1
|
Chopra U, Bhansali P, Gangi Setty SR, Chakravortty D. Endoplasmic reticulum facilitates the coordinated division of Salmonella-containing vacuoles. mBio 2025; 16:e0011425. [PMID: 40272166 PMCID: PMC12077215 DOI: 10.1128/mbio.00114-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Salmonella Typhimurium (STM) resides in a membrane-bound compartment called the Salmonella-containing vacuole (SCV) in several infected cell types where bacterial and SCV division occur synchronously to maintain a single bacterium per vacuole. However, the mechanism behind this synchronous fission is not well understood. Fission of intracellular organelles is known to be regulated by the dynamic tubular endoplasmic reticulum (ER). In this study, we evaluated the role of ER in controlling SCV division. Interestingly, Salmonella-infected cells show activation of the unfolded protein response (UPR) and expansion of ER tubules. Altering the expression of ER morphology regulators, such as reticulon-4a (Rtn4a) and CLIMP63, significantly impacted bacterial proliferation, suggesting a potential role of tubular ER in facilitating SCV division. Live-cell imaging revealed the marking of tubular ER at the center of 78% of SCV division sites. This study also explored the role of SteA (a known Salmonella effector in modulating membrane dynamics) in coordinating the SCV division. SteA resides on the SCV membranes and helps form membrane contact between SCV and ER. The colocalization of ER with SCV enclosing STMΔsteA was significantly reduced, compared with SCV of STM WT or STMΔsteA:steA. STMΔsteA shows profound defects in SCV division, resulting in multiple bacteria in a single vacuole with proliferation defects. In vivo, the STMΔsteA shows a defect in colonization in the spleen and liver and affects the initial survival rate of mice. Overall, this study suggests a coordinated role of bacterial effector SteA in promoting ER contact/association with SCVs and regulating SCV division.IMPORTANCEThis study highlights the essential role of the host endoplasmic reticulum in facilitating SCV division and maintaining a single bacterium per vacuole. The Salmonella effector SteA helps maintain the single bacterium per vacuole state. In the absence of SteA, Salmonella resides as multiple bacteria within a single large vacuole. The STMΔsteA shows reduced proliferation under in vitro conditions and exhibits colonization defects in vivo, highlighting the importance of this effector in Salmonella pathogenesis. These findings suggest that targeting SteA could provide a novel therapeutic approach to inhibit Salmonella pathogenicity.
Collapse
Affiliation(s)
- Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Worley MJ. Salmonella Type III Secretion System Effectors. Int J Mol Sci 2025; 26:2611. [PMID: 40141253 PMCID: PMC11942329 DOI: 10.3390/ijms26062611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Salmonella is estimated to infect between 200 million and over 1 billion people per year. The exact number is not known, as many cases go unreported. Integral to the pathogenesis of Salmonella, as well as numerous other Gram-negative pathogens, is its type III effectors. Salmonella possesses two distinct type III secretion systems, encoded by Salmonella pathogenicity island-1 and Salmonella pathogenicity island-2. Together, they secrete at least 49 type III effectors into host cells that are collectively responsible for many of the virulence attributes of this pathogen. These virulence factors facilitate the invasion of host cells, induce and attenuate inflammation, and change the migratory properties of infected phagocytes, among other things. The effects of all type III effectors on Salmonella virulence are discussed.
Collapse
Affiliation(s)
- Micah J Worley
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
3
|
Lu J, Wu H, Wu S, Wang S, Fan H, Ruan H, Qiao J, Caiyin Q, Wen M. Salmonella: Infection mechanism and control strategies. Microbiol Res 2025; 292:128013. [PMID: 39675139 DOI: 10.1016/j.micres.2024.128013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Salmonella is a foodborne pathogen that predominantly resides in the intestinal tract of humans and animals. Infections caused by Salmonella can lead to various illnesses, including gastroenteritis, bacteremia, septicemia, and focal infections, with severe cases potentially resulting in host mortality. The mechanisms by which Salmonella invades host cells and disseminates throughout the body are partly understood, but there are still many scientific questions to be solved. This review aims to synthesize existing research on the interactions between Salmonella and hosts, detailing a comprehensive infection mechanism from adhesion and invasion to intracellular propagation and systemic spread. Overuse of antibiotics contributes to the emergence of drug-resistant Salmonella strains. An in-depth analysis of the mechanism of Salmonella infection will provide a theoretical basis for the development of novel Salmonella control strategies. These innovative control strategies include antibiotic adjuvants, small molecules, phages, attenuated vaccines, and probiotic therapies, which show huge potential in controlling Salmonella infection.
Collapse
Affiliation(s)
- Juane Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Hongfei Fan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Raj D, Nair AV, Singh A, Basu S, Sarkar K, Sharma J, Sharma S, Sharma S, Rathore M, Singh S, Prakash S, Simran, Sahu S, Kaushik AC, Siddiqi MI, Ghoshal UC, Chandra T, Bhosale V, Dasgupta A, Gupta SK, Verma S, Guha R, Chakravortty D, Ammanathan V, Lahiri A. Salmonella Typhimurium effector SseI regulates host peroxisomal dynamics to acquire lysosomal cholesterol. EMBO Rep 2025; 26:656-689. [PMID: 39695325 PMCID: PMC11811301 DOI: 10.1038/s44319-024-00328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 12/20/2024] Open
Abstract
Salmonella enterica serotype Typhimurium (Salmonella) resides and multiplies intracellularly in cholesterol-rich compartments called Salmonella-containing vacuoles (SCVs) with actin-rich tubular extensions known as Salmonella-induced filaments (SIFs). SCV maturation depends on host-derived cholesterol, but the transport mechanism of low-density lipoprotein (LDL)-derived cholesterol to SCVs remains unclear. Here we find that peroxisomes are recruited to SCVs and function as pro-bacterial organelle. The Salmonella effector protein SseI is required for the interaction between peroxisomes and the SCV. SseI contains a variant of the PTS1 peroxisome-targeting sequence, GKM, localizes to the peroxisomes and activates the host Ras GTPase, ADP-ribosylation factor-1 (ARF-1). Activation of ARF-1 leads to the recruitment of phosphatidylinsolitol-5-phosphate-4 kinase and the generation of phosphatidylinsolitol-4-5-bisphosphate on peroxisomes. This enhances the interaction of peroxisomes with lysosomes and allows for the transfer of lysosomal cholesterol to SCVs using peroxisomes as a bridge. Salmonella infection of peroxisome-depleted cells leads to the depletion of cholesterol on the SCVs, resulting in reduced SIF formation and bacterial proliferation. Taken together, our work identified peroxisomes as a target of Salmonella secretory effectors, and as conveyance of host cholesterol to enhance SCV stability, SIF integrity, and intracellular bacterial growth.
Collapse
Affiliation(s)
- Desh Raj
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Swarnali Basu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kabita Sarkar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jyotsna Sharma
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shiva Sharma
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanmi Sharma
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manisha Rathore
- Laboratory Animal Facility Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shriya Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shakti Prakash
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Simran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Neuroscience & Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shikha Sahu
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medicine, Lucknow, India
| | - Aman Chandra Kaushik
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medicine, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King Georges' Medical University, Lucknow, India
| | - Vivek Bhosale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Arunava Dasgupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shashi Kumar Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sonia Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Neuroscience & Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Laboratory Animal Facility Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| | - Veena Ammanathan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
5
|
Torsilieri HM, Upchurch CM, Leitinger N, Casanova JE. Salmonella-induced cholesterol accumulation in infected macrophages suppresses autophagy via mTORC1 activation. Mol Biol Cell 2025; 36:ar3. [PMID: 39602284 PMCID: PMC11742112 DOI: 10.1091/mbc.e24-06-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacillus that infects the host intestinal epithelium and resident macrophages. Many intracellular pathogens induce an autophagic response in host cells but have evolved mechanisms to subvert that response. Autophagy is closely linked to cellular cholesterol levels; mTORC1 senses increased cholesterol in lysosomal membranes, leading to its hyperactivity and suppression of autophagy. Previous studies indicate that Salmonella infection induces dramatic accumulation of cholesterol in macrophages, a fraction of which localizes to Salmonella containing vacuoles (SCVs). We previously reported that the bacterial effector protein SseJ triggers cholesterol accumulation through a signaling cascade involving focal adhesion kinase (FAK) and Akt. Here we show that mTORC1 is recruited to SCVs and is hyperactivated in a cholesterol-dependent manner. If cholesterol accumulation is prevented pharmacologically or through mutation of sseJ, autophagy is induced and bacterial survival is attenuated. Notably, the host lipid transfer protein OSBP (oxysterol binding protein 1) is also recruited to SCVs and its activity is necessary for both cholesterol transfer to SCVs and mTORC1 activation during infection. Finally, lipidomic analysis of Salmonella-infected macrophages revealed new insights into how Salmonella may manipulate lipid homeostasis to benefit its survival. We propose that S. Typhimurium induces cholesterol accumulation through SseJ to activate mTORC1, preventing autophagic clearance of bacteria.
Collapse
Affiliation(s)
- Holly M. Torsilieri
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Clint M. Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - James E. Casanova
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
6
|
Li JQ, Zhang J, Chen Y, Le T, Chang MX. Coordination of oxysterol binding protein 1 and VAP-A/B modulates the generation of cholesterol and viral inclusion bodies to promote grass carp reovirus replication. Front Immunol 2024; 15:1419321. [PMID: 39081319 PMCID: PMC11286474 DOI: 10.3389/fimmu.2024.1419321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Similar to other RNA viruses, grass carp reovirus, the causative agent of the hemorrhagic disease, replicates in cytoplasmic viral inclusion bodies (VIBs), orchestrated by host proteins and lipids. The host pathways that facilitate the formation and function of GCRV VIBs are poorly understood. This work demonstrates that GCRV manipulates grass carp oxysterol binding protein 1 (named as gcOSBP1) and vesicle-associated membrane protein-associated protein A/B (named as gcVAP-A/B), 3 components of cholesterol transport pathway, to generate VIBs. By siRNA-mediated knockdown, we demonstrate that gcOSBP1 is an essential host factor for GCRV replication. We reveal that the nonstructural proteins NS80 and NS38 of GCRV interact with gcOSBP1, and that the gcOSBP1 is recruited by NS38 and NS80 for promoting the generation of VIBs. gcOSBP1 increases the expression of gcVAP-A/B and promotes the accumulation of intracellular cholesterol. gcOSBP1 also interacts with gcVAP-A/B for forming gcOSBP1-gcVAP-A/B complexes, which contribute to enhance the accumulation of intracellular cholesterol and gcOSBP1-mediated generation of VIBs. Inhibiting cholesterol accumulation by lovastatin can completely abolish the effects of gcOSBP1 and/or gcVAP-A/B in promoting GCRV infection, suggesting that cholesterol accumulation is vital for gcOSBP1- and/or gcVAP-A/B-mediated GCRV replication. Thus, our results, which highlight that gcOSBP1 functions in the replication of GCRV via its interaction with essential viral proteins for forming VIBs and with host gcVAP-A/B, provide key molecular targets for obtaining anti-hemorrhagic disease grass carp via gene editing technology.
Collapse
Affiliation(s)
- Jia Qi Li
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Chen
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Ming Xian Chang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Yang Y, Wang P, Qaidi SE, Hardwidge PR, Huang J, Zhu G. Loss to gain: pseudogenes in microorganisms, focusing on eubacteria, and their biological significance. Appl Microbiol Biotechnol 2024; 108:328. [PMID: 38717672 PMCID: PMC11078800 DOI: 10.1007/s00253-023-12971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 05/12/2024]
Abstract
Pseudogenes are defined as "non-functional" copies of corresponding parent genes. The cognition of pseudogenes continues to be refreshed through accumulating and updating research findings. Previous studies have predominantly focused on mammals, but pseudogenes have received relatively less attention in the field of microbiology. Given the increasing recognition on the importance of pseudogenes, in this review, we focus on several aspects of microorganism pseudogenes, including their classification and characteristics, their generation and fate, their identification, their abundance and distribution, their impact on virulence, their ability to recombine with functional genes, the extent to which some pseudogenes are transcribed and translated, and the relationship between pseudogenes and viruses. By summarizing and organizing the latest research progress, this review will provide a comprehensive perspective and improved understanding on pseudogenes in microorganisms. KEY POINTS: • Concept, classification and characteristics, identification and databases, content, and distribution of microbial pseudogenes are presented. • How pseudogenization contribute to pathogen virulence is highlighted. • Pseudogenes with potential functions in microorganisms are discussed.
Collapse
Affiliation(s)
- Yi Yang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Jinlin Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- College of Bioscience and Biotechnology, Yangzhou University, 12 East Wenhui Road Yangzhou, Jiangsu, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Olkkonen VM, Ikonen E. Getting to Grips with the Oxysterol-Binding Protein Family - a Forty Year Perspective. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241273598. [PMID: 39210909 PMCID: PMC11359446 DOI: 10.1177/25152564241273598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
This review discusses how research around the oxysterol-binding protein family has evolved. We briefly summarize how this protein family, designated OSBP-related (ORP) or OSBP-like (OSBPL) proteins, was discovered, how protein domains highly conserved among family members between taxa paved the way for understanding their mechanisms of action, and how insights into protein structural and functional features help to understand their versatility as lipid transporters. We also discuss questions and future avenues of research opened by these findings. The investigations on oxysterol-binding protein family serve as a real-life example of the notion that science often advances as a collective effort of multiple lines of enquiry, including serendipitous routes. While original articles invariably explain the motivation of the research undertaken in rational terms, the actual paths to findings may be less intentional. Fortunately, this does not reduce the impact of the discoveries made. Besides hopefully providing a useful account of ORP family proteins, we aim to convey this message.
Collapse
Affiliation(s)
- Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Medicine, Dept of Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
10
|
Pillay TD, Hettiarachchi SU, Gan J, Diaz-Del-Olmo I, Yu XJ, Muench JH, Thurston TL, Pearson JS. Speaking the host language: how Salmonella effector proteins manipulate the host. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001342. [PMID: 37279149 PMCID: PMC10333799 DOI: 10.1099/mic.0.001342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Salmonella injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 Salmonella effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector's enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. Salmonella and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the Salmonella type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.
Collapse
Affiliation(s)
- Timesh D. Pillay
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Sahampath U. Hettiarachchi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ines Diaz-Del-Olmo
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Xiu-Jun Yu
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Janina H. Muench
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa L.M. Thurston
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Subra M, Antonny B, Mesmin B. New insights into the OSBP‒VAP cycle. Curr Opin Cell Biol 2023; 82:102172. [PMID: 37245352 DOI: 10.1016/j.ceb.2023.102172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023]
Abstract
VAP-A is a major endoplasmic reticulum (ER) receptor that allows this organelle to engage numerous membrane contact sites with other organelles. One highly studied example is the formation of contact sites through VAP-A interaction with Oxysterol-binding protein (OSBP). This lipid transfer protein transports cholesterol from the ER to the trans-Golgi network owing to the counter-exchange of the phosphoinositide PI(4)P. In this review, we highlight recent studies that advance our understanding of the OSBP cycle and extend the model of lipid exchange to other cellular contexts and other physiological and pathological conditions.
Collapse
Affiliation(s)
- Mélody Subra
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France
| | - Bruno Antonny
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France.
| | - Bruno Mesmin
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France.
| |
Collapse
|
12
|
Aguilera-Herce J, Panadero-Medianero C, Sánchez-Romero MA, Balbontín R, Bernal-Bayard J, Ramos-Morales F. Salmonella Type III Secretion Effector SrfJ: A Glucosylceramidase Affecting the Lipidome and the Transcriptome of Mammalian Host Cells. Int J Mol Sci 2023; 24:ijms24098403. [PMID: 37176110 PMCID: PMC10179164 DOI: 10.3390/ijms24098403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Type III secretion systems are found in many Gram-negative pathogens and symbionts of animals and plants. Salmonella enterica has two type III secretion systems associated with virulence, one involved in the invasion of host cells and another involved in maintaining an appropriate intracellular niche. SrfJ is an effector of the second type III secretion system. In this study, we explored the biochemical function of SrfJ and the consequences for mammalian host cells of the expression of this S. enterica effector. Our experiments suggest that SrfJ is a glucosylceramidase that alters the lipidome and the transcriptome of host cells, both when expressed alone in epithelial cells and when translocated into macrophages in the context of Salmonella infection. We were able to identify seventeen lipids with higher levels and six lipids with lower levels in the presence of SrfJ. Analysis of the forty-five genes, the expression of which is significantly altered by SrfJ with a fold-change threshold of two, suggests that this effector may be involved in protecting Salmonella from host immune defenses.
Collapse
Affiliation(s)
- Julia Aguilera-Herce
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| | - Concepción Panadero-Medianero
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| | - María Antonia Sánchez-Romero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| | - Roberto Balbontín
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| | - Joaquín Bernal-Bayard
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| |
Collapse
|
13
|
Vormittag S, Ende RJ, Derré I, Hilbi H. Pathogen vacuole membrane contact sites - close encounters of the fifth kind. MICROLIFE 2023; 4:uqad018. [PMID: 37223745 PMCID: PMC10117887 DOI: 10.1093/femsml/uqad018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
Vesicular trafficking and membrane fusion are well-characterized, versatile, and sophisticated means of 'long range' intracellular protein and lipid delivery. Membrane contact sites (MCS) have been studied in far less detail, but are crucial for 'short range' (10-30 nm) communication between organelles, as well as between pathogen vacuoles and organelles. MCS are specialized in the non-vesicular trafficking of small molecules such as calcium and lipids. Pivotal MCS components important for lipid transfer are the VAP receptor/tether protein, oxysterol binding proteins (OSBPs), the ceramide transport protein CERT, the phosphoinositide phosphatase Sac1, and the lipid phosphatidylinositol 4-phosphate (PtdIns(4)P). In this review, we discuss how these MCS components are subverted by bacterial pathogens and their secreted effector proteins to promote intracellular survival and replication.
Collapse
Affiliation(s)
| | | | - Isabelle Derré
- Corresponding author. Department of Microbiology, Immunology and Cancer Biology, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA 22908, United States. Tel: +1-434-924-2330; E-mail:
| | - Hubert Hilbi
- Corresponding author. Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland. Tel: +41-44-634-2650; E-mail:
| |
Collapse
|
14
|
Chang SJ, Hsu YT, Chen Y, Lin YY, Lara-Tejero M, Galan JE. Typhoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells. eLife 2022; 11:e78561. [PMID: 35579416 PMCID: PMC9142146 DOI: 10.7554/elife.78561] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Typhoid toxin is an essential virulence factor for Salmonella Typhi, the cause of typhoid fever in humans. This toxin has an unusual biology in that it is produced by Salmonella Typhi only when located within host cells. Once synthesized, the toxin is secreted to the lumen of the Salmonella-containing vacuole from where it is transported to the extracellular space by vesicle carrier intermediates. Here, we report the identification of the typhoid toxin sorting receptor and components of the cellular machinery that packages the toxin into vesicle carriers, and exports it to the extracellular space. We found that the cation-independent mannose-6-phosphate receptor serves as typhoid toxin sorting receptor and that the coat protein COPII and the GTPase Sar1 mediate its packaging into vesicle carriers. Formation of the typhoid toxin carriers requires the specific environment of the Salmonella Typhi-containing vacuole, which is determined by the activities of specific effectors of its type III protein secretion systems. We also found that Rab11B and its interacting protein Rip11 control the intracellular transport of the typhoid toxin carriers, and the SNARE proteins VAMP7, SNAP23, and Syntaxin 4 their fusion to the plasma membrane. Typhoid toxin's cooption of specific cellular machinery for its transport to the extracellular space illustrates the remarkable adaptation of an exotoxin to exert its function in the context of an intracellular pathogen.
Collapse
Affiliation(s)
- Shu-Jung Chang
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yu-Ting Hsu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yun Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yen-Yi Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Jorge E Galan
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
15
|
The type three secretion system effector protein IpgB1 promotes Shigella flexneri cell-to-cell spread through double-membrane vacuole escape. PLoS Pathog 2022; 18:e1010380. [PMID: 35202448 PMCID: PMC8903249 DOI: 10.1371/journal.ppat.1010380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/08/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
S. flexneri is an important human pathogen that causes bacillary dysentery. During infection, S. flexneri invades colonic epithelial cells, hijacks the host cell cytoskeleton to move in the cytosol of infected cells, and spreads from cell to cell through formation of membrane protrusions that project into adjacent cells and resolve into double membrane vacuoles (DMVs). S. flexneri cell-to-cell spread requires the integrity of the bacterial type three secretion system (T3SS). However, the exact role of the T3SS effector proteins in the dissemination process remains poorly understood. Here, we investigated the role of the T3SS effector protein IpgB1 in S. flexneri dissemination. IpgB1 was previously characterized as a guanine nucleotide exchange factor (GEF) that contributes to invasion. In addition to the invasion defect, we showed that the ipgB1 mutant formed smaller infection foci in HT-29 cells. Complementation of this phenotype required the GEF activity of IpgB1. Using live confocal microscopy, we showed that the ipgB1 mutant is specifically impaired in DMV escape. Depletion of Rac1, the host cell target of IpgB1 during invasion, as well as pharmacological inhibition of Rac1 signaling, reduced cell-to-cell spread and DMV escape. In a targeted siRNA screen, we uncovered that RhoA depletion restored ipgB1 cell-to-cell spread and DMV escape, revealing a critical role for the IpgB1-Rac1 axis in antagonizing RhoA-mediated restriction of DMV escape. Using an infant rabbit model of shigellosis, we showed that the ipgB1 mutant formed fewer and smaller infection foci in the colon of infected animals, which correlated with attenuated symptoms of disease, including epithelial fenestration and bloody diarrhea. Our results demonstrate that, in addition to its role during invasion, IpgB1 modulates Rho family small GTPase signaling to promote cell-to-cell spread, DMV escape, and S. flexneri pathogenesis.
Collapse
|
16
|
Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res 2022; 86:101146. [PMID: 34999137 DOI: 10.1016/j.plipres.2022.101146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute one of the largest families of lipid-binding/transfer proteins (LTPs) in eukaryotes. The current view is that many of them mediate inter-organelle lipid transfer over membrane contact sites (MCS). The transfer occurs in several cases in a 'counter-current' fashion: A lipid such as cholesterol or phosphatidylserine (PS) is transferred against its concentration gradient driven by transport of a phosphoinositide in the opposite direction. In this way ORPs are envisioned to maintain the distinct organelle lipid compositions, with impacts on multiple organelle functions. However, the functions of ORPs extend beyond lipid homeostasis to regulation of processes such as cell survival, proliferation and migration. Important expanding areas of mammalian ORP research include their roles in viral and bacterial infections, cancers, and neuronal function. The yeast OSBP homologue (Osh) proteins execute multifaceted functions in sterol and glycerophospholipid homeostasis, post-Golgi vesicle transport, phosphatidylinositol-4-phosphate, sphingolipid and target of rapamycin (TOR) signalling, and cell cycle control. These observations identify ORPs as lipid transporters and coordinators of signals with an unforeseen variety of cellular processes. Understanding their activities not only enlightens the biology of the living cell but also allows their employment as targets of new therapeutic approaches for disease.
Collapse
Affiliation(s)
- Amita Arora
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
17
|
Wang C, Zeng L. Ubiquitylation Extends to Lipid Substrate for Restricting Bacterial Infection. Front Mol Biosci 2021; 8:791009. [PMID: 34881292 PMCID: PMC8646097 DOI: 10.3389/fmolb.2021.791009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Chaofeng Wang
- Department of Plant Pathology, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, United States
| | - Lirong Zeng
- Department of Plant Pathology, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
18
|
Fang Z, Fallet M, Moest T, Gorvel JP, Méresse S. The Salmonella effector SifA initiates a kinesin-1 and kinesin-3 recruitment process mirroring that mediated by Arl8a/b. J Cell Sci 2021; 135:273658. [PMID: 34878110 DOI: 10.1242/jcs.259183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
When intracellular, pathogenic Salmonella reside in a membrane compartment composed of interconnected vacuoles and tubules, the formation of which depends on the translocation of bacterial effectors into the host cell. Cytoskeletons and their molecular motors are prime targets for these effectors. In this study, we show that the microtubule molecular motor KIF1Bß, a member of the kinesin-3 family, is a key element for the establishment of the Salmonella replication niche as its absence is detrimental to the stability of bacterial vacuoles and the formation of associated tubules. Kinesin-3 interacts with the Salmonella effector SifA but also with SKIP, a host protein complexed to SifA. The interaction with SifA is essential for the recruitment of kinesin-3 on Salmonella vacuoles while that with SKIP is incidental. In the non-infectious context, however, the interaction with SKIP is essential for the recruitment and activity of kinesin-3 on a part of lysosomes. Finally, our results show that in infected cells, the presence of SifA establishes a kinesin-1 and kinesin-3 recruitment pathway that is analogous to and functions independently of that mediated by the Arl8a/b GTPases.
Collapse
Affiliation(s)
- Ziyan Fang
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Mathieu Fallet
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Tomas Moest
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | |
Collapse
|
19
|
SdhA blocks disruption of the Legionella-containing vacuole by hijacking the OCRL phosphatase. Cell Rep 2021; 37:109894. [PMID: 34731604 PMCID: PMC8669613 DOI: 10.1016/j.celrep.2021.109894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Legionella pneumophila grows intracellularly within a replication vacuole via action of Icm/Dot-secreted proteins. One such protein, SdhA, maintains the integrity of the vacuolar membrane, thereby preventing cytoplasmic degradation of bacteria. We show here that SdhA binds and blocks the action of OCRL (OculoCerebroRenal syndrome of Lowe), an inositol 5-phosphatase pivotal for controlling endosomal dynamics. OCRL depletion results in enhanced vacuole integrity and intracellular growth of a sdhA mutant, consistent with OCRL participating in vacuole disruption. Overexpressed SdhA alters OCRL function, enlarging endosomes, driving endosomal accumulation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and interfering with endosomal trafficking. SdhA interrupts Rab guanosine triphosphatase (GTPase)-OCRL interactions by binding to the OCRL ASPM-SPD2-Hydin (ASH) domain, without directly altering OCRL 5-phosphatase activity. The Legionella vacuole encompassing the sdhA mutant accumulates OCRL and endosomal antigen EEA1 (Early Endosome Antigen 1), consistent with SdhA blocking accumulation of OCRL-containing endosomal vesicles. Therefore, SdhA hijacking of OCRL is associated with blocking trafficking events that disrupt the pathogen vacuole.
Collapse
|
20
|
Jiang C, Huang X, Yao J, Yu L, Wei F, Yang A. The role of membrane contact sites at the bacteria-host interface. Crit Rev Microbiol 2021; 48:270-282. [PMID: 34403642 DOI: 10.1080/1040841x.2021.1961678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Membrane contact sites (MCSs) refer to the areas of close proximity between heterologous membranes. A growing body of evidence indicates that MCSs are involved in important cellular functions, such as cellular material transfer, organelle biogenesis, and cell growth. Importantly, the study of MCSs at the bacteria-host interface is an emerging popular research topic. Intracellular bacterial pathogens have evolved a variety of fascinating strategies to interfere with MCSs by injecting effectors into infected host cells. Bacteria-containing vacuoles establish direct physical contact with organelles within the host, ensuring vacuolar membrane integrity and energy supply from host organelles and protecting the vacuoles from the host endocytic pathway and lysosomal degradation. An increasing number of bacterial effectors from various bacterial pathogens hijack components of host MCSs to form the vacuole-organelle MCSs for material exchange. MCS-related events have been identified as new mechanisms of microbial pathogenesis to greatly improve bacterial survival and replication within host cells. In this review, we will discuss the recent advances in MCSs at the bacteria-host interface, focussing on the roles of MCSs mediated by bacterial effectors in microbial pathogenesis.
Collapse
Affiliation(s)
- Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fujing Wei
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Walch P, Selkrig J, Knodler LA, Rettel M, Stein F, Fernandez K, Viéitez C, Potel CM, Scholzen K, Geyer M, Rottner K, Steele-Mortimer O, Savitski MM, Holden DW, Typas A. Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host Microbe 2021; 29:1316-1332.e12. [PMID: 34237247 PMCID: PMC8561747 DOI: 10.1016/j.chom.2021.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/24/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Intracellular bacterial pathogens inject effector proteins to hijack host cellular processes and promote their survival and proliferation. To systematically map effector-host protein-protein interactions (PPIs) during infection, we generated a library of 32 Salmonella enterica serovar Typhimurium (STm) strains expressing chromosomally encoded affinity-tagged effectors and quantified PPIs in macrophages and epithelial cells. We identified 446 effector-host PPIs, 25 of which were previously described, and validated 13 by reciprocal co-immunoprecipitation. While effectors converged on the same host cellular processes, most had multiple targets, which often differed between cell types. We demonstrate that SseJ, SseL, and SifA modulate cholesterol accumulation at the Salmonella-containing vacuole (SCV) partially via the cholesterol transporter Niemann-Pick C1 protein. PipB recruits the organelle contact site protein PDZD8 to the SCV, and SteC promotes actin bundling by phosphorylating formin-like proteins. This study provides a method for probing host-pathogen PPIs during infection and a resource for interrogating STm effector mechanisms.
Collapse
Affiliation(s)
- Philipp Walch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Leigh A Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, USA; Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mandy Rettel
- EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - Frank Stein
- EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - Keith Fernandez
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Cristina Viéitez
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; EMBL European Bioinformatics Institute, (EMBL-EBI), Hinxton, UK
| | - Clément M Potel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Karoline Scholzen
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, TU Braunschweig, Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
22
|
Liu K, Kong L, Graham DB, Carey KL, Xavier RJ. SAC1 regulates autophagosomal phosphatidylinositol-4-phosphate for xenophagy-directed bacterial clearance. Cell Rep 2021; 36:109434. [PMID: 34320354 PMCID: PMC8327279 DOI: 10.1016/j.celrep.2021.109434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Phosphoinositides are important molecules in lipid signaling, membrane identity, and trafficking that are spatiotemporally controlled by factors from both mammalian cells and intracellular pathogens. Here, using small interfering RNA (siRNA) directed against phosphoinositide kinases and phosphatases, we screen for regulators of the host innate defense response to intracellular bacterial replication. We identify SAC1, a transmembrane phosphoinositide phosphatase, as an essential regulator of xenophagy. Depletion or inactivation of SAC1 compromises fusion between Salmonella-containing autophagosomes and lysosomes, leading to increased bacterial replication. Mechanistically, the loss of SAC1 results in aberrant accumulation of phosphatidylinositol-4-phosphate [PI(4)P] on Salmonella-containing autophagosomes, thus facilitating recruitment of SteA, a PI(4)P-binding Salmonella effector protein, which impedes lysosomal fusion. Replication of Salmonella lacking SteA is suppressed by SAC-1-deficient cells, however, demonstrating bacterial adaptation to xenophagy. Our findings uncover a paradigm in which a host protein regulates the level of its substrate and impairs the function of a bacterial effector during xenophagy.
Collapse
Affiliation(s)
- Kai Liu
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingjia Kong
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Graham
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Ramnik J Xavier
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
23
|
Singh MK, Zangoui P, Yamanaka Y, Kenney LJ. Genetic code expansion enables visualization of Salmonella type three secretion system components and secreted effectors. eLife 2021; 10:67789. [PMID: 34061032 PMCID: PMC8192122 DOI: 10.7554/elife.67789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Type three secretion systems enable bacterial pathogens to inject effectors into the cytosol of eukaryotic hosts to reprogram cellular functions. It is technically challenging to label effectors and the secretion machinery without disrupting their structure/function. Herein, we present a new approach for labeling and visualization of previously intractable targets. Using genetic code expansion, we site-specifically labeled SsaP, the substrate specificity switch, and SifA, a here-to-fore unlabeled secreted effector. SsaP was secreted at later infection times; SsaP labeling demonstrated the stochasticity of injectisome and effector expression. SifA was labeled after secretion into host cells via fluorescent unnatural amino acids or non-fluorescent labels and a subsequent click reaction. We demonstrate the superiority of imaging after genetic code expansion compared to small molecule tags. It provides an alternative for labeling proteins that do not tolerate N- or C-terminal tags or fluorophores and thus is widely applicable to other secreted effectors and small proteins.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| | - Parisa Zangoui
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| | - Yuki Yamanaka
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| |
Collapse
|
24
|
Greene AR, Owen KA, Casanova JE. Salmonella Typhimurium manipulates macrophage cholesterol homeostasis through the SseJ-mediated suppression of the host cholesterol transport protein ABCA1. Cell Microbiol 2021; 23:e13329. [PMID: 33742761 DOI: 10.1111/cmi.13329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022]
Abstract
Upon infection of host cells, Salmonella enterica serovar Typhimurium resides in a modified-endosomal compartment referred to as the Salmonella-containing vacuole (SCV). SCV biogenesis is driven by multiple effector proteins translocated through two type III secretion systems (T3SS-1 and T3SS-2). While many host proteins targeted by these effector proteins have been characterised, the role of host lipids in SCV dynamics remains poorly understood. Previous studies have shown that S. Typhimurium infection in macrophages leads to accumulation of intracellular cholesterol, some of which concentrates in and around SCVs; however, the underlying mechanisms remain unknown. Here, we show that S. Typhimurium utilises the T3SS-2 effector SseJ to downregulate expression of the host cholesterol transporter ABCA1 in macrophages, leading to a ~45% increase in cellular cholesterol. Mechanistically, SseJ activates a signalling cascade involving the host kinases FAK and Akt to suppress Abca1 expression. Mutational inactivation of SseJ acyltransferase activity, silencing FAK, or inhibiting Akt prevents Abca1 downregulation and the corresponding accumulation of cholesterol during infection. Importantly, RNAi-mediated silencing of ABCA1 rescued bacterial survival in FAK-deficient macrophages, suggesting that Abca1 downregulation and cholesterol accumulation are important for intracellular survival.
Collapse
Affiliation(s)
- Adam R Greene
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Katherine A Owen
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA.,Ampel Biosolutions, Charlottesville, Virginia, USA
| | - James E Casanova
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, USA.,Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
25
|
Vozandychova V, Stojkova P, Hercik K, Rehulka P, Stulik J. The Ubiquitination System within Bacterial Host-Pathogen Interactions. Microorganisms 2021; 9:638. [PMID: 33808578 PMCID: PMC8003559 DOI: 10.3390/microorganisms9030638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.
Collapse
Affiliation(s)
- Vera Vozandychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Pavla Stojkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Kamil Hercik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000 Prague, Czech Republic
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| |
Collapse
|
26
|
Bao H, Wang S, Zhao JH, Liu SL. Salmonella secretion systems: Differential roles in pathogen-host interactions. Microbiol Res 2020; 241:126591. [PMID: 32932132 DOI: 10.1016/j.micres.2020.126591] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022]
Abstract
The bacterial genus Salmonella includes a large group of food-borne pathogens that cause a variety of gastrointestinal or systemic diseases in hosts. Salmonella use several secretion devices to inject various effectors targeting eukaryotic hosts, or bacteria. In the past few years, considerable progress has been made towards understanding the structural features and molecular mechanisms of the secretion systems of Salmonella, particularly regarding their roles in host-pathogen interactions. In this review, we summarize the current advances about the main characteristics of the Salmonella secretion systems. Clarifying the roles of the secretion systems in the process of infecting various hosts will broaden our understanding of the importance of microbial interactions in maintaining human health and will provide information for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Hongxia Bao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Shuang Wang
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian-Hua Zhao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
27
|
Bacterial DUBs: deubiquitination beyond the seven classes. Biochem Soc Trans 2020; 47:1857-1866. [PMID: 31845741 DOI: 10.1042/bst20190526] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Protein ubiquitination is a posttranslational modification that regulates many aspects of cellular life, including proteostasis, vesicular trafficking, DNA repair and NF-κB activation. By directly targeting intracellular bacteria or bacteria-containing vacuoles to the lysosome, ubiquitination is also an important component of cell-autonomous immunity. Not surprisingly, several pathogenic bacteria encode deubiquitinases (DUBs) and use them as secreted effectors that prevent ubiquitination of bacterial components. A systematic overview of known bacterial DUBs, including their cleavage specificities and biological roles, suggests multiple independent acquisition events from host-encoded DUBs and other proteases. The widely used classification of DUBs into seven well-defined families should only be applied to eukaryotic DUBs, since several bacterial DUBs do not follow this classification.
Collapse
|
28
|
The vacuole guard hypothesis: how intravacuolar pathogens fight to maintain the integrity of their beloved home. Curr Opin Microbiol 2020; 54:51-58. [PMID: 32044688 DOI: 10.1016/j.mib.2020.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Intravacuolar bacterial pathogens establish intracellular niches by constructing membrane-encompassed compartments. The vacuoles surrounding the bacteria are remarkably stable, facilitating microbial replication and preventing exposure to host cytoplasmically localized innate immune sensing mechanisms. To maintain integrity of the membrane compartment, the pathogen is armed with defensive weapons that prevent loss of vacuole integrity and potential exposure to host innate signaling. In some cases, the microbial components that maintain vacuolar integrity have been identified, but the basis for why the compartment degrades in their absence is unclear. In this review, we point out that lessons from the microbial-programmed degradation of the vacuole by the cytoplasmically localized Shigella flexneri provide crucial insights into how degradation of pathogen vacuoles occurs. We propose that in the absence of bacterial-encoded guard proteins, aberrant trafficking of host membrane-associated components results in a dysfunctional pathogen compartment. As a consequence, the vacuole is poisoned and replication is terminated.
Collapse
|
29
|
Azimi T, Zamirnasta M, Sani MA, Soltan Dallal MM, Nasser A. Molecular Mechanisms of Salmonella Effector Proteins: A Comprehensive Review. Infect Drug Resist 2020; 13:11-26. [PMID: 32021316 PMCID: PMC6954085 DOI: 10.2147/idr.s230604] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
Salmonella can be categorized into many serotypes, which are specific to known hosts or broadhosts. It makes no difference which one of the serotypes would penetrate the gastrointestinal tract because they all face similar obstacles such as mucus and microbiome. However, following their penetration, some species remain in the gastrointestinal tract; yet, others spread to another organ like gallbladder. Salmonella is required to alter the immune response to sustain its intracellular life. Changing the host response requires particular effector proteins and vehicles to translocate them. To this end, a categorized gene called Salmonella pathogenicity island (SPI) was developed; genes like Salmonella pathogenicity island encode aggressive or modulating proteins. Initially, Salmonella needs to be attached and stabilized via adhesin factor, without which no further steps can be taken. In this review, an attempt has been made to elaborate on each factor attached to the host cell or to modulating and aggressive proteins that evade immune systems. This review includes four sections: (A) attachment factors or T3SS- independent entrance, (B) effector proteins or T3SS-dependent entrance, (c) regulation of invasive genes, and (D) regulation of immune responses.
Collapse
Affiliation(s)
- Taher Azimi
- Pediatric Infections Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zamirnasta
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
| | - Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, Environmental health Department, School of Public Health, Tehran University of medical sciences, Tehran, Iran
- Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Nasser
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| |
Collapse
|
30
|
Petersen E, Miller SI. The cellular microbiology of Salmonellae interactions with macrophages. Cell Microbiol 2019; 21:e13116. [PMID: 31509644 DOI: 10.1111/cmi.13116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/27/2022]
Abstract
Salmonellae are important enteric pathogens that cause gastroenteritis and systemic illnesses. Macrophages are important components of both the innate and acquired immune system, acting as phagocytes with significant antimicrobial killing activities that present antigen to the adaptive immune system. Macrophages can also be cultured from a variety of sites as primary cells, and the study of the survival and interactions of Salmonellae with these cells is a very early model of infection and cellular microbiology. This review traces the history of discoveries made using Salmonellae infection of macrophages and addresses the possibility of future research in this area, in particular with regards to understanding the complexity of individual bacteria and macrophage cell variability and how such heterogeneity may alter the outcome of infection.
Collapse
Affiliation(s)
- Erik Petersen
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, WA, USA.,Department of Immunology, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|