1
|
Muñoz-Hernández H, Xu Y, Pellicer Camardiel A, Zhang D, Xue A, Aher A, Walker E, Marxer F, Kapoor TM, Wieczorek M. Structure of the microtubule-anchoring factor NEDD1 bound to the γ-tubulin ring complex. J Cell Biol 2025; 224:e202410206. [PMID: 40396914 PMCID: PMC12094035 DOI: 10.1083/jcb.202410206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/19/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
The γ-tubulin ring complex (γ-TuRC) is an essential multiprotein assembly that provides a template for microtubule nucleation. The γ-TuRC is recruited to microtubule-organizing centers (MTOCs) by the evolutionarily conserved attachment factor NEDD1. However, the structural basis of the NEDD1-γ-TuRC interaction is not known. Here, we report cryo-EM structures of NEDD1 bound to the human γ-TuRC in the absence or presence of the activating factor CDK5RAP2. We found that the C-terminus of NEDD1 forms a tetrameric α-helical assembly that contacts the lumen of the γ-TuRC cone and orients its microtubule-binding domain away from the complex. The structure of the γ-TuRC simultaneously bound to NEDD1 and CDK5RAP2 reveals that both factors can associate with the "open" conformation of the complex. Our results show that NEDD1 does not induce substantial conformational changes in the γ-TuRC but suggest that anchoring of γ-TuRC-capped microtubules by NEDD1 would be structurally compatible with the significant conformational changes experienced by the γ-TuRC during microtubule nucleation.
Collapse
Affiliation(s)
| | - Yixin Xu
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | | | - Daniel Zhang
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Allen Xue
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Amol Aher
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Ellie Walker
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Florina Marxer
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Michal Wieczorek
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Vinopal S, Bradke F. Centrosomal and acentrosomal microtubule nucleation during neuronal development. Curr Opin Neurobiol 2025; 92:103016. [PMID: 40147111 DOI: 10.1016/j.conb.2025.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/29/2025]
Abstract
Neurons rely on the microtubule cytoskeleton to create and maintain their sophisticated cellular architectures. Advances in cryogenic electron microscopy, expansion microscopy, live imaging, and gene editing have enabled novel insights into mechanisms of centrosomal and acentrosomal microtubule nucleation, the key process generating new microtubules. This has paved the way for the functional dissection of distinct microtubule networks that regulate various processes during neuronal development, including neuronal delamination, polarization, migration, maturation, and synapse function. We review recent progress in understanding the molecular concepts of microtubule nucleation, how these concepts underlie neurodevelopmental processes, and pinpoint the open questions. Since microtubules play a pivotal role in axon regeneration within the adult central nervous system, understanding the processes of microtubule nucleation could inform strategies to enhance the regenerative capabilities of neurons in the future.
Collapse
Affiliation(s)
- Stanislav Vinopal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyne University (UJEP), Usti nad Labem, Czech Republic.
| | - Frank Bradke
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
3
|
Yagoubat A, Conduit PT. Asymmetric microtubule nucleation from Golgi stacks promotes opposite microtubule polarity in axons and dendrites. Curr Biol 2025; 35:1311-1325.e4. [PMID: 40037351 DOI: 10.1016/j.cub.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025]
Abstract
The neuronal microtubule cytoskeleton is highly polarized, with most microtubules growing away from the soma in axons (plus-end-out), but many microtubules growing toward the soma in dendrites (minus-end-out). This differential microtubule polarity allows directional trafficking of specific organelles, vesicles, and molecules into either axons or dendrites, but how it is established and maintained remains unclear. We showed previously that microtubules are nucleated asymmetrically from Golgi stacks within the soma of Drosophila neurons, with their plus ends growing preferentially toward and into axons and away from dendrites. Here, we show that this microtubule nucleation asymmetry correlates with a cis-to-trans orientation of specific Golgi stacks toward the axon and depends on microtubule-nucleating γ-tubulin ring complexes (γ-TuRCs) at the cis-Golgi and the plus-end-stabilizing protein CLASP at the trans-Golgi. Depleting CLASP or reducing γ-TuRC localization to the Golgi by depleting the Golgin protein GMAP (Golgi microtubule-associated protein) perturbs asymmetric microtubule nucleation and growth within the soma and results in polarity changes in proximal axons and dendrites. We propose that the plus ends of microtubules nucleated by γ-TuRCs at the cis-Golgi are stabilized by CLASP at the trans-Golgi to promote the growth of microtubules along the cis-to-trans Golgi axis. This, coupled with oriented Golgi stacks, promotes microtubule growth toward and into axons and away from dendrites, helping promote plus-end-out microtubule polarity in axons and maintain minus-end-out microtubule polarity in dendrites.
Collapse
Affiliation(s)
- Akila Yagoubat
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Paul T Conduit
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
| |
Collapse
|
4
|
Reinders NR, van der Spek SJF, Klaassen RV, Koymans KJ, MacGillavry HD, Smit AB, Kessels HW. Amyloid-β-Driven Synaptic Deficits Are Mediated by Synaptic Removal of GluA3-Containing AMPA Receptors. J Neurosci 2025; 45:e0393242024. [PMID: 39779375 PMCID: PMC11867010 DOI: 10.1523/jneurosci.0393-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The detrimental effects of oligomeric amyloid-β (Aβ) on synapses are considered the leading cause for cognitive deficits in Alzheimer's disease. However, through which mechanism Aβ oligomers impair synaptic structure and function remains unknown. Here, we used electrophysiology and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) imaging on mouse and rat neurons to demonstrate that GluA3 expression in neurons lacking GluA3 is sufficient to resensitize their synapses to the damaging effects of Aβ, indicating that GluA3-containing AMPARs at synapses are necessary and sufficient for Aβ to induce synaptic deficits. We found that Aβ oligomers trigger the endocytosis of GluA3 and promote its translocation toward endolysosomal compartments for degradation. Mechanistically, these Aβ-driven effects critically depend on the PDZ-binding motif of GluA3. A single point mutation in the GluA3 PDZ-binding motif prevented Aβ-driven effects and rendered synapses fully resistant to the effects of Aβ. Correspondingly, proteomics on synaptosome fractions from APP/PS1-transgenic mice revealed a selective reduction of GluA3 at an early age. These findings support a model where the endocytosis and lysosomal degradation of GluA3-containing AMPARs are a critical early step in the cascade of events through which Aβ accumulation causes a loss of synapses.
Collapse
Affiliation(s)
- Niels R Reinders
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands
- Swammerdam Institute of Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Sophie J F van der Spek
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Remco V Klaassen
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Karin J Koymans
- Swammerdam Institute of Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Helmut W Kessels
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands
- Swammerdam Institute of Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
5
|
Shilikbay T, Nawaz A, Doon M, Ceman S. RNA helicase MOV10 suppresses fear memory and dendritic arborization and regulates microtubule dynamics in hippocampal neurons. BMC Biol 2025; 23:36. [PMID: 39915816 PMCID: PMC11803958 DOI: 10.1186/s12915-025-02138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND RNA helicase MOV10 is highly expressed in postnatal brain and associates with FMRP and AGO2, suggesting a role in translation regulation in learning and memory. RESULTS We generated a brain-specific knockout mouse (Mov10 Deletion) with greatly reduced MOV10 expression in cortex and hippocampus. Behavior testing revealed enhanced fear memory, similar to that observed in a mouse with reduced brain microRNA production, supporting MOV10's reported role as an AGO2 cofactor. Cultured hippocampal neurons have elongated distal dendrites, a reported feature of augmin/HAUS over-expression in Drosophila da sensory neurons. In mitotic spindle formation, HAUS is antagonized by the microtubule bundling protein NUMA1. Numa1 mRNA is a MOV10 CLIP target and is among the genes significantly decreased in Mov10 Deletion hippocampus. Restoration of NUMA1 expression and knockdown of HAUS rescued phenotypes of the Mov10 Deletion hippocampal neurons. CONCLUSIONS This is the first evidence of translation regulation of NUMA1 by MOV10 as a control point in dendritogenesis.
Collapse
Affiliation(s)
- Temirlan Shilikbay
- Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, USA
| | - Aatiqa Nawaz
- Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, USA
| | - Megan Doon
- Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, USA
| | - Stephanie Ceman
- Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
van Grinsven EJ, Akhmanova A. Diversity of microtubule arrays in animal cells at a glance. J Cell Sci 2025; 138:JCS263476. [PMID: 39936397 DOI: 10.1242/jcs.263476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Microtubules are cytoskeletal filaments important for various cellular processes such as intracellular transport, cell division, polarization and migration. Microtubule organization goes hand in hand with cellular function. Motile cells, such as immune cells or fibroblasts, contain microtubule asters attached to the centrosome and the Golgi complex, whereas in many other differentiated cells, microtubules form linear arrays or meshworks anchored at membrane-bound organelles or the cell cortex. Over the past decade, new developments in cell culture, genome editing and microscopy have greatly advanced our understanding of complex microtubule arrays. In this Cell Science at a Glance article and the accompanying poster, we review the diversity of microtubule arrays in interphase animal cells. We describe microtubule network geometries present in various differentiated cells, explore the variety in microtubule-organizing centers responsible for these geometries, and discuss examples of microtubule reorganization in response to functional changes and their interplay with cell motility and tissue development.
Collapse
Affiliation(s)
- Emma J van Grinsven
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| |
Collapse
|
7
|
Muñoz-Hernández H, Xu Y, Zhang D, Xue A, Aher A, Camardiel AP, Walker E, Marxer F, Kapoor TM, Wieczorek M. Structure of the microtubule anchoring factor NEDD1 bound to the γ-tubulin ring complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622067. [PMID: 39574704 PMCID: PMC11580850 DOI: 10.1101/2024.11.05.622067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The γ-tubulin ring complex (γ-TuRC) is an essential multiprotein assembly, in which γ-tubulin, GCP2-6, actin, MZT1 and MZT2 form an asymmetric cone-shaped structure that provides a template for microtubule nucleation. The γ-TuRC is recruited to microtubule organizing centers (MTOCs), such as centrosomes and pre-existing mitotic spindle microtubules, via the evolutionarily-conserved attachment factor NEDD1. NEDD1 contains an N-terminal WD40 domain that binds to microtubules, and a C-terminal domain that associates with the γ-TuRC. However, the structural basis of the NEDD1-γ-TuRC interaction is not known. Here, we report cryo-electron microscopy (cryo-EM) structures of NEDD1 bound to the human γ-TuRC in the absence or presence of the activating factor CDK5RAP2, which interacts with GCP2 to induce conformational changes in the γ-TuRC and promote its microtubule nucleating function. We found that the C-terminus of NEDD1 forms a tetrameric α-helical assembly that contacts the lumen of the γ-TuRC cone, is anchored to GCP4, 5 and 6 via protein modules consisting of MZT1 & GCP3 subcomplexes, and orients its microtubule-binding WD40 domains away from the complex. We biochemically tested our structural models by identifying NEDD1 mutants unable to pull-down γ-tubulin from cultured cells. The structure of the γ-TuRC simultaneously bound to NEDD1 and CDK5RAP2 reveals that both factors can associate with the "open" conformation of the complex. Our results show that NEDD1 does not induce conformational changes in the γ-TuRC, but suggest that anchoring of γ-TuRC-capped microtubules by NEDD1 would be structurally compatible with the significant conformational changes experienced by the γ-TuRC during microtubule nucleation.
Collapse
Affiliation(s)
- Hugo Muñoz-Hernández
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
- These authors contributed equally
| | - Yixin Xu
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
- These authors contributed equally
| | - Daniel Zhang
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Allen Xue
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Amol Aher
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | | | - Ellie Walker
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Florina Marxer
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Michal Wieczorek
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Liu S, Yu Y, Xu J, Wang Y, Li D. Single-cell and bulk RNA-sequencing reveals mitosis-involved gene HAUS1 is a promising indicator for predicting prognosis and immune responses in prostate adenocarcinoma (PRAD). Cell Biol Int 2024; 48:1169-1184. [PMID: 38818762 DOI: 10.1002/cbin.12191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/13/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
It was imperative to identify latent biomarkers pertinent to malignancies, given the pivotal role targeted molecular therapies play in tumor treatment investigations. This study aimed to assess the validity of HAUS1 as an indicator for survival prognosis and immune responses in prostate adenocarcinoma (PRAD) via single-cell and bulk RNA-sequencing. Related data on HAUS1 expression in PRAD were obtained from online databases, followed by comprehensive analyses to delineate its associations with survival prognosis, implicated pathways, and immune responses. Besides, the expression pattern of HAUS1 in PRAD was also verified in vitro, by using qRT-PCR, Western blot analysis, and immunohistochemistry. We found HAUS1 was downregulated in PRAD compared with normal tissues, as verified in vitro by qRT-PCR, Western blot, and immunohistochemistry (p < 0.05). Single-cell RNA-sequencing analysis indicated that HAUS1 had relatively higher expressions in B cells, Mono/Macro cells, and Endothelial cells compared with other cell types. Cox regression analysis revealed HAUS1 could serve as an independent indicator for the overall survival prognosis of PRAD (p < 0.05). Spearman correlation analyses revealed HAUS1 was closely related to the tumor microenvironment, immune cell infiltration levels, immune checkpoints, and immune cell pathways (p < 0.05). Furthermore, HAUS1 expression was found to be closely related to the immunotherapeutic response of patients receiving clinical intervention (p < 0.05). Collectively, our findings underscored the significant role of HAUS1 in PRAD prognosis and immune response, thereby presenting a novel and promising avenue for investigating the clinical utility of immunotherapy in PRAD.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yang Yu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Nursing Department, Wujiang Fifth People's Hospital, Suzhou, China
| | - Yi Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Mukherjee A, Andrés Jeske Y, Becam I, Taïeb A, Brooks P, Aouad J, Monguillon C, Conduit PT. γ-TuRCs and the augmin complex are required for the development of highly branched dendritic arbors in Drosophila. J Cell Sci 2024; 137:jcs261534. [PMID: 38606636 PMCID: PMC11128279 DOI: 10.1242/jcs.261534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Microtubules are nucleated by γ-tubulin ring complexes (γ-TuRCs) and are essential for neuronal development. Nevertheless, γ-TuRC depletion has been reported to perturb only higher-order branching in elaborated Drosophila larval class IV dendritic arborization (da) neurons. This relatively mild phenotype has been attributed to defects in microtubule nucleation from Golgi outposts, yet most Golgi outposts lack associated γ-TuRCs. By analyzing dendritic arbor regrowth in pupae, we show that γ-TuRCs are also required for the growth and branching of primary and secondary dendrites, as well as for higher-order branching. Moreover, we identify the augmin complex (hereafter augmin), which recruits γ-TuRCs to the sides of pre-existing microtubules, as being required predominantly for higher-order branching. Augmin strongly promotes the anterograde growth of microtubules in terminal dendrites and thus terminal dendrite stability. Consistent with a specific role in higher-order branching, we find that augmin is expressed less strongly and is largely dispensable in larval class I da neurons, which exhibit few higher-order dendrites. Thus, γ-TuRCs are essential for various aspects of complex dendritic arbor development, and they appear to function in higher-order branching via the augmin pathway, which promotes the elaboration of dendritic arbors to help define neuronal morphology.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Yaiza Andrés Jeske
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Isabelle Becam
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Anaelle Taïeb
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Paul Brooks
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Joanna Aouad
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | | - Paul T. Conduit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
10
|
Zhang Y, Sung HH, Ziegler AB, Wu YC, Viais R, Sánchez-Huertas C, Kilo L, Agircan FG, Cheng YJ, Mouri K, Uemura T, Lüders J, Chien CT, Tavosanis G. Augmin complex activity finetunes dendrite morphology through non-centrosomal microtubule nucleation in vivo. J Cell Sci 2024; 137:jcs261512. [PMID: 38587100 PMCID: PMC11128282 DOI: 10.1242/jcs.261512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
During development, neurons achieve a stereotyped neuron type-specific morphology, which relies on dynamic support by microtubules (MTs). An important player is the augmin complex (hereafter augmin), which binds to existing MT filaments and recruits the γ-tubulin ring complex (γ-TuRC), to form branched MTs. In cultured neurons, augmin is important for neurite formation. However, little is known about the role of augmin during neurite formation in vivo. Here, we have revisited the role of mammalian augmin in culture and then turned towards the class four Drosophila dendritic arborization (c4da) neurons. We show that MT density is maintained through augmin in cooperation with the γ-TuRC in vivo. Mutant c4da neurons show a reduction of newly emerging higher-order dendritic branches and in turn also a reduced number of their characteristic space-filling higher-order branchlets. Taken together, our data reveal a cooperative function for augmin with the γ-TuRC in forming enough MTs needed for the appropriate differentiation of morphologically complex dendrites in vivo.
Collapse
Affiliation(s)
- Yun Zhang
- German Center for Neurodegenerative Diseases (DZNE), Dynamics of Neuronal Circuits Group, Venusberg Campus 1 Building 99, 53127 Bonn, Germany
| | - Hsin-Ho Sung
- Institute of Molecular Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Anna B. Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Dynamics of Neuronal Circuits Group, Venusberg Campus 1 Building 99, 53127 Bonn, Germany
| | - Ying-Chieh Wu
- Institute of Molecular Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Ricardo Viais
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Carlos Sánchez-Huertas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Lukas Kilo
- German Center for Neurodegenerative Diseases (DZNE), Dynamics of Neuronal Circuits Group, Venusberg Campus 1 Building 99, 53127 Bonn, Germany
| | - Fikret Gürkan Agircan
- German Center for Neurodegenerative Diseases (DZNE), Dynamics of Neuronal Circuits Group, Venusberg Campus 1 Building 99, 53127 Bonn, Germany
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Kousuke Mouri
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Center for Living Systems Information Science, Kyoto University
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Gaia Tavosanis
- German Center for Neurodegenerative Diseases (DZNE), Dynamics of Neuronal Circuits Group, Venusberg Campus 1 Building 99, 53127 Bonn, Germany
- LIMES Institute, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
11
|
Tang L, Chen Z, Wei C, Liu H, Wang B, Yu T, Tao X, Yang J, Guan J, Yi J, Zhu H, Li C, Tang P, Wang K. The significance of HAUS1 and its relationship with immune microenvironment in hepatocellular carcinoma. J Cancer 2024; 15:1328-1341. [PMID: 38356703 PMCID: PMC10861820 DOI: 10.7150/jca.90298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
Background: HAUS Augmin-like complex subunit 1(HAUS1), as a controlling gene, which affected the production of spindle was firstly discovered in Drosophila cells. Although HAUS1 has been intensively studied, but its significance and relationship with the immune microenvironment in Hepatocellular carcinoma (HCC) remain unclear. Materials and Methods: All data of HCC in this paper were obtained from The Cancer Genome Atlas(TCGA), Genotype-Tissue Expression (GTEx), Gene Expression Omnibus (GEO) and the Human Protein Atlas(HPA) database. The role and potential value of HAUS1 in the tumorigenesis and development of HCC were studied by applying plenty of bioinformatics analysis methods. Knocked down the expression of HAUS1 through siRNA and further investigated the function of HAUS1 in HCC Results: HAUS1 was highly expressed in HCC, which led to a poor prognosis. ROC curve analysis showed that HAUS1 had a excellent diagnostic value. It was also associated with clinical stage, pathological grade and AFP of HCC. Univariate and multivariate COX regression analysis showed that HAUS1 was an independent prognostic factor for HCC patients. HAUS1 was associated with immune cells infiltrate and immune checkpoints in HCC, and it could generate significative therapeutic results when combined with anti-CTLA4 and anti-CD274 treatment. In vitro experiments, HAUS1 was found to promote the proliferation, invasion and metastasis, participated in cell cycle regulation and inhibited apoptosis of HCC. Conclusion: These results suggested that HAUS1 might serve as a potential therapeutic target, as well as a diagnostic, prognostic, and survival biomarker for HCC.
Collapse
Affiliation(s)
- Lei Tang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Zhonghuo Chen
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang 330009, China
| | - Chao Wei
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Hao Liu
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Ben Wang
- Department of General Surgery, No. 215 Hospital of Shanxi Nuclear Industry, Xianyang 712000, China
| | - Taozhi Yu
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Xiaofei Tao
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Jiale Yang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Jiafu Guan
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Jianwei Yi
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Hengchang Zhu
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Chen Li
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Peng Tang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Kai Wang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Ministry of Education, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Wang Y, Chen X, Xu X, Yang J, Liu X, Sun G, Li Z. Weighted Gene Co-Expression Network Analysis Based on Stimulation by Lipopolysaccharides and Polyinosinic:polycytidylic Acid Provides a Core Set of Genes for Understanding Hemolymph Immune Response Mechanisms of Amphioctopus fangsiao. Animals (Basel) 2023; 14:80. [PMID: 38200810 PMCID: PMC10778463 DOI: 10.3390/ani14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The primary influencer of aquaculture quality in Amphioctopus fangsiao is pathogen infection. Both lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (Poly I:C) are recognized by the pattern recognition receptor (PRR) within immune cells, a system that frequently serves to emulate pathogen invasion. Hemolymph, which functions as a transport mechanism for immune cells, offers vital transcriptome information when A. fangsiao is exposed to pathogens, thereby contributing to our comprehension of the species' immune biological mechanisms. In this study, we conducted analyses of transcript profiles under the influence of LPS and Poly I:C within a 24 h period. Concurrently, we developed a Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules and genes. Further, we carried out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to investigate the primary modular functions. Co-expression network analyses unveiled a series of immune response processes following pathogen stress, identifying several key modules and hub genes, including PKMYT1 and NAMPT. The invaluable genetic resources provided by our results aid our understanding of the immune response in A. fangsiao hemolymph and will further our exploration of the molecular mechanisms of pathogen infection in mollusks.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xipan Chen
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
13
|
Alfadil E, Bradke F. Moving through the crowd. Where are we at understanding physiological axon growth? Semin Cell Dev Biol 2023; 140:63-71. [PMID: 35817655 DOI: 10.1016/j.semcdb.2022.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Axon growth enables the rapid wiring of the central nervous system. Understanding this process is a prerequisite to retriggering it under pathological conditions, such as a spinal cord injury, to elicit axon regeneration. The last decades saw progress in understanding the mechanisms underlying axon growth. Most of these studies employed cultured neurons grown on flat surfaces. Only recently studies on axon growth were performed in 3D. In these studies, physiological environments exposed more complex and dynamic aspects of axon development. Here, we describe current views on axon growth and highlight gaps in our knowledge. We discuss how axons interact with the extracellular matrix during development and the role of the growth cone and its cytoskeleton within. Finally, we propose that the time is ripe to study axon growth in a more physiological setting. This will help us uncover the physiologically relevant mechanisms underlying axon growth, and how they can be reactivated to induce axon regeneration.
Collapse
Affiliation(s)
- Eissa Alfadil
- Laboratory of Axon Growth and Regeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany.
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| |
Collapse
|
14
|
Iwanski MK, Kapitein LC. Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton. Front Cell Dev Biol 2023; 11:1052245. [PMID: 37035244 PMCID: PMC10073685 DOI: 10.3389/fcell.2023.1052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Microtubules, one of the major components of the cytoskeleton, play a crucial role during many aspects of neuronal development and function, such as neuronal polarization and axon outgrowth. Consequently, the microtubule cytoskeleton has been implicated in many neurodevelopmental and neurodegenerative disorders. The polar nature of microtubules is quintessential for their function, allowing them to serve as tracks for long-distance, directed intracellular transport by kinesin and dynein motors. Most of these motors move exclusively towards either the plus- or minus-end of a microtubule and some have been shown to have a preference for either dynamic or stable microtubules, those bearing a particular post-translational modification or those decorated by a specific microtubule-associated protein. Thus, it becomes important to consider the interplay of these features and their combinatorial effects on transport, as well as how different types of microtubules are organized in the cell. Here, we discuss microtubule subsets in terms of tubulin isotypes, tubulin post-translational modifications, microtubule-associated proteins, microtubule stability or dynamicity, and microtubule orientation. We highlight techniques used to study these features of the microtubule cytoskeleton and, using the information from these studies, try to define the composition, role, and organization of some of these subsets in neurons.
Collapse
Affiliation(s)
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
16
|
Jürgens L, Wethmar K. The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers (Basel) 2022; 14:6031. [PMID: 36551517 PMCID: PMC9776223 DOI: 10.3390/cancers14246031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Recent technological advances have facilitated the detection of numerous non-canonical human peptides derived from regulatory regions of mRNAs, long non-coding RNAs, and other cryptic transcripts. In this review, we first give an overview of the classification of these novel peptides and summarize recent improvements in their annotation and detection by ribosome profiling, mass spectrometry, and individual experimental analysis. A large fraction of the novel peptides originates from translation at upstream open reading frames (uORFs) that are located within the transcript leader sequence of regular mRNA. In humans, uORF-encoded peptides (uPeptides) have been detected in both healthy and malignantly transformed cells and emerge as important regulators in cellular and immunological pathways. In the second part of the review, we focus on various functional implications of uPeptides. As uPeptides frequently act at the transition of translational regulation and individual peptide function, we describe the mechanistic modes of translational regulation through ribosome stalling, the involvement in cellular programs through protein interaction and complex formation, and their role within the human leukocyte antigen (HLA)-associated immunopeptidome as HLA uLigands. We delineate how malignant transformation may lead to the formation of novel uORFs, uPeptides, or HLA uLigands and explain their potential implication in tumor biology. Ultimately, we speculate on a potential use of uPeptides as peptide drugs and discuss how uPeptides and HLA uLigands may facilitate translational inhibition of oncogenic protein messages and immunotherapeutic approaches in cancer therapy.
Collapse
Affiliation(s)
| | - Klaus Wethmar
- University Hospital Münster, Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, 48149 Münster, Germany
| |
Collapse
|
17
|
Nakamura A, Ikeda M, Kusayanagi S, Hayashi K. An alternative splice isoform of mouse CDK5RAP2 induced cytoplasmic microtubule nucleation. IBRO Neurosci Rep 2022; 13:264-273. [PMID: 36164503 PMCID: PMC9508486 DOI: 10.1016/j.ibneur.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/11/2022] [Indexed: 10/29/2022] Open
Abstract
The centrosome lacks microtubule (MT)-nucleation activity in differentiated neurons. We have previously demonstrated that MTs were nucleated at the cytoplasm of mouse neurons. They are supposed to serve seeds for MTs required for dendrite growth. However, the factors that activate the cytoplasmic γ-tubulin ring complex (γTuRC) are unknown. Here we report an alternative splicing isoform of cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CKD5RAP2) as a candidate for the cytoplasmic γTuRC activator. This isoform lacked exon 17 and was expressed predominantly in the brain and testis. The expression was transient during the development of cortical neurons, which period coincided with the period we reported cytoplasmic MT nucleation. This isoform resulted in a frameshift and generated truncated protein without a centrosomal localization signal. When this isoform was expressed in cells, it localized diffusely in the cytoplasm. It was co-immunoprecipitated with γ-tubulin and MOZART2, suggesting that it can activate cytosolic γTuRCs. After cold-nocodazole depolymerization of MTs and subsequent washout, we observed numerous short MTs in the cytoplasm of cells transfected with the cDNA of this isoform. The isoform-overexpressing cells exhibited an increased amount of MTs and a decreased ratio of acetylated tubulin, suggesting that MT generation and turnover were enhanced by the isoform. Our data suggest the possibility that alternative splicing of CDK5RAP2 induces cytoplasmic nucleation of MTs in developing neurons.
Collapse
Key Words
- CKD5RAP2, cyclin-dependent kinase 5 regulatory subunit-associated protein 2
- CM1, centrosomin motif 1
- Centrosome
- DMEM, Dulbecco’s Modified Eagle’s Medium
- Dendrite growth
- FBS, fetal bovine serum
- HBSS, Hanks' Balanced Salt Solution
- IB, immunoblotting
- IP, immunoprecipitation
- MT, microtubule
- MZT2
- MZT2, MOZART2
- Microcephaly
- NSD, nonsense-mediated mRNA decay
- Neuron differentiation
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- γTuRC
- γTuRC, γ-tubulin ring complex
Collapse
Affiliation(s)
- Akari Nakamura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Mami Ikeda
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Seina Kusayanagi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Kensuke Hayashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| |
Collapse
|
18
|
Miryala CSJ, Holland ED, Dent EW. Contributions of microtubule dynamics and transport to presynaptic and postsynaptic functions. Mol Cell Neurosci 2022; 123:103787. [PMID: 36252720 PMCID: PMC9838116 DOI: 10.1016/j.mcn.2022.103787] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Microtubules (MT) are elongated, tubular, cytoskeletal structures formed from polymerization of tubulin dimers. They undergo continuous cycles of polymerization and depolymerization, primarily at their plus ends, termed dynamic instability. Although this is an intrinsic property of MTs, there are a myriad of MT-associated proteins that function in regulating MT dynamic instability and other dynamic processes that shape the MT array. Additionally, MTs assemble into long, semi-rigid structures which act as substrates for long-range, motor-driven transport of many different types of cargoes throughout the cell. Both MT dynamics and motor-based transport play important roles in the function of every known type of cell. Within the last fifteen years many groups have shown that MT dynamics and transport play ever-increasing roles in the neuronal function of mature neurons. Not only are neurons highly polarized cells, but they also connect with one another through synapses to form complex networks. Here we will focus on exciting studies that have illuminated how MTs function both pre-synaptically in axonal boutons and post-synaptically in dendritic spines. It is becoming clear that MT dynamics and transport both serve important functions in synaptic plasticity. Thus, it is not surprising that disruption of MTs, either through hyperstabilization or destabilization, has profound consequences for learning and memory. Together, the studies described here suggest that MT dynamics and transport play key roles in synaptic function and when disrupted result in compromised learning and memory.
Collapse
Affiliation(s)
- Chandra S. J. Miryala
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705
| | - Elizabeth D. Holland
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Erik W. Dent
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705,Corresponding Author: Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705,
| |
Collapse
|
19
|
He L, van Beem L, Snel B, Hoogenraad CC, Harterink M. PTRN-1 (CAMSAP) and NOCA-2 (NINEIN) are required for microtubule polarity in Caenorhabditis elegans dendrites. PLoS Biol 2022; 20:e3001855. [PMID: 36395330 PMCID: PMC9714909 DOI: 10.1371/journal.pbio.3001855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/01/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The neuronal microtubule cytoskeleton is key to establish axon-dendrite polarity. Dendrites are characterized by the presence of minus-end out microtubules. However, the mechanisms that organize these microtubules with the correct orientation are still poorly understood. Using Caenorhabditis elegans as a model system for microtubule organization, we characterized the role of 2 microtubule minus-end related proteins in this process, the microtubule minus-end stabilizing protein calmodulin-regulated spectrin-associated protein (CAMSAP/PTRN-1), and the NINEIN homologue, NOCA-2 (noncentrosomal microtubule array). We found that CAMSAP and NINEIN function in parallel to mediate microtubule organization in dendrites. During dendrite outgrowth, RAB-11-positive vesicles localized to the dendrite tip to nucleate microtubules and function as a microtubule organizing center (MTOC). In the absence of either CAMSAP or NINEIN, we observed a low penetrance MTOC vesicles mislocalization to the cell body, and a nearly fully penetrant phenotype in double mutant animals. This suggests that both proteins are important for localizing the MTOC vesicles to the growing dendrite tip to organize microtubules minus-end out. Whereas NINEIN localizes to the MTOC vesicles where it is important for the recruitment of the microtubule nucleator γ-tubulin, CAMSAP localizes around the MTOC vesicles and is cotranslocated forward with the MTOC vesicles upon dendritic growth. Together, these results indicate that microtubule nucleation from the MTOC vesicles and microtubule stabilization are both important to localize the MTOC vesicles distally to organize dendritic microtubules minus-end out.
Collapse
Affiliation(s)
- Liu He
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Lotte van Beem
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Casper C. Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Department of Neuroscience, Genentech, Inc., South San Francisco, California, United States of America
| | - Martin Harterink
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
20
|
The augmin complex architecture reveals structural insights into microtubule branching. Nat Commun 2022; 13:5635. [PMID: 36163468 PMCID: PMC9512787 DOI: 10.1038/s41467-022-33228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
In mitosis, the augmin complex binds to spindle microtubules to recruit the γ-tubulin ring complex (γ-TuRC), the principal microtubule nucleator, for the formation of branched microtubules. Our understanding of augmin-mediated microtubule branching is hampered by the lack of structural information on the augmin complex. Here, we elucidate the molecular architecture and conformational plasticity of the augmin complex using an integrative structural biology approach. The elongated structure of the augmin complex is characterised by extensive coiled-coil segments and comprises two structural elements with distinct but complementary functions in γ-TuRC and microtubule binding, linked by a flexible hinge. The augmin complex is recruited to microtubules via a composite microtubule binding site comprising a positively charged unordered extension and two calponin homology domains. Our study provides the structural basis for augmin function in branched microtubule formation, decisively fostering our understanding of spindle formation in mitosis. The formation of branched microtubule networks in mitotic spindles depends on the augmin complex. Zupa, Würtz et al. elucidate the molecular architecture and conformational plasticity of the augmin complex using integrative structural biology, providing structural insights into microtubule branching.
Collapse
|
21
|
Gabel CA, Li Z, DeMarco AG, Zhang Z, Yang J, Hall MC, Barford D, Chang L. Molecular architecture of the augmin complex. Nat Commun 2022; 13:5449. [PMID: 36114186 PMCID: PMC9481612 DOI: 10.1038/s41467-022-33227-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/05/2022] [Indexed: 12/21/2022] Open
Abstract
Accurate segregation of chromosomes during mitosis depends on the correct assembly of the mitotic spindle, a bipolar structure composed mainly of microtubules. The augmin complex, or homologous to augmin subunits (HAUS) complex, is an eight-subunit protein complex required for building robust mitotic spindles in metazoa. Augmin increases microtubule density within the spindle by recruiting the γ-tubulin ring complex (γ-TuRC) to pre-existing microtubules and nucleating branching microtubules. Here, we elucidate the molecular architecture of augmin by single particle cryo-electron microscopy (cryo-EM), computational methods, and crosslinking mass spectrometry (CLMS). Augmin's highly flexible structure contains a V-shaped head and a filamentous tail, with the head existing in either extended or contracted conformational states. Our work highlights how cryo-EM, complemented by computational advances and CLMS, can elucidate the structure of a challenging protein complex and provides insights into the function of augmin in mediating microtubule branching nucleation.
Collapse
Affiliation(s)
- Clinton A Gabel
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew G DeMarco
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Mark C Hall
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
22
|
Espíndola-Hernández P, Mueller JC, Kempenaers B. Genomic signatures of the evolution of a diurnal lifestyle in Strigiformes. G3 GENES|GENOMES|GENETICS 2022; 12:6595023. [PMID: 35640557 PMCID: PMC9339318 DOI: 10.1093/g3journal/jkac135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
Understanding the targets of selection associated with changes in behavioral traits represents an important challenge of current evolutionary research. Owls (Strigiformes) are a diverse group of birds, most of which are considered nocturnal raptors. However, a few owl species independently adopted a diurnal lifestyle in their recent evolutionary history. We searched for signals of accelerated rates of evolution associated with a diurnal lifestyle using a genome-wide comparative approach. We estimated substitution rates in coding and noncoding conserved regions of the genome of seven owl species, including three diurnal species. Substitution rates of the noncoding elements were more accelerated than those of protein-coding genes. We identified new, owl-specific conserved noncoding elements as candidates of parallel evolution during the emergence of diurnality in owls. Our results shed light on the molecular basis of adaptation to a new niche and highlight the importance of regulatory elements for evolutionary changes in behavior. These elements were often involved in the neuronal development of the brain.
Collapse
Affiliation(s)
- Pamela Espíndola-Hernández
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology , 82319 Seewiesen, Germany
| | - Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology , 82319 Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology , 82319 Seewiesen, Germany
| |
Collapse
|
23
|
Costa AC, Sousa MM. The Role of Spastin in Axon Biology. Front Cell Dev Biol 2022; 10:934522. [PMID: 35865632 PMCID: PMC9294387 DOI: 10.3389/fcell.2022.934522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurons are highly polarized cells with elaborate shapes that allow them to perform their function. In neurons, microtubule organization—length, density, and dynamics—are essential for the establishment of polarity, growth, and transport. A mounting body of evidence shows that modulation of the microtubule cytoskeleton by microtubule-associated proteins fine tunes key aspects of neuronal cell biology. In this respect, microtubule severing enzymes—spastin, katanin and fidgetin—a group of microtubule-associated proteins that bind to and generate internal breaks in the microtubule lattice, are emerging as key modulators of the microtubule cytoskeleton in different model systems. In this review, we provide an integrative view on the latest research demonstrating the key role of spastin in neurons, specifically in the context of axonal cell biology. We focus on the function of spastin in the regulation of microtubule organization, and axonal transport, that underlie its importance in the intricate control of axon growth, branching and regeneration.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| | - Monica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| |
Collapse
|
24
|
Zhang Y, Hong X, Hua S, Jiang K. Reconstitution and mechanistic dissection of the human microtubule branching machinery. J Cell Biol 2022; 221:e202109053. [PMID: 35604367 PMCID: PMC9129923 DOI: 10.1083/jcb.202109053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 01/07/2023] Open
Abstract
Branching microtubule (MT) nucleation is mediated by the augmin complex and γ-tubulin ring complex (γ-TuRC). However, how these two complexes work together to promote this process remains elusive. Here, using purified components from native and recombinant sources, we demonstrate that human augmin and γ-TuRC are sufficient to reconstitute the minimal MT branching machinery, in which NEDD1 bridges between augmin holo complex and GCP3/MZT1 subcomplex of γ-TuRC. The single-molecule experiment suggests that oligomerization of augmin may activate the branching machinery. We provide direct biochemical evidence that CDK1- and PLK1-dependent phosphorylation are crucial for NEDD1 binding to augmin, for their synergistic MT-binding activities, and hence for branching MT nucleation. In addition, we unveil that NEDD1 possesses an unanticipated intrinsic affinity for MTs via its WD40 domain, which also plays a pivotal role in the branching process. In summary, our study provides a comprehensive understanding of the underlying mechanisms of branching MT nucleation in human cells.
Collapse
Affiliation(s)
- Yaqian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xing Hong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shasha Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Bodzęta A, Berger F, MacGillavry HD. Subsynaptic mobility of presynaptic mGluR types is differentially regulated by intra- and extracellular interactions. Mol Biol Cell 2022; 33:ar66. [PMID: 35511883 PMCID: PMC9635276 DOI: 10.1091/mbc.e21-10-0484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Presynaptic metabotropic glutamate receptors (mGluRs) are essential for the control of synaptic transmission. However, how the subsynaptic dynamics of these receptors is controlled and contributes to synaptic signaling remain poorly understood quantitatively. Particularly, since the affinity of individual mGluR subtypes for glutamate differs considerably, the activation of mGluR subtypes critically depends on their precise subsynaptic distribution. Here, using superresolution microscopy and single-molecule tracking, we unravel novel molecular mechanisms that control the nanoscale distribution and mobility of presynaptic mGluRs in hippocampal neurons. We demonstrate that the high-affinity group II receptor mGluR2 localizes diffusely along the axon, and is highly mobile, while the low-affinity group III receptor mGluR7 is stably anchored at the active zone. We demonstrate that intracellular interactions modulate surface diffusion of mGluR2, while immobilization of mGluR7 at the active zone relies on its extracellular domain. Receptor activation or increases in synaptic activity do not alter the surface mobility of presynaptic mGluRs. Finally, computational modeling of presynaptic mGluR activity revealed that this particular nanoscale arrangement directly impacts their ability to modulate neurotransmitter release. Altogether, this study demonstrates that distinct mechanisms control surface mobility of presynaptic mGluRs to contribute differentially to glutamatergic synaptic transmission.
Collapse
Affiliation(s)
- Anna Bodzęta
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands
| | - Florian Berger
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands
| |
Collapse
|
26
|
Akhmanova A, Kapitein LC. Mechanisms of microtubule organization in differentiated animal cells. Nat Rev Mol Cell Biol 2022; 23:541-558. [PMID: 35383336 DOI: 10.1038/s41580-022-00473-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Microtubules are polarized cytoskeletal filaments that serve as tracks for intracellular transport and form a scaffold that positions organelles and other cellular components and modulates cell shape and mechanics. In animal cells, the geometry, density and directionality of microtubule networks are major determinants of cellular architecture, polarity and proliferation. In dividing cells, microtubules form bipolar spindles that pull chromosomes apart, whereas in interphase cells, microtubules are organized in a cell type-specific fashion, which strongly correlates with cell physiology. In motile cells, such as fibroblasts and immune cells, microtubules are organized as radial asters, whereas in immotile epithelial and neuronal cells and in muscles, microtubules form parallel or antiparallel arrays and cortical meshworks. Here, we review recent work addressing how the formation of such microtubule networks is driven by the plethora of microtubule regulatory proteins. These include proteins that nucleate or anchor microtubule ends at different cellular structures and those that sever or move microtubules, as well as regulators of microtubule elongation, stability, bundling or modifications. The emerging picture, although still very incomplete, shows a remarkable diversity of cell-specific mechanisms that employ conserved building blocks to adjust microtubule organization in order to facilitate different cellular functions.
Collapse
Affiliation(s)
- Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
27
|
Rolls MM. Principles of microtubule polarity in linear cells. Dev Biol 2022; 483:112-117. [PMID: 35016908 PMCID: PMC10071391 DOI: 10.1016/j.ydbio.2022.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/06/2022] [Indexed: 01/30/2023]
Abstract
The microtubule cytoskeleton is critical for maintenance of long and long-lived neurons. The overlapping array of microtubules extends from the major site of synthesis in the cell body to the far reaches of axons and dendrites. New materials are transported from the cell body along these neuronal roads by motor proteins, and building blocks and information about the state of affairs in other parts of the cell are returned by motors moving in the opposite direction. As motor proteins walk only in one direction along microtubules, the combination of correct motor and correctly oriented microtubules is essential for moving cargoes in the right direction. In this review, we focus on how microtubule polarity is established and maintained in neurons. At first thought, it seems that figuring out how microtubules are organized in neurons should be simple. After all, microtubules are essentially sticks with a slow-growing minus end and faster-growing plus end, and arranging sticks within the constrained narrow tubes of axons and dendrites should be straightforward. It is therefore quite surprising how many mechanisms contribute to making sure they are arranged in the correct polarity. Some of these mechanisms operate to generate plus-end-out polarity of axons, and others control mixed or minus-end-out dendrites.
Collapse
Affiliation(s)
- Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
28
|
Foster HE, Ventura Santos C, Carter AP. A cryo-ET survey of microtubules and intracellular compartments in mammalian axons. J Cell Biol 2022; 221:e202103154. [PMID: 34878519 PMCID: PMC7612188 DOI: 10.1083/jcb.202103154] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
The neuronal axon is packed with cytoskeletal filaments, membranes, and organelles, many of which move between the cell body and axon tip. Here, we used cryo-electron tomography to survey the internal components of mammalian sensory axons. We determined the polarity of the axonal microtubules (MTs) by combining subtomogram classification and visual inspection, finding MT plus and minus ends are structurally similar. Subtomogram averaging of globular densities in the MT lumen suggests they have a defined structure, which is surprising given they likely contain the disordered protein MAP6. We found the endoplasmic reticulum in axons is tethered to MTs through multiple short linkers. We surveyed membrane-bound cargos and describe unexpected internal features such as granules and broken membranes. In addition, we detected proteinaceous compartments, including numerous virus-like capsid particles. Our observations outline novel features of axonal cargos and MTs, providing a platform for identification of their constituents.
Collapse
|
29
|
Sánchez-Huertas C, Herrera E. With the Permission of Microtubules: An Updated Overview on Microtubule Function During Axon Pathfinding. Front Mol Neurosci 2021; 14:759404. [PMID: 34924953 PMCID: PMC8675249 DOI: 10.3389/fnmol.2021.759404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023] Open
Abstract
During the establishment of neural circuitry axons often need to cover long distances to reach remote targets. The stereotyped navigation of these axons defines the connectivity between brain regions and cellular subtypes. This chemotrophic guidance process mostly relies on the spatio-temporal expression patterns of extracellular proteins and the selective expression of their receptors in projection neurons. Axon guidance is stimulated by guidance proteins and implemented by neuronal traction forces at the growth cones, which engage local cytoskeleton regulators and cell adhesion proteins. Different layers of guidance signaling regulation, such as the cleavage and processing of receptors, the expression of co-receptors and a wide variety of intracellular cascades downstream of receptors activation, have been progressively unveiled. Also, in the last decades, the regulation of microtubule (MT) assembly, stability and interactions with the submembranous actin network in the growth cone have emerged as crucial effector mechanisms in axon pathfinding. In this review, we will delve into the intracellular signaling cascades downstream of guidance receptors that converge on the MT cytoskeleton of the growing axon. In particular, we will focus on the microtubule-associated proteins (MAPs) network responsible of MT dynamics in the axon and growth cone. Complementarily, we will discuss new evidences that connect defects in MT scaffold proteins, MAPs or MT-based motors and axon misrouting during brain development.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | | |
Collapse
|
30
|
Masucci EM, Relich PK, Lakadamyali M, Ostap EM, Holzbaur ELF. Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Mol Biol Cell 2021; 33:ar52. [PMID: 34705476 PMCID: PMC9265162 DOI: 10.1091/mbc.e21-10-0480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microtubules establish the directionality of intracellular transport by kinesins and dynein through polarized assembly, but it remains unclear how directed transport occurs along microtubules organized with mixed polarity. We investigated the ability of the plus end–directed kinesin-4 motor KIF21B to navigate mixed polarity microtubules in mammalian dendrites. Reconstitution assays with recombinant KIF21B and engineered microtubule bundles or extracted neuronal cytoskeletons indicate that nucleotide-independent microtubule-binding regions of KIF21B modulate microtubule dynamics and promote directional switching on antiparallel microtubules. Optogenetic recruitment of KIF21B to organelles in live neurons induces unidirectional transport in axons but bidirectional transport with a net retrograde bias in dendrites. Removal of the secondary microtubule-binding regions of KIF21B or dampening of microtubule dynamics with low concentrations of nocodazole eliminates retrograde bias in live dendrites. Further exploration of the contribution of microtubule dynamics in dendrites to directionality revealed plus end–out microtubules to be more dynamic than plus end–in microtubules, with nocodazole preferentially stabilizing the plus end–out population. We propose a model in which both nucleotide-sensitive and -insensitive microtubule-binding sites of KIF21B motors contribute to the search and selection of stable plus end–in microtubules within the mixed polarity microtubule arrays characteristic of mammalian dendrites to achieve net retrograde movement of KIF21B-bound cargoes.
Collapse
Affiliation(s)
- Erin M Masucci
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Peter K Relich
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Melike Lakadamyali
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - E Michael Ostap
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Erika L F Holzbaur
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
31
|
Viais R, Fariña-Mosquera M, Villamor-Payà M, Watanabe S, Palenzuela L, Lacasa C, Lüders J. Augmin deficiency in neural stem cells causes p53-dependent apoptosis and aborts brain development. eLife 2021; 10:67989. [PMID: 34427181 PMCID: PMC8456695 DOI: 10.7554/elife.67989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Microtubules that assemble the mitotic spindle are generated by centrosomal nucleation, chromatin-mediated nucleation, and nucleation from the surface of other microtubules mediated by the augmin complex. Impairment of centrosomal nucleation in apical progenitors of the developing mouse brain induces p53-dependent apoptosis and causes non-lethal microcephaly. Whether disruption of non-centrosomal nucleation has similar effects is unclear. Here, we show, using mouse embryos, that conditional knockout of the augmin subunit Haus6 in apical progenitors led to spindle defects and mitotic delay. This triggered massive apoptosis and abortion of brain development. Co-deletion of Trp53 rescued cell death, but surviving progenitors failed to organize a pseudostratified epithelium, and brain development still failed. This could be explained by exacerbated mitotic errors and resulting chromosomal defects including increased DNA damage. Thus, in contrast to centrosomes, augmin is crucial for apical progenitor mitosis, and, even in the absence of p53, for progression of brain development.
Collapse
Affiliation(s)
- Ricardo Viais
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marcos Fariña-Mosquera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sadanori Watanabe
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cristina Lacasa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
32
|
Buijs RR, Hummel JJA, Burute M, Pan X, Cao Y, Stucchi R, Altelaar M, Akhmanova A, Kapitein LC, Hoogenraad CC. WDR47 protects neuronal microtubule minus ends from katanin-mediated severing. Cell Rep 2021; 36:109371. [PMID: 34260930 DOI: 10.1016/j.celrep.2021.109371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Axons and dendrites are long extensions of neurons that contain arrays of noncentrosomal microtubules. Calmodulin-regulated spectrin-associated proteins (CAMSAPs) bind to and stabilize free microtubule minus ends and are critical for proper neuronal development and function. Previous studies have shown that the microtubule-severing ATPase katanin interacts with CAMSAPs and limits the length of CAMSAP-decorated microtubule stretches. However, how CAMSAP and microtubule minus end dynamics are regulated in neurons is poorly understood. Here, we show that the neuron-enriched protein WDR47 interacts with CAMSAPs and is critical for axon and dendrite development. We find that WDR47 accumulates at CAMSAP2-decorated microtubules, is essential for maintaining CAMSAP2 stretches, and protects minus ends from katanin-mediated severing. We propose a model where WDR47 protects CAMSAP2 at microtubule minus ends from katanin activity to ensure proper stabilization of the neuronal microtubule network.
Collapse
Affiliation(s)
- Robin R Buijs
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Jessica J A Hummel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Mithila Burute
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Xingxiu Pan
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Yujie Cao
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
33
|
Shorey M, Rao K, Stone MC, Mattie FJ, Sagasti A, Rolls MM. Microtubule organization of vertebrate sensory neurons in vivo. Dev Biol 2021; 478:1-12. [PMID: 34147472 DOI: 10.1016/j.ydbio.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/30/2023]
Abstract
Dorsal root ganglion (DRG) neurons are the predominant cell type that innervates the vertebrate skin. They are typically described as pseudounipolar cells that have central and peripheral axons branching from a single root exiting the cell body. The peripheral axon travels within a nerve to the skin, where free sensory endings can emerge and branch into an arbor that receives and integrates information. In some immature vertebrates, DRG neurons are preceded by Rohon-Beard (RB) neurons. While the sensory endings of RB and DRG neurons function like dendrites, we use live imaging in zebrafish to show that they have axonal plus-end-out microtubule polarity at all stages of maturity. Moreover, we show both cell types have central and peripheral axons with plus-end-out polarity. Surprisingly, in DRG neurons these emerge separately from the cell body, and most cells never acquire the signature pseudounipolar morphology. Like another recently characterized cell type that has multiple plus-end-out neurites, ganglion cells in Nematostella, RB and DRG neurons maintain a somatic microtubule organizing center even when mature. In summary, we characterize key cellular and subcellular features of vertebrate sensory neurons as a foundation for understanding their function and maintenance.
Collapse
Affiliation(s)
- Matthew Shorey
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kavitha Rao
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michelle C Stone
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Floyd J Mattie
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
34
|
Mani N, Wijeratne SS, Subramanian R. Micron-scale geometrical features of microtubules as regulators of microtubule organization. eLife 2021; 10:e63880. [PMID: 34114950 PMCID: PMC8195601 DOI: 10.7554/elife.63880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
The organization of micron-sized, multi-microtubule arrays from individual microtubules is essential for diverse cellular functions. The microtubule polymer is largely viewed as a passive building block during the organization process. An exception is the 'tubulin code' where alterations to tubulin at the amino acid level can influence the activity of microtubule-associated proteins. Recent studies reveal that micron-scale geometrical features of individual microtubules and polymer networks, such as microtubule length, overlap length, contact angle, and lattice defects, can also regulate the activity of microtubule-associated proteins and modulate polymer dynamics. We discuss how the interplay between such geometrical properties of the microtubule lattice and the activity of associated proteins direct multiple aspects of array organization, from microtubule nucleation and coalignment to specification of array dimensions and remodeling of dynamic networks. The mechanisms reviewed here highlight micron-sized features of microtubules as critical parameters to be routinely investigated in the study of microtubule self-organization.
Collapse
Affiliation(s)
- Nandini Mani
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Sithara S Wijeratne
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
35
|
Feng C, Cleary JM, Kothe GO, Stone MC, Weiner AT, Hertzler JI, Hancock WO, Rolls MM. Trim9 and Klp61F promote polymerization of new dendritic microtubules along parallel microtubules. J Cell Sci 2021; 134:jcs258437. [PMID: 34096607 PMCID: PMC8214762 DOI: 10.1242/jcs.258437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
Axons and dendrites are distinguished by microtubule polarity. In Drosophila, dendrites are dominated by minus-end-out microtubules, whereas axons contain plus-end-out microtubules. Local nucleation in dendrites generates microtubules in both orientations. To understand why dendritic nucleation does not disrupt polarity, we used live imaging to analyze the fate of microtubules generated at branch points. We found that they had different rates of success exiting the branch based on orientation: correctly oriented minus-end-out microtubules succeeded in leaving about twice as often as incorrectly oriented microtubules. Increased success relied on other microtubules in a parallel orientation. From a candidate screen, we identified Trim9 and kinesin-5 (Klp61F) as machinery that promoted growth of new microtubules. In S2 cells, Eb1 recruited Trim9 to microtubules. Klp61F promoted microtubule growth in vitro and in vivo, and could recruit Trim9 in S2 cells. In summary, the data argue that Trim9 and kinesin-5 act together at microtubule plus ends to help polymerizing microtubules parallel to pre-existing ones resist catastrophe.
Collapse
Affiliation(s)
- Chengye Feng
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph M. Cleary
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory O. Kothe
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle C. Stone
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alexis T. Weiner
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - James I. Hertzler
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - William O. Hancock
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M. Rolls
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
36
|
Coquand L, Victoria GS, Tata A, Carpentieri JA, Brault JB, Guimiot F, Fraisier V, Baffet AD. CAMSAPs organize an acentrosomal microtubule network from basal varicosities in radial glial cells. J Cell Biol 2021; 220:212175. [PMID: 34019079 PMCID: PMC8144914 DOI: 10.1083/jcb.202003151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/30/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Neurons of the neocortex are generated by stem cells called radial glial cells. These polarized cells extend a short apical process toward the ventricular surface and a long basal fiber that acts as a scaffold for neuronal migration. How the microtubule cytoskeleton is organized in these cells to support long-range transport is unknown. Using subcellular live imaging within brain tissue, we show that microtubules in the apical process uniformly emanate for the pericentrosomal region, while microtubules in the basal fiber display a mixed polarity, reminiscent of the mammalian dendrite. We identify acentrosomal microtubule organizing centers localized in varicosities of the basal fiber. CAMSAP family members accumulate in these varicosities, where they control microtubule growth. Double knockdown of CAMSAP1 and 2 leads to a destabilization of the entire basal process. Finally, using live imaging of human fetal cortex, we reveal that this organization is conserved in basal radial glial cells, a related progenitor cell population associated with human brain size expansion.
Collapse
Affiliation(s)
- Laure Coquand
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Guiliana Soraya Victoria
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Alice Tata
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Jacopo Amerigo Carpentieri
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Jean-Baptiste Brault
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Fabien Guimiot
- Unité de Fœtopathologie-Université de Paris et Institut national de la santé et de la recherche médicale UMR1141, Hôpital Robert Debré, Paris, France
| | - Vincent Fraisier
- UMR144-Cell and Tissue Imaging Facility, Centre national de la recherche scientifique-Institut Curie, Paris, France
| | - Alexandre D Baffet
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France.,Institut national de la santé et de la recherche médicale, Paris, France
| |
Collapse
|
37
|
To nucleate or not, that is the question in neurons. Neurosci Lett 2021; 751:135806. [PMID: 33705928 DOI: 10.1016/j.neulet.2021.135806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 01/19/2023]
Abstract
Microtubules are the structural center of neurons, stretching in overlapping arrays from the cell body to the far reaches of axons and dendrites. They also act as the tracks for long-range transport mediated by dynein and kinesin motors. Transcription and most translation take place in the cell body, and newly made cargoes must be shipped from this site of synthesis to sites of function in axons and dendrites. This constant demand for transport means that the microtubule array must be present without gaps throughout the cell over the lifetime of the animal. This task is made slightly easier in many animals by the relatively long, stable microtubules present in neurons. However, even stable neuronal microtubules have ends that are dynamic, and individual microtubules typically last on the order of hours, while the neurons around them last a lifetime. "Birth" of new microtubules is therefore required to maintain the neuronal microtubule array. In this review we discuss the nucleation of new microtubules in axons and dendrites, including how and where they are nucleated. In addition, it is becoming clear that neuronal microtubule nucleation is highly regulated, with unexpected machinery impinging on the decision of whether nucleation sites are active or inactive through space and time.
Collapse
|
38
|
Abstract
Neurons develop dendritic morphologies that bear cell type-specific features in dendritic field size and geometry, branch placement and density, and the types and distributions of synaptic contacts. Dendritic patterns influence the types and numbers of inputs a neuron receives, and the ways in which neural information is processed and transmitted in the circuitry. Even subtle alterations in dendritic structures can have profound consequences on neuronal function and are implicated in neurodevelopmental disorders. In this chapter, I review how growing dendrites acquire their exquisite patterns by drawing examples from diverse neuronal cell types in vertebrate and invertebrate model systems. Dendrite morphogenesis is shaped by intrinsic and extrinsic factors such as transcriptional regulators, guidance and adhesion molecules, neighboring cells and synaptic partners. I discuss molecular mechanisms that regulate dendrite morphogenesis with a focus on five aspects of dendrite patterning: (1) Dendritic cytoskeleton and cellular machineries that build the arbor; (2) Gene regulatory mechanisms; (3) Afferent cues that regulate dendritic arbor growth; (4) Space-filling strategies that optimize dendritic coverage; and (5) Molecular cues that specify dendrite wiring. Cell type-specific implementation of these patterning mechanisms produces the diversity of dendrite morphologies that wire the nervous system.
Collapse
|
39
|
Wilkes OR, Moore AW. Distinct Microtubule Organizing Center Mechanisms Combine to Generate Neuron Polarity and Arbor Complexity. Front Cell Neurosci 2020; 14:594199. [PMID: 33328893 PMCID: PMC7711044 DOI: 10.3389/fncel.2020.594199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/02/2020] [Indexed: 01/15/2023] Open
Abstract
Dendrite and axon arbor wiring patterns determine the connectivity and computational characteristics of a neuron. The identities of these dendrite and axon arbors are created by differential polarization of their microtubule arrays, and their complexity and pattern are generated by the extension and organization of these arrays. We describe how several molecularly distinct microtubule organizing center (MTOC) mechanisms function during neuron differentiation to generate and arrange dendrite and axon microtubules. The temporal and spatial organization of these MTOCs generates, patterns, and diversifies arbor wiring.
Collapse
Affiliation(s)
- Oliver R Wilkes
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, Japan.,Department of Cellular and Molecular Biology, Institute for Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Adrian W Moore
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, Japan
| |
Collapse
|
40
|
Cep215 is essential for morphological differentiation of astrocytes. Sci Rep 2020; 10:17000. [PMID: 33046744 PMCID: PMC7550586 DOI: 10.1038/s41598-020-72728-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/31/2020] [Indexed: 11/08/2022] Open
Abstract
Cep215 (also known as Cdk5rap2) is a centrosome protein which is involved in microtubule organization. Cep215 is also placed at specific subcellular locations and organizes microtubules outside the centrosome. Here, we report that Cep215 is involved in morphological differentiation of astrocytes. Cep215 was specifically localized at the glial processes as well as centrosomes in developing astrocytes. Morphological differentiation of astrocytes was suppressed in the Cep215-deleted P19 cells and in the Cep215-depleted embryonic hippocampal culture. We confirm that the microtubule organizing function of Cep215 is critical for the glial process formation. However, Cep215 is not involved in the regulation of cell proliferation nor cell specification. Based on the results, we propose that Cep215 organizes microtubules for glial process formation during astrocyte differentiation.
Collapse
|
41
|
Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197354. [PMID: 33027950 PMCID: PMC7582320 DOI: 10.3390/ijms21197354] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are particularly susceptible to microtubule (MT) defects and deregulation of the MT cytoskeleton is considered to be a common insult during the pathogenesis of neurodegenerative disorders. Evidence that dysfunctions in the MT system have a direct role in neurodegeneration comes from findings that several forms of neurodegenerative diseases are associated with changes in genes encoding tubulins, the structural units of MTs, MT-associated proteins (MAPs), or additional factors such as MT modifying enzymes which modulating tubulin post-translational modifications (PTMs) regulate MT functions and dynamics. Efforts to use MT-targeting therapeutic agents for the treatment of neurodegenerative diseases are underway. Many of these agents have provided several benefits when tested on both in vitro and in vivo neurodegenerative model systems. Currently, the most frequently addressed therapeutic interventions include drugs that modulate MT stability or that target tubulin PTMs, such as tubulin acetylation. The purpose of this review is to provide an update on the relevance of MT dysfunctions to the process of neurodegeneration and briefly discuss advances in the use of MT-targeting drugs for the treatment of neurodegenerative disorders.
Collapse
|
42
|
Scheefhals N, Catsburg LAE, Westerveld ML, Blanpied TA, Hoogenraad CC, MacGillavry HD. Shank Proteins Couple the Endocytic Zone to the Postsynaptic Density to Control Trafficking and Signaling of Metabotropic Glutamate Receptor 5. Cell Rep 2020; 29:258-269.e8. [PMID: 31597090 PMCID: PMC6815225 DOI: 10.1016/j.celrep.2019.08.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/25/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Activation of postsynaptic metabotropic glutamate receptors (mGluRs) modulates neuronal excitability and synaptic plasticity, while deregulation of mGluR signaling has been implicated in neurodevelopmental disorders. Overstimulation of mGluRs is restricted by the rapid endocytosis of receptors after activation. However, how membrane trafficking of mGluRs at synapses is controlled remains poorly defined. We find that in hippocampal neurons, the agonist-induced receptor internalization of synaptic mGluR5 is significantly reduced in Shank knockdown neurons. This is rescued by the re-expression of wild-type Shanks, but not by mutants unable to bind Homer1b/c, Dynamin2, or Cortactin. These effects are paralleled by a reduction in synapses associated with an endocytic zone. Moreover, a mutation in SHANK2 found in autism spectrum disorders (ASDs) similarly disrupts these processes. On the basis of these findings, we propose that synaptic Shank scaffolds anchor the endocytic machinery to govern the efficient trafficking of mGluR5 and to balance the surface expression of mGluRs to efficiently modulate neuronal functioning. Receptor activation triggers efficient internalization of mGluR5 in spines Shank proteins control mGluR5 trafficking and signaling Shanks link essential components of the endocytic zone to the postsynaptic density Mutation in SHANK2 found in ASD disrupt these processes
Collapse
Affiliation(s)
- Nicky Scheefhals
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Lisa A E Catsburg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Margriet L Westerveld
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Thomas A Blanpied
- Department of Physiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
43
|
Mukherjee A, Brooks PS, Bernard F, Guichet A, Conduit PT. Microtubules originate asymmetrically at the somatic golgi and are guided via Kinesin2 to maintain polarity within neurons. eLife 2020; 9:e58943. [PMID: 32657758 PMCID: PMC7394546 DOI: 10.7554/elife.58943] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Neurons contain polarised microtubule arrays essential for neuronal function. How microtubule nucleation and polarity are regulated within neurons remains unclear. We show that γ-tubulin localises asymmetrically to the somatic Golgi within Drosophila neurons. Microtubules originate from the Golgi with an initial growth preference towards the axon. Their growing plus ends also turn towards and into the axon, adding to the plus-end-out microtubule pool. Any plus ends that reach a dendrite, however, do not readily enter, maintaining minus-end-out polarity. Both turning towards the axon and exclusion from dendrites depend on Kinesin-2, a plus-end-associated motor that guides growing plus ends along adjacent microtubules. We propose that Kinesin-2 engages with a polarised microtubule network within the soma to guide growing microtubules towards the axon; while at dendrite entry sites engagement with microtubules of opposite polarity generates a backward stalling force that prevents entry into dendrites and thus maintains minus-end-out polarity within proximal dendrites.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Paul S Brooks
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Fred Bernard
- Université de Paris, CNRS, Institut Jacques MonodParisFrance
| | - Antoine Guichet
- Université de Paris, CNRS, Institut Jacques MonodParisFrance
| | - Paul T Conduit
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Université de Paris, CNRS, Institut Jacques MonodParisFrance
| |
Collapse
|
44
|
Prokop A. Cytoskeletal organization of axons in vertebrates and invertebrates. J Cell Biol 2020; 219:e201912081. [PMID: 32369543 PMCID: PMC7337489 DOI: 10.1083/jcb.201912081] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The maintenance of axons for the lifetime of an organism requires an axonal cytoskeleton that is robust but also flexible to adapt to mechanical challenges and to support plastic changes of axon morphology. Furthermore, cytoskeletal organization has to adapt to axons of dramatically different dimensions, and to their compartment-specific requirements in the axon initial segment, in the axon shaft, at synapses or in growth cones. To understand how the cytoskeleton caters to these different demands, this review summarizes five decades of electron microscopic studies. It focuses on the organization of microtubules and neurofilaments in axon shafts in both vertebrate and invertebrate neurons, as well as the axon initial segments of vertebrate motor- and interneurons. Findings from these ultrastructural studies are being interpreted here on the basis of our contemporary molecular understanding. They strongly suggest that axon architecture in animals as diverse as arthropods and vertebrates is dependent on loosely cross-linked bundles of microtubules running all along axons, with only minor roles played by neurofilaments.
Collapse
Affiliation(s)
- Andreas Prokop
- School of Biology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
45
|
Microtubule Organization in Striated Muscle Cells. Cells 2020; 9:cells9061395. [PMID: 32503326 PMCID: PMC7349303 DOI: 10.3390/cells9061395] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Distinctly organized microtubule networks contribute to the function of differentiated cell types such as neurons, epithelial cells, skeletal myotubes, and cardiomyocytes. In striated (i.e., skeletal and cardiac) muscle cells, the nuclear envelope acts as the dominant microtubule-organizing center (MTOC) and the function of the centrosome—the canonical MTOC of mammalian cells—is attenuated, a common feature of differentiated cell types. We summarize the mechanisms known to underlie MTOC formation at the nuclear envelope, discuss the significance of the nuclear envelope MTOC for muscle function and cell cycle progression, and outline potential mechanisms of centrosome attenuation.
Collapse
|
46
|
Lüders J. Nucleating microtubules in neurons: Challenges and solutions. Dev Neurobiol 2020; 81:273-283. [PMID: 32324945 DOI: 10.1002/dneu.22751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/08/2020] [Accepted: 04/20/2020] [Indexed: 11/08/2022]
Abstract
The highly polarized morphology of neurons is crucial for their function and involves formation of two distinct types of cellular extensions, the axonal and dendritic compartments. An important effector required for the morphogenesis and maintenance and thus the identity of axons and dendrites is the microtubule cytoskeleton. Microtubules in axons and dendrites are arranged with distinct polarities, to allow motor-dependent, compartment-specific sorting of cargo. Despite the importance of the microtubule cytoskeleton in neurons, the molecular mechanisms that generate the intricate compartment-specific microtubule configurations remain largely obscure. Work in other cell types has identified microtubule nucleation, the de novo formation of microtubules, and its spatio-temporal regulation as essential for the proper organization of the microtubule cytoskeleton. Whereas regulation of microtubule nucleation usually involves microtubule organizing centers such as the centrosome, neurons seem to rely largely on decentralized nucleation mechanisms. In this review, I will discuss recent advances in deciphering nucleation mechanisms in neurons, how they contribute to the arrangement of microtubules with specific polarities, and how this affects neuron morphogenesis. While this work has shed some light on these important processes, we are far from a comprehensive understanding. Thus, to provide a coherent model, my discussion will include both well-established mechanisms and mechanisms with more limited supporting data. Finally, I will also highlight important outstanding questions for future investigation.
Collapse
Affiliation(s)
- Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
47
|
Huang YA, Hsu CH, Chiu HC, Hsi PY, Ho CT, Lo WL, Hwang E. Actin waves transport RanGTP to the neurite tip to regulate non-centrosomal microtubules in neurons. J Cell Sci 2020; 133:jcs241992. [PMID: 32253322 DOI: 10.1242/jcs.241992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Microtubules (MTs) are the most abundant cytoskeleton in neurons, and control multiple facets of their development. While the MT-organizing center (MTOC) in mitotic cells is typically located at the centrosome, the MTOC in neurons switches to non-centrosomal sites. A handful of cellular components have been shown to promote non-centrosomal MT (ncMT) formation in neurons, yet the regulation mechanism remains unknown. Here, we demonstrate that the small GTPase Ran is a key regulator of ncMTs in neurons. Using an optogenetic tool that enables light-induced local production of RanGTP, we demonstrate that RanGTP promotes ncMT plus-end growth along the neurite. Additionally, we discovered that actin waves drive the anterograde transport of RanGTP. Pharmacological disruption of actin waves abolishes the enrichment of RanGTP and reduces growing ncMT plus-ends at the neurite tip. These observations identify a novel regulation mechanism for ncMTs and pinpoint an indirect connection between the actin and MT cytoskeletons in neurons.
Collapse
Affiliation(s)
- Yung-An Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 30068
| | - Chih-Hsuan Hsu
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 30068
| | - Ho-Chieh Chiu
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 30068
| | - Pei-Yu Hsi
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 30068
| | - Chris T Ho
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 30068
| | - Wei-Lun Lo
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 30068
| | - Eric Hwang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 30068
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 30068
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan 30068
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 30068
| |
Collapse
|
48
|
Willems J, de Jong APH, Scheefhals N, Mertens E, Catsburg LAE, Poorthuis RB, de Winter F, Verhaagen J, Meye FJ, MacGillavry HD. ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol 2020; 18:e3000665. [PMID: 32275651 PMCID: PMC7176289 DOI: 10.1371/journal.pbio.3000665] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/22/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
The correct subcellular distribution of proteins establishes the complex morphology and function of neurons. Fluorescence microscopy techniques are invaluable to investigate subcellular protein distribution, but they suffer from the limited ability to efficiently and reliably label endogenous proteins with fluorescent probes. We developed ORANGE: Open Resource for the Application of Neuronal Genome Editing, which mediates targeted genomic integration of epitope tags in rodent dissociated neuronal culture, in organotypic slices, and in vivo. ORANGE includes a knock-in library for in-depth investigation of endogenous protein distribution, viral vectors, and a detailed two-step cloning protocol to develop knock-ins for novel targets. Using ORANGE with (live-cell) superresolution microscopy, we revealed the dynamic nanoscale organization of endogenous neurotransmitter receptors and synaptic scaffolding proteins, as well as previously uncharacterized proteins. Finally, we developed a mechanism to create multiple knock-ins in neurons, mediating multiplex imaging of endogenous proteins. Thus, ORANGE enables quantification of expression, distribution, and dynamics for virtually any protein in neurons at nanoscale resolution. This study describes the development of a genome editing toolbox (ORANGE) for endogenous tagging of proteins in neurons. This open resource allows the investigation of protein localization and dynamics in neurons using live-cell and super-resolution imaging techniques.
Collapse
Affiliation(s)
- Jelmer Willems
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Arthur P. H. de Jong
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nicky Scheefhals
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Eline Mertens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Lisa A. E. Catsburg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Rogier B. Poorthuis
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Frank J. Meye
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Harold D. MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
49
|
Nye DMR, Albertson RM, Weiner AT, Hertzler JI, Shorey M, Goberdhan DCI, Wilson C, Janes KA, Rolls MM. The receptor tyrosine kinase Ror is required for dendrite regeneration in Drosophila neurons. PLoS Biol 2020; 18:e3000657. [PMID: 32163406 PMCID: PMC7067388 DOI: 10.1371/journal.pbio.3000657] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
While many regulators of axon regeneration have been identified, very little is known about mechanisms that allow dendrites to regenerate after injury. Using a Drosophila model of dendrite regeneration, we performed a candidate screen of receptor tyrosine kinases (RTKs) and found a requirement for RTK-like orphan receptor (Ror). We confirmed that Ror was required for regeneration in two different neuron types using RNA interference (RNAi) and mutants. Ror was not required for axon regeneration or normal dendrite development, suggesting a specific role in dendrite regeneration. Ror can act as a Wnt coreceptor with frizzleds (fzs) in other contexts, so we tested the involvement of Wnt signaling proteins in dendrite regeneration. We found that knockdown of fz, dishevelled (dsh), Axin, and gilgamesh (gish) also reduced dendrite regeneration. Moreover, Ror was required to position dsh and Axin in dendrites. We recently found that Wnt signaling proteins, including dsh and Axin, localize microtubule nucleation machinery in dendrites. We therefore hypothesized that Ror may act by regulating microtubule nucleation at baseline and during dendrite regeneration. Consistent with this hypothesis, localization of the core nucleation protein γTubulin was reduced in Ror RNAi neurons, and this effect was strongest during dendrite regeneration. In addition, dendrite regeneration was sensitive to partial reduction of γTubulin. We conclude that Ror promotes dendrite regeneration as part of a Wnt signaling pathway that regulates dendritic microtubule nucleation.
Collapse
Affiliation(s)
- Derek M. R. Nye
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- MSTP Program, Milton S. Hershey College of Medicine, Hershey, Pennsylvania, United States of America
| | - Richard M. Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- MSTP Program, Milton S. Hershey College of Medicine, Hershey, Pennsylvania, United States of America
| | - Alexis T. Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - J. Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | | | - Clive Wilson
- Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kevin A. Janes
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Melissa M. Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Weiner AT, Seebold DY, Torres-Gutierrez P, Folker C, Swope RD, Kothe GO, Stoltz JG, Zalenski MK, Kozlowski C, Barbera DJ, Patel MA, Thyagarajan P, Shorey M, Nye DMR, Keegan M, Behari K, Song S, Axelrod JD, Rolls MM. Endosomal Wnt signaling proteins control microtubule nucleation in dendrites. PLoS Biol 2020; 18:e3000647. [PMID: 32163403 PMCID: PMC7067398 DOI: 10.1371/journal.pbio.3000647] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
Dendrite microtubules are polarized with minus-end-out orientation in Drosophila neurons. Nucleation sites concentrate at dendrite branch points, but how they localize is not known. Using Drosophila, we found that canonical Wnt signaling proteins regulate localization of the core nucleation protein γTubulin (γTub). Reduction of frizzleds (fz), arrow (low-density lipoprotein receptor-related protein [LRP] 5/6), dishevelled (dsh), casein kinase Iγ, G proteins, and Axin reduced γTub-green fluorescent protein (GFP) at branch points, and two functional readouts of dendritic nucleation confirmed a role for Wnt signaling proteins. Both dsh and Axin localized to branch points, with dsh upstream of Axin. Moreover, tethering Axin to mitochondria was sufficient to recruit ectopic γTub-GFP and increase microtubule dynamics in dendrites. At dendrite branch points, Axin and dsh colocalized with early endosomal marker Rab5, and new microtubule growth initiated at puncta marked with fz, dsh, Axin, and Rab5. We propose that in dendrites, canonical Wnt signaling proteins are housed on early endosomes and recruit nucleation sites to branch points.
Collapse
Affiliation(s)
- Alexis T. Weiner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dylan Y. Seebold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pedro Torres-Gutierrez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Christin Folker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Rachel D. Swope
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gregory O. Kothe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jessica G. Stoltz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Madeleine K. Zalenski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Christopher Kozlowski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dylan J. Barbera
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mit A. Patel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pankajam Thyagarajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew Shorey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Derek M. R. Nye
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew Keegan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kana Behari
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Song Song
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Melissa M. Rolls
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|