1
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Bai S, Zhang M, Tang S, Li M, Wu R, Wan S, Chen L, Wei X, Feng S. Effects and Impact of Selenium on Human Health, A Review. Molecules 2024; 30:50. [PMID: 39795109 PMCID: PMC11721941 DOI: 10.3390/molecules30010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Selenium (Se) is an essential trace element that is crucial for human health. As a key component of various enzymes and proteins, selenium primarily exerts its biological functions in the form of selenoproteins within the body. Currently, over 30 types of selenoproteins have been identified, with more than 20 of them containing selenocysteine residues. Among these, glutathione peroxidases (GPXs), thioredoxin reductases (TrxRs), and iodothyronine deiodinases (DIOs) have been widely studied. Selenium boasts numerous biological functions, including antioxidant properties, immune system enhancement, thyroid function regulation, anti-cancer effects, cardiovascular protection, reproductive capability improvement, and anti-inflammatory activity. Despite its critical importance to human health, the range between selenium's nutritional and toxic doses is very narrow. Insufficient daily selenium intake can lead to selenium deficiency, while excessive intake carries the risk of selenium toxicity. Therefore, selenium intake must be controlled within a relatively precise range. This article reviews the distribution and intake of selenium, as well as its absorption and metabolism mechanisms in the human body. It also explores the multiple biological functions and mechanisms of selenium in maintaining human health. The aim is to provide new insights and evidence for further elucidating the role of selenium and selenoproteins in health maintenance, as well as for future nutritional guidelines and public health policies.
Collapse
Affiliation(s)
- Song Bai
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Miaohe Zhang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| | - Shouying Tang
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Miao Li
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Rong Wu
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Suran Wan
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Lijun Chen
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Xian Wei
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| | - Shuang Feng
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| |
Collapse
|
3
|
Williams RV, Guay KP, Hurlbut Lesk OA, Clerico EM, Hebert DN, Gierasch LM. Insights into the interaction between UGGT, the gatekeeper of folding in the ER, and its partner, the selenoprotein SEP15. Proc Natl Acad Sci U S A 2024; 121:e2315009121. [PMID: 39133860 PMCID: PMC11348098 DOI: 10.1073/pnas.2315009121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 08/29/2024] Open
Abstract
The enzyme UDP-glucose: glycoprotein glucosyltransferase (UGGT) is the gatekeeper of protein folding within the endoplasmic reticulum (ER). One-third of the human proteome traverses the ER where folding and maturation are facilitated by a complex protein homeostasis network. Both glycan modifications and disulfide bonds are of key importance in the maturation of these ER proteins. The actions of UGGT are intimately linked to the glycan code for folding and maturation of secretory proteins in the ER. UGGT selectively glucosylates the N-linked glycan of misfolded proteins so that they can reenter the lectin-folding chaperone cycle and be retained within the ER for further attempts at folding. An intriguing aspect of UGGT function is its interaction with its poorly understood cochaperone, the 15 kDa selenoprotein known as SELENOF or SEP15. This small protein contains a rare selenocysteine residue proposed to act as an oxidoreductase toward UGGT substrates. AlphaFold2 predictions of the UGGT1/SEP15 complex provide insight into this complex at a structural level. The predicted UGGT1/SEP15 interaction interface was validated by mutagenesis and coimmunoprecipitation experiments. These results serve as a springboard for models of the integrated action of UGGT1 and SEP15.
Collapse
Affiliation(s)
- Robert V. Williams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
| | - Kevin P. Guay
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA01003
| | - Owen A. Hurlbut Lesk
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
| | - Eugenia M. Clerico
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA01003
| | - Lila M. Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA01003
- Department of Chemistry, University of Massachusetts, Amherst, MA01003
| |
Collapse
|
4
|
Shi Z, Han Z, Chen J, Zhou JC. Endoplasmic reticulum-resident selenoproteins and their roles in glucose and lipid metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167246. [PMID: 38763408 DOI: 10.1016/j.bbadis.2024.167246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Glucose and lipid metabolic disorders (GLMDs), such as diabetes, dyslipidemia, metabolic syndrome, nonalcoholic fatty liver disease, and obesity, are significant public health issues that negatively impact human health. The endoplasmic reticulum (ER) plays a crucial role at the cellular level for lipid and sterol biosynthesis, intracellular calcium storage, and protein post-translational modifications. Imbalance and dysfunction of the ER can affect glucose and lipid metabolism. As an essential trace element, selenium contributes to various human physiological functions mainly through 25 types of selenoproteins (SELENOs). At least 10 SELENOs, with experimental and/or computational evidence, are predominantly found on the ER membrane or within its lumen. Two iodothyronine deiodinases (DIOs), DIO1 and DIO2, regulate the thyroid hormone deiodination in the thyroid and some external thyroid tissues, influencing glucose and lipid metabolism. Most of the other eight members maintain redox homeostasis in the ER. Especially, SELENOF, SELENOM, and SELENOS are involved in unfolded protein responses; SELENOI catalyzes phosphatidylethanolamine synthesis; SELENOK, SELENON, and SELENOT participate in calcium homeostasis regulation; and the biological significance of thioredoxin reductase 3 in the ER remains unexplored despite its established function in the thioredoxin system. This review examines recent research advances regarding ER SELENOs in GLMDs and aims to provide insights on ER-related pathology through SELENOs regulation.
Collapse
Affiliation(s)
- Zhan Shi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ziyu Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jingyi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Engineering Laboratory for Nutrition Translation, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China.
| |
Collapse
|
5
|
Bidooki SH, Navarro MA, Fernandes SCM, Osada J. Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe? Curr Issues Mol Biol 2024; 46:3134-3163. [PMID: 38666927 PMCID: PMC11049379 DOI: 10.3390/cimb46040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic β-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesus Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
6
|
Ou Q, Qiao X, Li Z, Niu L, Lei F, Cheng R, Xie T, Yang N, Liu Y, Fu L, Yang J, Mao X, Kou X, Chen C, Shi S. Apoptosis releases hydrogen sulfide to inhibit Th17 cell differentiation. Cell Metab 2024; 36:78-89.e5. [PMID: 38113886 DOI: 10.1016/j.cmet.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Over 50 billion cells undergo apoptosis each day in an adult human to maintain immune homeostasis. Hydrogen sulfide (H2S) is also required to safeguard the function of immune response. However, it is unknown whether apoptosis regulates H2S production. Here, we show that apoptosis-deficient MRL/lpr (B6.MRL-Faslpr/J) and Bim-/- (B6.129S1-Bcl2l11tm1.1Ast/J) mice exhibit significantly reduced H2S levels along with aberrant differentiation of Th17 cells, which can be rescued by the additional H2S. Moreover, apoptotic cells and vesicles (apoVs) express key H2S-generating enzymes and generate a significant amount of H2S, indicating that apoptotic metabolism is an important source of H2S. Mechanistically, H2S sulfhydrates selenoprotein F (Sep15) to promote signal transducer and activator of transcription 1 (STAT1) phosphorylation and suppress STAT3 phosphorylation, leading to the inhibition of Th17 cell differentiation. Taken together, this study reveals a previously unknown role of apoptosis in maintaining H2S homeostasis and the unique role of H2S in regulating Th17 cell differentiation via sulfhydration of Sep15C38.
Collapse
Affiliation(s)
- Qianmin Ou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengshi Li
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Luhan Niu
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Fangcao Lei
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Ruifeng Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100101, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100101, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100101, China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
7
|
Wang W, Miao Z, Qi X, Wang B, Liu Q, Shi X, Xu S. LncRNA Tug1 relieves the steatosis of SelenoF-knockout hepatocytes via sponging miR-1934-3p. Cell Biol Toxicol 2023; 39:3175-3195. [PMID: 37721623 DOI: 10.1007/s10565-023-09826-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023]
Abstract
Metabolic dysfunction associated with fatty liver disease (MAFLD), always accompanied by disturbance of glucose and lipid metabolism, is becoming the most difficult obstacle in the next decades. In the current research, we uncover that the potent non-coding RNA Tug1, which is related to metabolic enzymes, regulates hepatocytes steatosis induced by sodium palmitate via miR-1934-3p absorbing. The knockdown of lncRNA-Tug1 distinctly rescues the increased expression level of glycolytic enzymes and fatty acid synthetase via releasing more mature miR-1934-3p in hepatocytes. Moreover, miR-1934-3p suppresses Selenoprotein F (SelenoF) through binding with the SelenoF 3'UTR effectors; importantly, we demonstrated that the deletion of SelenoF consistent with the lncRNA-Tug1's effecting on metabolism enzymes. In the current paper, the interaction of Tug1/miR-1934-3p/SelenoF was verified by the dual-luciferase reporter system, and IRS1/AKT pathway possesses the essential role in glucolipid metabolism when SelenoF is deleted. We concluded that lncRNA Tug1 functioned as ceRNA to alleviate steatosis and glycolysis in hepatocytes of C57BL/6 through adsorbing miR-1934-3p to release SelenoF and triggering IRS/AKT pathway. The Tug1/miR-1934-3p/SelenoF constructed the ceRNA interact network Selenoprotein F accelerates glucolipid metabolism via IRS1/AKT pathway SelenoF-/- alleviates steatosis in mice liver.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 310000, People's Republic of China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Bing Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Qingqing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
8
|
Bera S, Kadkol S, Hong LK, Ali W, Brockman JD, Sverdlov M, Brister E, Macais V, Kajdacsy-Balla A, Valyi-Nagy K, Xu Z, Kastrati I, Liu L, Diamond AM. Regulation of SELENOF translation by eIF4a3: Possible role in prostate cancer progression. Mol Carcinog 2023; 62:1803-1816. [PMID: 37555760 DOI: 10.1002/mc.23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
The levels of the SELENOF selenoprotein are dramatically reduced in prostate cancer compared to adjacent benign tissue and reducing SELENOF in prostate epithelial cells results in the acquisition of features of the transformed phenotype. It was hypothesized that the aberrant increase in the eiF4a3 translation factor, which has an established role in RNA splicing and the regulation of selenoprotein translation, contributes to the lower levels of SELENOF. Using the available databases, eIF4a3 messenger RNA (mRNA) levels are elevated in prostate cancer compared to normal tissue as is the hypomethylation of the corresponding gene. Using a prostate cancer tissue microarray, we established that eiF4a3 levels are higher in prostate cancer tissue. Ectopic expression of eIF4a3 in prostate cancer cells reduced SELENOF levels and attenuated the readthrough of the UGA codon using a specialized reporter construct designed to examine UGA decoding, with the opposite effects observed using eIF4a3 knock-down constructs. Direct binding of eIF4a3 to the regulatory regions of SELENOF mRNA was established with pull-down experiments. Lastly, we show that an eIF4a3 inhibitor, eIF4a3-IN-2, increases SELENOF levels, UGA readthrough, and reduces binding of eIF4a3 to the SELENOF mRNA 3'-UTR in exposed cells. These data establish eIF4a3 as a likely prostate cancer oncogene and a regulator of SELENOF translation.
Collapse
Affiliation(s)
- Soumen Bera
- Department of Pathology, Chicago, Illinois, USA
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | | | | | - Waleed Ali
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - John D Brockman
- Department of Chemistry, University of Missouri Research Reactor, Columbia, Missouri, USA
| | - Maria Sverdlov
- Department of Pathology, Chicago, Illinois, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | - Ziqiao Xu
- Department of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Irida Kastrati
- Departments of Cancer Biology and Pathology & Laboratory Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
9
|
Ekyalongo RC, Flowers B, Sharma T, Zigrossi A, Zhang A, Quintanilla-Arteaga A, Singh K, Kastrati I. SELENOF Controls Proliferation and Cell Death in Breast-Derived Immortalized and Cancer Cells. Cancers (Basel) 2023; 15:3671. [PMID: 37509331 PMCID: PMC10377602 DOI: 10.3390/cancers15143671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
SELENOF expression is significantly lower in aggressive breast tumors compared to normal tissue, indicating that its reduction or loss may drive breast tumorigenesis. Deletion of SELENOF in non-tumorigenic immortalized breast epithelial MCF-10A cells resulted in enhanced proliferation, both in adherent culture and matrix-assisted three-dimmensional (3D) growth. Modulation of SELENOF in vitro through deletion or overexpression corresponded to changes in the cell-cycle regulators p21 and p27, which is consistent with breast tumor expression data from the METABRIC patient database. Together, these findings indicate that SELENOF affects both proliferation and cell death in normal epithelial and breast cancer cells, largely through the regulation of p21 and p27. In glandular cancers like breast cancer, the filling of luminal space is one of the hallmarks of early tumorigenesis. Loss of SELENOF abrogated apoptosis and autophagy, which are required for the formation of hollow acini in MCF-10A cells in matrix-assisted 3D growth, resulting in luminal filling. Conversely, overexpression of SELENOF induced cell death via apoptosis and autophagy. In conclusion, these findings are consistent with the notion that SELENOF is a breast tumor suppressor, and its loss contributes to breast cancer etiology.
Collapse
Affiliation(s)
- Roudy C Ekyalongo
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Brenna Flowers
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Tanu Sharma
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alexandra Zigrossi
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - An Zhang
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | | | - Kanishka Singh
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Irida Kastrati
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
10
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
11
|
Ghelichkhani F, Gonzalez FA, Kapitonova MA, Rozovsky S. Selenoprotein S Interacts with the Replication and Transcription Complex of SARS-CoV-2 by Binding nsp7. J Mol Biol 2023; 435:168008. [PMID: 36773692 PMCID: PMC9911985 DOI: 10.1016/j.jmb.2023.168008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replicates and evades detection using ER membranes and their associated protein machinery. Among these hijacked human proteins is selenoprotein S (selenos). This selenoprotein takes part in the protein quality control, signaling, and the regulation of cytokine secretion. While the role of selenos in the viral life cycle is not yet known, it has been reported to interact with SARS-CoV-2 nonstructural protein 7 (nsp7), a viral protein essential for the replication of the virus. We set to study whether selenos and nsp7 interact directly and if they can still bind when nsp7 is bound to the replication and transcription complex of the virus. Using biochemical assays, we show that selenos binds directly to nsp7. In addition, we found that selenos can bind to nsp7 when it is in a complex with the coronavirus's minimal replication and transcription complex, comprised of nsp7, nsp8, and the RNA-dependent RNA polymerase nsp12. In addition, through crosslinking experiments, we mapped the interaction sites of selenos and nsp7 in the replication complex and showed that the hydrophobic segment of selenos is essential for binding to nsp7. This arrangement leaves an extended helix and the intrinsically disordered segment of selenos-including the reactive selenocysteine-exposed and free to potentially recruit additional proteins to the replication and transcription complex.
Collapse
Affiliation(s)
- Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Fabio A Gonzalez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
12
|
Liu Y, Yin S, He Y, Tang J, Pu J, Jia G, Liu G, Tian G, Chen X, Cai J, Kang B, Che L, Zhao H. Hydroxy-Selenomethionine Mitigated Chronic Heat Stress-Induced Porcine Splenic Damage via Activation of Nrf2/Keap1 Signal and Suppression of NFκb and STAT Signal. Int J Mol Sci 2023; 24:ijms24076461. [PMID: 37047433 PMCID: PMC10094443 DOI: 10.3390/ijms24076461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Chronic heat stress (CHS) compromised the immunity and spleen immunological function of pigs, which may associate with antioxidant suppression and splenocyte apoptosis and splenic inflammation. Selenium (Se) exhibited antioxidant function and immunomodulatory through selenoprotein. Thus, this study aimed to investigate the protective effect of dietary hydroxy-selenomethionine (Selisso®, SeO) on chronic heat stress (CHS)-induced porcine splenic oxidative stress, apoptosis and inflammation. Growing pigs were raised in the thermoneutral environment (22 ± 2 °C) with the basal diet (BD), or raised in hyperthermal conditions (33 ± 2 °C) with BD supplied with 0.0, 0.2, 0.4 and 0.6 mg Se/kg SeO for 28 d, respectively. The results showed that dietary SeO supplementation recovered the spleen mass and enhanced the splenic antioxidant capacity of CHS growing pigs. Meanwhile, SeO activated the Nrf2/Keap1 signal, downregulated p38, caspase 3 and Bax, inhibited the activation of NFκb and STAT3, and enhanced the protein expression level of GPX1, GPX3, GPX4, SELENOS and SELENOF. In summary, SeO supplementation mitigates the CHS-induced splenic oxidative damages, apoptosis and inflammation in pigs, and the processes are associated with the activation of Nrf2/Keap1 signal and the suppression of NFκb, p38(MAPK) and STAT signal. It seems that the antioxidant-related selenoproteins (GPXs) and functional selenoproteins (SELENOS and SELENOF) play important roles in the alleviation processes.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
| | - Shenggang Yin
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
| | - Ying He
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
| | - Junning Pu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, 610000 Chengdu, China
- Correspondence: ; Tel.: +86-1388-064-0271
| |
Collapse
|
13
|
Flowers B, Bochnacka O, Poles A, Diamond AM, Kastrati I. Distinct Roles of SELENOF in Different Human Cancers. Biomolecules 2023; 13:biom13030486. [PMID: 36979420 PMCID: PMC10046285 DOI: 10.3390/biom13030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
SELENOF, previously known as SEP15, is a selenoprotein that contains selenium in the form of the amino acid selenocysteine. Like other selenoproteins, the role for SELENOF in carcinogenesis has been investigated due to its altered expression compared to the corresponding normal tissue, its molecular function, and the association of genetic variations in the SELENOF gene to cancer risk or outcome. This review summarizes SELENOF’s discovery, structure, cellular localization, and expression. SELENOF belongs to a new family of thioredoxin-like proteins. Published data summarized here indicate a likely role for SELENOF in redox protein quality control, and in the regulation of lipids, glucose, and energy metabolism. Current evidence indicates that loss of SELENOF contributes to the development of prostate and breast cancer, while its loss may be protective against colon cancer. Additional investigation into SELENOF’s molecular mechanisms and its impact on cancer is warranted.
Collapse
Affiliation(s)
- Brenna Flowers
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Oliwia Bochnacka
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Allison Poles
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alan M. Diamond
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Irida Kastrati
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
- Correspondence: ; Tel.: +1-708-327-3250
| |
Collapse
|
14
|
Higashi S, Imamura Y, Kikuma T, Matoba T, Orita S, Yamaguchi Y, Ito Y, Takeda Y. Analysis of Selenoprotein F Binding to UDP-Glucose:Glycoprotein Glucosyltransferase (UGGT) by a Photoreactive Crosslinker. Chembiochem 2023; 24:e202200444. [PMID: 36219527 DOI: 10.1002/cbic.202200444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Indexed: 11/06/2022]
Abstract
In the endoplasmic reticulum glycoprotein quality control system, UDP-glucose : glycoprotein glucosyltransferase (UGGT) functions as a folding sensor. Although it is known to form a heterodimer with selenoprotein F (SelenoF), the details of the complex formation remain obscure. A pulldown assay using co-transfected SelenoF and truncated mutants of human UGGT1 (HUGT1) revealed that SelenoF binds to the TRXL2 domain of HUGT1. Additionally, a newly developed photoaffinity crosslinker was selectively introduced into cysteine residues of recombinant SelenoF to determine the spatial orientation of SelenoF to HUGT1. The crosslinking experiments showed that SelenoF formed a covalent bond with amino acids in the TRXL3 region and the interdomain between βS2 and GT24 of HUGT1 via the synthetic crosslinker. SelenoF might play a role in assessing and refining the disulfide bonds of misfolded glycoproteins in the hydrophobic cavity of HUGT1 as it binds to the highly flexible region of HUGT1 to reach its long hydrophobic cavity. Clarification of the SelenoF-binding domain of UGGT and its relative position will help predict and reveal the function of SelenoF from a structural perspective.
Collapse
Affiliation(s)
- Sayaka Higashi
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yuki Imamura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Takashi Kikuma
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Takahiro Matoba
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Saya Orita
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yoshiki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.,RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Yoichi Takeda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
15
|
Robinson PJ, Pringle MA, Fleming B, Bulleid NJ. Distinct role of ERp57 and ERdj5 as a disulfide isomerase and reductase during ER protein folding. J Cell Sci 2023; 136:286707. [PMID: 36655611 PMCID: PMC10022741 DOI: 10.1242/jcs.260656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Abstract
Proteins entering the secretory pathway need to attain native disulfide pairings to fold correctly. For proteins with complex disulfides, this process requires the reduction and isomerisation of non-native disulfides. Two key members of the protein disulfide isomerase (PDI) family, ERp57 and ERdj5 (also known as PDIA3 and DNAJC10, respectively), are thought to be required for correct disulfide formation but it is unknown whether they act as a reductase, an isomerase or both. In addition, it is unclear how reducing equivalents are channelled through PDI family members to substrate proteins. Here, we show that neither enzyme is required for disulfide formation, but ERp57 is required for isomerisation of non-native disulfides within glycoproteins. In addition, alternative PDIs compensate for the absence of ERp57 to isomerise glycoprotein disulfides, but only in the presence of a robust reductive pathway. ERdj5 is required for this alternative pathway to function efficiently indicating its role as a reductase. Our results define the essential cellular functions of two PDIs, highlighting a distinction between formation, reduction and isomerisation of disulfide bonds.
Collapse
Affiliation(s)
- Philip John Robinson
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marie Anne Pringle
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bethany Fleming
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil John Bulleid
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
16
|
Bera S, Diamond AM. Role of SELENBP1 and SELENOF in prostate cancer bioenergetics. Arch Biochem Biophys 2022; 732:109451. [DOI: 10.1016/j.abb.2022.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
17
|
Mideksa YG, Aschenbrenner I, Fux A, Kaylani D, Weiß CA, Nguyen TA, Bach NC, Lang K, Sieber SA, Feige MJ. A comprehensive set of ER protein disulfide isomerase family members supports the biogenesis of proinflammatory interleukin 12 family cytokines. J Biol Chem 2022; 298:102677. [PMID: 36336075 PMCID: PMC9731863 DOI: 10.1016/j.jbc.2022.102677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Cytokines of the interleukin 12 (IL-12) family are assembled combinatorially from shared α and β subunits. A common theme is that human IL-12 family α subunits remain incompletely structured in isolation until they pair with a designate β subunit. Accordingly, chaperones need to support and control specific assembly processes. It remains incompletely understood, which chaperones are involved in IL-12 family biogenesis. Here, we site-specifically introduce photocrosslinking amino acids into the IL-12 and IL-23 α subunits (IL-12α and IL-23α) for stabilization of transient chaperone-client complexes for mass spectrometry. Our analysis reveals that a large set of endoplasmic reticulum chaperones interacts with IL-12α and IL-23α. Among these chaperones, we focus on protein disulfide isomerase (PDI) family members and reveal IL-12 family subunits to be clients of several incompletely characterized PDIs. We find that different PDIs show selectivity for different cysteines in IL-12α and IL-23α. Despite this, PDI binding generally stabilizes unassembled IL-12α and IL-23α against degradation. In contrast, α:β assembly appears robust, and only multiple simultaneous PDI depletions reduce IL-12 secretion. Our comprehensive analysis of the IL-12/IL-23 chaperone machinery reveals a hitherto uncharacterized role for several PDIs in this process. This extends our understanding of how cells accomplish the task of specific protein assembly reactions for signaling processes. Furthermore, our findings show that cytokine secretion can be modulated by targeting specific endoplasmic reticulum chaperones.
Collapse
Affiliation(s)
- Yonatan G. Mideksa
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Isabel Aschenbrenner
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Anja Fux
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Dinah Kaylani
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Caroline A.M. Weiß
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Tuan-Anh Nguyen
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Nina C. Bach
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Kathrin Lang
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany,Laboratory of Organic Chemistry, ETH Zürich, Zurich, Switzerland
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany,For correspondence: Matthias J. Feige
| |
Collapse
|
18
|
Advances in the Study of the Mechanism by Which Selenium and Selenoproteins Boost Immunity to Prevent Food Allergies. Nutrients 2022; 14:nu14153133. [PMID: 35956310 PMCID: PMC9370097 DOI: 10.3390/nu14153133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Selenium (Se) is an essential micronutrient that functions in the body mainly in the form of selenoproteins. The selenoprotein contains 25 members in humans that exhibit a number of functions. Selenoproteins have immunomodulatory functions and can enhance the ability of immune system to regulate in a variety of ways, which can have a preventive effect on immune-related diseases. Food allergy is a specific immune response that has been increasing in number in recent years, significantly reducing the quality of life and posing a major threat to human health. In this review, we summarize the current understanding of the role of Se and selenoproteins in regulating the immune system and how dysregulation of these processes may lead to food allergies. Thus, we can explain the mechanism by which Se and selenoproteins boost immunity to prevent food allergies.
Collapse
|
19
|
Zhang DG, Xu XJ, Pantopoulos K, Zhao T, Zheng H, Luo Z. HSF1-SELENOS pathway mediated dietary inorganic Se-induced lipogenesis via the up-regulation of PPARγ expression in yellow catfish. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194802. [PMID: 35248747 DOI: 10.1016/j.bbagrm.2022.194802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
Abstract
At present, studies involved in the effects of dietary Se sources on lipid metabolism were very scarce and the underlying mechanism remains unknown. Previous studies reported that dietary Se sources differentially affected selenoprotein S (SELENOS) expression and SELENOS affected lipid metabolism via the inositol-requiring enzyme 1α (IRE1α)- spliced X-box binding protein 1 (XBP1s) pathway. Thus, we used yellow catfish as an experimental model to explore whether dietary selenium sources affected the hepatic lipid metabolism, and further determined the role of SELENOS-IRE1α-XBP1s pathway in dietary selenium sources affecting hepatic lipid metabolism. Compared with the selenomethionine (S-M) group, sodium selenite (SS) group possessed higher liver triglycerides (TGs) (34.7%), lipogenic enzyme activities (57.9-70.6%), and lower antioxidant enzyme activities (23.3-35.5%), increased protein levels of heat shock transcription factor 1 (HSF1) and SELENOS (1.17-fold and 47.4%, respectively), and XBP1s- peroxisome proliferators-activated receptor γ (PPARγ) pathway. Blocking SELENOS and PPARγ by RNA interference demonstrated that the SELENOS/XBP1s/PPARγ axis was critical for S-S-induced lipid accumulation. Moreover, S-S-induced upregulation of SELENOS was via the increased DNA binding capacity of HSF1 to SELENOS promoter, which activated the XBP1s/PPARγ pathway and promoted lipogenesis and lipid accumulation. XBP1s is required for S-S-induced upregulation of PPARγ expression. Our finding elucidated the mechanism of dietary Se sources affecting the lipid metabolism in the liver of yellow catfish and demonstrated novel function of SELENOS in metabolic regulation. Our study also suggested that seleno-methionine was a better Se source than selenite against abnormal lipid deposition in the liver of yellow catfish.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiao-Jian Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal H3T 1E2, Quebec, Canada
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
20
|
Zhang DG, Zhao T, Xu XJ, Xu YH, Wei XL, Jiang M, Luo Z. Selenoprotein F (SELENOF)-mediated AKT1-FOXO3a-PYGL axis contributes to selenium supranutrition-induced glycogenolysis and lipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194814. [PMID: 35439639 DOI: 10.1016/j.bbagrm.2022.194814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Mounting evidence showed that excess selenium (10.0-15.0-fold of adequate Se) intake caused severe hepatic lipid deposition in the vertebrate. However, the underlying mechanism remains unclear. The study was performed to elucidate the mechanism of Se supranutrition mediated-changes of lipid deposition and metabolism. We found that dietary excessive Se addition increased hepatic TGs and glucose contents, up-regulated lipogenic enzyme activities and reduced hepatic glycogen contents. Transcriptomic and immunoblotting analysis showed that Se supranutrition significantly influenced serine/threonine kinase 1 (AKT1)-forkhead box O3a (FOXO3a)-PYGL signaling and protein levels of SELENOF. Knockdown of SELENOF and PYGL by RNA interference revealed that the AKT1-FOXO3a-PYGL axis was critical for Se supranutrition-induced lipid accumulation. Moreover, Se supranutrition-induced lipid accumulation was via the increased DNA binding capacity of FOXO3a to PYGL promoter, which increased glycogenolysis, and accordingly promoted lipogenesis and lipid accumulation. Our finding provides new insight into the mechanism of Se supranutrition-induced lipid accumulation and suggests that SELENOF may be a therapeutic target for Se supranutrition induced-lipid disorders in the vertebrates.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Jian Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Huan Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lei Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Jiang
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
21
|
Zhao Z, Mousa R, Metanis N. One-Pot Chemical Protein Synthesis Utilizing Fmoc-Masked Selenazolidine to Address the Redox Functionality of Human Selenoprotein F. Chemistry 2022; 28:e202200279. [PMID: 35112407 PMCID: PMC9304195 DOI: 10.1002/chem.202200279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/25/2022]
Abstract
Human SELENOF is an endoplasmic reticulum (ER) selenoprotein that contains the redox active motif CXU (C is cysteine and U is selenocysteine), resembling the redox motif of thiol-disulfide oxidoreductases (CXXC). Like other selenoproteins, the challenge in accessing SELENOF has somewhat limited its full biological characterization thus far. Here we present the one-pot chemical synthesis of the thioredoxin-like domain of SELENOF, highlighted by the use of Fmoc-protected selenazolidine, native chemical ligations and deselenization reactions. The redox potential of the CXU motif, together with insulin turbidimetric assay suggested that SELENOF may catalyze the reduction of disulfides in misfolded proteins. Furthermore, we demonstrate that SELENOF is not a protein disulfide isomerase (PDI)-like enzyme, as it did not enhance the folding of the two protein models; bovine pancreatic trypsin inhibitor and hirudin. These studies suggest that SELENOF may be responsible for reducing the non-native disulfide bonds of misfolded glycoproteins as part of the quality control system in the ER.
Collapse
Affiliation(s)
- Zhenguang Zhao
- Institute of ChemistryThe Hebrew University of JerusalemJerusalem9190401Israel
| | - Reem Mousa
- Institute of ChemistryThe Hebrew University of JerusalemJerusalem9190401Israel
| | - Norman Metanis
- Institute of ChemistryThe Hebrew University of JerusalemJerusalem9190401Israel
- The Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemJerusalem9190401Israel
- Casali Center for Applied ChemistryThe Hebrew University of JerusalemJerusalem9190401Israel
| |
Collapse
|
22
|
Zigrossi A, Hong LK, Ekyalongo RC, Cruz-Alvarez C, Gornick E, Diamond AM, Kastrati I. SELENOF is a new tumor suppressor in breast cancer. Oncogene 2022; 41:1263-1268. [PMID: 35082382 DOI: 10.1038/s41388-021-02158-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/21/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022]
Abstract
Epidemiological evidence has indicated an inverse association between selenium status and various types of cancer, including breast cancer. Selenoproteins are the primary mediators of selenium effects in human health. We have previously reported loss of heterozygosity in breast tumor samples of the gene for one of the selenoproteins, SELENOF. The function of SELENOF remains unclear and whether SELENOF levels impact breast cancer risk or outcome is unknown. The mining of breast cancer patient databases revealed that SELENOF mRNA is significantly lower in late-stage tumor samples and lower levels of SELENOF also predict poor patient outcome from breast cancer. Genetically manipulating SELENOF in human breast cancer cells or in the murine mammary gland by overexpression, silencing or knockout impacted cell viability by affecting both proliferation and cell death. Restoring SELENOF can attenuate a number of aggressive cancer phenotypes in breast cancer cells, including clonogenic survival, and enhance the response to drugs or radiation used in breast cancer therapy. Importantly, enhancing SELENOF expression reduced in vivo tumor growth in a murine xenograft model of breast cancer. These data indicate that SELENOF is a new tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Alexandra Zigrossi
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Lenny K Hong
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Roudy C Ekyalongo
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Cindy Cruz-Alvarez
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Emily Gornick
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Alan M Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Irida Kastrati
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
23
|
He Y, Liu Y, Tang J, Jia G, Liu G, Tian G, Chen X, Cai J, Kang B, Zhao H. Selenium exerts protective effects against heat stress-induced barrier disruption and inflammation response in jejunum of growing pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:496-504. [PMID: 34145905 DOI: 10.1002/jsfa.11377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Heat stress (HS) has a negative impact on the intestinal barrier and immune function of pigs. Selenium (Se) may improve intestinal health through affecting selenoproteins. Thus we investigate the protective effect of new organic Se (2-hydroxy-4-methylselenobutanoic acid, HMSeBA) on jejunal damage in growing pigs upon HS and integrate potential roles of corresponding selenoproteins. RESULTS HS decreased the villus height and increased (P < 0.05) the protein abundance of HSP70, and downregulated (P < 0.05) protein levels of tight junction-related proteins (CLDN-1 and OCLD). HS-induced jejunal damage was associated with the upregulation of four inflammation-related genes and ten selenoprotein-encoding genes, downregulation (P < 0.05) of four selenoprotein-encoding genes and decreased (P < 0.05) the protein abundance of GPX4 and SELENOS. Compared with the HS group, HMSeBA supplementation not only elevated the villus height and the ratio of V/C (P < 0:05), but also reduced (P < 0.05) the protein abundance of HSP70 and MDA content, and increased (P < 0.05) the protein abundance of OCLD. HMSeBA supplementation downregulated the expression of seven inflammation-related genes, changed the expression of 12 selenoprotein-encoding genes in jejunum mucosa affected by HS, and increased the protein abundance of GPX4, TXNRD1 and SELENOS. CONCLUSION Organic Se supplementation beyond nutritional requirement alleviates the negative effect of HS on the jejunum of growing pigs, and its protective effect is related to the response of corresponding selenoproteins. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition, Ministry of Education, Chengdu, China
| | - Yan Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition, Ministry of Education, Chengdu, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition, Ministry of Education, Chengdu, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition, Ministry of Education, Chengdu, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition, Ministry of Education, Chengdu, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition, Ministry of Education, Chengdu, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition, Ministry of Education, Chengdu, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition, Ministry of Education, Chengdu, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition, Ministry of Education, Chengdu, China
| |
Collapse
|
24
|
Loss of SELENOF Induces the Transformed Phenotype in Human Immortalized Prostate Epithelial Cells. Int J Mol Sci 2021; 22:ijms222112040. [PMID: 34769469 PMCID: PMC8584825 DOI: 10.3390/ijms222112040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/24/2023] Open
Abstract
SELENOF is a member of the class of selenoproteins in which the amino acid selenocysteine is co-translationally inserted into the elongating peptide in response to an in-frame UGA codon located in the 3′-untranslated (3′-UTR) region of the SELENOF mRNA. Polymorphisms in the 3′-UTR are associated with an increased risk of dying from prostate cancer and these variations are functional and 10 times more frequent in the genomes of African American men. SELENOF is dramatically reduced in prostate cancer compared to benign adjacent regions. Using a prostate cancer tissue microarray, it was previously established that the reduction of SELENOF in the cancers from African American men was significantly greater than in cancers from Caucasian men. When SELENOF levels in human prostate immortalized epithelial cells were reduced with an shRNA construct, those cells acquired the ability to grow in soft agar, increased the ability to migrate in a scratch assay and acquired features of energy metabolism associated with prostate cancer. These results support a role of SELENOF loss in prostate cancer progression and further indicate that SELENOF loss and genotype may contribute to the disparity in prostate cancer mortality experienced by African American men.
Collapse
|
25
|
Canter JA, Ernst SE, Peters KM, Carlson BA, Thielman NRJ, Grysczyk L, Udofe P, Yu Y, Cao L, Davis CD, Gladyshev VN, Hatfield DL, Tsuji PA. Selenium and the 15kDa Selenoprotein Impact Colorectal Tumorigenesis by Modulating Intestinal Barrier Integrity. Int J Mol Sci 2021; 22:10651. [PMID: 34638991 PMCID: PMC8508755 DOI: 10.3390/ijms221910651] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 01/19/2023] Open
Abstract
Selenoproteins play important roles in many cellular functions and biochemical pathways in mammals. Our previous study showed that the deficiency of the 15 kDa selenoprotein (Selenof) significantly reduced the formation of aberrant crypt foci (ACF) in a mouse model of azoxymethane (AOM)-induced colon carcinogenesis. The objective of this study was to examine the effects of Selenof on inflammatory tumorigenesis, and whether dietary selenium modified these effects. For 20 weeks post-weaning, Selenof-knockout (KO) mice and littermate controls were fed diets that were either deficient, adequate or high in sodium selenite. Colon tumors were induced with AOM and dextran sulfate sodium. Surprisingly, KO mice had drastically fewer ACF but developed a similar number of tumors as their littermate controls. Expression of genes important in inflammatory colorectal cancer and those relevant to epithelial barrier function was assessed, in addition to structural differences via tissue histology. Our findings point to Selenof's potential role in intestinal barrier integrity and structural changes in glandular and mucin-producing goblet cells in the mucosa and submucosa, which may determine the type of tumor developing.
Collapse
Affiliation(s)
- Jessica A. Canter
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Sarah E. Ernst
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Kristin M. Peters
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Bradley A. Carlson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Noelle R. J. Thielman
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
- Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Lara Grysczyk
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Precious Udofe
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Yunkai Yu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (L.C.)
| | - Liang Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (L.C.)
| | - Cindy D. Davis
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20817, USA;
| | - Vadim N. Gladyshev
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA;
| | - Dolph L. Hatfield
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Petra A. Tsuji
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| |
Collapse
|
26
|
Prospects for the use of synthetic organoselenium compounds for the correction of metabolic and immune status during vaccination with live attenuated vaccines against especially dangerous infections. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.3.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Schomburg L. Selenium Deficiency Due to Diet, Pregnancy, Severe Illness, or COVID-19-A Preventable Trigger for Autoimmune Disease. Int J Mol Sci 2021; 22:8532. [PMID: 34445238 PMCID: PMC8395178 DOI: 10.3390/ijms22168532] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The trace element selenium (Se) is an essential part of the human diet; moreover, increased health risks have been observed with Se deficiency. A sufficiently high Se status is a prerequisite for adequate immune response, and preventable endemic diseases are known from areas with Se deficiency. Biomarkers of Se status decline strongly in pregnancy, severe illness, or COVID-19, reaching critically low concentrations. Notably, these conditions are associated with an increased risk for autoimmune disease (AID). Positive effects on the immune system are observed with Se supplementation in pregnancy, autoimmune thyroid disease, and recovery from severe illness. However, some studies reported null results; the database is small, and randomized trials are sparse. The current need for research on the link between AID and Se deficiency is particularly obvious for rheumatoid arthritis and type 1 diabetes mellitus. Despite these gaps in knowledge, it seems timely to realize that severe Se deficiency may trigger AID in susceptible subjects. Improved dietary choices or supplemental Se are efficient ways to avoid severe Se deficiency, thereby decreasing AID risk and improving disease course. A personalized approach is needed in clinics and during therapy, while population-wide measures should be considered for areas with habitual low Se intake. Finland has been adding Se to its food chain for more than 35 years-a wise and commendable decision, according to today's knowledge. It is unfortunate that the health risks of Se deficiency are often neglected, while possible side effects of Se supplementation are exaggerated, leading to disregard for this safe and promising preventive and adjuvant treatment options. This is especially true in the follow-up situations of pregnancy, severe illness, or COVID-19, where massive Se deficiencies have developed and are associated with AID risk, long-lasting health impairments, and slow recovery.
Collapse
Affiliation(s)
- Lutz Schomburg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Hessische Straße 3-4, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
28
|
Liao P, He C. Chemical Synthesis of the Sec-To-Cys Homologue of Human Selenoprotein F and Elucidation of Its Disulfide-pairing Mode. Front Chem 2021; 9:735149. [PMID: 34395389 PMCID: PMC8360269 DOI: 10.3389/fchem.2021.735149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 01/13/2023] Open
Abstract
Herein, we document a highly optimized synthesis of the Sec-to-Cys homologue of the human selenoprotein F (SelF) through a three-segment two-ligation semisynthesis strategy. Highlighted in this synthetic route are two one-pot manipulations, i.e. the first ligation followed by a desulfurization and the second ligation followed by the protein refolding. This way multi-milligrams of the folded synthetic protein was obtained, which set the stage for the synthesis of the natural selenoprotein. Moreover, the disulfide pairing mode of the SelF was elucidated through a combination of site-directed mutagenesis and LC-MS study. It provides not only a criterion to judge the viability of the synthetic protein, and more importantly, useful structural insights into the previously unresolved UGGT-binding domain of SelF.
Collapse
Affiliation(s)
- Peisi Liao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
29
|
Alcaraz AJG, Potěšil D, Mikulášek K, Green D, Park B, Burbridge C, Bluhm K, Soufan O, Lane T, Pipal M, Brinkmann M, Xia J, Zdráhal Z, Schneider D, Crump D, Basu N, Hogan N, Hecker M. Development of a Comprehensive Toxicity Pathway Model for 17α-Ethinylestradiol in Early Life Stage Fathead Minnows ( Pimephales promelas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5024-5036. [PMID: 33755441 DOI: 10.1021/acs.est.0c05942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is increasing pressure to develop alternative ecotoxicological risk assessment approaches that do not rely on expensive, time-consuming, and ethically questionable live animal testing. This study aimed to develop a comprehensive early life stage toxicity pathway model for the exposure of fish to estrogenic chemicals that is rooted in mechanistic toxicology. Embryo-larval fathead minnows (FHM; Pimephales promelas) were exposed to graded concentrations of 17α-ethinylestradiol (water control, 0.01% DMSO, 4, 20, and 100 ng/L) for 32 days. Fish were assessed for transcriptomic and proteomic responses at 4 days post-hatch (dph), and for histological and apical end points at 28 dph. Molecular analyses revealed core responses that were indicative of observed apical outcomes, including biological processes resulting in overproduction of vitellogenin and impairment of visual development. Histological observations indicated accumulation of proteinaceous fluid in liver and kidney tissues, energy depletion, and delayed or suppressed gonad development. Additionally, fish in the 100 ng/L treatment group were smaller than controls. Integration of omics data improved the interpretation of perturbations in early life stage FHM, providing evidence of conservation of toxicity pathways across levels of biological organization. Overall, the mechanism-based embryo-larval FHM model showed promise as a replacement for standard adult live animal tests.
Collapse
Affiliation(s)
- Alper James G Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Kamil Mikulášek
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Bradley Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Connor Burbridge
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Kerstin Bluhm
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Othman Soufan
- Computer Science Department, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Taylor Lane
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Environment and Geography, York University, York YO10 5NG, United Kingdom
| | - Marek Pipal
- RECETOX, Masaryk University, Brno 625 00, Czech Republic
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - David Schneider
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| |
Collapse
|
30
|
Pothion H, Jehan C, Tostivint H, Cartier D, Bucharles C, Falluel-Morel A, Boukhzar L, Anouar Y, Lihrmann I. Selenoprotein T: An Essential Oxidoreductase Serving as a Guardian of Endoplasmic Reticulum Homeostasis. Antioxid Redox Signal 2020; 33:1257-1275. [PMID: 32524825 DOI: 10.1089/ars.2019.7931] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Selenoproteins incorporate the essential nutrient selenium into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), the exact function of most of which is poorly understood. Especially, how ER-resident selenoproteins control the ER redox and ionic environment is largely unknown. Since alteration of ER function is observed in many diseases, the elucidation of the role of selenoproteins could enhance our understanding of the mechanisms involved in ER homeostasis. Recent Advances: Among selenoproteins, selenoprotein T (SELENOT) is remarkable as the most evolutionarily conserved and the only ER-resident selenoprotein whose gene knockout in mouse is lethal. Recent data indicate that SELENOT contributes to ER homeostasis: reduced expression of SELENOT in transgenic cell and animal models promotes accumulation of reactive oxygen and nitrogen species, depletion of calcium stores, activation of the unfolded protein response and impaired hormone secretion. Critical Issues: SELENOT is anchored to the ER membrane and associated with the oligosaccharyltransferase complex, suggesting that it regulates the early steps of N-glycosylation. Furthermore, it exerts a selenosulfide oxidoreductase activity carried by its thioredoxin-like domain. However, the physiological role of the redox activity of SELENOT is not fully understood. Likewise, the nature of its redox partners needs to be further characterized. Future Directions: Given the impact of ER stress in pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, understanding the role of SELENOT and developing derived therapeutic tools such as selenopeptides to improve ER proteostasis and prevent ER stress could contribute to a better management of these diseases.
Collapse
Affiliation(s)
- Hugo Pothion
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hervé Tostivint
- Physiologie moléculaire et Adaptation, UMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Anthony Falluel-Morel
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Loubna Boukhzar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
31
|
Kuribara T, Totani K. Structural insights into N-linked glycan-mediated protein folding from chemical and biological perspectives. Curr Opin Struct Biol 2020; 68:41-47. [PMID: 33296772 DOI: 10.1016/j.sbi.2020.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/26/2022]
Abstract
About half of all newly synthesized proteins have N-linked glycans. These glycans play pivotal roles in controlling the folding, sorting, and degradation of glycoproteins via several glycan-related proteins. The glycan-mediated protein quality control system is important for cellular homeostasis. In this review, we summarize recent advances in our understanding of the system and discuss structural insights from chemical and biological perspectives. In particular, we focus on the mechanisms by which these mediators respond to several folding states of glycoproteins.
Collapse
Affiliation(s)
- Taiki Kuribara
- Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Kiichiro Totani
- Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.
| |
Collapse
|
32
|
Ma C, Hoffmann PR. Selenoproteins as regulators of T cell proliferation, differentiation, and metabolism. Semin Cell Dev Biol 2020; 115:54-61. [PMID: 33214077 DOI: 10.1016/j.semcdb.2020.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient that plays a key role in regulating the immune system. T cells are of particular interest due to their important role in promoting adaptive immunity against pathogens and cancer as well as regulating tolerance, all of which are influenced by dietary Se levels. The biological effects of Se are mainly exerted through the actions of the proteins into which it is inserted, i.e. selenoproteins. Thus, the roles that selenoproteins play in regulating T cell biology and molecular mechanisms involved have emerged as important areas of research for understanding how selenium affects immunity. Members of this diverse family of proteins exhibit a wide variety of functions within T cells that include regulating calcium flux induced by T cell receptor (TCR) engagement, shaping the redox tone of T cells before, during, and after activation, and linking TCR-induced activation to metabolic reprogramming required for T cell proliferation and differentiation. This review summarizes recent insights into the roles that selenoproteins play in these processes and their implications in understanding how Se may influence immunity.
Collapse
Affiliation(s)
- Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, Hawaii 96813 USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, Hawaii 96813 USA.
| |
Collapse
|
33
|
Kozlov G, Gehring K. Calnexin cycle - structural features of the ER chaperone system. FEBS J 2020; 287:4322-4340. [PMID: 32285592 PMCID: PMC7687155 DOI: 10.1111/febs.15330] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the major folding compartment for secreted and membrane proteins and is the site of a specific chaperone system, the calnexin cycle, for folding N-glycosylated proteins. Recent structures of components of the calnexin cycle have deepened our understanding of quality control mechanisms and protein folding pathways in the ER. In the calnexin cycle, proteins carrying monoglucosylated glycans bind to the lectin chaperones calnexin and calreticulin, which recruit a variety of function-specific chaperones to mediate protein disulfide formation, proline isomerization, and general protein folding. Upon trimming by glucosidase II, the glycan without an inner glucose residue is no longer able to bind to the lectin chaperones. For proteins that have not yet folded properly, the enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) acts as a checkpoint by adding a glucose back to the N-glycan. This allows the misfolded proteins to re-associate with calnexin and calreticulin for additional rounds of chaperone-mediated refolding and prevents them from exiting the ERs. Here, we review progress in structural studies of the calnexin cycle, which reveal common features of how lectin chaperones recruit function-specific chaperones and how UGGT recognizes misfolded proteins.
Collapse
Affiliation(s)
- Guennadi Kozlov
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| | - Kalle Gehring
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| |
Collapse
|
34
|
Zheng X, Ren B, Li X, Yan H, Xie Q, Liu H, Zhou J, Tian J, Huang K. Selenoprotein F knockout leads to glucose and lipid metabolism disorders in mice. J Biol Inorg Chem 2020; 25:1009-1022. [DOI: 10.1007/s00775-020-01821-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
|
35
|
Patel C, Saad H, Shenkman M, Lederkremer GZ. Oxidoreductases in Glycoprotein Glycosylation, Folding, and ERAD. Cells 2020; 9:cells9092138. [PMID: 32971745 PMCID: PMC7563561 DOI: 10.3390/cells9092138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
N-linked glycosylation and sugar chain processing, as well as disulfide bond formation, are among the most common post-translational protein modifications taking place in the endoplasmic reticulum (ER). They are essential modifications that are required for membrane and secretory proteins to achieve their correct folding and native structure. Several oxidoreductases responsible for disulfide bond formation, isomerization, and reduction have been shown to form stable, functional complexes with enzymes and chaperones that are involved in the initial addition of an N-glycan and in folding and quality control of the glycoproteins. Some of these oxidoreductases are selenoproteins. Recent studies also implicate glycan machinery–oxidoreductase complexes in the recognition and processing of misfolded glycoproteins and their reduction and targeting to ER-associated degradation. This review focuses on the intriguing cooperation between the glycoprotein-specific cell machineries and ER oxidoreductases, and highlights open questions regarding the functions of many members of this large family.
Collapse
Affiliation(s)
- Chaitanya Patel
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haddas Saad
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z. Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| |
Collapse
|
36
|
Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 2020; 33:101516. [PMID: 32249209 PMCID: PMC7251249 DOI: 10.1016/j.redox.2020.101516] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
37
|
Protein-protein interactions of ER-resident selenoproteins with their physiological partners. Biochimie 2020; 171-172:197-204. [PMID: 32188576 DOI: 10.1016/j.biochi.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022]
Abstract
ER is a highly specialized complex of branched microtubules enclosed in a membrane and communicating with each other, its functions in the cell are important and very diverse: lipid and phospholipid synthesis, calcium storage, hormone synthesis, protein synthesis and maturation, membrane production, toxin neutralization, etc. The high concentration of calcium ions and the oxidizing properties of the contents of the ER cavities contribute to the proper synthesis and folding of proteins designed for secretion or exposure on the surface of the cell membrane. However, disturbance of redox regulation can lead to the accumulation of improperly folded proteins in the ER, disruption of calcium regulation, which can cause ER-stress. This review is devoted to the role of ER-resident selenoproteins in the processes occurring in this organelle of a cell. The main emphasis is placed on the study of protein-protein interactions of selenoproteins with their physiological partners; this will facilitate understanding of their functional purpose in this organelle. Currently, 7 selenoproteins are known that are localized in the ER, but the functions of most of them are not at all clear, for some, physiological partners have been identified. It is known that selenoproteins are oxidoreductases with antioxidant properties, this is extremely important for the normal functioning of ER. Therefore, this review can be very useful for understanding the full picture of the functions of ER-resident selenoproteins obtained on the basis of recent data.
Collapse
|
38
|
Zheng X, Ren B, Wang H, Huang R, Zhou J, Liu H, Tian J, Huang K. Hepatic proteomic analysis of selenoprotein F knockout mice by iTRAQ: An implication for the roles of selenoprotein F in metabolism and diseases. J Proteomics 2020; 215:103653. [DOI: 10.1016/j.jprot.2020.103653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 01/02/2023]
|
39
|
Qian F, Misra S, Prabhu KS. Selenium and selenoproteins in prostanoid metabolism and immunity. Crit Rev Biochem Mol Biol 2019; 54:484-516. [PMID: 31996052 PMCID: PMC7122104 DOI: 10.1080/10409238.2020.1717430] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential trace element that functions in the form of the 21st amino acid, selenocysteine (Sec) in a defined set of proteins. Se deficiency is associated with pathological conditions in humans and animals, where incorporation of Sec into selenoproteins is reduced along with their expression and catalytic activity. Supplementation of Se-deficient population with Se has shown health benefits suggesting the importance of Se in physiology. An interesting paradigm to explain, in part, the health benefits of Se stems from the observations that selenoprotein-dependent modulation of inflammation and efficient resolution of inflammation relies on mechanisms involving a group of bioactive lipid mediators, prostanoids, which orchestrate a concerted action toward maintenance and restoration of homeostatic immune responses. Such an effect involves the interaction of various immune cells with these lipid mediators where cellular redox gatekeeper functions of selenoproteins further aid in not only dampening inflammation, but also initiating an effective and active resolution process. Here we have summarized the current literature on the multifaceted roles of Se/selenoproteins in the regulation of these bioactive lipid mediators and their immunomodulatory effects.
Collapse
Affiliation(s)
- Fenghua Qian
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - Sougat Misra
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - K. Sandeep Prabhu
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| |
Collapse
|
40
|
Diamond AM. Selenoproteins of the Human Prostate: Unusual Properties and Role in Cancer Etiology. Biol Trace Elem Res 2019; 192:51-59. [PMID: 31300958 PMCID: PMC6801063 DOI: 10.1007/s12011-019-01809-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
Abstract
The prostate is an important organ for the maintenance of sperm health with prostate cancer being a common disease for which there is a critical need to distinguish indolent from aggressive disease. Several selenium-containing proteins have been implicated in prostate cancer risk or outcome due to either enzyme function, the reduced levels of these proteins being associated with cancer recurrence after prostatectomy or their corresponding genes containing single-nucleotide polymorphisms associated with increased risk. Moreover, experimental data obtained from the manipulation of either cultured cells or animal models have indicated that some of these proteins are contributing mechanistically to prostate cancer incidence or progression. Among these are selenocysteine-containing proteins selenoprotein P (SELENOP), glutathione peroxidase (GPX1), and selenoprotein 15 (SELENOF); and the selenium-associated protein selenium-binding protein 1 (SBP1). Genotyping of some of the genes for these proteins has identified functional single-nucleotide polymorphisms that are associated with prostate cancer risk and the direct quantification of these proteins in human prostate tissues has not only revealed associations to clinical outcomes but have also identified unique properties that are different from what is observed in other tissue types. The location of GPX1 in the nucleus and SELENOF in the plasma membrane of prostate epithelial cells indicates that these proteins may have functions in normal prostate tissue that are distinct from that of the other tissue types.
Collapse
Affiliation(s)
- Alan M Diamond
- Department of Pathology, College of Medicine, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
41
|
Tax G, Lia A, Santino A, Roversi P. Modulation of ERQC and ERAD: A Broad-Spectrum Spanner in the Works of Cancer Cells? JOURNAL OF ONCOLOGY 2019; 2019:8384913. [PMID: 31662755 PMCID: PMC6791201 DOI: 10.1155/2019/8384913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
Endoplasmic reticulum glycoprotein folding quality control (ERQC) and ER-associated degradation (ERAD) preside over cellular glycoprotein secretion and maintain steady glycoproteostasis. When cells turn malignant, cancer cell plasticity is affected and supported either by point mutations, preferential isoform selection, altered expression levels, or shifts to conformational equilibria of a secreted glycoprotein. Such changes are crucial in mediating altered extracellular signalling, metabolic behavior, and adhesion properties of cancer cells. It is therefore conceivable that interference with ERQC and/or ERAD can be used to selectively damage cancers. Indeed, inhibitors of the late stages of ERAD are already in the clinic against cancers such as multiple myeloma. Here, we review recent advances in our understanding of the complex relationship between glycoproteostasis and cancer biology and discuss the potential of ERQC and ERAD modulators for the selective targeting of cancer cell plasticity.
Collapse
Affiliation(s)
- Gábor Tax
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| | - Andrea Lia
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Pietro Roversi
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| |
Collapse
|
42
|
Abstract
The site of protein folding and maturation for the majority of proteins that are secreted, localized to the plasma membrane or targeted to endomembrane compartments is the endoplasmic reticulum (ER). It is essential that proteins targeted to the ER are properly folded in order to carry out their function, as well as maintain protein homeostasis, as accumulation of misfolded proteins could lead to the formation of cytotoxic aggregates. Because protein folding is an error-prone process, the ER contains protein quality control networks that act to optimize proper folding and trafficking of client proteins. If a protein is unable to reach its native state, it is targeted for ER retention and subsequent degradation. The protein quality control networks of the ER that oversee this evaluation or interrogation process that decides the fate of maturing nascent chains is comprised of three general types of families: the classical chaperones, the carbohydrate-dependent system, and the thiol-dependent system. The cooperative action of these families promotes protein quality control and protein homeostasis in the ER. This review will describe the families of the ER protein quality control network and discuss the functions of individual members.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Michela E Oster
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA.
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
43
|
Shenkman M, Lederkremer GZ. Compartmentalization and Selective Tagging for Disposal of Misfolded Glycoproteins. Trends Biochem Sci 2019; 44:827-836. [PMID: 31133362 DOI: 10.1016/j.tibs.2019.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The ability of mammalian cells to correctly identify and degrade misfolded secretory proteins, most of them bearing N-glycans, is crucial for their correct function and survival. An inefficient disposal mechanism results in the accumulation of misfolded proteins and consequent endoplasmic reticulum (ER) stress. N-glycan processing creates a code that reveals the folding status of each molecule, enabling continued folding attempts or targeting of the doomed glycoprotein for disposal. We review here the main steps involved in the accurate processing of unfolded glycoproteins. We highlight recent data suggesting that the processing is not stochastic, but that there is selective accelerated glycan trimming on misfolded glycoprotein molecules.
Collapse
Affiliation(s)
- Marina Shenkman
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z Lederkremer
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
44
|
Transcriptional Regulation of Selenoprotein F by Heat Shock Factor 1 during Selenium Supplementation and Stress Response. Cells 2019; 8:cells8050479. [PMID: 31109102 PMCID: PMC6562903 DOI: 10.3390/cells8050479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
Changes of Selenoprotein F (SELENOF) protein levels have been reported during selenium supplementation, stressful, and pathological conditions. However, the mechanisms of how these external factors regulate SELENOF gene expression are largely unknown. In this study, HEK293T cells were chosen as an in vitro model. The 5′-flanking regions of SELENOF were analyzed for promoter features. Dual-Glo Luciferase assays were used to detect promoter activities. Putative binding sites of Heat Shock Factor 1 (HSF1) were predicted in silico and the associations were further proved by chromatin immunoprecipitation (ChIP) assay. Selenate and tunicamycin (Tm) treatment were used to induce SELENOF up-regulation. The fold changes in SELENOF expression and other relative proteins were analyzed by Q-PCR and western blot. Our results showed that selenate and Tm treatment up-regulated SELENOF at mRNA and protein levels. SELENOF 5′-flanking regions from −818 to −248 were identified as core positive regulatory element regions. Four putative HSF1 binding sites were predicted in regions from −1430 to −248, and six out of seven primers detected positive results in ChIP assay. HSF1 over-expression and heat shock activation increased the promoter activities, and mRNA and protein levels of SELENOF. Over-expression and knockdown of HSF1 showed transcriptional regulation effects on SELENOF during selenate and Tm treatment. In conclusion, HSF1 was discovered as one of the transcription factors that were associated with SELENOF 5′-flanking regions and mediated the up-regulation of SELENOF during selenate and Tm treatment. Our work has provided experimental data for the molecular mechanism of SELENOF gene regulation, as well as uncovered the involvement of HSF1 in selenotranscriptomic for the first time.
Collapse
|
45
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
46
|
Role of Selenoprotein F in Protein Folding and Secretion: Potential Involvement in Human Disease. Nutrients 2018; 10:nu10111619. [PMID: 30400132 PMCID: PMC6266307 DOI: 10.3390/nu10111619] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
Selenoproteins form a group of proteins of which its members contain at least one selenocysteine, and most of them serve oxidoreductase functions. Selenoprotein F (SELENOF), one of the 25 currently identified selenoproteins, is located in the endoplasmic reticulum (ER) organelle and is abundantly expressed in many tissues. It is regulated according to its selenium status, as well as by cell stress conditions. SELENOF may be functionally linked to protein folding and the secretion process in the ER. Several studies have reported positive associations between SELENOF genetic variations and several types of cancer. Also, altered expression levels of SELENOF have been found in cancer cases and neurodegenerative diseases. In this review, we summarize the current understanding of the structure, expression, and potential function of SELENOF and discuss its possible relation with various pathological processes.
Collapse
|
47
|
Zhang L, Zeng H, Cheng WH. Beneficial and paradoxical roles of selenium at nutritional levels of intake in healthspan and longevity. Free Radic Biol Med 2018; 127:3-13. [PMID: 29782991 DOI: 10.1016/j.freeradbiomed.2018.05.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/15/2022]
Abstract
Accumulation of genome and macromolecule damage is a hallmark of aging, age-associated degeneration, and genome instability syndromes. Although processes of aging are irreversible, they can be modulated by genome maintenance pathways and environmental factors such as diet. Selenium (Se) confers its physiological functions mainly through selenoproteins, but Se compounds and other proteins that incorporate Se nonspecifically also impact optimal health. Bruce Ames proposed that the aging process could be mitigated by a subset of low-hierarchy selenoproteins whose levels are preferentially reduced in response to Se deficiency. Consistent with this notion, results from two selenotranscriptomic studies collectively implicate three low-hierarchy selenoproteins in age or senescence. Experimental evidence generally supports beneficial roles of selenoproteins in the protection against damage accumulation and redox imbalance, but some selenoproteins have also been reported to unexpectedly display harmful functions under sporadic conditions. While longevity and healthspan are usually thought to be projected in parallel, emerging evidence suggests a trade-off between longevity promotion and healthspan deterioration with damage accumulation. We propose that longevity promotion under conditions of Se deficiency may be attributed to 1) stress-response hormesis, an advantageous event of resistance to toxic chemicals at low doses; 2) reduced expression of selenoproteins with paradoxical functions to a lesser extent. In particular, selenoprotein H is an evolutionally conserved nuclear selenoprotein postulated to confer Se functions in redox regulation, genome maintenance, and senescence. This review highlights the need to pinpoint roles of specific selenoproteins and Se compounds in healthspan and lifespan for a better understanding of Se contribution at nutritional levels of intake to healthy aging.
Collapse
Affiliation(s)
- Li Zhang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, USA
| | - Huawei Zeng
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Center, Grand Forks, ND 58202, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, USA.
| |
Collapse
|
48
|
Peters KM, Carlson BA, Gladyshev VN, Tsuji PA. Selenoproteins in colon cancer. Free Radic Biol Med 2018; 127:14-25. [PMID: 29793041 PMCID: PMC6168369 DOI: 10.1016/j.freeradbiomed.2018.05.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023]
Abstract
Selenocysteine-containing proteins (selenoproteins) have been implicated in the regulation of various cell signaling pathways, many of which are linked to colorectal malignancies. In this in-depth excurse into the selenoprotein literature, we review possible roles for human selenoproteins in colorectal cancer, focusing on the typical hallmarks of cancer cells and their tumor-enabling characteristics. Human genome studies of single nucleotide polymorphisms in various genes coding for selenoproteins have revealed potential involvement of glutathione peroxidases, thioredoxin reductases, and other proteins. Cell culture studies with targeted down-regulation of selenoproteins and studies utilizing knockout/transgenic animal models have helped elucidate the potential roles of individual selenoproteins in this malignancy. Those selenoproteins, for which strong links to development or progression of colorectal cancer have been described, may be potential future targets for clinical interventions.
Collapse
Affiliation(s)
- Kristin M Peters
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| | - Bradley A Carlson
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| | - Vadim N Gladyshev
- Dept. of Medicine, Brigham & Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| | - Petra A Tsuji
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| |
Collapse
|
49
|
Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients 2018; 10:E1203. [PMID: 30200430 PMCID: PMC6163284 DOI: 10.3390/nu10091203] [Citation(s) in RCA: 534] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Selenium is an essential micronutrient that plays a crucial role in development and a wide variety of physiological processes including effect immune responses. The immune system relies on adequate dietary selenium intake and this nutrient exerts its biological effects mostly through its incorporation into selenoproteins. The selenoproteome contains 25 members in humans that exhibit a wide variety of functions. The development of high-throughput omic approaches and novel bioinformatics tools has led to new insights regarding the effects of selenium and selenoproteins in human immuno-biology. Equally important are the innovative experimental systems that have emerged to interrogate molecular mechanisms underlying those effects. This review presents a summary of the current understanding of the role of selenium and selenoproteins in regulating immune cell functions and how dysregulation of these processes may lead to inflammation or immune-related diseases.
Collapse
Affiliation(s)
- Joseph C Avery
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| |
Collapse
|
50
|
Benham AM. Endoplasmic Reticulum redox pathways: in sickness and in health. FEBS J 2018; 286:311-321. [PMID: 30062765 DOI: 10.1111/febs.14618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/25/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
The Endoplasmic Reticulum (ER) is the major site for secretory protein production in eukaryotic cells and like an efficient factory, it has the capacity to expand or contract its output depending on the demand for its services. A primary function of the ER is to co-ordinate the quality control of proteins as they enter this folding factory at the base of the secretory pathway. Reduction-oxidation (redox) reactions have an important role to play in the quality control process, through the provision of disulphide bonds and by maintaining a favourable redox environment for oxidative protein folding. The ER is also a major contributor to calcium homeostasis and is a key site for lipid biosynthesis, two processes that additionally impact upon, and are influenced by, redox in the ER compartment.
Collapse
|