFL6 expression and that the CRBN protein interacts with EGFL6 via a Lon N-terminal peptide. CONCLUSION Our findings revealed a key role for EGFL6 in SBVM pathogenesis and provided a mechanism explaining why thalidomide can cure small bowel bleeding resulting from SBVM.
Collapse
Affiliation(s)
- Chao-Tao Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Qing-Wei Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Shan Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Ming-Yu Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Qian Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Xiao-Lu Lin
- Department of Digestive Endoscopy, Provincial Clinic Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yun-Jie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Zhi-Zheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
23
|
Cepeda JR, Sekhar NS, Han J, Xiong W, Zhang N, Yu L, Dai S, Davidson HW, Kappler JW, An Z, Zhang L. A monoclonal antibody with broad specificity for the ligands of insulin B:9-23 reactive T cells prevents spontaneous type 1 diabetes in mice. MAbs 2020; 12:1836714. [PMID: 33151102 PMCID: PMC7668530 DOI: 10.1080/19420862.2020.1836714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of T cells specific for insulin B chain amino acids 9 to 23 (B:9–23) is essential for the initiation of type 1 diabetes (T1D) in non-obese diabetic mice. We previously reported that peptide/MHC complexes containing optimized B:9–23 mimotopes can activate most insulin-reactive pathogenic T cells. A monoclonal antibody (mAb287) targeting these complexes prevented disease in 30–50% of treated animals (compared to 10% of animals given an isotype control). The incomplete protection is likely due to the relatively low affinity of the antibody for its ligand and limited specificity. Here, we report an enhanced reagent, mAb757, with improved specificity, affinity, and efficacy in modulating T1D. Importantly, mAb757 bound with nanomolar affinity to agonists of both “type A” and “type B” cells and suppressed “type B” cells more efficiently than mAb287. When given weekly starting at 4 weeks of age, mAb757 protected ~70% of treated mice from developing T1D for at least 35 weeks, while mAb287 only delayed disease in 25% of animals under the same conditions. Consistent with its higher affinity, mAb757 was also able to stain antigen-presenting cells loaded with B:9–23 mimotopes in vivo. We conclude that monoclonal antibodies that can block the presentation of pathogenic T cell receptor epitopes are viable candidates for antigen-specific immunotherapy for T1D.
Collapse
Affiliation(s)
- Joseph Ray Cepeda
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| | - Nitin S Sekhar
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| | - Junying Han
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| | - Wei Xiong
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center , Houston, Texas, USA
| | - Ningyan Zhang
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center , Houston, Texas, USA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver , Aurora, Colorado, USA
| | - Shaodong Dai
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver , Aurora, Colorado, USA
| | - Howard W Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver , Aurora, Colorado, USA
| | - John W Kappler
- Department of Biomedical Research, National Jewish Health , Denver, Colorado, USA
| | - Zhiqiang An
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center , Houston, Texas, USA
| | - Li Zhang
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| |
Collapse
|
24
|
Huo FC, Zhu WT, Liu X, Zhou Y, Zhang LS, Mou J. Epidermal growth factor-like domain multiple 6 (EGFL6) promotes the migration and invasion of gastric cancer cells by inducing epithelial-mesenchymal transition. Invest New Drugs 2020; 39:304-316. [PMID: 32949323 DOI: 10.1007/s10637-020-01004-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor-like domain multiple 6 (EGFL6) is implicated in tumor growth, metastasis and angiogenesis, and its ectopic alteration has been detected in aggressive malignancies. However, the pathophysiologic roles and molecular mechanisms of EGFL6 in gastric cancer (GC) remain to be elucidated. In this study, we investigated EGFL6 expression in GC cell lines and tissues using western blotting and immunohistochemistry. We found that EGFL6 was elevated expression in GC cell lines and tissues. The high expression of EGFL6 significantly was correlated with histological grade, depth of invasion, lymph node involvement, distant metastasis and TNM stage in GC and predicted poorer prognosis, and it could act an independent prognostic factor for GC patients. EGFL6 enhanced the proliferation, migration and invasion of GC cells. In addition, we identified the possible molecular mechanisms of EGFL6-involved epithelial-mesenchymal transition (EMT). EGFL6 regulated EMT process and induced metastasis partly through FAK/PI3K/AKT/mTOR, Notch and MAPK signaling pathways. In conclusion, EGFL6 confers an oncogenic function in GC progression and may be proposed as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China
| | - Wen-Tao Zhu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China
| | - Xu Liu
- Department of general surgery, Xuzhou Children's Hospital, Xuzhou Medical University, Quan shan District, Xuzhou, 221000, Jiangsu, China
| | - Yun Zhou
- Department of Radiation Oncology, Xuzhou Central Hospital, Xuzhou, 221000, Jiangsu, China
| | - Lan-Sheng Zhang
- Department of Oncological Radiotherapy, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
| | - Jie Mou
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China.
- School of Pharmacy, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
25
|
Zhu W, Liu C, Lu T, Zhang Y, Zhang S, Chen Q, Deng N. Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer. Front Oncol 2020; 10:1451. [PMID: 32983976 PMCID: PMC7477343 DOI: 10.3389/fonc.2020.01451] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor angiogenesis plays an important role in the progression and metastasis of ovarian cancer. EGFL6 protein is highly expressed in ovarian cancer and has been proposed to play an important role in promoting tumor angiogenesis. Here, a CRISPR/Cas9 system was used to knockout the EGFL6 gene in the ovarian cancer cell line SKOV3, using specific guide RNA targeting the exons of EGFL6. The knockout of EGFL6 markedly inhibited the proliferation, migration, and invasion of SKOV3 cells, as well as promoted apoptosis of tumor cells. In the nude mouse model of ovarian cancer, knockout of EGFL6 remarkably inhibited tumor growth and angiogenesis. The transcript profile assays detected 4,220 differentially expressed genes in the knockout cells, including 87 genes that were correlated to proliferation, migration, invasion, and angiogenesis. Moreover, Western blotting confirmed that EGFL6 knockout downregulated the FGF-2/PDGFB signaling pathway. Thus, the results of this study indicated that EGFL6 could regulate cell proliferation, migration, and angiogenesis in ovarian cancer cells by regulating the FGF-2/PDGFB signaling pathway.
Collapse
Affiliation(s)
- Wenhui Zhu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Chunyan Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Tongyi Lu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Yinmei Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Simin Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Batool A, Liu H, Liu YX, Chen SR. CD83, a Novel MAPK Signaling Pathway Interactor, Determines Ovarian Cancer Cell Fate. Cancers (Basel) 2020; 12:cancers12082269. [PMID: 32823589 PMCID: PMC7465057 DOI: 10.3390/cancers12082269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is a leading cause of death from gynecologic malignancies worldwide. Although CD83 is widely described as a solid marker for mature dendritic cells, emerging pieces of evidence indicate the expression of membrane protein CD83 by various tumor cells, including ovarian cancer cells. However, the potential role of CD83 in ovarian cancer cell properties and development remains absolutely unknown. By using human CD83 stable overexpression and knockdown sublines of several ovarian cancer cells, we observed that CD83 advanced the growth proliferation, colony formation ability, spheroid formation, and in vivo tumorigenicity of ovarian cancer cells; surprisingly, CD83 limited their migration and invasion potentials. Positive regulation of proliferation/stemness factors (e.g., cyclin-CDKs and KIT/CD44) but negative regulation of matrix metallopeptidases (e.g., MMP1 and 7) by CD83 were revealed by the integrated analysis of transcriptome and proteome. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) first identified the association of CD83 with MAP3K7 (also known as TAK1) and MAP3K7-binding protein TAB1 on the cell membrane. Moreover, CD83 functions through the activation of MAP3K7-MEK1/2-ERK1/2 cascades to further regulate downstream FOXO1/p21/CDK2/CCNB1 and STAT3/DKK1 signaling pathways, thus activating proliferation and spheroid formation of ovarian cancer cells, respectively. Collectively, our findings define a CD83-MAPK pathway in the regulation of proliferation and stemness in ovarian cancer cells, with potential therapeutic applications in blocking their progression.
Collapse
Affiliation(s)
- Aalia Batool
- Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (A.B.); (H.L.)
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Hao Liu
- Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (A.B.); (H.L.)
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Su-Ren Chen
- Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (A.B.); (H.L.)
- Correspondence:
| |
Collapse
|
27
|
Wang Z, Zhao Y, An Z, Li W. Molecular Links Between Angiogenesis and Neuroendocrine Phenotypes in Prostate Cancer Progression. Front Oncol 2020; 9:1491. [PMID: 32039001 PMCID: PMC6985539 DOI: 10.3389/fonc.2019.01491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
As a common therapy for prostate cancer, androgen deprivation therapy (ADT) is effective for the majority of patients. However, prolonged ADT promotes drug resistance and progression to an aggressive variant with reduced androgen receptor signaling, so called neuroendocrine prostate cancer (NEPC). Until present, NEPC is still poorly understood, and lethal with no effective treatments. Elevated expression of neuroendocrine related markers and increased angiogenesis are two prominent phenotypes of NEPC, and both of them are positively associated with cancers progression. However, direct molecular links between the two phenotypes in NEPC and their mechanisms remain largely unclear. Their elucidation should substantially expand our knowledge in NEPC. This knowledge, in turn, would facilitate the development of effective NEPC treatments. We recently showed that a single critical pathway regulates both ADT-enhanced angiogenesis and elevated expression of neuroendocrine markers. This pathway consists of CREB1, EZH2, and TSP1. Here, we seek new insights to identify molecules common to pathways promoting angiogenesis and neuroendocrine phenotypes in prostate cancer. To this end, our focus is to summarize the literature on proteins reported to regulate both neuroendocrine marker expression and angiogenesis as potential molecular links. These proteins, often described in separate biological contexts or diseases, include AURKA and AURKB, CHGA, CREB1, EZH2, FOXA2, GRK3, HIF1, IL-6, MYCN, ONECUT2, p53, RET, and RB1. We also present the current efforts in prostate cancer or other diseases to target some of these proteins, which warrants testing for NEPC, given the urgent unmet need in treating this aggressive variant of prostate cancer.
Collapse
Affiliation(s)
- Zheng Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Yicheng Zhao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| |
Collapse
|
28
|
Kang J, Wang J, Tian J, Shi R, Jia H, Wang Y. The emerging role of EGFL6 in angiogenesis and tumor progression. Int J Med Sci 2020; 17:1320-1326. [PMID: 32624687 PMCID: PMC7330666 DOI: 10.7150/ijms.45129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor-like domain-containing protein 6 (EGFL6) belongs to the epidermal growth factor (EGF) superfamily. EGFL6 is expressed at higher levels in embryos and various malignant tumors than in normal tissues. Recent studies suggest that EGFL6 participates in the development of a variety of tumors. In this review, we summarize findings that support the role for EGFL6 in tumor proliferation, invasion and migration. Furthermore, our review results indicate the mechanism of EGFL6 activity angiogenesis. We also describe work toward the preparation of monoclonal antibodies against EGFL6. Altogether, the work of this review promotes understanding of the role of EGFL6 in tumor development, the mechanism of that action, and the potential of EGFL6 as a therapeutic target for tumor prevention and treatment.
Collapse
Affiliation(s)
- Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruyi Shi
- Department of Cell biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
29
|
Chamani M, Maleki Dana P, Chaichian S, Moazzami B, Asemi Z. Chitosan is a potential inhibitor of ovarian cancer: Molecular aspects. IUBMB Life 2019; 72:687-697. [PMID: 31873986 DOI: 10.1002/iub.2206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/22/2019] [Indexed: 11/10/2022]
Abstract
Although ovarian cancer has a lower prevalence than breast cancer, its mortality rate is three times higher, which is reported to increase in the coming years. As the early stages of ovarian cancer do not have any obvious symptoms, in most of the cases, this cancer is diagnosed at advanced stages with a poor prognosis. Moreover, in many patients who are diagnosed with advanced stage, relapse of the disease and drug resistance are observed. Over the past years, these women have been treated with chemotherapy and cytoreductive surgeries. However, the chemotherapy could affect the healthy tissues in addition to the malignancies. Therefore, discovering new diagnostic and therapeutic options seems to be a crucial need. Unlike the common invasive and/or nonspecific treatments, nanomedicine is trying to find a new way for cancer imaging, diagnosis, and drug delivery method. Nanoparticles (NPs), which has recently drawn attention, can be used in order to reduce the toxicity and frequent dosing of drugs, tumor-specific delivery, and early diagnosis for malignancies. Chitosan as an NP and product of chitin deacetylation has multiple characteristics, including biocompatibility, biodegradability, and safety. In this review, we cover the studies concerned with the role of chitosan in finding solutions to overcome the problems faced in ovarian cancer treatments. Furthermore, we highlight how chitosan is being used in delivering chemotherapy drugs, gene therapy, and imaging methods for both detection and image-guided therapies.
Collapse
Affiliation(s)
- Maryam Chamani
- Department of Gynecology and Obstetrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahla Chaichian
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Moazzami
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
30
|
Mitra S, Tiwari K, Podicheti R, Pandhiri T, Rusch DB, Bonetto A, Zhang C, Mitra AK. Transcriptome Profiling Reveals Matrisome Alteration as a Key Feature of Ovarian Cancer Progression. Cancers (Basel) 2019; 11:cancers11101513. [PMID: 31600962 PMCID: PMC6826756 DOI: 10.3390/cancers11101513] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic malignancy. There is a lack of comprehensive investigation of disease initiation and progression, including gene expression changes during early metastatic colonization. METHODS RNA-sequencing (RNA-seq) was done with matched primary tumors and fallopian tubes (n = 8 pairs) as well as matched metastatic and primary tumors (n = 11 pairs) from ovarian cancer patients. Since these are end point analyses, it was combined with RNA-seq using high-grade serous ovarian cancer cells seeded on an organotypic three-dimensional (3D) culture model of the omentum, mimicking early metastasis. This comprehensive approach revealed key changes in gene expression occurring in ovarian cancer initiation and metastasis, including early metastatic colonization. RESULTS 2987 genes were significantly deregulated in primary tumors compared to fallopian tubes, 845 genes were differentially expressed in metastasis compared to primary tumors and 304 genes were common to both. An assessment of patient metastasis and 3D omental culture model of early metastatic colonization revealed 144 common genes that were altered during early colonization and remain deregulated even in the fully developed metastasis. Deregulation of the matrisome was a key process in early and late metastasis. CONCLUSION These findings will help in understanding the key pathways involved in ovarian cancer progression and eventually targeting those pathways for therapeutic interventions.
Collapse
Affiliation(s)
- Sumegha Mitra
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kartikeya Tiwari
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
| | - Taruni Pandhiri
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
| | - Andrea Bonetto
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Anirban K Mitra
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
31
|
Zhao S, Zhu Y, Schultz RD, Li N, He Z, Zhang Z, Caron A, Zhu Q, Sun K, Xiong W, Deng H, Sun J, Deng Y, Kim M, Lee CE, Gordillo R, Liu T, Odle AK, Childs GV, Zhang N, Kusminski CM, Elmquist JK, Williams KW, An Z, Scherer PE. Partial Leptin Reduction as an Insulin Sensitization and Weight Loss Strategy. Cell Metab 2019; 30:706-719.e6. [PMID: 31495688 PMCID: PMC6774814 DOI: 10.1016/j.cmet.2019.08.005] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022]
Abstract
The physiological role of leptin is thought to be a driving force to reduce food intake and increase energy expenditure. However, leptin therapies in the clinic have failed to effectively treat obesity, predominantly due to a phenomenon referred to as leptin resistance. The mechanisms linking obesity and the associated leptin resistance remain largely unclear. With various mouse models and a leptin neutralizing antibody, we demonstrated that hyperleptinemia is a driving force for metabolic disorders. A partial reduction of plasma leptin levels in the context of obesity restores hypothalamic leptin sensitivity and effectively reduces weight gain and enhances insulin sensitivity. These results highlight that a partial reduction in plasma leptin levels leads to improved leptin sensitivity, while pointing to a new avenue for therapeutic interventions in the treatment of obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robbie D Schultz
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenyan He
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurosurgery and Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandre Caron
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kai Sun
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jia Sun
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurosurgery and Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Kim
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Charlotte E Lee
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiemin Liu
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Angela K Odle
- Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences
| | - Gwen V Childs
- Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin W Williams
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
32
|
Bast RC, Matulonis UA, Sood AK, Ahmed AA, Amobi AE, Balkwill FR, Wielgos-Bonvallet M, Bowtell DDL, Brenton JD, Brugge JS, Coleman RL, Draetta GF, Doberstein K, Drapkin RI, Eckert MA, Edwards RP, Elias KM, Ennis D, Futreal A, Gershenson DM, Greenberg RA, Huntsman DG, Ji JXY, Kohn EC, Iavarone C, Lengyel ER, Levine DA, Lord CJ, Lu Z, Mills GB, Modugno F, Nelson BH, Odunsi K, Pilsworth JA, Rottapel RK, Powell DJ, Shen L, Shih LM, Spriggs DR, Walton J, Zhang K, Zhang R, Zou L. Critical questions in ovarian cancer research and treatment: Report of an American Association for Cancer Research Special Conference. Cancer 2019; 125:1963-1972. [PMID: 30835824 PMCID: PMC6557260 DOI: 10.1002/cncr.32004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022]
Abstract
Substantial progress has been made in understanding ovarian cancer at the molecular and cellular level. Significant improvement in 5-year survival has been achieved through cytoreductive surgery, combination platinum-based chemotherapy, and more effective treatment of recurrent cancer, and there are now more than 280,000 ovarian cancer survivors in the United States. Despite these advances, long-term survival in late-stage disease has improved little over the last 4 decades. Poor outcomes relate, in part, to late stage at initial diagnosis, intrinsic drug resistance, and the persistence of dormant drug-resistant cancer cells after primary surgery and chemotherapy. Our ability to accelerate progress in the clinic will depend on the ability to answer several critical questions regarding this disease. To assess current answers, an American Association for Cancer Research Special Conference on "Critical Questions in Ovarian Cancer Research and Treatment" was held in Pittsburgh, Pennsylvania, on October 1-3, 2017. Although clinical, translational, and basic investigators conducted much of the discussion, advocates participated in the meeting, and many presentations were directly relevant to patient care, including treatment with poly adenosine diphosphate ribose polymerase (PARP) inhibitors, attempts to improve immunotherapy by overcoming the immune suppressive effects of the microenvironment, and a better understanding of the heterogeneity of the disease.
Collapse
Affiliation(s)
- Robert C. Bast
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Anil K. Sood
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew Futreal
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | - Zhen Lu
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Brad H. Nelson
- University of British Columbia, Canada
- BC Cancer Agency, Canada
| | | | | | | | | | - Li Shen
- Roswell Park Cancer Institute, Buffalo, NY
| | - le-Ming Shih
- Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | | | - Lee Zou
- Massachusetts General Hospital, Boston, MD
| |
Collapse
|
33
|
Wang J, Yin J, Wang X, Liu H, Hu Y, Yan X, Zhuang B, Yu Z, Han S. Changing expression profiles of mRNA, lncRNA, circRNA, and miRNA in lung tissue reveal the pathophysiological of bronchopulmonary dysplasia (BPD) in mouse model. J Cell Biochem 2019; 120:9369-9380. [PMID: 30802330 DOI: 10.1002/jcb.28212] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
New perinatal care technologies have improved the survival rate of preterm neonates, but the prevalence of bronchopulmonary dysplasia (BPD), one of the most intractable problems in neonatal intensive care unit (NICU), remains unchanged. In present study, high-throughput sequencing (HTS) was performed to detect the expression profiles of long noncoding RNAs (lncRNAs), messenger RNAs (mRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) in hyperoxia-induced BPD mouse model. Significant differentially expressed RNAs were selected and clustered between the BPD group and the control group. The results revealed that expressions of 1778 lncRNAs, 1240 mRNAs, 97 circRNAs, and 201 miRNAs were significantly altered in the BPD group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to predict the potential functions of differentially expressed RNAs. lncRNA-mRNA and circRNA-miRNA coexpression networks were constructed to detect their association with the pathogenesis of BPD. Our study provides a systematic perspective on the potential function of RNAs during BPD.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China.,Department of Pediatrics, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Jing Yin
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Xingyun Wang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Heng Liu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Yin Hu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Xiangyun Yan
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Bin Zhuang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Zhangbin Yu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shuping Han
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
EGFL6 promotes breast cancer by simultaneously enhancing cancer cell metastasis and stimulating tumor angiogenesis. Oncogene 2018; 38:2123-2134. [PMID: 30455428 DOI: 10.1038/s41388-018-0565-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/02/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
Abstract
EGFL6, a member of the EGF-like superfamily, plays an important role during embryonic development and has been implicated in promotion of tumor angiogenesis without affecting wound healing. There is very little known about the function of EGFL6 in cancer cells. Here, we investigated whether EGFL6 plays a direct role in cancer cells in addition to the promotion of tumor angiogenesis. Our study showed that EGFL6 promoted epithelial-mesenchymal transition (EMT) and stemness of breast cancer cells and increased cell migration and invasion in cell culture studies. We also found that EGFL6 reduced apoptotic signaling in cancer cells and promoted tumor growth in vivo. Importantly, expression of EGFL6 in cancer cells and tumor endothelial cells not only increased tumor angiogenesis but also promoted migration of cancer cells. Such dual engagement of cancer and stromal cells suggests crosstalk mediated by EGFL6 in the tumor microenvironment. Blockade of EGFL6 using our novel anti-EGFL6 monoclonal antibody significantly reduced cancer cell migration, tumor angiogenesis, and tumor growth in mouse xenograft tumor models. Silencing EGFL6 mRNA by shRNA transfection of cancer cells also significantly reduced cancer cell migration, tumor angiogenesis, and tumor growth in mouse xenograft tumor models. Taken together, the results of this study indicate that targeting EGFL6 is a unique strategy for inhibiting both cancer cell metastasis and tumor angiogenesis.
Collapse
|
35
|
Shi S, Sun J, Meng Q, Yu Y, Huang H, Ma T, Yang Z, Liu X, Yang J, Shen Z. Sonic hedgehog promotes endothelial differentiation of bone marrow mesenchymal stem cells via VEGF-D. J Thorac Dis 2018; 10:5476-5488. [PMID: 30416797 DOI: 10.21037/jtd.2018.09.50] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Bone marrow-derived mesenchymal stem cells (BMSCs) have been proved to be capable of differentiating into endothelial cells (ECs), however, the differentiation efficiency is rather low. Sonic hedgehog (Shh), an important factor in vascular development and postnatal angiogenesis, exerted promotional effect on new vessel formation in the ischemic animal models. Therefore, the current study aims to investigate whether Shh could induce the endothelial differentiation of BMSCs both in vitro and in vivo, as well as the mechanism of differentiation induction. Methods The current study over-expressed Shh in BMSCs by lentivirus transduction. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analysis was performed to determine the angiogenic factors in both control BMSCs and Shh over-expressed BMSCs. Immunocytochemistry was also conducted to examine the EC markers. Angiogenesis was determined by in vitro tube-forming assay on Matrigel and in vivo Matrigel plug in severe combined immunodeficient (SCID) mice. Last, mRNA sequencing analysis was used to elaborate the underlying mechanisms. Loss of function study was performed by vascular endothelial growth factor D (VEGF-D) siRNA. Results Shh expression was increased by about 3,000-fold and 5,000-fold at 3 days-transfection and 7 days-transfection, respectively. Patched 1 (Ptch1), the receptor for Shh, had a two-fold increase after transduction. The angiogenic factors such as hepatocyte growth factor (HGF), angiopoietin-1 (Ang-1), insulin-like growth factor 1 (IGF1) and vascular endothelial growth factor A (VEGF-A) had at least a 1.5-fold increase after transduction. Expression of EC-lineage markers, CD31 and VE-cadherin, on Shh-overexpressed BMSCs were increasingly detected by immunocytostaining. Angiogenesis of BMSCs could be efficiently induced by Shh overexpression in the in vitro tube-formation assay and in vivo Matrigel plug. Additionally, mRNA sequencing analysis revealed that Shh activation upregulated the expression of several pro-angiogenic factors, like Angptl4, Egfl6, VEGF-D. Loss of function study by VEGF-D siRNA confirmed that Shh enhanced the angiogenic ability of BMSCs via VEGF-D. Conclusions This study demonstrated that Shh could promote endothelial differentiation of BMSCs via VEGF-D.
Collapse
Affiliation(s)
- Sheng Shi
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China.,Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China
| | - Qingyou Meng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China
| | - Haoyue Huang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China
| | - Teng Ma
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China
| | - Xuan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China
| | - Junjie Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China
| |
Collapse
|