1
|
Zhang L, Li Q, Wu M, Feng X, Dai W, Chen P, Chen D, Zheng Z, Lin X, Wei G. TRIM22 governs tumorigenesis and protects against endometrial cancer-associated cachexia by inhibiting inflammatory response and adipose thermogenic activity. Cancer Metab 2025; 13:17. [PMID: 40200303 PMCID: PMC11980105 DOI: 10.1186/s40170-025-00386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Endometrial cancer (EC) is one of the most common cancers in women, with a short overall survival and poor prognosis. Besides the biologically aggressive EC properties, Cancer-associated cachexia is the main factor. However, the detailed mechanism underlying EC-related cachexia and its harmful effects on EC progression and patient prognosis remains unclear. METHODS For clinical specimen and the vitro experiment, we detected TRIM22 expression level, EC patients' survival time, EC cell functional change, and adipose thermogenic changes to identify the function of TRIM22 in EC progression, EC-associated cachexia, and their molecular mechanisms. Then, for the vivo experiment, we exploited the xenografts in mice to identify the function of TRIM22 again, and to screen the drug therapeutic schedule. RESULTS Herein, we demonstrated that TRIM22 inhibited EC cell growth, invasion, and migration. Interleukin (IL)-6 mediated brown adipose tissue activation and white adipose tissue browning which induced EC-related cachexia. TRIM22 suppressed the EC cells' secretion of IL-6, and IL-6 mediated EC-related cachexia. Mechanistically, TRIM22 inhibited EC progression by suppressing the nucleotide-binding oligomerization domain 2(NOD2)/nuclear factor-kappaB (NF-κB) signaling pathway, with the purpose of impeding the production of IL-6. Moreover, we revealed that TRIM22 inhibited EC-associated cachexia by suppressing the IL-6/IL-6 receptor (IL-6R) signaling pathway. Therapeutically, we demonstrated that combination treatment with a TRIM22 inducer (progesterone) and a thermogenic inhibitor (IL-6R antibody) synergistically augmented the antitumor efficacy of carbotaxol (carboplatin and paclitaxel), in vivo. CONCLUSION Our data reveals that TRIM22-EC-IL-6-cachexia cross-communication has important clinical relevance and that the use of combined therapy holds great promise for enhancing the efficacy of anti-ECs. (Fig. graphical abstract).
Collapse
Affiliation(s)
- Liping Zhang
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Quanrong Li
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Meiting Wu
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Xiushan Feng
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Weichao Dai
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Peifang Chen
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Dezhao Chen
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Zhiqun Zheng
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Xiaoyan Lin
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
| | - Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
2
|
Zeng J, Sun Y, Fang Y, Wang X, Huang Q, Zhang P, Shao M, Wang P, Cheng J, Di M, Liu T, Qian Q. Unleashing the potential of a low CpG Passer transposon for superior CAR-T cell therapy. Front Immunol 2025; 16:1541653. [PMID: 39981247 PMCID: PMC11840574 DOI: 10.3389/fimmu.2025.1541653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Background To date, the non-viral vector Chimeric Antigen Receptor (CAR) T cell preparation platform, exemplified by transposons, has demonstrated significant potential in tumor immunotherapy and yielded positive results in multiple clinical trials. Nonetheless, non-methylated CpG sequences within plasmid DNA can elicit an inflammatory response via Toll-like receptor 9 (TLR9) during CAR-T cell preparation, adversely affecting transgene expression. Additionally, de novo DNA methylation programs promote T cell exhaustion, which poses a significant limitation for CAR-T cell therapy applications. Methods High-throughput liquid protein chip and CBA analyses were utilized to determine the expression levels of inflammatory factors. Flow cytometry and luciferase reporter assays were employed for mutation screening. BALB/c mice and M-NSG mice were used to evaluate the inflammatory response and efficacy of LCG CAR-T in vivo, with TIL grouping detected via immunohistochemistry. Results In this study, we modified the newly discovered Passer (JL) transposon to construct a low-CpG content transposon for CAR-T cell (LCG CAR-T cell) preparation. In vitro experiments demonstrated that LCG CAR-T cells prepared using this new transposon exhibited stronger cytotoxicity. In animal models, LCG CAR-T cells significantly inhibited tumor growth and increased the populations of CD4+CAR-T cells and tumor-infiltrating lymphocytes. Furthermore, LCG CAR-T cells modulated pro-inflammatory cytokine release, thereby reducing in vivo inflammatory responses and surpassing the effects observed with unmodified CAR-T cells. Conclusions Collectively, our results demonstrate the high safety and efficacy of non-viral, low CpG Passer transposon CAR-T cells, offering new avenues for improving CAR-T cell efficacy while minimizing in vivo inflammation.
Collapse
Affiliation(s)
- Jianyao Zeng
- School of Medicine, Shanghai University, Shanghai, China
| | - Yan Sun
- School of Medicine, Shanghai University, Shanghai, China
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Yuan Fang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Xiaodie Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Qian Huang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Pingjing Zhang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Meiqi Shao
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Pei Wang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Jingbo Cheng
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Meng Di
- School of Medicine, Shanghai University, Shanghai, China
| | - Tao Liu
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Qijun Qian
- School of Medicine, Shanghai University, Shanghai, China
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
- Shanghai Mengchao Cancer Hospital, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Yang K, Wu YT, He Y, Dai JX, Luo YL, Xie JH, Ding WJ. GLP-1 and IL-6 regulates obesity in the gut and brain. Life Sci 2025; 362:123339. [PMID: 39730038 DOI: 10.1016/j.lfs.2024.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Obesity is a chronic metabolic disease characterized by excessive nutrient intake leading to increased subcutaneous or visceral fat, resulting in pathological and physiological changes. The incidence rate of obesity, an important form of metabolic syndrome, is increasing worldwide. Excess appetite is a key pathogenesis of obesity, and the inflammatory response induced by obesity has received increasing attention. This review focuses on the role of appetite-regulating factor (Glucogan-like peptide 1) and inflammatory factor (Interleukin-6) in the gut and brain in individuals with obesity and draws insights from the current literature.
Collapse
Affiliation(s)
- Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ting Wu
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Xiu Dai
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yu-Lu Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Hui Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei-Jun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Zhang L, Xu F, Hou L. IL-6 and diabetic kidney disease. Front Immunol 2024; 15:1465625. [PMID: 39749325 PMCID: PMC11693507 DOI: 10.3389/fimmu.2024.1465625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes associated with high mortality and disability rates. Inflammation has emerged as a key pathological mechanism in DKD, prompting interest in novel therapeutic approaches targeting inflammatory pathways. Interleukin-6 (IL-6), a well-established inflammatory cytokine known for mediating various inflammatory responses, has attracted great attention in the DKD field. Although multiple in vivo and in vitro studies highlight the potential of targeting IL-6 in DKD treatment, its exact roles in the disease remains unclear. This review presents the roles of IL-6 in the pathogenesis of DKD, including immunoinflammation, metabolism, hemodynamics, and ferroptosis. In addition, we summarize the current status of IL-6 inhibitors in DKD-related clinical trials and discuss the potential of targeting IL-6 for treating DKD in the clinic.
Collapse
Affiliation(s)
- Lei Zhang
- Pharmacy Department, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Futian Xu
- Logistics Management Department, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Liyan Hou
- Pharmacy Department, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| |
Collapse
|
5
|
Bojarczuk A, Garbacz A, Żekanowski C, Borzemska B, Cięszczyk P, Maculewicz E. Systematic Review of IL-1, IL-4, IL-6, IL-10, IL-15, and IL-18 Gene Polymorphisms and Meta-Analysis of IL-6 Variant and Its Association with Overweight and Obesity Risk in Men. Int J Mol Sci 2024; 25:13501. [PMID: 39769263 PMCID: PMC11679641 DOI: 10.3390/ijms252413501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity is a complex health risk influenced by genetic, environmental, and lifestyle factors. This review systematically assessed the association between interleukin gene polymorphisms (rs16944, rs17561, rs1143623, rs1143633, rs1143634, rs1800587, rs2234677, and rs4848306), IL-4 (rs180275, rs1805010, IL-6 rs13306435, rs1800795, rs1800796, rs1800797, rs2228145, rs2228145, rs2229238, and rs4845623), IL-10 (rs1518110, rs1518111, rs1800871, rs1800872, rs1800896, rs1878672, rs2834167, rs3024491, rs3024496, rs3024498, and rs3024505), IL-15 (rs3136617, rs3136618, and rs2296135), and IL-18 (rs187238, rs1946518, rs2272127, rs2293225, and rs7559479) and the risk of overweight and obesity in adults, focusing on IL-6 rs1800795 through a meta-analysis. The focus on IL-6 in this review arises from its pleiotropic nature and unclear effect on obesity risk. The review included studies published from 1998 to 2023, sourced from Science Direct, EBSCOhost, Web of Science, and Google Scholar. Bias was assessed with the Cochrane Collaboration tool, and funnel plots were used for publication bias. Results were synthesized into pooled odds ratios (ORs) and confidence intervals (CIs). Thirty studies comprising approximately 29,998 participants were included. The selection criteria required that the articles include participants who were overweight or obese, and this condition needed to be linked to IL polymorphisms. In a meta-analysis, in the dominant model, the pooled OR was 1.26 (95% CI 1.08 to 1.47), indicating those with the GC/CC genotype for IL-6 rs1800795 are 1.26 times more likely to be overweight/obese than GG genotype carriers. For the recessive model, the OR was 1.25 (95% CI 1.04 to 1.51). The overdominant model showed no significant association (OR 1.08, 95% CI 0.94 to 1.25). Interleukin gene variation, particularly the IL-6 rs1800795 variant, is modestly associated with obesity risk. This suggests that other factors, such as the environment, also play a role in obesity. Thus, individuals with this particular IL-6 variant may have a slightly higher likelihood of being overweight or obese compared to those without it, but this is just one of many factors influencing obesity risk.
Collapse
Affiliation(s)
- Aleksandra Bojarczuk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (C.Ż.); (B.B.); (P.C.)
| | - Aleksandra Garbacz
- Faculty of Animal Genetics and Conservation, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Cezary Żekanowski
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (C.Ż.); (B.B.); (P.C.)
| | - Beata Borzemska
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (C.Ż.); (B.B.); (P.C.)
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Paweł Cięszczyk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (C.Ż.); (B.B.); (P.C.)
| | - Ewelina Maculewicz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland;
- Department of Laboratory Diagnostics, Military Institute of Aviation Medicine, 01-755 Warsaw, Poland
| |
Collapse
|
6
|
Maxwell ND, Smiley CE, Sadek AT, Loyo-Rosado FZ, Giles DC, Macht VA, Woodruff JL, Taylor DL, Glass VM, Wilson SP, Reagan LP, Fadel JR, Grillo CA. Leptin Activation of Dorsal Raphe Neurons Inhibits Feeding Behavior. Diabetes 2024; 73:1821-1831. [PMID: 39167681 PMCID: PMC11493758 DOI: 10.2337/db24-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Leptin is a homeostatic regulatory element that signals the presence of adipocyte energy stores, reduces food intake, and increases energy expenditure. Similarly, serotonin (5-HT), a signaling molecule found in both the central and peripheral nervous systems, also controls food intake. Using neuronal tract tracing, pharmacologic and optogenetic approaches, and in vivo microdialysis, combined with behavioral end points, we tested the hypothesis that leptin controls food intake not only by activating hypothalamic leptin receptors (LepRs) but also through activation of LepRs expressed by serotonergic raphe neurons that send projections to the arcuate (ARC). We showed that microinjection of leptin directly into the dorsal raphe nucleus (DRN) reduced food intake in rats. This effect was mediated by LepR-expressing neurons in the DRN, because selective optogenetic activation of these neurons at either their DRN cell bodies or their ARC terminals reduced food intake. Anatomically, we identified a unique population of serotonergic raphe neurons expressing LepRs that send projections to the ARC. Finally, by using in vivo microdialysis, we showed that leptin administration to the DRN increased 5-HT efflux into the ARC, and specific antagonism of the 5-HT2C receptors in the ARC diminished the leptin anorectic effect. Overall, this study identified a novel circuit for leptin-mediated control of food intake through a DRN-ARC pathway, identifying a new level of interaction between leptin and serotonin to control food intake. Characterization of this new pathway creates opportunities for understanding how the brain controls eating behavior and opens alternative routes for the treatment of eating disorders. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Nicholas David Maxwell
- School of Medicine, University of South Carolina, Columbia, SC
- School of Medicine, Duke University, Durham, NC
| | - Cora Erin Smiley
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| | | | | | | | | | | | | | | | | | - Lawrence Patrick Reagan
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| | | | - Claudia Alejandra Grillo
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| |
Collapse
|
7
|
Agca S, Kir S. The role of interleukin-6 family cytokines in cancer cachexia. FEBS J 2024; 291:4009-4023. [PMID: 38975832 DOI: 10.1111/febs.17224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Cachexia is a wasting syndrome that manifests in more than half of all cancer patients. Cancer-associated cachexia negatively influences the survival of patients and their quality of life. It is characterized by a rapid loss of adipose and skeletal muscle tissues, which is partly mediated by inflammatory cytokines. Here, we explored the crucial roles of interleukin-6 (IL-6) family cytokines, including IL-6, leukemia inhibitory factor, and oncostatin M, in the development of cancer cachexia. These cytokines have been shown to exacerbate cachexia by promoting the wasting of adipose and muscle tissues, activating mechanisms that enhance lipolysis and proteolysis. Overlapping effects of the IL-6 family cytokines depend on janus kinase/signal transducer and activator of transcription 3 signaling. We argue that the blockade of these cytokine pathways individually may fail due to redundancy and future therapeutic approaches should target common downstream elements to yield effective clinical outcomes.
Collapse
Affiliation(s)
- Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| |
Collapse
|
8
|
Chen L, Liu L. Adipose thermogenic mechanisms by cold, exercise and intermittent fasting: Similarities, disparities and the application in treatment. Clin Nutr 2024; 43:2043-2056. [PMID: 39088961 DOI: 10.1016/j.clnu.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Given its nonnegligible role in metabolic homeostasis, adipose tissue has been the target for treating metabolic disorders such as obesity, diabetes and cardiovascular diseases. Besides its lipolytic function, adipose thermogenesis has gained increased interest due to the irreplaceable contribution to dissipating energy to restore equilibrium, and its therapeutic effects have been testified in various animal models. In this review, we will brief about the canonical cold-stimulated adipose thermogenic mechanisms, elucidate on the exercise- and intermittent fasting-induced adipose thermogenic mechanisms, with a focus on the similarities and disparities among these signaling pathways, in an effort to uncover the overlapped and specific targets that may yield potent therapeutic efficacy synergistically in improving metabolic health.
Collapse
Affiliation(s)
- Linshan Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Ye H, Yang X, Feng B, Luo P, Torres Irizarry VC, Carrillo-Sáenz L, Yu M, Yang Y, Eappen BP, Munoz MD, Patel N, Schaul S, Ibrahimi L, Lai P, Qi X, Zhou Y, Kota M, Dixit D, Mun M, Liew CW, Jiang Y, Wang C, He Y, Xu P. 27-Hydroxycholesterol acts on estrogen receptor α expressed by POMC neurons in the arcuate nucleus to modulate feeding behavior. SCIENCE ADVANCES 2024; 10:eadi4746. [PMID: 38996023 PMCID: PMC11244552 DOI: 10.1126/sciadv.adi4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/05/2024] [Indexed: 07/14/2024]
Abstract
Oxysterols are metabolites of cholesterol that regulate cholesterol homeostasis. Among these, the most abundant oxysterol is 27-hydroxycholesterol (27HC), which can cross the blood-brain barrier. Because 27HC functions as an endogenous selective estrogen receptor modulator, we hypothesize that 27HC binds to the estrogen receptor α (ERα) in the brain to regulate energy balance. Supporting this view, we found that delivering 27HC to the brain reduced food intake and activated proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (POMCARH) in an ERα-dependent manner. In addition, we observed that inhibiting brain ERα, deleting ERα in POMC neurons, or chemogenetic inhibition of POMCARH neurons blocked the anorexigenic effects of 27HC. Mechanistically, we further revealed that 27HC stimulates POMCARH neurons by inhibiting the small conductance of the calcium-activated potassium (SK) channel. Together, our findings suggest that 27HC, through its interaction with ERα and modulation of the SK channel, inhibits food intake as a negative feedback mechanism against a surge in circulating cholesterol.
Collapse
Affiliation(s)
- Hui Ye
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiaohua Yang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pei Luo
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Valeria C. Torres Irizarry
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Meng Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin P. Eappen
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Marcos David Munoz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nirali Patel
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinyue Qi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuliang Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Maya Kota
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Madeline Mun
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chong Wee Liew
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Mishra D, Richard JE, Maric I, Shevchouk OT, Börchers S, Eerola K, Krieger JP, Skibicka KP. Lateral parabrachial nucleus astrocytes control food intake. Front Endocrinol (Lausanne) 2024; 15:1389589. [PMID: 38887265 PMCID: PMC11180714 DOI: 10.3389/fendo.2024.1389589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/03/2024] [Indexed: 06/20/2024] Open
Abstract
Food intake behavior is under the tight control of the central nervous system. Most studies to date focus on the contribution of neurons to this behavior. However, although previously overlooked, astrocytes have recently been implicated to play a key role in feeding control. Most of the recent literature has focused on astrocytic contribution in the hypothalamus or the dorsal vagal complex. The contribution of astrocytes located in the lateral parabrachial nucleus (lPBN) to feeding behavior control remains poorly understood. Thus, here, we first investigated whether activation of lPBN astrocytes affects feeding behavior in male and female rats using chemogenetic activation. Astrocytic activation in the lPBN led to profound anorexia in both sexes, under both ad-libitum feeding schedule and after a fasting challenge. Astrocytes have a key contribution to glutamate homeostasis and can themselves release glutamate. Moreover, lPBN glutamate signaling is a key contributor to potent anorexia, which can be induced by lPBN activation. Thus, here, we determined whether glutamate signaling is necessary for lPBN astrocyte activation-induced anorexia, and found that pharmacological N-methyl D-aspartate (NMDA) receptor blockade attenuated the food intake reduction resulting from lPBN astrocyte activation. Since astrocytes have been shown to contribute to feeding control by modulating the feeding effect of peripheral feeding signals, we further investigated whether lPBN astrocyte activation is capable of modulating the anorexic effect of the gut/brain hormone, glucagon like peptide -1, as well as the orexigenic effect of the stomach hormone - ghrelin, and found that the feeding effect of both signals is modulated by lPBN astrocytic activation. Lastly, we found that lPBN astrocyte activation-induced anorexia is affected by a diet-induced obesity challenge, in a sex-divergent manner. Collectively, current findings uncover a novel role for lPBN astrocytes in feeding behavior control.
Collapse
Affiliation(s)
- Devesh Mishra
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jennifer E. Richard
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Ivana Maric
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Olesya T. Shevchouk
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Kim Eerola
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jean-Philippe Krieger
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich - VetSuisse, Zurich, Switzerland
| | - Karolina P. Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
11
|
Varra FN, Varras M, Varra VK, Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep 2024; 29:95. [PMID: 38606791 PMCID: PMC11025031 DOI: 10.3892/mmr.2024.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co‑morbidities, including type‑2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non‑alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro‑inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro‑inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low‑grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low‑grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti‑inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein‑1, and/or the blockade of pro‑inflammatory mediators, such as IL‑1β, TNF‑α, visfatin, and plasminogen activator inhibitor‑1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity‑associated metabolic dysfunction.
Collapse
Affiliation(s)
- Fani-Niki Varra
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
- Medical School, Dimocritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michail Varras
- Fourth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Hospital, Athens 11521, Greece
| | | | | |
Collapse
|
12
|
Wang X, Gan M, Wang Y, Wang S, Lei Y, Wang K, Zhang X, Chen L, Zhao Y, Niu L, Zhang S, Zhu L, Shen L. Comprehensive review on lipid metabolism and RNA methylation: Biological mechanisms, perspectives and challenges. Int J Biol Macromol 2024; 270:132057. [PMID: 38710243 DOI: 10.1016/j.ijbiomac.2024.132057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Adipose tissue plays a crucial role in maintaining energy balance, regulating hormones, and promoting metabolic health. To address disorders related to obesity and develop effective therapies, it is essential to have a deep understanding of adipose tissue biology. In recent years, RNA methylation has emerged as a significant epigenetic modification involved in various cellular functions and metabolic pathways. Particularly in the realm of adipogenesis and lipid metabolism, extensive research is ongoing to uncover the mechanisms and functional importance of RNA methylation. Increasing evidence suggests that RNA methylation plays a regulatory role in adipocyte development, metabolism, and lipid utilization across different organs. This comprehensive review aims to provide an overview of common RNA methylation modifications, their occurrences, and regulatory mechanisms, focusing specifically on their intricate connections to fat metabolism. Additionally, we discuss the research methodologies used in studying RNA methylation and highlight relevant databases that can aid researchers in this rapidly advancing field.
Collapse
Affiliation(s)
- Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Saihao Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
13
|
Yadav MK, Ishida M, Gogoleva N, Liao CW, Salim FN, Kanai M, Kuno A, Hayashi T, Shahri ZJ, Kulathunga K, Samir O, Lyu W, Olivia O, Mbanefo EC, Takahashi S, Hamada M. MAFB in macrophages regulates cold-induced neuronal density in brown adipose tissue. Cell Rep 2024; 43:113978. [PMID: 38522069 DOI: 10.1016/j.celrep.2024.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Transcription factor MAFB regulates various homeostatic functions of macrophages. This study explores the role of MAFB in brown adipose tissue (BAT) thermogenesis using macrophage-specific Mafb-deficient (Mafbf/f::LysM-Cre) mice. We find that Mafb deficiency in macrophages reduces thermogenesis, energy expenditure, and sympathetic neuron (SN) density in BAT under cold conditions. This phenotype features a proinflammatory environment that is characterized by macrophage/granulocyte accumulation, increases in interleukin-6 (IL-6) production, and IL-6 trans-signaling, which lead to decreases in nerve growth factor (NGF) expression and reduction in SN density in BAT. We confirm MAFB regulation of IL-6 expression using luciferase readout driven by IL-6 promoter in RAW-264.7 macrophage cell lines. Immunohistochemistry shows clustered organization of NGF-producing cells in BAT, which are primarily TRPV1+ vascular smooth muscle cells, as additionally shown using single-cell RNA sequencing and RT-qPCR of the stromal vascular fraction. Treating Mafbf/f::LysM-Cre mice with anti-IL-6 receptor antibody rescues SN density, body temperature, and energy expenditure.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan; National Institutes of Health, Bethesda, MD 20892, USA
| | - Megumi Ishida
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Natalia Gogoleva
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Ching-Wei Liao
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Filiani Natalia Salim
- Centre for Medical Science and Technology and Healthcare Equity, Parahyangan Catholic University, Bandung 40141, Indonesia
| | - Maho Kanai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takuto Hayashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Zeynab Javanfekr Shahri
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kaushalya Kulathunga
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Omar Samir
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Wenxin Lyu
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Olivia Olivia
- Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
14
|
Radványi Á, Röszer T. Interleukin-6: An Under-Appreciated Inducer of Thermogenic Adipocyte Differentiation. Int J Mol Sci 2024; 25:2810. [PMID: 38474057 DOI: 10.3390/ijms25052810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Adipose tissue inflammation is a key factor leading to obesity-associated immune disorders, such as insulin resistance, beta cell loss in the pancreatic islets, meta-inflammation, and autoimmunity. Inhibiting adipose tissue inflammation is considered a straightforward approach to abrogate these diseases. However, recent findings show that certain pro-inflammatory cytokines are essential for the proper differentiation and functioning of adipocytes. Lipolysis is stimulated, and the thermogenic competence of adipocytes is unlocked by interleukin-6 (IL-6), a cytokine that was initially recognized as a key trigger of adipose tissue inflammation. Coherently, signal transducer and activator of transcription 3 (STAT3), which is a signal transducer for IL-6, is necessary for thermogenic adipocyte development. Given the impact of thermogenic adipocytes in increasing energy expenditure and reducing body adiposity, functions of IL-6 in the adipose tissue have gained attention recently. In this review, we show that IL-6 signaling may protect from excess fat accumulation by stimulating thermogenesis in adipocytes.
Collapse
Affiliation(s)
- Ádám Radványi
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Röszer
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
15
|
Guo J, Miao G, Zhang W, Shi H, Lai P, Xu Y, Zhang L, Chen G, Han Y, Zhao Y, Liu G, Zhang L, Wang Y, Huang W, Xian X. Depletion of ApoA5 aggravates spontaneous and diet-induced nonalcoholic fatty liver disease by reducing hepatic NR1D1 in hamsters. Theranostics 2024; 14:2036-2057. [PMID: 38505614 PMCID: PMC10945338 DOI: 10.7150/thno.91084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
Background: ApoA5 mainly synthesized and secreted by liver is a key modulator of lipoprotein lipase (LPL) activity and triglyceride-rich lipoproteins (TRLs). Although the role of ApoA5 in extrahepatic triglyceride (TG) metabolism in circulation has been well documented, the relationship between ApoA5 and nonalcoholic fatty liver disease (NAFLD) remains incompletely understood and the underlying molecular mechanism still needs to be elucidated. Methods: We used CRISPR/Cas9 gene editing to delete Apoa5 gene from Syrian golden hamster, a small rodent model replicating human metabolic features. Then, the ApoA5-deficient (ApoA5-/-) hamsters were used to investigate NAFLD with or without challenging a high fat diet (HFD). Results: ApoA5-/- hamsters exhibited hypertriglyceridemia (HTG) with markedly elevated TG levels at 2300 mg/dL and hepatic steatosis on a regular chow diet, accompanied with an increase in the expression levels of genes regulating lipolysis and small adipocytes in the adipose tissue. An HFD challenge predisposed ApoA5-/- hamsters to severe HTG (sHTG) and nonalcoholic steatohepatitis (NASH). Mechanistic studies in vitro and in vivo revealed that targeting ApoA5 disrupted NR1D1 mRNA stability in the HepG2 cells and the liver to reduce both mRNA and protein levels of NR1D1, respectively. Overexpression of human NR1D1 by adeno-associated virus 8 (AAV8) in the livers of ApoA5-/- hamsters significantly ameliorated fatty liver without affecting plasma lipid levels. Moreover, restoration of hepatic ApoA5 or activation of UCP1 in brown adipose tissue (BAT) by cold exposure or CL316243 administration could significantly correct sHTG and hepatic steatosis in ApoA5-/- hamsters. Conclusions: Our data demonstrate that HTG caused by ApoA5 deficiency in hamsters is sufficient to elicit hepatic steatosis and HFD aggravates NAFLD by reducing hepatic NR1D1 mRNA and protein levels, which provides a mechanistic link between ApoA5 and NAFLD and suggests the new insights into the potential therapeutic approaches for the treatment of HTG and the related disorders due to ApoA5 deficiency in the clinical trials in future.
Collapse
Affiliation(s)
- Jiabao Guo
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guolin Miao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenxi Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Haozhe Shi
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yitong Xu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lianxin Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Gonglie Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yufei Han
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ying Zhao
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Geroge Liu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ling Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Liu J, Zaidi A, Pike CJ. Microglia/macrophage-specific deletion of TLR-4 protects against neural effects of diet-induced obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580189. [PMID: 38405877 PMCID: PMC10888944 DOI: 10.1101/2024.02.13.580189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Obesity is associated with numerous adverse neural effects, including reduced neurogenesis, cognitive impairment, and increased risks for developing Alzheimer's disease (AD) and vascular dementia. Obesity is also characterized by chronic, low-grade inflammation that is implicated in mediating negative consequences body-wide. Toll-like receptor 4 (TLR4) signaling from peripheral macrophages is implicated as an essential regulator of the systemic inflammatory effects of obesity. In the brain, obesity drives chronic neuroinflammation that involves microglial activation, however the contributions of microglia-derived TLR4 signaling to the consequences of obesity are poorly understood. To investigate this issue, we first generated mice that carry an inducible, microglia/macrophage-specific deletion of TLR4 that yields long-term TLR4 knockout only in brain indicating microglial specificity. Next, we analyzed the effects of microglial TLR4 deletion on systemic and neural effects of a 16-week of exposure to control versus obesogenic high-fat diets. In male mice, TLR4 deletion generally yielded limited effects on diet-induced systemic metabolic dysfunction but significantly reduced neuroinflammation and impairments in neurogenesis and cognitive performance. In female mice maintained on obesogenic diet, TLR4 deletion partially protected against weight gain, adiposity, and metabolic impairments. Compared to males, females showed milder diet-induced neural consequences, against which TLR4 deletion was protective. Collectively, these findings demonstrate a central role of microglial TLR4 signaling in mediating the neural effects of obesogenic diet and highlight sexual dimorphic responses to both diet and TLR4.
Collapse
|
17
|
Escarrer-Garau G, Martín-Medina A, Truyols-Vives J, Gómez-Bellvert C, Elowsson L, Westergren-Thorsson G, Molina-Molina M, Mercader-Barceló J, Sala-Llinàs E. In Vivo and In Vitro Pro-Fibrotic Response of Lung-Resident Mesenchymal Stem Cells from Patients with Idiopathic Pulmonary Fibrosis. Cells 2024; 13:160. [PMID: 38247851 PMCID: PMC10814068 DOI: 10.3390/cells13020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Lung-resident mesenchymal stem cells (LR-MSC) are thought to participate in idiopathic pulmonary fibrosis (IPF) by differentiating into myofibroblasts. On the other hand, LR-MSC in IPF patients present senescence-related features. It is unclear how they respond to a profibrotic environment. Here, we investigated the profibrotic response of LR-MSC isolated from IPF and control (CON) patients. LR-MSC were inoculated in mice 48 h after bleomycin (BLM) instillation to analyze their contribution to lung damage. In vitro, LR-MSC were exposed to TGFβ. Mice inoculated with IPF LR-MSC exhibited worse maintenance of their body weight. The instillation of either IPF or CON LR-MSC sustained BLM-induced histological lung damage, bronchoalveolar lavage fluid cell count, and the expression of the myofibroblast marker, extracellular matrix (ECM) proteins, and proinflammatory cytokines in the lungs. In vitro, IPF LR-MSC displayed higher basal protein levels of aSMA and fibronectin than CON LR-MSC. However, the TGFβ response in the expression of TGFβ, aSMA, and ECM genes was attenuated in IPF LR-MSC. In conclusion, IPF LR-MSC have acquired myofibroblastic features, but their capacity to further respond to profibrotic stimuli seems to be attenuated. In an advanced stage of the disease, LR-MSC may participate in disease progression owing to their limited ability to repair epithelial damage.
Collapse
Affiliation(s)
| | - Aina Martín-Medina
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Joan Truyols-Vives
- MolONE Research Group, University of the Balearic Islands (UIB), 07122 Palma, Spain
| | | | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | | | - Maria Molina-Molina
- ILD Unit, Respiratory Department, University Hospital of Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Josep Mercader-Barceló
- MolONE Research Group, University of the Balearic Islands (UIB), 07122 Palma, Spain
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Ernest Sala-Llinàs
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
18
|
Assar S, Dastbaz M, Amini K, Roghani SA, Lotfi R, Taghadosi M, Kafi H, Abdan Z, Allahyari H, Rostampour R, Shahrokhvand SZ. Assessing the gene expression of the adenosine 5'-monophosphate-activated protein kinase (AMPK) and its relation with the IL-6 and IL-10 plasma levels in COVID-19 patients. Mol Biol Rep 2023; 50:9925-9933. [PMID: 37874507 DOI: 10.1007/s11033-023-08835-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Metabolic dysregulation and excessive inflammation are implicated in the pathogenesis of the highly infectious disease of coronavirus disease 2019 (COVID-19), which is caused by a newly emerging coronavirus (i.e., severe acute respiratory syndrome-coronavirus 2; SARS-CoV-2). The adenosine 5'-monophosphate-activated protein kinase (AMPK), an energy sensor regulating the metabolic pathways in diverse cells, exerts a regulatory role in the immune system. This study aims to examine the mRNA expression level of AMPK and the plasma levels of interleukin-6 (IL-6) and IL-10 cytokines in patients with different grades of COVID-19. METHODS Peripheral blood was collected from 60 patients with COVID-19 (Moderate, severe, and critical). The plasma levels of IL-6 and IL-10 were quantified by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression level of AMPK was determined using real-time PCR. RESULTS The results showed that the plasma levels of IL-6 increased significantly in critical and severe patients compared to moderate cases of COVID-19 (P < 0.001). Moreover, IL-10 plasma concentrations were significantly higher in critical and severe cases than in moderate cases of COVID-19 (P < 0.01 and P < 0.05, respectively). Also, the gene expression of AMPK was meaningfully enhanced in critical patients relative to moderate and severe cases of COVID-19, in order (P < 0.001 and P < 0.01, respectively). There was a positive association between AMPK gene expression and plasma levels of IL-6 and IL-10 (P = 0.006, r = 0.348, P = 0.028, r = 0.283, respectively). CONCLUSION Increasing AMPK gene expression is likely a necessary effort of the immune system to inhibit inflammation in critical COVID-19. However, this effort seems to be inadequate, probably due to factors that induce inflammation, like erythrocyte sedimentation rate (ESR) and IL-6.
Collapse
Affiliation(s)
- Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Dastbaz
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Komail Amini
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Askar Roghani
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, 6617713446, Iran.
| | - Mahdi Taghadosi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamidreza Kafi
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Zahra Abdan
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Allahyari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Rostampour
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyedeh Zahra Shahrokhvand
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
Grembecka B, Majkutewicz I, Harackiewicz O, Wrona D. Deep-Brain Subthalamic Nucleus Stimulation Enhances Food-Related Motivation by Influencing Neuroinflammation and Anxiety Levels in a Rat Model of Early-Stage Parkinson's Disease. Int J Mol Sci 2023; 24:16916. [PMID: 38069238 PMCID: PMC10706602 DOI: 10.3390/ijms242316916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Deep-brain subthalamic nucleus stimulation (DBS-STN) has become a well-established therapeutic option for advanced Parkinson's disease (PD). While the motor benefits of DBS-STN are widely acknowledged, the neuropsychiatric effects are still being investigated. Beyond its immediate effects on neuronal circuits, emerging research suggests that DBS-STN might also modulate the peripheral inflammation and neuroinflammation. In this work, we assessed the effects of DBS-STN on food-related motivation, food intake pattern, and the level of anxiety and compared them with markers of cellular and immune activation in nigrostriatal and mesolimbic areas in rats with the 6-OHDA model of early PD. To evaluate the potential mechanism of observed effects, we also measured corticosterone concentration in plasma and leukocyte distribution in peripheral blood. We found that DBS-STN applied during neurodegeneration has beneficial effects on food intake pattern and motivation and reduces anxiety. These behavioral effects occur with reduced percentages of IL-6-labeled cells in the ventral tegmental area and substantia nigra pars compacta in the stimulated brain hemisphere. At the same brain structures, the cFos cell activations were confirmed. Simultaneously, the corticosterone plasma concentration was elevated, and the peripheral blood lymphocytes were reduced after DBS-STN. We believe that comprehending the relationship between the effects of DBS-STN on inflammation and its therapeutic results is essential for optimizing DBS therapy in PD.
Collapse
Affiliation(s)
- Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (I.M.); (O.H.); (D.W.)
| | | | | | | |
Collapse
|
20
|
Laiglesia LM, Escoté X, Sáinz N, Felix-Soriano E, Santamaría E, Collantes M, Fernández-Galilea M, Colón-Mesa I, Martínez-Fernández L, Quesada-López T, Quesada-Vázquez S, Rodríguez-Ortigosa C, Arbones-Mainar JM, Valverde ÁM, Martínez JA, Dalli J, Herrero L, Lorente-Cebrián S, Villarroya F, Moreno-Aliaga MJ. Maresin 1 activates brown adipose tissue and promotes browning of white adipose tissue in mice. Mol Metab 2023; 74:101749. [PMID: 37271337 PMCID: PMC10331312 DOI: 10.1016/j.molmet.2023.101749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE Maresin 1 (MaR1) is a docosahexaenoic acid-derived proresolving lipid mediator with insulin-sensitizing and anti-steatosis properties. Here, we aim to unravel MaR1 actions on brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning. METHODS MaR1 actions were tested in cultured murine brown adipocytes and in human mesenchymal stem cells (hMSC)-derived adipocytes. In vivo effects of MaR1 were tested in diet-induced obese (DIO) mice and lean WT and Il6 knockout (Il6-/-) mice. RESULTS In cultured differentiated murine brown adipocytes, MaR1 reduces the expression of inflammatory genes, while stimulates glucose uptake, fatty acid utilization and oxygen consumption rate, along with the upregulation of mitochondrial mass and genes involved in mitochondrial biogenesis and function and the thermogenic program. In Leucine Rich Repeat Containing G Protein-Coupled Receptor 6 (LGR6)-depleted brown adipocytes using siRNA, the stimulatory effect of MaR1 on thermogenic genes was abrogated. In DIO mice, MaR1 promotes BAT remodeling, characterized by higher expression of genes encoding for master regulators of mitochondrial biogenesis and function and iBAT thermogenic activation, together with increased M2 macrophage markers. In addition, MaR1-treated DIO mice exhibit a better response to cold-induced BAT activation. Moreover, MaR1 induces a beige adipocyte signature in inguinal WAT of DIO mice and in hMSC-derived adipocytes. MaR1 potentiates Il6 expression in brown adipocytes and BAT of cold exposed lean WT mice. Interestingly, the thermogenic properties of MaR1 were abrogated in Il6-/- mice. CONCLUSIONS These data reveal MaR1 as a novel agent that promotes BAT activation and WAT browning by regulating thermogenic program in adipocytes and M2 polarization of macrophages. Moreover, our data suggest that LGR6 receptor is mediating MaR1 actions on brown adipocytes, and that IL-6 is required for the thermogenic effects of MaR1.
Collapse
Affiliation(s)
- Laura M Laiglesia
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain
| | - Xavier Escoté
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain; Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204 Spain
| | - Neira Sáinz
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain
| | - Elisa Felix-Soriano
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain
| | - Eva Santamaría
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Division of Hepatology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - María Collantes
- Department of Nuclear Medicine/ Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Marta Fernández-Galilea
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Colón-Mesa
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain
| | - Leyre Martínez-Fernández
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain
| | - Tania Quesada-López
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | - José M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Instituto de Investigación Sanitaria Aragón, Instituto Aragonés de Ciencias de la Salud, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ángela M Valverde
- Alberto Sols Biomedical Research Institute (IIBm) (CSIC/UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - J Alfredo Martínez
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Center for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Silvia Lorente-Cebrián
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Current address: Department of Pharmacology, Physiology, Legal and Forensic Medicine. Faculty of Health and Sport Science, University of Zaragoza, Zaragoza, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María J Moreno-Aliaga
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
21
|
de Baat A, Trinh B, Ellingsgaard H, Donath MY. Physiological role of cytokines in the regulation of mammalian metabolism. Trends Immunol 2023:S1471-4906(23)00110-2. [PMID: 37423882 DOI: 10.1016/j.it.2023.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
The innate cytokine system is involved in the response to excessive food intake. In this review, we highlight recent advances in our understanding of the physiological role of three prominent cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF), in mammalian metabolic regulation. This recent research highlights the pleiotropic and context-dependent functions in the immune-metabolic interplay. IL-1β is activated in response to overloaded mitochondrial metabolism, stimulates insulin secretion, and allocates energy to immune cells. IL-6 is released by contracting skeletal muscle and adipose tissue and directs energy from storing tissues to consuming tissues. TNF induces insulin resistance and prevents ketogenesis. Additionally, the therapeutic potential of modulating the activity of each cytokine is discussed.
Collapse
Affiliation(s)
- Axel de Baat
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Beckey Trinh
- The Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Helga Ellingsgaard
- The Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Mussetto V, Moen A, Trofimova L, Sandkühler J, Hogri R. Differential activation of spinal and parabrachial glial cells in a neuropathic pain model. Front Cell Neurosci 2023; 17:1163171. [PMID: 37082205 PMCID: PMC10110840 DOI: 10.3389/fncel.2023.1163171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
The clinical burden faced by chronic pain patients is compounded by affective comorbidities, such as depression and anxiety disorders. Emerging evidence suggests that reactive glial cells in the spinal cord dorsal horn play a key role in the chronification of pain, while supraspinal glia are important for psychological aspects of chronic pain. The lateral parabrachial nucleus (LPBN) in the brainstem is a key node in the ascending pain system, and is crucial for the emotional dimension of pain. Yet, whether astrocytes and microglia in the LPBN are activated during chronic pain is unknown. Here, we evaluated the occurrence of glial activation in the LPBN of male Sprague-Dawley rats 1, 4, and 7 weeks after inducing a chronic constriction injury (CCI) of the sciatic nerve, a prevalent neuropathic pain model. CCI animals developed mechanical and thermal hypersensitivity that persisted for at least 4 weeks, and was mostly reversed after 7 weeks. Using immunohistochemical staining and confocal imaging, we found that CCI caused a strong increase in the expression of the astrocytic marker GFAP and the microglial marker Iba1 in the ipsilateral spinal dorsal horn, with peak expression observed 1 week post-injury. Moreover, morphology analysis revealed changes in microglial phenotype, indicative of microglia activation. In contrast, CCI did not induce any detectable changes in either astrocytes or microglia in the LPBN, at any time point. Thus, our results indicate that while neuropathic pain induces a robust glial reaction in the spinal dorsal horn, it fails to activate glial cells in the LPBN.
Collapse
Affiliation(s)
| | | | | | | | - Roni Hogri
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Liu J, Zeng D, Luo J, Wang H, Xiong J, Chen X, Chen T, Sun J, Xi Q, Zhang Y. LPS-Induced Inhibition of miR-143 Expression in Brown Adipocytes Promotes Thermogenesis and Fever. Int J Mol Sci 2022; 23:13805. [PMID: 36430282 PMCID: PMC9696956 DOI: 10.3390/ijms232213805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fever is an important part of inflammatory response to infection. Although brown adipose tissue (BAT) thermogenesis is known to be potently influenced by systemic inflammation, the role of BAT during infection-induced fever remains largely unknown. Here, we injected mice with a low dose of LPS and found that low-dose LPS can directly induce thermogenesis of brown adipocytes. It is known that miR-143 is highly expressed in the BAT, and miR-143 knockout mice exhibited stronger thermogenesis under cold exposure. Interestingly, miR-143 was negatively correlated with an LPS-induced increase of TNFα and IL-6 mRNA levels, and the IL-6 pathway may mediate the inhibition of miR-143 expression. Moreover, miR-143 is down-regulated by LPS, and overexpression of miR-143 in brown adipocytes by lentivirus could rescue the enhancement of UCP1 protein expression caused by LPS, hinting miR-143 may be an important regulator of the thermogenesis in brown adipocytes. More importantly, the knockout of miR-143 further enhanced the LPS-induced increase of body temperature and BAT thermogenesis, and this result was further confirmed by in vitro experiments by using primary brown adipocytes. Mechanistically, adenylate cyclase 9 (AC9) is a new target gene of miR-143 and LPS increases BAT thermogenesis by a way of inhibiting miR-143 expression, a negative regulator for AC9. Our study considerably improves our collective understanding of the important function of miR-143 in inflammatory BAT thermogenesis.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewei Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
“Ferrocrinology”—Iron Is an Important Factor Involved in Gluco- and Lipocrinology. Nutrients 2022; 14:nu14214693. [DOI: 10.3390/nu14214693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
“Ferrocrinology” is the term used to describe the study of iron effects on the functioning of adipose tissue, which together with muscle tissue makes the largest endocrine organ in the human body. By impairing exercise capacity, reducing AMP-activated kinase activity, and enhancing insulin resistance, iron deficiency can lead to the development of obesity and type 2 diabetes mellitus. Due to impaired browning of white adipose tissue and reduced mitochondrial iron content in adipocytes, iron deficiency (ID) can cause dysfunction of brown adipose tissue. By reducing ketogenesis, aconitase activity, and total mitochondrial capacity, ID impairs muscle performance. Another important aspect is the effect of ID on the impairment of thermogenesis due to reduced binding of thyroid hormones to their nuclear receptors, with subsequently impaired utilization of norepinephrine in tissues, and impaired synthesis and distribution of cortisol, which all make the body’s reactivity to stress in ID more pronounced. Iron deficiency can lead to the development of the most common endocrinopathy, autoimmune thyroid disease. In this paper, we have discussed the role of iron in the cross-talk between glucocrinology, lipocrinology and myocrinology, with thyroid hormones acting as an active bystander.
Collapse
|
25
|
Eerola K, Longo F, Reinbothe TM, Richard JE, Shevchouk OT, López-Ferreras L, Mishra D, Asker M, Tolö J, Miranda C, Musovic S, Olofsson CS, Rorsman P, Skibicka KP. Hindbrain insulin controls feeding behavior. Mol Metab 2022; 66:101614. [PMID: 36244663 PMCID: PMC9637798 DOI: 10.1016/j.molmet.2022.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice. METHODS To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used. RESULTS Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and metabolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis. CONCLUSIONS Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis.
Collapse
Affiliation(s)
- Kim Eerola
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden,Unit of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Francesco Longo
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | | | | | | | | | - Devesh Mishra
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Johan Tolö
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Caroline Miranda
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Saliha Musovic
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | | | - Patrik Rorsman
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Karolina P. Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden,Department of Nutritional Sciences and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA,Corresponding author. Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30, Gothenburg, Sweden. Fax: +46 31 786 3512.
| |
Collapse
|
26
|
Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct Target Ther 2022; 7:324. [PMID: 36114195 PMCID: PMC9481605 DOI: 10.1038/s41392-022-01178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractThe incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.
Collapse
|
27
|
Roles of Interleukin-6-mediated immunometabolic reprogramming in COVID-19 and other viral infection-associated diseases. Int Immunopharmacol 2022; 110:109005. [PMID: 35780641 PMCID: PMC9236983 DOI: 10.1016/j.intimp.2022.109005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/08/2023]
Abstract
Interleukin-6 (IL-6) is a highly pleiotropic glycoprotein factor that can modulate innate and adaptive immunity as well as various aspects of metabolism, including glycolysis, fatty acid oxidation and oxidative phosphorylation. Recently, the expression and release of IL-6 is shown to be significantly increased in numerous diseases related to virus infection, and this increase is positively correlated with the disease severity. Immunity and metabolism are two highly integrated and interdependent systems, the balance between them plays a pivotal role in maintaining body homeostasis. IL-6-elicited inflammatory response is found to be closely associated with metabolic disorder in patients with viral infection. This brief review summarizes the regulatory role of IL-6 in immunometabolic reprogramming among seven viral infection-associated diseases.
Collapse
|
28
|
Katashima CK, de Oliveira Micheletti T, Braga RR, Gaspar RS, Goeminne LJE, Moura-Assis A, Crisol BM, Brícola RS, Silva VRR, de Oliveira Ramos C, da Rocha AL, Tavares MR, Simabuco FM, Matheus VA, Buscaratti L, Marques-Souza H, Pazos P, Gonzalez-Touceda D, Tovar S, del Carmen García M, Neto JCR, Curi R, Hirabara SM, Brum PC, Prada PO, de Moura LP, Pauli JR, da Silva ASR, Cintra DE, Velloso LA, Ropelle ER. Evidence for a neuromuscular circuit involving hypothalamic interleukin-6 in the control of skeletal muscle metabolism. SCIENCE ADVANCES 2022; 8:eabm7355. [PMID: 35905178 PMCID: PMC9337767 DOI: 10.1126/sciadv.abm7355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/15/2022] [Indexed: 05/31/2023]
Abstract
Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control. Here, we demonstrated that IL6 activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mouse skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1/2 axis is closely associated with fatty acid oxidation- and mitochondrial-related genes in the skeletal muscle of isogenic BXD mouse strains and humans. We showed that the hypothalamic IL6/ERK1/2 pathway requires the α2-adrenergic pathway to modify fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuit is required to underpin AMPK/ACC signaling activation and fatty acid oxidation after exercise. Last, the selective down-regulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle after exercise. Together, these data demonstrated that the IL6/ERK axis in VMH controls fatty acid metabolism in the skeletal muscle.
Collapse
Affiliation(s)
- Carlos Kiyoshi Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Thayana de Oliveira Micheletti
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renata Rosseto Braga
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Rodrigo Stellzer Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ludger J. E. Goeminne
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Moura-Assis
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Barbara Moreira Crisol
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Rafael S. Brícola
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Vagner Ramon R. Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Camila de Oliveira Ramos
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Pretol, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Rosolen Tavares
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Valquiria Aparecida Matheus
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Lucas Buscaratti
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Henrique Marques-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Patricia Pazos
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - David Gonzalez-Touceda
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Sulay Tovar
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - María del Carmen García
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jose Cesar Rosa Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Patrícia Chakur Brum
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo 05508-030, Brazil
| | - Patrícia Oliveira Prada
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Pretol, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Licio A. Velloso
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| |
Collapse
|
29
|
Brugaletta G, Greene E, Ramser A, Maynard CW, Tabler TW, Sirri F, Anthony NB, Orlowski S, Dridi S. Effect of Cyclic Heat Stress on Hypothalamic Oxygen Homeostasis and Inflammatory State in the Jungle Fowl and Three Broiler-Based Research Lines. Front Vet Sci 2022; 9:905225. [PMID: 35692291 PMCID: PMC9174949 DOI: 10.3389/fvets.2022.905225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Heat stress (HS) is devastating to poultry production sustainability due its detrimental effects on performance, welfare, meat quality, and profitability. One of the most known negative effects of HS is feed intake depression, which is more pronounced in modern high-performing broilers compared to their ancestor unselected birds, yet the underlying molecular mechanisms are not fully defined. The present study aimed, therefore, to determine the hypothalamic expression of a newly involved pathway, hypoxia/oxygen homeostasis, in heat-stressed broiler-based research lines and jungle fowl. Three populations of broilers (slow growing ACRB developed in 1956, moderate growing 95RB from broilers available in 1995, and modern fast growing MRB from 2015) and unselected Jungle fowl birds were exposed to cyclic heat stress (36°C, 9 h/day for 4 weeks) in a 2 × 4 factorial experimental design. Total RNAs and proteins were extracted from the hypothalamic tissues and the expression of target genes and proteins was determined by real-time quantitative PCR and Western blot, respectively. It has been previously shown that HS increased core body temperature and decreased feed intake in 95RB and MRB, but not in ACRB or JF. HS exposure did not affect the hypothalamic expression of HIF complex, however there was a line effect for HIF-1α (P = 0.02) with higher expression in JF under heat stress. HS significantly up regulated the hypothalamic expression of hemoglobin subunits (HBA1, HBBR, HBE, HBZ), and HJV in ACRB, HBA1 and HJV in 95RB and MRB, and HJV in JF, but it down regulated FPN1 in JF. Additionally, HS altered the hypothalamic expression of oxygen homeostasis- up and down-stream signaling cascades. Phospho-AMPKThr172 was activated by HS in JF hypothalamus, but it decreased in that of the broiler-based research lines. Under thermoneutral conditions, p-AMPKThr172 was higher in broiler-based research lines compared to JF. Ribosomal protein S6K1, however, was significantly upregulated in 95RB and MRB under both environmental conditions. HS significantly upregulated the hypothalamic expression of NF-κB2 in MRB, RelB, and TNFα in ACRB, abut it down regulated RelA in 95RB. The regulation of HSPs by HS seems to be family- and line-dependent. HS upregulated the hypothalamic expression of HSP60 in ACRB and 95RB, down regulated HSP90 in JF only, and decreased HSP70 in all studied lines. Taken together, this is the first report showing that HS modulated the hypothalamic expression of hypoxia- and oxygen homeostasis-associated genes as well as their up- and down-stream mediators in chickens, and suggests that hypoxia, thermotolerance, and feed intake are interconnected, which merit further in-depth investigations.
Collapse
Affiliation(s)
- Giorgio Brugaletta
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Elizabeth Greene
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Alison Ramser
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Craig W. Maynard
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Travis W. Tabler
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Nicholas B. Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara Orlowski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Sami Dridi
| |
Collapse
|
30
|
McNeilly AD, Yianakas A, Gallagher JG, Tarlton J, Ashford ML, McCrimmon RJ. Central deficiency of IL-6Ra in mice impairs glucose-stimulated insulin secretion. Mol Metab 2022; 61:101488. [PMID: 35470093 PMCID: PMC9065900 DOI: 10.1016/j.molmet.2022.101488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Alison D McNeilly
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
| | - Adonis Yianakas
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Jennifer G Gallagher
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Jamie Tarlton
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Michael Lj Ashford
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Rory J McCrimmon
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| |
Collapse
|
31
|
Temporal specificity of IL-6 knockout in enhancing the thermogenic capability of brown adipose tissue. J Physiol Biochem 2022; 78:619-628. [PMID: 35349101 DOI: 10.1007/s13105-021-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/08/2021] [Indexed: 10/18/2022]
Abstract
Although interleukin-6 (IL-6) has been regarded as a homeostatic regulator of fat metabolism, its role in brown adipose thermogenesis remains to be further clarified. By using wild-type (WT) and IL-6-knockout (KO) mice, this study aims to investigate whether IL-6 regulates the thermogenic capability of brown adipose tissue (BAT) at both young and elderly stages. We demonstrated that IL-6 KO enhances BAT thermogenesis at a young age, as evidenced by the increased mRNA and protein expression levels of thermogenic genes, and the elevated interscapular surface temperature. The IL-6-KO enhancement of BAT thermogenesis is associated with improved respiratory exchange ratio (RER) and glucose homeostasis at young stages. However, these improvements disappear in elderly KO mice, which is likely attributable to the highly increased expression of other inflammatory cytokines, such as Tnfα, Il-1β, and Il-10. Our findings indicate that the lack of IL-6 has a temporal-specific contribution to the promotion of BAT thermogenesis.
Collapse
|
32
|
PET/MRI-evaluated brown adipose tissue activity may be related to dietary MUFA and omega-6 fatty acids intake. Sci Rep 2022; 12:4112. [PMID: 35260768 PMCID: PMC8904502 DOI: 10.1038/s41598-022-08125-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
An investigation of new ways to activate brown adipose tissue (BAT) is highly valuable, as it is a possible tool for obesity prevention and treatment. The aim of our study was to evaluate the relationships between dietary intake and BAT activity. The study group comprised 28 healthy non-smoking males aged 21–42 years. All volunteers underwent a physical examination and 75-g OGTT and completed 3-day food intake diaries to evaluate macronutrients and fatty acid intake. Body composition measurements were assessed using DXA scanning. An FDG-18 PET/MR was performed to visualize BAT activity. Brown adipose tissue was detected in 18 subjects (67% normal-weight individuals and 33% overweight/obese). The presence of BAT corresponded with a lower visceral adipose tissue (VAT) content (p = 0.04, after adjustment for age, daily kcal intake, and DXA Lean mass). We noted significantly lower omega-6 fatty acids (p = 0.03) and MUFA (p = 0.02) intake in subjects with detected BAT activity after adjustment for age, daily average kcal intake, and DXA Lean mass, whereas omega-3 fatty acids intake was comparable between the two groups. BAT presence was positively associated with the concentration of serum IL-6 (p = 0.01) during cold exposure. Our results show that BAT activity may be related to daily omega-6 fatty acids intake.
Collapse
|
33
|
Cheng Y, Xu J, Zeng R, Zhao X, Gao W, Quan J, Hu X, Shen Z, Zhang J. The Role of Prostaglandin E2 Synthesized in Rat Lateral Parabrachial Nucleus in LPS-Induced Fever. Neuroendocrinology 2022; 112:399-416. [PMID: 34348333 DOI: 10.1159/000518491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The lateral parabrachial nucleus (LPBN) is considered to be a brain site of the pyrogenic action of prostaglandin (PG) E2 outside of the preoptic area. Yet, the role of the LPBN in fever following a systemic immune challenge remains poorly understood. METHODS We examined the expression of cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) in the LPBN after the intraperitoneal injection of lipopolysaccharide (LPS). We investigated the effects of LPBN NS-398 (COX-2 inhibitor) on LPS-induced fever, the effects of direct LPBN PGE2 administration on the energy expenditure (EE), brown adipose tissue (BAT) thermogenesis, neck muscle electromyographic activity and tail temperature, and the effects of PGE2 on the spontaneous firing activity and thermosensitivity of in vitro LPBN neurons in a brain slice. RESULTS The COX-2 and mPGES-1 enzymes were upregulated at both mRNA and protein levels. The microinjection of NS-398 in the LPBN attenuated the LPS-induced fever. Direct PGE2 administration in the LPBN resulted in a febrile response by a coordinated response of increased EE, BAT thermogenesis, shivering, and possibly decreased heat loss through the tail. The LPBN neurons showed a clear anatomical distinction in the firing rate response to PGE2, with the majority of PGE2-excited or -inhibited neurons being located in the external lateral or dorsal subnucleus of the LPBN, respectively. However, neither the firing rate nor the thermal coefficient response to PGE2 showed any difference between warm-sensitive, cold-sensitive, and temperature-insensitive neurons in the LPBN. CONCLUSIONS PGE2 synthesized in the LPBN was at least partially involved in LPS-induced fever via its different modulations of the firing rate of neurons in different LPBN subnuclei.
Collapse
Affiliation(s)
- Yongjing Cheng
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| | - Jianhui Xu
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| | - Ruixin Zeng
- School of Dentistry, Zunyi Medical University, Zunyi, China
| | - Xi Zhao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wenmin Gao
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| | - Junru Quan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiaosong Hu
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Ziling Shen
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Jie Zhang
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| |
Collapse
|
34
|
Snoke DB, Nishikawa Y, Cole RM, Ni A, Angelotti A, Vodovotz Y, Belury MA. Dietary Naringenin Preserves Insulin Sensitivity and Grip Strength and Attenuates Inflammation but Accelerates Weight Loss in a Mouse Model of Cancer Cachexia. Mol Nutr Food Res 2021; 65:e2100268. [PMID: 34499400 PMCID: PMC8612985 DOI: 10.1002/mnfr.202100268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/02/2021] [Indexed: 12/15/2022]
Abstract
SCOPE Cancer cachexia is characterized by the loss of skeletal muscle resulting in functional impairment, reduced quality of life and mortality. Naringenin, a flavonoid found in citrus fruits, improves insulin sensitivity and reduces inflammation and tumor growth in preclinical models. Therefore, the study hypothesizes that dietary supplementation of naringenin will improve insulin sensitivity, decrease inflammation, slow body weight loss, and delay tumor growth in a mouse model of cancer cachexia. METHODS AND RESULTS Mice are fed 2 wt% dietary naringenin before and during initiation of cancer cachexia using inoculated adenocarcinoma-26 cells (C-26). Food intake, body weight, body composition, muscle function, insulin tolerance, and inflammatory status are assessed. Although naringenin-fed tumor-bearing mice exhibit reductions in body weight and food intake earlier than control diet-fed tumor-bearing mice, dietary naringenin is protective against loss of muscle strength, and attenuates the onset of insulin resistance and markers of inflammation. CONCLUSIONS Dietary supplementation of naringenin improves multiple aspects of metabolic disturbance and inflammation during cancer cachexia progression in [C-26 tumor-bearing] mice. However, the acceleration of anorexia and weight loss is also observed. These findings emphasize the link between inflammation and insulin resistance as a basis for understanding their roles in the pathogenesis of cancer cachexia.
Collapse
Affiliation(s)
- Deena B. Snoke
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Yuko Nishikawa
- Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA
| | - Rachel M. Cole
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Ai Ni
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Austin Angelotti
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Yael Vodovotz
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Martha A. Belury
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Viral Infection Drives the Regulation of Feeding Behavior Related Genes in Salmo salar. Int J Mol Sci 2021; 22:ijms222111391. [PMID: 34768822 PMCID: PMC8583931 DOI: 10.3390/ijms222111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
The feeding behavior in fish is a complex activity that relies on the ability of the brain to integrate multiple signals to produce appropriate responses in terms of food intake, energy expenditure, and metabolic activity. Upon stress cues including viral infection or mediators such as the proinflammatory cytokines, prostaglandins, and cortisol, both Pomc and Npy/Agrp neurons from the hypothalamus are stimulated, thus triggering a response that controls both energy storage and expenditure. However, how appetite modulators or neuro-immune cues link pathogenesis and energy homeostasis in fish remains poorly understood. Here, we provide the first evidence of a molecular linkage between inflammation and food intake in Salmon salar. We show that in vivo viral challenge with infectious pancreatic necrosis virus (IPNV) impacts food consumption by activating anorexic genes such as mc4r, crf, and pomcb and 5-HT in the brain of S. salar. At the molecular level, viral infection induces an overall reduction in lipid content in the liver, favoring the production of AA and EPA associated with the increment of elovl2 gene. In addition, infection upregulates leptin signaling and inhibits insulin signaling. These changes are accompanied by a robust inflammatory response represented by the increment of Il-1b, Il-6, Tnfa, and Pge2 as well as an increased cortisol level in vivo. Thus, we propose a model in which hypothalamic neurons respond to inflammatory cytokines and stress-related molecules and interact with appetite induction/inhibition. These findings provide evidence of crosstalk between pathogenesis-driven inflammation and hypothalamic-pituitary-adrenocortical axes in stress-induced food intake behavior in fish.
Collapse
|
36
|
López-Ferreras L, Longo F, Richard JE, Eerola K, Shevchouk OT, Tuzinovic M, Skibicka KP. Key role for hypothalamic interleukin-6 in food-motivated behavior and body weight regulation. Psychoneuroendocrinology 2021; 131:105284. [PMID: 34090139 DOI: 10.1016/j.psyneuen.2021.105284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022]
Abstract
The pro-inflammatory role of interleukin-6 (IL-6) is well-characterized. Blockade of IL-6, by Tocilizumab, is used in patients with rheumatoid arthritis and those diagnosed with cytokine storm. However, brain-produced IL-6 has recently emerged as a critical mediator of gut/adipose communication with the brain. Central nervous system (CNS) IL-6 is engaged by peripheral and central signals regulating energy homeostasis. IL-6 is critical for mediating hypophagia and weight loss effects of a GLP-1 analog, exendin-4, a clinically utilized drug. However, neuroanatomical substrates and behavioral mechanisms of brain IL-6 energy balance control remain poorly understood. We propose that the lateral hypothalamus (LH) is an IL-6-harboring brain region, key to food intake and food reward control. Microinjections of IL-6 into the LH reduced chow and palatable food intake in male rats. In contrast, female rats responded with reduced motivated behavior for sucrose, measured by the progressive ratio operant conditioning test, a behavioral mechanism previously not linked to IL-6. To test whether IL-6, produced in the LH, is necessary for ingestive and motivated behaviors, and body weight homeostasis, virogenetic knockdown by infusion of AAV-siRNA-IL6 into the LH was utilized. Attenuation of LH IL-6 resulted in a potent increase in sucrose-motivated behavior, without any effect on ingestive behavior or body weight in female rats. In contrast, the treatment did not affect any parameters measured (chow intake, sucrose-motivated behavior, locomotion, and body weight) in chow-fed males. However, when challenged with a high-fat/high-sugar diet, the male LH IL-6 knockdown rats displayed rapid weight gain and hyperphagia. Together, our data suggest that LH-produced IL-6 is necessary and sufficient for ingestive behavior and weight homeostasis in male rats. In females, IL-6 in the LH plays a critical role in food-motivated, but not ingestive behavior control or weight regulation. Thus, collectively these data support the idea that brain-produced IL-6 engages the hypothalamus to control feeding behavior.
Collapse
Affiliation(s)
| | - Francesco Longo
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Jennifer E Richard
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Kim Eerola
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Research Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Olesya T Shevchouk
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | | | - Karolina P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
37
|
Isaac AR, Lima-Filho RAS, Lourenco MV. How does the skeletal muscle communicate with the brain in health and disease? Neuropharmacology 2021; 197:108744. [PMID: 34363812 DOI: 10.1016/j.neuropharm.2021.108744] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Endocrine mechanisms have been largely associated with metabolic control and tissue cross talk in mammals. Classically, myokines comprise a class of signaling proteins released in the bloodstream by the skeletal muscle, which mediate physiological and metabolic responses in several tissues, including the brain. Recent exciting evidence suggests that myokines (e.g. cathepsin B, FNDC5/irisin, interleukin-6) act to control brain functions, including learning, memory, and mood, and may mediate the beneficial actions of physical exercise in the brain. However, the intricate mechanisms connecting peripherally released molecules to brain function are not fully understood. Accumulating findings further indicates that impaired skeletal muscle homeostasis impacts brain metabolism and physiology. Here we review recent findings that suggest that muscle-borne signals are essential for brain physiology and discuss perspectives on how these signals vary in response to exercise or muscle diseases. Understanding the complex interactions between skeletal muscle and brain may result in more effective therapeutic strategies to expand healthspan and to prevent brain disease.
Collapse
Affiliation(s)
- Alinny R Isaac
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
38
|
Asgarov R, Sen MK, Mikhael M, Karl T, Gyengesi E, Mahns DA, Malladi CS, Münch GW. Characterisation of the Mouse Cerebellar Proteome in the GFAP-IL6 Model of Chronic Neuroinflammation. THE CEREBELLUM 2021; 21:404-424. [PMID: 34324160 DOI: 10.1007/s12311-021-01303-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
GFAP-IL6 transgenic mice are characterised by astroglial and microglial activation predominantly in the cerebellum, hallmarks of many neuroinflammatory conditions. However, information available regarding the proteome profile associated with IL-6 overexpression in the mouse brain is limited. This study investigated the cerebellum proteome using a top-down proteomics approach using 2-dimensional gel electrophoresis followed by liquid chromatography-coupled tandem mass spectrometry and correlated these data with motor deficits using the elevated beam walking and accelerod tests. In a detailed proteomic analysis, a total of 67 differentially expressed proteoforms including 47 cytosolic and 20 membrane-bound proteoforms were identified. Bioinformatics and literature mining analyses revealed that these proteins were associated with three distinct classes: metabolic and neurodegenerative processes as well as protein aggregation. The GFAP-IL6 mice exhibited impaired motor skills in the elevated beam walking test measured by their average scores of 'number of footslips' and 'time to traverse' values. Correlation of the proteoforms' expression levels with the motor test scores showed a significant positive correlation to peroxiredoxin-6 and negative correlation to alpha-internexin and mitochondrial cristae subunit Mic19. These findings suggest that the observed changes in the proteoform levels caused by IL-6 overexpression might contribute to the motor function deficits.
Collapse
Affiliation(s)
- Rustam Asgarov
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Monokesh K Sen
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Meena Mikhael
- Mass Spectrometry Facility, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Tim Karl
- Behavioural Neuroscience Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Neuroscience Research Australia (NeuRA), Randwick, NSW, 2031, Australia.,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - David A Mahns
- Integrative Physiology Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Chandra S Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Gerald W Münch
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
39
|
Li H, Dong M, Liu W, Gao C, Jia Y, Zhang X, Xiao X, Liu Q, Lin H. Peripheral IL-6/STAT3 signaling promotes beiging of white fat. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119080. [PMID: 34174290 DOI: 10.1016/j.bbamcr.2021.119080] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/03/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Interleukin-6 (IL-6) can reportedly centrally affect the thermogenesis of brown fat. However, whether the peripheral IL-6 signaling regulates beiging of white fat remains largely unknown. In vitro experiments indicated IL-6-KO-derived white adipocytes exhibited lower thermogenic gene expression compared to the WT, associating with reduced phosphorylation of STAT3 at Tyr705. Mechanistically, exogenous IL-6 application increased the p-STAT3Tyr705 level, thus the phosphorylated STAT3 bound to the promoter regions, and enhanced the transcription of Pparγ and Ucp1. The protein interaction of PGC-1α with PPARγ was increased by IL-6, which also contributed to stimulate Ucp1 expression. In vivo experiments demonstrated that IL-6 KO decreased the beiging potential of white fat with suppressed STAT3 Tyr705 phosphorylation. Accordingly, IL-6-KO mature mice were associated with disrupted glucose homeostasis and accelerated hepatic steatosis. Collectively, we identified a novel function of peripheral IL-6/STAT3 signaling which is essential for beiging of white fat, such ensuring fat and glucose homeostasis.
Collapse
Affiliation(s)
- Haifang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Mei Dong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Wenhui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Cheng Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanxin Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xinzhi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xue Xiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
40
|
Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021; 10:cells10071584. [PMID: 34201844 PMCID: PMC8307603 DOI: 10.3390/cells10071584] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
41
|
Maurya R, Sebastian P, Namdeo M, Devender M, Gertler A. COVID-19 Severity in Obesity: Leptin and Inflammatory Cytokine Interplay in the Link Between High Morbidity and Mortality. Front Immunol 2021; 12:649359. [PMID: 34220807 PMCID: PMC8250137 DOI: 10.3389/fimmu.2021.649359] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the foremost risk factors in coronavirus infection resulting in severe illness and mortality as the pandemic progresses. Obesity is a well-known predisposed chronic inflammatory condition. The dynamics of obesity and its impacts on immunity may change the disease severity of pneumonia, especially in acute respiratory distress syndrome, a primary cause of death from SARS-CoV-2 infection. The adipocytes of adipose tissue secret leptin in proportion to individuals’ body fat mass. An increase in circulating plasma leptin is a typical characteristic of obesity and correlates with a leptin-resistant state. Leptin is considered a pleiotropic molecule regulating appetite and immunity. In immunity, leptin functions as a cytokine and coordinates the host’s innate and adaptive responses by promoting the Th1 type of immune response. Leptin induced the proliferation and functions of antigen-presenting cells, monocytes, and T helper cells, subsequently influencing the pro-inflammatory cytokine secretion by these cells, such as TNF-α, IL-2, or IL-6. Leptin scarcity or resistance is linked with dysregulation of cytokine secretion leading to autoimmune disorders, inflammatory responses, and increased susceptibility towards infectious diseases. Therefore, leptin activity by leptin long-lasting super active antagonist’s dysregulation in patients with obesity might contribute to high mortality rates in these patients during SARS-CoV-2 infection. This review systematically discusses the interplay mechanism between leptin and inflammatory cytokines and their contribution to the fatal outcomes in COVID-19 patients with obesity.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Prince Sebastian
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Madhulika Namdeo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Moodu Devender
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arieh Gertler
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
42
|
Galmiche M, Achamrah N, Déchelotte P, Ribet D, Breton J. Role of microbiota-gut-brain axis dysfunctions induced by infections in the onset of anorexia nervosa. Nutr Rev 2021; 80:381-391. [PMID: 34010427 DOI: 10.1093/nutrit/nuab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anorexia nervosa (AN) is an eating disorder characterized by low food intake, severe body weight loss, intense fear of gaining weight, and dysmorphophobia. This chronic disease is associated with both psychiatric and somatic comorbidities. Over the years, clinical studies have accumulated evidence that viral or bacterial infections may promote the onset of eating disorders such as AN. This review aims to describe how infections and the subsequent immune responses affect food intake regulation in the short term and also how these processes may lead to long-term intestinal disorders, including gut barrier disruption and gut microbiota dysbiosis, even after the clearance of the pathogens. We discuss in particular how infection-mediated intestinal dysbiosis may promote the onset of several AN symptoms and comorbidities, including appetite dysregulation, functional gastrointestinal disorders, and mood disorders.
Collapse
Affiliation(s)
- Marie Galmiche
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Najate Achamrah
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Pierre Déchelotte
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - David Ribet
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Jonathan Breton
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| |
Collapse
|
43
|
Abstract
A paradigm shift has recently occurred in the field of cancer therapeutics. Traditional anticancer agents, such as chemotherapy, radiotherapy and small-molecule drugs targeting specific signalling pathways, have been joined by cellular immunotherapies based on T cell engineering. The rapid adoption of novel, patient-specific cellular therapies builds on scientific developments in tumour immunology, genetic engineering and cell manufacturing, best illustrated by the curative potential of chimeric antigen receptor (CAR) T cell therapy targeting CD19-expressing malignancies. However, the clinical benefit observed in many patients may come at a cost. In up to one-third of patients, significant toxicities occur that are directly associated with the induction of powerful immune effector responses. The most frequently observed immune-mediated toxicities are cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. This Review discusses our current understanding of their pathophysiology and clinical features, as well as the development of novel therapeutics for their prevention and/or management. This Review discusses our current understanding of the pathophysiological mechanisms of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome associated with chimeric antigen receptor (CAR) T cell therapies, and how this might be used for the prevention or management of these toxicities.
Collapse
|
44
|
Reguero M, Gómez de Cedrón M, Reglero G, Quintela JC, Ramírez de Molina A. Natural Extracts to Augment Energy Expenditure as a Complementary Approach to Tackle Obesity and Associated Metabolic Alterations. Biomolecules 2021; 11:biom11030412. [PMID: 33802173 PMCID: PMC7999034 DOI: 10.3390/biom11030412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is the epidemic of the 21st century. In developing countries, the prevalence of obesity continues to rise, and obesity is occurring at younger ages. Obesity and associated metabolic stress disrupt the whole-body physiology. Adipocytes are critical components of the systemic metabolic control, functioning as an endocrine organ. The enlarged adipocytes during obesity recruit macrophages promoting chronic inflammation and insulin resistance. Together with the genetic susceptibility (single nucleotide polymorphisms, SNP) and metabolic alterations at the molecular level, it has been highlighted that key modifiable risk factors, such as those related to lifestyle, contribute to the development of obesity. In this scenario, urgent therapeutic options are needed, including not only pharmacotherapy but also nutrients, bioactive compounds, and natural extracts to reverse the metabolic alterations associated with obesity. Herein, we first summarize the main targetable processes to tackle obesity, including activation of thermogenesis in brown adipose tissue (BAT) and in white adipose tissue (WAT-browning), and the promotion of energy expenditure and/or fatty acid oxidation (FAO) in muscles. Then, we perform a screening of 20 natural extracts (EFSA approved) to determine their potential in the activation of FAO and/or thermogenesis, as well as the increase in respiratory capacity. By means of innovative technologies, such as the study of their effects on cell bioenergetics (Seahorse bioanalyzer), we end up with the selection of four extracts with potential application to ameliorate the deleterious effects of obesity and the chronic associated inflammation.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- NATAC BIOTECH, Electronica 7, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
45
|
Wolfs D, Lynes MD, Tseng YH, Pierce S, Bussberg V, Darkwah A, Tolstikov V, Narain NR, Rudolph MC, Kiebish MA, Demerath EW, Fields DA, Isganaitis E. Brown Fat-Activating Lipokine 12,13-diHOME in Human Milk Is Associated With Infant Adiposity. J Clin Endocrinol Metab 2021; 106:e943-e956. [PMID: 33135728 PMCID: PMC7823229 DOI: 10.1210/clinem/dgaa799] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Little is known about the specific breastmilk components responsible for protective effects on infant obesity. Whether 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), an oxidized linoleic acid metabolite and activator of brown fat metabolism, is present in human milk, or linked to infant adiposity, is unknown. OBJECTIVE To examine associations between concentrations of 12,13-diHOME in human milk and infant adiposity. DESIGN Prospective cohort study from 2015 to 2019, following participants from birth to 6 months of age. SETTING Academic medical centers. PARTICIPANTS Volunteer sample of 58 exclusively breastfeeding mother-infant pairs; exclusion criteria included smoking, gestational diabetes, and health conditions with the potential to influence maternal or infant weight gain. MAIN OUTCOME MEASURES Infant anthropometric measures including weight, length, body mass index (BMI), and body composition at birth and at 1, 3, and 6 months postpartum. RESULTS We report for the first time that 12,13-diHOME is present in human milk. Higher milk 12,13-diHOME level was associated with increased weight-for-length Z-score at birth (β = 0.5742, P = 0.0008), lower infant fat mass at 1 month (P = 0.021), and reduced gain in BMI Z-score from 0 to 6 months (β = -0.3997, P = 0.025). We observed similar associations between infant adiposity and milk abundance of related oxidized linoleic acid metabolites 12,13-Epoxy-9(Z)-octadecenoic acid (12,13-epOME) and 9,10-Dihydroxy-12-octadecenoic acid (9,10-diHOME), and metabolites linked to thermogenesis including succinate and lyso-phosphatidylglycerol 18:0. Milk abundance of 12,13-diHOME was not associated with maternal BMI, but was positively associated with maternal height, milk glucose concentration, and was significantly increased after a bout of moderate exercise. CONCLUSIONS We report novel associations between milk abundance of 12,13-diHOME and adiposity during infancy.
Collapse
Affiliation(s)
- Danielle Wolfs
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts
| | - Matthew D Lynes
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts
| | - Yu-Hua Tseng
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts
| | - Stephanie Pierce
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | | | - Michael C Rudolph
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - David A Fields
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - Elvira Isganaitis
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Robb JL, Morrissey NA, Weightman Potter PG, Smithers HE, Beall C, Ellacott KLJ. Immunometabolic Changes in Glia - A Potential Role in the Pathophysiology of Obesity and Diabetes. Neuroscience 2020; 447:167-181. [PMID: 31765625 PMCID: PMC7567742 DOI: 10.1016/j.neuroscience.2019.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Chronic low-grade inflammation is a feature of the pathophysiology of obesity and diabetes in the CNS as well as peripheral tissues. Glial cells are critical mediators of the response to inflammation in the brain. Key features of glia include their metabolic flexibility, sensitivity to changes in the CNS microenvironment, and ability to rapidly adapt their function accordingly. They are specialised cells which cooperate to promote and preserve neuronal health, playing important roles in regulating the activity of neuronal networks across the brain during different life stages. Increasing evidence points to a role of glia, most notably astrocytes and microglia, in the systemic regulation of energy and glucose homeostasis in the course of normal physiological control and during disease. Inflammation is an energetically expensive process that requires adaptive changes in cellular metabolism and, in turn, metabolic intermediates can also have immunomodulatory actions. Such "immunometabolic" changes in peripheral immune cells have been implicated in contributing to disease pathology in obesity and diabetes. This review will discuss the evidence for a role of immunometabolic changes in glial cells in the systemic regulation of energy and glucose homeostasis, and how this changes in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Josephine L Robb
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Nicole A Morrissey
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Paul G Weightman Potter
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Hannah E Smithers
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Craig Beall
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Kate L J Ellacott
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
47
|
Favalli EG. Understanding the Role of Interleukin-6 (IL-6) in the Joint and Beyond: A Comprehensive Review of IL-6 Inhibition for the Management of Rheumatoid Arthritis. Rheumatol Ther 2020; 7:473-516. [PMID: 32734482 PMCID: PMC7410942 DOI: 10.1007/s40744-020-00219-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, debilitating autoimmune disorder involving inflammation and progressive destruction of the joints, affecting up to 1% of the population. The majority of patients with RA have one or more comorbid conditions, the most common being cardiovascular disease, osteoporosis, and depression, the presence of which are associated with poorer clinical outcomes and lower health-related quality of life. RA pathogenesis is driven by a complex network of proinflammatory cells and cytokines, and of these, interleukin-6 (IL-6) plays a key role in the chronic inflammation associated with RA. Through cell signaling that can be initiated by both membrane-bound and soluble forms of its receptor, IL-6 acts both locally to promote joint inflammation and destruction, and in the circulation to mediate extra-articular manifestations of RA, including pain, fatigue, morning stiffness, anemia, and weight loss. This narrative review describes the role of IL-6 in the pathogenesis of RA, its comorbidities, and extra-articular systemic manifestations, and examines the effects of the IL-6 receptor inhibitors sarilumab and tocilizumab on clinical endpoints of RA, patient-reported outcomes, and common comorbidities and extra-articular manifestations.
Collapse
Affiliation(s)
- Ennio G Favalli
- Department of Rheumatology, ASST Gaetano Pini-CTO Institute, University of Milan, Milan, Italy.
| |
Collapse
|
48
|
Patsalos O, Dalton B, Himmerich H. Effects of IL-6 Signaling Pathway Inhibition on Weight and BMI: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:E6290. [PMID: 32878032 PMCID: PMC7504579 DOI: 10.3390/ijms21176290] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Inhibitors of the IL-6 signaling pathway, such as tocilizumab, are frequently administered for the treatment of immune diseases, e.g., rheumatoid arthritis and multicentric Castleman's disease. The aim of this systematic review and meta-analysis was to ascertain the effects of IL-6 pathway inhibitors on weight and body mass index (BMI). Using PRISMA guidelines, we systematically reviewed relevant articles from three databases (PubMed, OVID, EMBASE). A random effects model was used to estimate standardized mean change (SMCC). Ten studies with a total of 1531 patients were included in the meta-analysis for weight and ten studies with a total of 1537 patients were included in the BMI meta-analysis. The most commonly administered IL-6 pathway inhibitor was tocilizumab. IL-6 pathway inhibitors were associated with increases in weight (SMCC = 0.09, p = 0.016, 95% CI [0.03, 0.14]) and BMI (SMCC = 0.10, p = 0.0001, 95% CI [0.05, 0.15]). These findings suggest that the IL-6 pathway is involved in weight regulation. Modulating IL-6 signaling may be a potential future therapeutic avenue used as an adjunct for the treatment of disorders associated with weight changes, such as cancer cachexia and anorexia nervosa.
Collapse
Affiliation(s)
- Olivia Patsalos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (O.P.); (B.D.)
| | - Bethan Dalton
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (O.P.); (B.D.)
| | - Hubertus Himmerich
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (O.P.); (B.D.)
- South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| |
Collapse
|
49
|
Bobbo VCD, Jara CP, Mendes NF, Morari J, Velloso LA, Araújo EP. Interleukin-6 Expression by Hypothalamic Microglia in Multiple Inflammatory Contexts: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1365210. [PMID: 31534953 PMCID: PMC6724433 DOI: 10.1155/2019/1365210] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Interleukin-6 (IL-6) is a unique cytokine that can play both pro- and anti-inflammatory roles depending on the anatomical site and conditions under which it has been induced. Specific neurons of the hypothalamus provide important signals to control food intake and energy expenditure. In individuals with obesity, a microglia-dependent inflammatory response damages the neural circuits responsible for maintaining whole-body energy homeostasis, resulting in a positive energy balance. However, little is known about the role of IL-6 in the regulation of hypothalamic microglia. In this systematic review, we asked what types of conditions and stimuli could modulate microglial IL-6 expression in murine model. We searched the PubMed and Web of Science databases and analyzed 13 articles that evaluated diverse contexts and study models focused on IL-6 expression and microglia activation, including the effects of stress, hypoxia, infection, neonatal overfeeding and nicotine exposure, lipopolysaccharide stimulus, hormones, exercise protocols, and aging. The results presented in this review emphasized the role of "injury-like" stimuli, under which IL-6 acts as a proinflammatory cytokine, concomitant with marked microglial activation, which drive hypothalamic neuroinflammation. Emerging evidence indicates an important correlation of basal IL-6 levels and microglial function with the maintenance of hypothalamic homeostasis. Advances in our understanding of these different contexts will lead to the development of more specific pharmacological approaches for the management of acute and chronic conditions, like obesity and metabolic diseases, without disturbing the homeostatic functions of IL-6 and microglia in the hypothalamus.
Collapse
Affiliation(s)
- Vanessa C. D. Bobbo
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Carlos P. Jara
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Natália F. Mendes
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Lício A. Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Eliana P. Araújo
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| |
Collapse
|