1
|
Wang MR, Bai CS, Dai JW, Yang L, Quan FY, Ma JC, Chen XY, Zhu SW, Xu YQ, Xiang ZF, Jiang YL, Cheng Q, Zhang WH, Chen KH, Wang JH, Feng Y, Chen XP, Xiong Y, Chen SL, Hou W, Xiong HR. LncRNA MALAT1 facilitates HIV-1 replication by upregulation of CHCHD2 and downregulation of IFN-I expression. Mol Cell Proteomics 2025:100997. [PMID: 40414289 DOI: 10.1016/j.mcpro.2025.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 04/27/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) are effective regulators of both RNA and protein functions throughout cell biology, including viral replication. Emerging studies have shown that lncRNAs activate or inhibit the replication and latency of HIV-1 by regulating different cellular mechanisms. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an oncogenic lncRNA required for paraspeckle integrity and has been proven to be linked to viral infection. However, the mechanisms by which it influences HIV-1 infection in macrophages remain unclear. In this study, we performed RNA-deep sequencing to compare the profiles of lncRNAs in macrophages with or without HIV-1 and found that MALAT1 was dramatically upregulated in HIV-1-infected macrophages. MALAT1 knockdown inhibited HIV-1 infection, whereas MALAT1 overexpression enhanced viral replication, indicating that MALAT1 promotes HIV-1 replication. We further performed proteomics analysis and found that coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) was the most downregulated protein affected by RNAi-mediated knockdown of MALAT1. We next demonstrated that MALAT1 favored HIV-1 replication in a CHCHD2-dependent manner and functioned as a competing endogenous RNA to regulate CHCHD2 expression by sponging miR-145-5p, which could mutually bind the MALAT1 and 3'UTR of chchd2 mRNA. Furthermore, knockdown of endogenous MALAT1 or CHCHD2 with specific small interfering RNAs (siRNAs) promoted the expression of IRF7, and enhanced the promoter activities of interferons-α and -β, increasing their production as well as that of a critical interferon-stimulated gene (ISG), myxovirus resistance protein B (MxB). Moreover, MALAT1 or CHCHD2 knockdown promoted the expression of STAT2 to enhance the production of downstream MxB, which expanded the role of CHCHD2 as a negative regulator of the innate immune response. These findings improve our understanding of MALAT1/miR-145-5p/CHCHD2 pathway regulation of HIV-1 replication in macrophages, providing new insights into potential targeted therapeutic interventions.
Collapse
Affiliation(s)
- Mei-Rong Wang
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China; Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai 264000, Shandong Province, China
| | - Cheng-Si Bai
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Jian-Wei Dai
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Lan Yang
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Fang-Yi Quan
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Jian-Chun Ma
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Xing-Yuan Chen
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Shao-Wei Zhu
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Ying-Qi Xu
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Zhou-Fu Xiang
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Ya-le Jiang
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Qi Cheng
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Wei-Hao Zhang
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Ke-Han Chen
- School of Public Health, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong Province, China
| | - Yong Feng
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Xiao-Ping Chen
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Yong Xiong
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Shu-Liang Chen
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Wei Hou
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China; School of Public Health, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518057, Guangdong Province, China.
| | - Hai-Rong Xiong
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China.
| |
Collapse
|
2
|
John K, Huntress I, Smith E, Chou H, Tollison TS, Covarrubias S, Crisci E, Carpenter S, Peng X. Human long noncoding RNA VILMIR is induced by major respiratory viral infections and modulates the host interferon response. J Virol 2025; 99:e0014125. [PMID: 40130878 PMCID: PMC11998520 DOI: 10.1128/jvi.00141-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) are a newer class of noncoding transcripts identified as key regulators of biological processes. Here, we aimed to identify novel lncRNA targets that play critical roles in major human respiratory viral infections by systematically mining large-scale transcriptomic data sets. Using bulk RNA-sequencing (RNA-seq) analysis, we identified a previously uncharacterized lncRNA, named virus-inducible lncRNA modulator of interferon response (VILMIR), that was consistently upregulated after in vitro influenza infection across multiple human epithelial cell lines and influenza A virus subtypes. VILMIR was also upregulated after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory syncytial virus (RSV) infections in vitro. We experimentally confirmed the response of VILMIR to influenza infection and interferon-beta (IFN-β) treatment in the A549 human epithelial cell line and found the expression of VILMIR was robustly induced by IFN-β treatment in a dose- and time-specific manner. Single-cell RNA-seq analysis of bronchoalveolar lavage fluid samples from coronavirus disease 2019 (COVID-19) patients uncovered that VILMIR was upregulated across various cell types, including at least five immune cells. The upregulation of VILMIR in immune cells was further confirmed in the human T cell and monocyte cell lines, SUP-T1 and THP-1, after IFN-β treatment. Finally, we found that knockdown of VILMIR expression reduced the magnitude of host transcriptional responses to both IFN-β treatment and influenza A virus infection in A549 cells. Together, our results show that VILMIR is a novel interferon-stimulated gene (ISG) that regulates the host interferon response and may be a potential therapeutic target for human respiratory viral infections upon further mechanistic investigation.IMPORTANCEIdentifying host factors that regulate the immune response to human respiratory viral infection is critical to developing new therapeutics. Human long noncoding RNAs (lncRNAs) have been found to play key regulatory roles during biological processes; however, the majority of lncRNA functions within the host antiviral response remain unknown. In this study, we identified that a previously uncharacterized lncRNA, virus-inducible lncRNA modulator of interferon response (VILMIR), is upregulated after major respiratory viral infections including influenza, severe acute respiratory syndrome coronavirus 2, and respiratory syncytial virus. We demonstrated that VILMIR is an interferon-stimulated gene that is upregulated after interferon-beta (IFN-β) in several human cell types. We also found that knockdown of VILMIR reduced the magnitude of host transcriptional responses to IFN-β treatment and influenza A infection in human epithelial cells. Our results reveal that VILMIR regulates the host interferon response and may present a new therapeutic target during human respiratory viral infections.
Collapse
Affiliation(s)
- Kristen John
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Genetics & Genomics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Ian Huntress
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Ethan Smith
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Hsuan Chou
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Tammy S. Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Yu X, Su N, Luo J, Zhang D, Zhang H, Duan M, Shi N. Long noncoding RNA USP30-AS1 promotes influenza A virus replication by enhancing PHB1 function. Vet Microbiol 2025; 303:110444. [PMID: 40020267 DOI: 10.1016/j.vetmic.2025.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of gene expression. Although evidence accumulated over the past decade shows that lncRNAs have key roles in the interaction between viruses and hosts, the functions of the majority of differentially expressed lncRNAs in response to viral infections remain uncharacterized so far. In this study, we have identified that USP30 antisense RNA 1 (USP30-AS1), a host antisense lncRNA, is hijacked by influenza A virus (IAV) to assist its replication. We show that USP30-AS1 is IAV-induced via the Janus protein tyrosine kinase-signal transducer and the activator of transcription (JAK-STAT) signaling pathway. Functionally, ectopic expression of USP30-AS1 significantly promotes IAV replication. Conversely, silencing USP30-AS1 suppresses IAV replication. Mechanistically, USP30-AS1 directly binds prohibitin 1 (PHB1) and modulates its protein stability and function. On the one hand, the binding of USP30-AS1 sequesters PHB1 away from the E3 ubiquitin ligase, tripartite motif containing 21 (TRIM21), thereby protecting the protein stability of PHB1. On the other hand, USP30-AS1 serves as a molecular scaffold for enhancing the interaction between PHB1 and interferon regulatory factor 3 (IRF3), which in turn impedes the nuclear import of IRF3. Therefore, our data unveil an important role of USP30-AS1 in promoting viral replication by modulating PHB1 stability and functions, providing a new insight into the role of lncRNAs in the interplay between IAV and host.
Collapse
Affiliation(s)
- Xiuhua Yu
- Department of Pediatric Respiration, Children's Medical Center, The First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ning Su
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jinna Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Daining Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Hansi Zhang
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Ming Duan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China.
| | - Ning Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
4
|
Zhang M, Zeng Y, Liu Q, Li F, Zhao J, Liu Z, Liu H, Feng H. The H5N1-NS1 protein affects the host cell cycle and apoptosis through interaction with the host lncRNA PIK3CD-AS2. Virus Genes 2025; 61:38-53. [PMID: 39424707 DOI: 10.1007/s11262-024-02118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Long noncoding RNAs (lncRNAs) are involved in the host antiviral response, but how host lncRNAs interact with viral proteins remains unclear. The NS1 protein of avian influenza viruses can affect the interferon-dependent expression of several host lncRNAs, but the exact mechanism is unknown. To further investigate the molecular mechanism and functions of NS1 proteins and host lncRNAs, we performed RNA-immunoprecipitation sequencing assays on A549 cells transfected with the H5N1-NS1 gene. We identified multiple sets of host lncRNAs that interact with NS1. The results of the RNA pulldown assay indicated that PIK3CD-AS2 can directly interact with NS1 in vitro. Immunofluorescence confocal microscopy showed that these proteins were colocalized in the nucleus. Further studies revealed that PIK3CD-AS2 can also inhibit the transcription of NS1, which in turn affects the translation of the NS1 protein. PIK3CD-AS2 overexpression regulates NS1 protein-induced cell cycle arrest and initiates apoptosis. We hope this work will help elucidate the molecular mechanisms associated with NS1 proteins in the study of viral infections to promote the development of potential treatments for patients infected with avian influenza A viruses.
Collapse
Affiliation(s)
- Man Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China
| | - Qingqing Liu
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
| | - Feng Li
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drugs, Shenyang, 110036, Liaoning, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co, Shenyang, 110179, Liaoning, China
| | - Hongsheng Liu
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China.
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China.
- School of Pharmacy Sciences, Liaoning University, Shenyang, 110036, Liaoning, China.
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drugs, Shenyang, 110036, Liaoning, China.
| | - Huawei Feng
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China.
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China.
- School of Pharmacy Sciences, Liaoning University, Shenyang, 110036, Liaoning, China.
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drugs, Shenyang, 110036, Liaoning, China.
| |
Collapse
|
5
|
Luo N, Cheng A, Wang M, Chen S, Liu M, Zhu D, Wu Y, Tian B, Ou X, Huang J, Wu Z, Yin Z, Jia R. Up-regulated Lnc BTU promotes the production of duck plague virus DNA polymerase and inhibits the activation of JAK-STAT pathway to facilitate duck plague virus replication. Poult Sci 2024; 103:104238. [PMID: 39383668 PMCID: PMC11490923 DOI: 10.1016/j.psj.2024.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/11/2024] Open
Abstract
Duck plague virus (DPV) is the only herpes virus known to be transmissible among aquatic animals, leading to immunosuppression in ducks, geese and swans. Long noncoding RNAs (LncRNA) are known to participate in viral infections, acting as either immune defenders or viral targets to evade the host response, but their precise roles in waterfowl virus infections are yet to be fully understood. This study aimed to investigate the role of LncRNA in DPV-induced innate immune responses. Results showed that DPV infection greatly upregulated Lnc BTU expression in duck embryo fibroblasts (DEF) and Lnc BTU promoted DPV replication. Mechanically, 4 DPV proteins, namely UL46, UL42, VP22 and US10, interacted with Lnc BTU, leading to its upregulation. Specifically, Lnc BTU facilitated the production of DNA polymerase by enhancing UL42 expression, thereby promoting DPV replication. Additionally, Lnc BTU suppressed STAT1 expression by targeting the DNA binding domain (DBD) and promoting STAT1 degradation through the proteasome pathway. Furthermore, Lnc BTU inhibited the production of key antiviral factors such as IFN-α, IFN-β, MX and OASL during DPV infection. Treatment with 2 JAK-STAT pathway activators in DEFs resulted in the inhibition of Lnc BTU expression and DPV replication. Interestingly, DPV infection led to a decrease in STAT1 levels, which was reversed by Si-Lnc BTU. These findings suggest that DPV relies on Lnc BTU to inhibit the activation of the JAK-STAT pathway and limit the production of type 1 interferons (IFN) to complete immune evasion. Our study highlights the novel role of DPV proteins UL46, UL42, VP22, US10 as RNA-binding proteins in modulating the innate antiviral immune response, and discover the role of a new host factor, Lnc BTU, in DPV immune evasion, Lnc BTU and STAT1 can be used as a potential therapeutic target for DPV infection and immune evasion.
Collapse
Affiliation(s)
- Ning Luo
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China.
| |
Collapse
|
6
|
Wang Y, Shi N, Zhang H, Luo J, Yan H, Hou H, Guan Z, Zhao L, Duan M. LINC01197 inhibits influenza A virus replication by serving as a PABPC1 decoy. Vet Res 2024; 55:121. [PMID: 39334466 PMCID: PMC11430458 DOI: 10.1186/s13567-024-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024] Open
Abstract
Influenza A viruses (IAVs) significantly impact animal and human health due to their zoonotic potential. A growing body of evidence indicates that the host's long noncoding RNAs (lncRNAs) play crucial roles in regulating host-virus interactions during IAV infection. However, numerous lncRNAs associated with IAV infection have not been well characterised. Here, in this study, we identify the LINC01197 as an antiviral host factor. LINC01197 was significantly upregulated after IAV infection, which is controlled by the NF-κB pathway. Functional analysis revealed that overexpression of LINC01197 inhibited IAV replication and virus production, while knockdown of LINC01197 facilitated IAV replication. Mechanistically, LINC01197 directly interacts with poly(A) binding protein cytoplasmic 1 (PABPC1), which in turn sequesters and restricts its functions. This work shows that LINC01197 acts as a protein decoy, suppressing IAV replication and playing a key role in controlling IAV replication.
Collapse
Affiliation(s)
- Yihe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Ning Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Hansi Zhang
- College of Basic Medical Sciences, Jilin University, 130021, Changchun, Jilin Province, China
| | - Jinna Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Hongjian Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Huiyan Hou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Zhenhong Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Lili Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Ming Duan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China.
| |
Collapse
|
7
|
Black CM, Braden AA, Nasim S, Tripathi M, Xiao J, Khan MM. The Association between Long Non-Coding RNAs and Alzheimer's Disease. Brain Sci 2024; 14:818. [PMID: 39199508 PMCID: PMC11353078 DOI: 10.3390/brainsci14080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Neurodegeneration occurs naturally as humans age, but the presence of additional pathogenic mechanisms yields harmful and consequential effects on the brain. Alzheimer's disease (AD), the most common form of dementia, is a composite of such factors. Despite extensive research to identify the exact causes of AD, therapeutic approaches for treating the disease continue to be ineffective, indicating important gaps in our understanding of disease mechanisms. Long non-coding RNAs (lncRNAs) are an endogenous class of regulatory RNA transcripts longer than 200 nucleotides, involved in various regulatory networks, whose dysregulation is evident in several neural and extraneural diseases. LncRNAs are ubiquitously expressed across all tissues with a wide range of functions, including controlling cell differentiation and development, responding to environmental stimuli, and other physiological processes. Several lncRNAs have been identified as potential contributors in worsening neurodegeneration due to altered regulation during abnormal pathological conditions. Within neurological disease, lncRNAs are prime candidates for use as biomarkers and pharmacological targets. Gender-associated lncRNA expression is altered in a gender-dependent manner for AD, suggesting more research needs to be focused on this relationship. Overall, research on lncRNAs and their connection to neurodegenerative disease is growing exponentially, as commercial enterprises are already designing and employing RNA therapeutics. In this review we offer a comprehensive overview of the current state of knowledge on the role of lncRNAs in AD and discuss the potential implications of lncRNA as potential therapeutic targets and diagnostic biomarkers in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Carson M. Black
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
| | - Anneliesse A. Braden
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Samia Nasim
- Departments of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Manish Tripathi
- Medicine and Oncology, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
| | - Jianfeng Xiao
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
| | - Mohammad Moshahid Khan
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Division of Regenerative and Rehabilitation Sciences, Department of Physical Therapy, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Chi X, Huang G, Wang L, Zhang X, Liu J, Yin Z, Guo G, Chen Y, Wang S, Chen JL. A small protein encoded by PCBP1-AS1 is identified as a key regulator of influenza virus replication via enhancing autophagy. PLoS Pathog 2024; 20:e1012461. [PMID: 39137200 PMCID: PMC11343454 DOI: 10.1371/journal.ppat.1012461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/23/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Many annotated long noncoding RNAs (lncRNAs) contain small open reading frames (sORFs), some of which have been demonstrated to encode small proteins or micropeptides with fundamental biological importance. However, functions of lncRNAs-encoded small proteins or micropeptides in viral pathogenesis remain largely unexplored. Here, we identified a 110-amino acid small protein as a key regulator of influenza A virus (IAV) replication. This small protein that we call PESP was encoded by the putative lncRNA PCBP1-AS1. It was observed that both PCBP1-AS1 and PESP were significantly upregulated by IAV infection. Furthermore, they were markedly induced by treatment with either type I or type III interferon. Overexpression of either PCBP1-AS1 or PESP alone significantly enhanced IAV replication. In contrast, shRNA-mediated knockdown of PCBP1-AS1 or CRISPR/Cas9-mediated knockout of PESP markedly inhibited the viral production. Moreover, the targeted deletion or mutation of the sORF within the PCBP1-AS1 transcript, which resulted in the disruption of PESP expression, significantly diminished the capacity of PCBP1-AS1 to enhance IAV replication, underscoring the indispensable role of PESP in the facilitation of IAV replication by PCBP1-AS1. Interestingly, overexpression of PESP enhanced the IAV-induced autophagy by increasing the expression of ATG7, an essential autophagy effector enzyme. We also found that the 7-22 amino acids at the N-terminus of PESP were crucial for its functionality in modulating ATG7 expression and action as an enhancer of IAV replication. Additionally, HSP90AA1, a protein identified previously as a facilitator of autophagy, was found to interact with PESP, resulting in the stabilization of PESP and consequently an increase in the production of IAV. These data reveal a critical lncRNA-encoded small protein that is induced and exploited by IAV during its infection, and provide a significant insight into IAV-host interaction network.
Collapse
Affiliation(s)
- Xiaojuan Chi
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guiying Huang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liwei Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinge Zhang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayin Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhihui Yin
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Song Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Wang J, Wang Q, Ma L, Lv K, Han L, Chen Y, Zhou R, Zhou H, Chen H, Wang Y, Zhang T, Yi D, Liu Q, Zhang Y, Li X, Cheng T, Zhang J, Huang C, Dong Y, Zhang W, Cen S. Development of an mRNA-based therapeutic vaccine mHTV-03E2 for high-risk HPV-related malignancies. Mol Ther 2024; 32:2340-2356. [PMID: 38715363 PMCID: PMC11286823 DOI: 10.1016/j.ymthe.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/16/2024] [Accepted: 04/30/2024] [Indexed: 07/06/2024] Open
Abstract
Human papillomavirus (HPV) 16 and 18 infections are related to many human cancers. Despite several preventive vaccines for high-risk (hr) HPVs, there is still an urgent need to develop therapeutic HPV vaccines for targeting pre-existing hrHPV infections and lesions. In this study, we developed a lipid nanoparticle (LNP)-formulated mRNA-based HPV therapeutic vaccine (mHTV)-03E2, simultaneously targeting the E2/E6/E7 of both HPV16 and HPV18. mHTV-03E2 dramatically induced antigen-specific cellular immune responses, leading to significant CD8+ T cell infiltration and cytotoxicity in TC-1 tumors derived from primary lung epithelial cells of C57BL/6 mice expressing HPV E6/E7 antigens, mediated significant tumor regression, and prolonged animal survival, in a dose-dependent manner. We further demonstrated significant T cell immunity against HPV16/18 E6/E7 antigens for up to 4 months post-vaccination in immunological and distant tumor rechallenging experiments, suggesting robust memory T cell immunity against relapse. Finally, mHTV-03E2 synergized with immune checkpoint blockade to inhibit tumor growth and extend animal survival, indicating the potential in combination therapy. We conclude that mHTV-03E2 is an excellent candidate therapeutic mRNA vaccine for treating malignancies caused by HPV16 or HPV18 infections.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Qixin Wang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Lu Han
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Yunfeng Chen
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Haokun Zhou
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Hua Chen
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Yi Wang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | | | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Tingting Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Jinming Zhang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | | | - Yijie Dong
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China.
| | - Weiguo Zhang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China.
| |
Collapse
|
10
|
Wang J, Ma L, Chen Y, Zhou R, Wang Q, Zhang T, Yi D, Liu Q, Zhang Y, Zhang W, Dong Y, Cen S. Immunogenicity and effectiveness of an mRNA therapeutic vaccine for HPV-related malignancies. Life Sci Alliance 2024; 7:e202302448. [PMID: 38514186 PMCID: PMC10958088 DOI: 10.26508/lsa.202302448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Human papillomavirus (HPV) infections account for several human cancers. There is an urgent need to develop therapeutic vaccines for targeting preexisting high-risk HPV (such as HPV 16 and 18) infections and lesions, which are insensitive to preventative vaccines. In this study, we developed a lipid nanoparticle-formulated mRNA-based HPV therapeutic vaccine (mHTV), mHTV-02, targeting the E6/E7 of HPV16 and HPV-18. mHTV-02 dramatically induced antigen-specific cellular immune response and robust memory T-cell immunity in mice, besides significant CD8+ T-cell infiltration and cytotoxicity in TC-1 tumors expressing HPV E6/E7, resulting in tumor regression and prolonged survival in mice. Moreover, evaluation of routes of administration found that intramuscular or intratumoral injection of mHTV-02 displayed significant therapeutic effects. In contrast, intravenous delivery of the vaccine barely showed any benefit in reducing tumor size or improving animal survival. These data together support mHTV-02 as a candidate therapeutic mRNA vaccine via specific administration routes for treating malignancies caused by HPV16 or HPV18 infections.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yunfeng Chen
- RinuaGene Biotechnology Co., Ltd., Suzhou, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Qixin Wang
- RinuaGene Biotechnology Co., Ltd., Suzhou, China
| | | | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Weiguo Zhang
- RinuaGene Biotechnology Co., Ltd., Suzhou, China
| | - Yijie Dong
- RinuaGene Biotechnology Co., Ltd., Suzhou, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
11
|
Iancu IV, Diaconu CC, Plesa A, Fudulu A, Albulescu A, Neagu AI, Pitica IM, Dragu LD, Bleotu C, Chivu‐Economescu M, Matei L, Mambet C, Nedeianu S, Popescu CP, Sultana C, Ruta SM, Botezatu A. LncRNAs expression profile in a family household cluster of COVID-19 patients. J Cell Mol Med 2024; 28:e18226. [PMID: 38501860 PMCID: PMC10949602 DOI: 10.1111/jcmm.18226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/20/2024] Open
Abstract
More than 3 years after the start of SARS-CoV-2 pandemic, the molecular mechanisms behind the viral pathogenesis are still not completely understood. Long non-coding RNAs (lncRNAs), well-known players in viral infections, can represent prime candidates for patients' risk stratification. The purpose of the current study was to investigate the lncRNA profile in a family cluster of COVID-19 cases with different disease progression, during the initial wave of the pandemic and to evaluate their potential as biomarkers for COVID-19 evolution. LncRNA expression was investigated in nasopharyngeal swabs routinely collected for diagnosis. Distinct expression patterns of five lncRNAs (HOTAIR, HOTAIRM1, TMEVPG1, NDM29 and snaR) were identified in all the investigated cases, and they were associated with disease severity. Additionally, a significant increase in the expression of GAS5-family and ZFAS1 lncRNAs, which target factors involved in the inflammatory response, was observed in the sample collected from the patient with the most severe disease progression. An lncRNA prognostic signature was defined, opening up novel research avenues in understanding the interactions between lncRNAs and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Adriana Plesa
- Stefan S Nicolau Institute of VirologyBucharestRomania
| | - Alina Fudulu
- Stefan S Nicolau Institute of VirologyBucharestRomania
| | - Adrian Albulescu
- Stefan S Nicolau Institute of VirologyBucharestRomania
- Department of PharmacologyNational Institute for Chemical Pharmaceutical Research and DevelopmentBucharestRomania
| | - Ana Iulia Neagu
- Stefan S Nicolau Institute of VirologyBucharestRomania
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | | | | | | | | | - Lilia Matei
- Stefan S Nicolau Institute of VirologyBucharestRomania
| | | | | | - Corneliu Petru Popescu
- Carol Davila University of Medicine and PharmacyBucharestRomania
- Dr Victor Babes Infectious and Tropical Diseases Clinical HospitalBucharestRomania
| | - Camelia Sultana
- Stefan S Nicolau Institute of VirologyBucharestRomania
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - Simona Maria Ruta
- Stefan S Nicolau Institute of VirologyBucharestRomania
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - Anca Botezatu
- Stefan S Nicolau Institute of VirologyBucharestRomania
| |
Collapse
|
12
|
John K, Huntress I, Smith E, Chou H, Tollison TS, Covarrubias S, Crisci E, Carpenter S, Peng X. Human long noncoding RNA, VILMIR, is induced by major respiratory viral infections and modulates the host interferon response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586578. [PMID: 38585942 PMCID: PMC10996554 DOI: 10.1101/2024.03.25.586578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Long noncoding RNAs (lncRNAs) are a newer class of noncoding transcripts identified as key regulators of biological processes. Here we aimed to identify novel lncRNA targets that play critical roles in major human respiratory viral infections by systematically mining large-scale transcriptomic datasets. Using bulk RNA-sequencing (RNA-seq) analysis, we identified a previously uncharacterized lncRNA, named virus inducible lncRNA modulator of interferon response (VILMIR), that was consistently upregulated after in vitro influenza infection across multiple human epithelial cell lines and influenza A virus subtypes. VILMIR was also upregulated after SARS-CoV-2 and RSV infections in vitro. We experimentally confirmed the response of VILMIR to influenza infection and interferon-beta (IFN-β) treatment in the A549 human epithelial cell line and found the expression of VILMIR was robustly induced by IFN-β treatment in a dose and time-specific manner. Single cell RNA-seq analysis of bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients uncovered that VILMIR was upregulated across various cell types including at least five immune cells. The upregulation of VILMIR in immune cells was further confirmed in the human T cell and monocyte cell lines, SUP-T1 and THP-1, after IFN-β treatment. Finally, we found that knockdown of VILMIR expression reduced the magnitude of host transcriptional responses to IFN-β treatment in A549 cells. Together, our results show that VILMIR is a novel interferon-stimulated gene (ISG) that regulates the host interferon response and may be a potential therapeutic target for human respiratory viral infections upon further mechanistic investigation.
Collapse
Affiliation(s)
- Kristen John
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC
- Genetics & Genomics Graduate Program, North Carolina State University, Raleigh, NC
| | - Ian Huntress
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC
| | - Ethan Smith
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC
| | - Hsuan Chou
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC
| | - Tammy S. Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
| |
Collapse
|
13
|
Wang M, Yao X, Tong X, Qi D, Ye X. Lnc-RPS6P3 Inhibits Influenza A Virus Replication and Attenuates the Inhibitory Effect of NS1 on Innate Immune Response. Microorganisms 2024; 12:654. [PMID: 38674599 PMCID: PMC11052439 DOI: 10.3390/microorganisms12040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Host factors play important roles in influenza A virus (IAV) replication. In order to identify novel host factors involved in IAV replication, we compared the differentially expressed genes in A549 cells after IAV infection. We found that lncRNA lnc-RPS6P3 was up-regulated upon viral infection and poly(I:C) and IFN-β treatment, indicating it was an interferon-stimulated gene. Functional analysis demonstrated that overexpression of lnc-RPS6P3 inhibited IAV replication while knockdown of lnc-RPS6P3 promoted viral infection in A549 cells. Lnc-RPS6P3 inhibited both transcription and replication of IAV. Further study showed that lnc-RPS6P3 interacted with viral NP and interfered with NP self-oligomerization and, consequently, inhibited vRNP activity. In addition, lnc-RPS6P3 interacted with viral NS1 and reduced the interaction of NS1 and RIG-I; it also attenuated the inhibitory effect of NS1 on IFN-β stimulation. In conclusion, we revealed that lnc-RPS6P3 is an interferon-stimulated gene that inhibits IAV replication and attenuates the inhibitory effect of NS1 on innate immune response.
Collapse
Affiliation(s)
- Mingge Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China;
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; (X.Y.); (X.T.); (D.Q.)
| | - Xinli Yao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; (X.Y.); (X.T.); (D.Q.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Tong
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; (X.Y.); (X.T.); (D.Q.)
| | - Dandan Qi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; (X.Y.); (X.T.); (D.Q.)
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; (X.Y.); (X.T.); (D.Q.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Ayoub SE, Shaker OG, Masoud M, Hassan EA, Ezzat EM, Ahmed MI, Ahmed RI, Amin AAI, Abd El Reheem F, Khalefa AA, Mahmoud RH. Altered expression of serum lncRNA CASC2 and miRNA-21-5p in COVID-19 patients. Hum Genomics 2024; 18:18. [PMID: 38342902 PMCID: PMC10860220 DOI: 10.1186/s40246-024-00578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024] Open
Abstract
Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has a high incidence of spread. On January 30, 2020, the World Health Organization proclaimed a public health emergency of worldwide concern. More than 6.9 million deaths and more than 768 million confirmed cases had been reported worldwide as of June 18, 2023. This study included 51 patients and 50 age- and sex-matched healthy subjects. The present study aimed to identify the expression levels of lncRNA CASC2 and miRNA-21-5p (also known as miRNA-21) in COVID-19 patients and their relation to the clinicopathological characteristics of the disease. The expression levels of noncoding RNAs were measured by RT-PCR technique. Results detected that CASC2 was significantly downregulated while miRNA-21-5p was significantly upregulated in COVID-19 patients compared to healthy subjects. A significant negative correlation was found between CASC2 and miRNA-21-5p. ROC curve analysis used to distinguish COVID-19 patients from controls. MiRNA-21-p serum expression level had a significant positive association with temperature and PO2 (p = 0.04 for each). These findings indicate that CASC2 and miRNA-21-p might be used as potential diagnostic and therapeutic biomarkers in COVID-19.
Collapse
Affiliation(s)
- Shymaa E Ayoub
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt.
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Masoud
- Department of Public Health and Community Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Essam A Hassan
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Eman M Ezzat
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mona I Ahmed
- Department of Chest Disease and Tuberculosis, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Randa I Ahmed
- Department of Chest Disease and Tuberculosis, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Amal A Ibrahim Amin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Fadwa Abd El Reheem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Abeer A Khalefa
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rania H Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
15
|
Zhang X, Li Y, Huan C, Hou Y, Liu R, Shi H, Zhang P, Zheng B, Wang Y, Wang H, Zhang W. LncRNA NKILA inhibits HBV replication by repressing NF-κB signalling activation. Virol Sin 2024; 39:44-55. [PMID: 37832719 PMCID: PMC10877346 DOI: 10.1016/j.virs.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Hepatitis B virus (HBV) infection results in liver cirrhosis and hepatocellular carcinoma (HCC). HBx/nuclear factor (NF)-κB pathway plays a role in HBV replication. However, whether NF-κB-interacting long noncoding RNA (NKILA), a suppressor of NF-κB activation, regulates HBV replication remains largely unknown. In this study, gain-and-loss experiments showed that NKILA inhibited HBV replication by inhibiting NF-κB activity. In turn, HBV infection down-regulated NKILA expression. In addition, expression levels of NKILA were lower in the peripheral blood-derived monocytes (PBMCs) of HBV-positive patients than in healthy individuals, which were correlated with HBV viral loads. And a negative correlation between NKILA expression level and HBV viral loads was observed in blood serum from HBV-positive patients. Lower levels of endogenous NKILA were also observed in HepG2 cells expressing a 1.3-fold HBV genome, HBV-infected HepG2-NTCP cells, stable HBV-producing HepG2.2.15 and HepAD38 cells, compared to those HBV-negative cells. Furthermore, HBx was required for NKILA-mediated inhibition on HBV replication. NKILA decreased HBx-induced NF-κB activation by interrupting the interaction between HBx and p65, whereas NKILA mutants lack of essential domains for NF-ĸB inhibition, lost the ability to inhibit HBV replication. Together, our data demonstrate that NKILA may serve as a suppressor of HBV replication via NF-ĸB signalling.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China; Department of Ophthalmology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yuanyuan Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Chen Huan
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yubao Hou
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Rujia Liu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Hongyun Shi
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Peng Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yingchao Wang
- Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130012, China.
| | - Hong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China.
| | - Wenyan Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
Cheng J, Tao J, Li B, Shi Y, Liu H. The lncRNA HCG4 regulates the RIG-I-mediated IFN production to suppress H1N1 swine influenza virus replication. Front Microbiol 2024; 14:1324218. [PMID: 38274760 PMCID: PMC10808666 DOI: 10.3389/fmicb.2023.1324218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Influenza A virus (IAV) non-structural protein 1 (NS1) is a virulence factor that allows the virus to replicate efficiently by suppressing host innate immune responses. Previously, we demonstrated that the serine (S) at position 42 of NS1 in H1N1 swine influenza virus (SIV) is a critical residue in interferon (IFN) resistance, thus facilitating viral infections. Here, by lncRNA-seq, a total of 153 differentially expressed lncRNAs were identified, and the lncRNA HCG4 was selected due to its significantly higher expression after infection with the NS1 S42P mutant virus. Overexpression of HCG4 enhanced IFN-β production and suppressed SIV infection, highlighting the potential antiviral activity of HCG4 against SIV. Further investigation suggested that HCG4 served as a positive feedback mediator for RIG-I signaling. It alleviated the inhibitory effect on RIG-I K63-linked ubiquitination by NS1 protein, thereby resulting in an increase in RIG-I-mediated IFN production. Taken together, our findings demonstrate that HCG4 modulates the innate immune response to SIV infection through K63-linked RIG-I ubiquitination, providing insights into the role of lncRNAs in controlling viral infections.
Collapse
Affiliation(s)
- Jinghua Cheng
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Ying Shi
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| |
Collapse
|
17
|
Yao X, Zhong L, Wang M, Wang M, Han Y, Wang Y, Zhou J, Song J, Li Y, Xu Y. Up-regulated lncRNA CYLD as a ceRNA of miR-2383 facilitates bovine viral diarrhea virus replication by promoting CYLD expression to counteract RIG-I-mediated type-I IFN production. Int J Biol Macromol 2023; 253:127351. [PMID: 37839600 DOI: 10.1016/j.ijbiomac.2023.127351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most important pathogens of cattle, causing numerous economic losses to the cattle industry. To date, many potential mechanisms of BVDV evading or subverting innate immunity are still unknown. In this study, an lnc-CYLD/miR-2383/CYLD axis involved in BVDV-host interactions was screened from RNA-seq-based co-expression networks analysis of long noncoding RNAs, microRNAs and mRNAs in BVDV-infected bovine cells, and underlying mechanisms of lnc-CYLD/miR-2383/CYLD axis regulating BVDV replication were explored. Results showed that BVDV-induced up-regulation of the lnc-CYLD competed for binding to the miR-2383, and then promoted CYLD expression, thereby inhibiting RIG-I-mediated type-I interferon (IFN) production, which was subsequently confirmed by treatment with lnc-CYLD overexpression and miR-2383 inhibitor. However, miR-2383 transfection and small interfering RNA-mediated lnc-CYLD knockdown inhibited CYLD expression and enhanced RIG-I-mediated type-I IFN production, inhibiting BVDV replication. In addition, interaction relationship between lnc-CYLD and miR-2383, and colocalization relationship of lnc-CYLD, miR-2383 and CYLD were confirmed by dual-luciferase assay and in situ hybridization assay. Conclusively, up-regulation of the lnc-CYLD as a competing endogenous RNA binds to the miR-2383 to reduce inhibitory effect of the miR-2383 on the CYLD expression, playing an important role in counteracting type-I IFN-dependent antiviral immunity to facilitate BVDV replication.
Collapse
Affiliation(s)
- Xin Yao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China; Key Laboratory for Animal Disease Control and Pharmaceutical Development of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Linhan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Mengmeng Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Mei Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yanyan Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yixin Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiaying Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jingge Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yuan Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.
| | - Yigang Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
18
|
Hu Q, Xia X, Lian Z, Tian H, Li Z. Regulatory mechanism of LncRNAs in gonadal differentiation of hermaphroditic fish, Monopterus albus. Biol Sex Differ 2023; 14:74. [PMID: 37880697 PMCID: PMC10598917 DOI: 10.1186/s13293-023-00559-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Monopterus albus is a hermaphroditic fish with sex reversal from ovaries to testes via the ovotestes in the process of gonadal development, but the molecular mechanism of the sex reversal was unknown. METHODS We produced transcriptomes containing mRNAs and lncRNAs in the crucial stages of the gonad, including the ovary, ovotestis and testis. The expression of the crucial lncRNAs and their target genes was detected using qRT‒PCR and in situ hybridization. The methylation level and activity of the lncRNA promoter were analysed by applying bisulfite sequencing PCR and dual-luciferase reporter assays, respectively. RESULTS This effort revealed that gonadal development was a dynamic expression change. Regulatory networks of lncRNAs and their target genes were constructed through integrated analysis of lncRNA and mRNA data. The expression and DNA methylation of the lncRNAs MSTRG.38036 and MSTRG.12998 and their target genes Psmβ8 and Ptk2β were detected in developing gonads and sex reversal gonads. The results showed that lncRNAs and their target genes exhibited consistent expression profiles and that the DNA methylation levels were negatively regulated lncRNA expression. Furthermore, we found that Ptk2β probably regulates cyp19a1 expression via the Ptk2β/EGFR/STAT3 pathway to reprogram sex differentiation. CONCLUSIONS This study provides novel insight from lncRNA to explore the potential molecular mechanism by which DNA methylation regulates lncRNA expression to facilitate target gene transcription to reprogram sex differentiation in M. albus, which will also enrich the sex differentiation mechanism of teleosts.
Collapse
Affiliation(s)
- Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wudayuan First Road 8, Wuhan, 430223, China.
| | - Xueping Xia
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wudayuan First Road 8, Wuhan, 430223, China
| | - Zitong Lian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wudayuan First Road 8, Wuhan, 430223, China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wudayuan First Road 8, Wuhan, 430223, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wudayuan First Road 8, Wuhan, 430223, China.
| |
Collapse
|
19
|
Hu J, Zhang L, Zheng X, Wang G, Chen X, Hu Z, Chen Y, Wang X, Gu M, Hu S, Liu X, Jiao X, Peng D, Liu X. Long noncoding RNA #61 exerts a broad anti-influenza a virus effect by its long arm rings. Antiviral Res 2023; 215:105637. [PMID: 37196902 DOI: 10.1016/j.antiviral.2023.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Emerging evidence has demonstrated the critical role of long noncoding RNAs (lncRNAs) in regulating gene expression. However, the functional significance and mechanisms underlying influenza A virus (IAV)-host lncRNA interactions are still elusive. Here, we identified a functional lncRNA, LncRNA#61, as a broad anti-IAV factor. LncRNA#61 is highly upregulated by different subtypes of IAV, including human H1N1 virus and avian H5N1 and H7N9 viruses. Furthermore, nuclear-enriched LncRNA#61 can translocate from the nucleus to the cytoplasm soon after IAV infection. Forced LncRNA#61 expression dramatically impedes viral replication of various subtypes of IAV, including human H1N1 virus and avian H3N2/N8, H4N6, H5N1, H6N2/N8, H7N9, H8N4, H10N3, H11N2/N6/N9 viruses. Conversely, abolishing LncRNA#61 expression substantially favored viral replication. More importantly, LncRNA#61 delivered by the lipid nanoparticle (LNP)-encapsulated strategy shows good performance in restraining viral replication in mice. Interestingly, LncRNA#61 is involved in multiple steps of the viral replication cycle, including virus entry, viral RNA synthesis and the virus release period. Mechanistically, the four long ring arms of LncRNA#61 mainly mediate its broad antiviral effect and contribute to its inhibition of viral polymerase activity and nuclear aggregation of key polymerase components. Therefore, we defined LncRNA#61 as a potential broad-spectrum antiviral factor for IAV. Our study further extends our understanding of the stunning and unanticipated biology of lncRNAs as well as their close interaction with IAV, providing valuable clues for developing novel broad anti-IAV therapeutics targeting host lncRNAs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinxin Zheng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Guoqing Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xia Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
20
|
Jiang S, Hu J, Bai Y, Hao R, Liu L, Chen H. Transcriptome-wide 5-methylcytosine modification profiling of long non-coding RNAs in A549 cells infected with H1N1 influenza A virus. BMC Genomics 2023; 24:316. [PMID: 37308824 DOI: 10.1186/s12864-023-09432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND In recent years, accumulating evidences have revealed that influenza A virus (IAV) infections induce significant differential expression of host long noncoding RNAs (lncRNAs), some of which play important roles in the regulation of virus-host interactions and determining the virus pathogenesis. However, whether these lncRNAs bear post-translational modifications and how their differential expression is regulated remain largely unknown. In this study, the transcriptome-wide 5-methylcytosine (m5C) modification of lncRNAs in A549 cells infected with an H1N1 influenza A virus was analyzed and compared with uninfected cells by Methylated RNA immunoprecipitation sequencing (MeRIP-Seq). RESULTS Our data identified 1317 upregulated m5C peaks and 1667 downregulated peaks in the H1N1 infected group. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the differentially modified lncRNAs were associated with protein modification, organelle localization, nuclear export and other biological processes. Furthermore, conjoint analysis of the differentially modified (DM) and differentially expressed (DE) lncRNAs identified 143 'hyper-up', 81 'hypo-up', 6 'hypo-down' and 4 'hyper-down' lncRNAs. GO and KEGG analyses revealed that these DM and DE lncRNAs were predominantly associated with pathogen recognition and disease pathogenesis pathways, indicating that m5C modifications could play an important role in the regulation of host response to IAV replication by modulating the expression and/or stability of lncRNAs. CONCLUSION This study presented the first m5C modification profile of lncRNAs in A549 cells infected with IAV and demonstrated a significant alteration of m5C modifications on host lncRNAs upon IAV infection. These data could give a reference to future researches on the roles of m5C methylation in virus infection.
Collapse
Affiliation(s)
- Shengqiang Jiang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Jing Hu
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Yang Bai
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Ruiwei Hao
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Long Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, P. R. China
| | - Hongying Chen
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China.
| |
Collapse
|
21
|
Kulkarni V, Jayakumar S, Mohan M, Kulkarni S. Aid or Antagonize: Nuclear Long Noncoding RNAs Regulate Host Responses and Outcomes of Viral Infections. Cells 2023; 12:987. [PMID: 37048060 PMCID: PMC10093752 DOI: 10.3390/cells12070987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts measuring >200 bp in length and devoid of protein-coding potential. LncRNAs exceed the number of protein-coding mRNAs and regulate cellular, developmental, and immune pathways through diverse molecular mechanisms. In recent years, lncRNAs have emerged as epigenetic regulators with prominent roles in health and disease. Many lncRNAs, either host or virus-encoded, have been implicated in critical cellular defense processes, such as cytokine and antiviral gene expression, the regulation of cell signaling pathways, and the activation of transcription factors. In addition, cellular and viral lncRNAs regulate virus gene expression. Viral infections and associated immune responses alter the expression of host lncRNAs regulating immune responses, host metabolism, and viral replication. The influence of lncRNAs on the pathogenesis and outcomes of viral infections is being widely explored because virus-induced lncRNAs can serve as diagnostic and therapeutic targets. Future studies should focus on thoroughly characterizing lncRNA expressions in virus-infected primary cells, investigating their role in disease prognosis, and developing biologically relevant animal or organoid models to determine their suitability for specific therapeutic targeting. Many cellular and viral lncRNAs localize in the nucleus and epigenetically modulate viral transcription, latency, and host responses to infection. In this review, we provide an overview of the role of nuclear lncRNAs in the pathogenesis and outcomes of viral infections, such as the Influenza A virus, Sendai Virus, Respiratory Syncytial Virus, Hepatitis C virus, Human Immunodeficiency Virus, and Herpes Simplex Virus. We also address significant advances and barriers in characterizing lncRNA function and explore the potential of lncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Sahana Jayakumar
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Mahesh Mohan
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Smita Kulkarni
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| |
Collapse
|
22
|
Zhang Y, Hu X, Liu S, Zhou M, Wang C, Cao H. Identification and analysis of long non-coding RNAs that are involved in response to GCRV infection in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108623. [PMID: 36809843 DOI: 10.1016/j.fsi.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in many biological processes including the immune response against virus infection. However, their roles in grass carp reovirus (GCRV) pathogenicity are largely unknown. In this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of lncRNAs in GCRV-infected and mock-infected grass carp kidney (CIK) cells. Our results showed that 37 lncRNAs and 1039 mRNA transcripts exhibited differential expression in CIK cells after GCRV infection compared with the mock infection. Functional analysis through the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases (KEGG) indicated that target genes of the differentially expressed lncRNAs were mainly enriched in the biological processes - biological regulation, cellular process, metabolic process and regulation of the biological process, such as MAPK signaling pathway and Notch signaling. Furthermore, we observed that the lncRNA3076 (ON693852) was markedly upregulated after the GCRV infection. In addition, silencing lncRNA3076 decreased the GCRV replication, which indicates that it might play an important role in the replication of GCRV.
Collapse
Affiliation(s)
- Yexuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Liu
- College of Fishery and Life Sciences, Dalian Ocean University, Dalian, 116023, China
| | - Man Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunling Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Robin S, Legeai F, Jouan V, Ogliastro M, Darboux I. Genome-wide identification of lncRNAs associated with viral infection in Spodoptera frugiperda. J Gen Virol 2023; 104. [PMID: 36757871 DOI: 10.1099/jgv.0.001827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The role of lncRNAs in immune defence has been demonstrated in many multicellular and unicellular organisms. However, investigation of the identification and characterization of long non-coding RNAs (lncRNAs) involved in the insect immune response is still limited. In this study, we used RNA sequencing (RNA-seq) to investigate the expression profiles of lncRNAs and mRNAs in the fall armyworm Spodoptera frugiperda in response to virus infection. To assess the tissue- and virus-specificity of lncRNAs, we analysed and compared their expression profiles in haemocytes and fat body of larvae infected with two entomopathogenic viruses with different lifestyles, i.e. the polydnavirus HdIV (Hyposoter didymator IchnoVirus) and the densovirus JcDV (Junonia coenia densovirus). We identified 1883 candidate lncRNAs, of which 529 showed differential expression following viral infection. Expression profiles differed considerably between samples, indicating that many differentially expressed (DE) lncRNAs showed virus- and tissue-specific expression patterns. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and target prediction analyses indicated that DE-LncRNAs were mainly enriched in metabolic process, DNA replication and repair, immune response, metabolism of insect hormone and cell adhesion. In addition, we identified three DE-lncRNAs potentially acting as microRNA host genes, suggesting that they participate in gene regulation by producing miRNAs in response to virus infection. This study provides a catalogue of lncRNAs expressed in two important immune tissues and potential insight into their roles in the antiviral defence in S. frugiperda. The results may help future in-depth functional studies to better understand the biological function of lncRNAs in interaction between viruses and the fall armyworm.
Collapse
Affiliation(s)
- Stéphanie Robin
- BIPAA, IGEPP, INRAE, Institut Agro, University of Rennes, Rennes, France.,University of Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Fabrice Legeai
- BIPAA, IGEPP, INRAE, Institut Agro, University of Rennes, Rennes, France.,University of Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Véronique Jouan
- INRAE, University of Montpellier, UMR Diversité, Génomes & Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Mylène Ogliastro
- INRAE, University of Montpellier, UMR Diversité, Génomes & Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Isabelle Darboux
- INRAE, University of Montpellier, UMR Diversité, Génomes & Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| |
Collapse
|
24
|
Sarfaraz N, Somarowthu S, Bouchard MJ. The interplay of long noncoding RNAs and hepatitis B virus. J Med Virol 2023; 95:e28058. [PMID: 35946066 DOI: 10.1002/jmv.28058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023]
Abstract
Hepatitis B Virus (HBV) infections remain a major global health burden with an estimated 296 million people living with a chronic infection and 884,000 HBV-related deaths annually. Notably, patients with a chronic hepatitis B (CHB) infection are at a 30-fold greater risk of developing hepatocellular carcinoma (HCC), the most common type of primary liver cancer, which is the 3rd deadliest cancer worldwide. Several groups have assessed HBV-related aberrant expression of host-cell long noncoding RNAs (lncRNAs) and how altered expression of specific lncRNAs affects HBV replication and progression to associated disease states. Given the challenges in establishing effective HBV models and analyzing transcriptomic data, this review focuses on lncRNA expression data primarily collected from clinical patient samples and primary human hepatocytes, with the subsequent mechanism of action analysis in cell lines or other model systems. Ultimately, understanding HBV-induced lncRNA-expression dysregulation could lead to new treatments and biomarkers for HBV infection and its associated diseases.
Collapse
Affiliation(s)
- Nima Sarfaraz
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Chen N, Zhang B, Deng L, Liang B, Ping J. Virus-host interaction networks as new antiviral drug targets for IAV and SARS-CoV-2. Emerg Microbes Infect 2022; 11:1371-1389. [PMID: 35476817 PMCID: PMC9132403 DOI: 10.1080/22221751.2022.2071175] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, SARS-CoV-2, especially the Omicron strain, is ravaging the world and even co-infecting human beings with IAV, which is a serious threat to human public health. As of yet, no specific antiviral drug has been discovered for SARS-CoV-2. This requires deeper understandings of the molecular mechanisms of SARS-CoV-2-host interaction, to explore antiviral drug targets and provide theoretical basis for developing anti-SARS-CoV-2 drugs. This article discussed IAV, which has been comprehensively studied and is expected to provide the most important reference value for the SARS-CoV-2 study apart from members of the Coronaviridae family. We wish to establish a theoretical system for the studies on virus-host interaction. Previous studies have shown that host PRRs recognize RNAs of IAV or SARS-CoV-2 and then activate innate immune signaling pathways to induce the expression of host restriction factors, such as ISGs, to ultimately inhibit viral replication. Meanwhile, viruses have also evolved various regulatory mechanisms to antagonize host innate immunity at transcriptional, translational, post-translational modification, and epigenetic levels. Besides, viruses can hijack supportive host factors for their replication. Notably, the race between host antiviral innate immunity and viral antagonism of host innate immunity forms virus-host interaction networks. Additionally, the viral replication cycle is co-regulated by proteins, ncRNAs, sugars, lipids, hormones, and inorganic salts. Given this, we updated the mappings of antiviral drug targets based on virus-host interaction networks and proposed an innovative idea that virus-host interaction networks as new antiviral drug targets for IAV and SARS-CoV-2 from the perspectives of viral immunology and systems biology.
Collapse
Affiliation(s)
- Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Baoge Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
26
|
Liu Q, Yang H, Zhao L, Huang N, Ping J. A Novel lncRNA SAAL Suppresses IAV Replication by Promoting Innate Responses. Microorganisms 2022; 10:microorganisms10122336. [PMID: 36557591 PMCID: PMC9785332 DOI: 10.3390/microorganisms10122336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A virus (IAV) infection has traditionally been a serious problem in animal husbandry and human public health security. Recently, many studies identified that long noncoding RNAs play an important role in the antiviral immune response after the infection of the influenza virus. However, there are still lots of IAV-related lncRNAs that have not been well-characterized. Using RNA sequencing analysis, we identified a lncRNA, named Serpina3i Activation Associated lncRNA (SAAL), which can be significantly upregulated in mice after IAV infection. In this study, we found that overexpression of SAAL inhibited the replication of A/WSN/33(WSN). SAAL upregulated Serpina3i with or without WSN infection. Overexpression of Serpina3i reduced influenza virus infection. Meanwhile, knockdown of Serpina3i enhanced the replication of WSN. Furthermore, knockdown of Serpina3i abolished the SAAL-mediated decrease in WSN infection. Overexpression of SAAL or Serpina3i positively regulated the transcription of interferon β (IFN-β) and several critical ISGs after WSN infection. In conclusion, we found that the novel lncRNA SAAL is a critical anti-influenza regulator by upregulating the mRNA level of Serpina3i.
Collapse
Affiliation(s)
- Qingzheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hongjun Yang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
27
|
Zhang Y, Yang J, Liu P, Zhang RJ, Li JD, Bi YH, Li Y. Regulatory role of ncRNAs in pulmonary epithelial and endothelial barriers: Molecular therapy clues of influenza-induced acute lung injury. Pharmacol Res 2022; 185:106509. [DOI: 10.1016/j.phrs.2022.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
28
|
Min J, Cao Y, Liu H, Liu D, Liu W, Li J. RNA Sequencing Demonstrates That Circular RNA Regulates Avian Influenza Virus Replication in Human Cells. Int J Mol Sci 2022; 23:ijms23179901. [PMID: 36077296 PMCID: PMC9456167 DOI: 10.3390/ijms23179901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNAs (circRNAs) are involved in diverse biological processes. Avian influenza virus (AIV) can cross the species barrier to infect humans. Here, we employed RNA sequencing technology to profile circRNA, microRNA, and mRNA expression in human lung carcinoma cells in response to AIV or human influenza A virus (IAV) infection at viral replication. The analysis revealed that the expression of 475 common circRNAs were significantly regulated. The 381 and 1163 up-regulated circRNAs were induced by AIV at 8 and 16 h, respectively. Subsequently, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses were also conducted for the AIV-specific up-regulated circRNAs. Moreover, the circRNAs were characterized, of which six were verified by quantitative real-time PCR. We further confirmed that expression of the selected circRNAs only increased following AIV infection. Knocking down the selected circRNAs promoted AIV proliferation, and overexpression of three of the candidate circRNAs restricted AIV replication and proliferation. We further analyzed that AIV-specific up-regulated circRNA mechanisms might function through the ceRNA network to affect the “Endocytosis” pathway and the “Cell cycle process”. These data provide the first expression profile of AIV-specific up-regulated circRNAs and shed new light on the pathogenesis of AIV infection. Our findings also suggest that these circRNAs serve an important role in AIV infection.
Collapse
Affiliation(s)
- Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ying Cao
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Haizhou Liu
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
| | - Di Liu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100039, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100039, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: author: (W.L.); (J.L.)
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100039, China
- Correspondence: author: (W.L.); (J.L.)
| |
Collapse
|
29
|
Huang Y, Su Y, Shen L, Huo Z, Chen C, Sun T, Tian X, Li N, Yang C. A novel IFNbeta-induced long non-coding RNA ZAP-IT1 interrupts Zika virus replication in A549 cells. Virol Sin 2022; 37:904-912. [PMID: 35985476 PMCID: PMC9797370 DOI: 10.1016/j.virs.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/09/2022] [Indexed: 01/01/2023] Open
Abstract
Zika virus (ZIKV) infection can cause severe neurological diseases including neonatal microcephaly and Guillain-Barre syndrome. Long noncoding RNAs (lncRNAs) are the by-products of the transcription process, which are considered to affect viral infection. However, it remains largely unexplored whether host lncRNAs play a role in ZIKV infection. Here, we identified a group of human lncRNAs that were up-regulated upon ZIKV infection and were dependent on the type I interferon (IFN) signaling. Overexpression of lncRNA ZAP-IT1 leads to an impairment of ZIKV infection. Correspondently, deficiency of ZAP-IT1 led to an enhancement of ZIKV infection. We further confirmed that ZAP-IT1, an intronic lncRNA with total 551 nt in length, is mainly located in the nuclear upon ZIKV infection. Knockout of ZAP-IT1 also led to the increase of dengue virus (DENV), Japanese encephalitis virus (JEV), or vesicular stomatitis virus (VSV) infection. Mechanically, we found that the antiviral effect of ZAP-IT1 was independent of the type I IFN signaling pathway. Therefore, our data unveiled that host lncRNA ZAP-IT1 induced by the type I IFN signaling, showed robust restriction on ZIKV infection, and even on DENV, JEV, and VSV infection, which may benefit the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Yanxia Huang
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Su
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li Shen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiting Huo
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Tao Sun
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xu Tian
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ning Li
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chao Yang
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China,Corresponding author.
| |
Collapse
|
30
|
Tanuj GN, Khan O, Malla WA, Rajak KK, Chandrashekar S, Kumar A, Dhara S, Gupta PK, Mishra BP, Dutt T, Gandham R, Sajjanar B. Integrated analysis of long-noncoding RNA and circular RNA expression in Peste-des-Petits-Ruminants Virus (PPRV) infected marmoset B lymphocyte (B95a) cells. Microb Pathog 2022; 170:105702. [DOI: 10.1016/j.micpath.2022.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
|
31
|
Li Z, Gao J, Xiang X, Deng J, Gao D, Sheng X. Viral long non-coding RNA regulates virus life-cycle and pathogenicity. Mol Biol Rep 2022; 49:6693-6700. [PMID: 35301646 PMCID: PMC8929458 DOI: 10.1007/s11033-022-07268-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
Abstract
Viral infection is still a serious global health problem that kills hundreds of thousands of people annually. Understanding the mechanism by which virus replicates, packages, and infects the host cells can provide new strategies to control viral infection. Long non-coding RNAs (lncRNAs) have been identified as critical regulators involved in viral infection process and antiviral response. A lot of host lncRNAs have been identified and shown to be involved in antiviral immune response during viral infection. However, our knowledge about lncRNAs expressed by viruses is still at its infancy. LncRNAs expressed by viruses are involved in the whole viral life cycle, including promoting genome replication, regulating gene expression, involvement in genome packaging, assembling new viruses and releasing virions to the host cells. Furthermore, they enhance the pathogenicity of viral infections by down-regulating the host cell's antiviral immune response and maintain the viral latency through a refined procedure of genome integration. This review focuses on the regulatory roles of viral lncRNA in the life-cycle and pathogenicity of viruses. It gives an insight into the viral lncRNAs that can be utilized as therapeutic targets against viral diseases, and future researches aimed to identify and explore new viral lncRNAs and the mechanisms of their involvement in viral infection is encouraged.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Jiaqin Gao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Xinyu Xiang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Jiajun Deng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Di Gao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Xiumei Sheng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China.
| |
Collapse
|
32
|
Jiang J, Li Y, Sun Z, Gong L, Li X, Shi F, Yao J, Meng Y, Meng X, Zhang Q, Wang Y, Su X, Diao H. LncNSPL facilitates influenza A viral immune escape by restricting TRIM25-mediated K63-linked RIG-I ubiquitination. iScience 2022; 25:104607. [PMID: 35800772 PMCID: PMC9253711 DOI: 10.1016/j.isci.2022.104607] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/21/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) participate in host antiviral responses; however, how viruses exploit host lncRNAs for immune evasion remains largely unexplored. Functional screening of differentially expressed lncRNA profile in patients infected with influenza A virus (IAV) revealed that lncNSPL (Gene Symbol: LOC105370355) was highly expressed in monocytes. Deregulated lncNSPL expression in infected monocytes significantly increased type I interferon (IFN-I) production and inhibited IAV replication. Moreover, lncNSPL overexpression in mice increased the susceptibility to IAV infection and impaired IFN-I production. LncNSPL directly bound to retinoic acid-inducible gene I (RIG-I) and blocked the interaction between RIG-I and E3 ligase tripartite interaction motif 25 (TRIM25), reducing TRIM25-mediated lysine 63 (K63)-linked RIG-I ubiquitination and limiting the downstream production of antiviral mediators during the late stage of IAV infection. Our findings provide mechanistic insights into the means by which lncNSPL promotes IAV replication and immune escape via restricting the TRIM25-mediated RIG-I K63-linked ubiquitination. Thus, lncNSPL may represent a promising pharmaceutical target for anti-IAV therapy. NS1 protein of Influenza A virus (IAV) promotes lncNSPL expression Deficiency of lncNSPL specifically enhances retinoic acid-inducible gene I (RIG-I) initiated IFN production lncNSPL competes with tripartite interaction motif 25 (TRIM25) for binding RIG-I and inhibits its K63 ubiquitination lncNSPL inhibits innate antiviral immune responses and enhances viral replication
Collapse
|
33
|
Zhao J, Wang J, Pang X, Liu Z, Li Q, Yi D, Zhang Y, Fang X, Zhang T, Zhou R, Zhang T, Guo Z, Liu W, Li X, Liang C, Deng T, Guo F, Yu L, Cen S. An anti-influenza A virus microbial metabolite acts by degrading viral endonuclease PA. Nat Commun 2022; 13:2079. [PMID: 35440123 PMCID: PMC9019042 DOI: 10.1038/s41467-022-29690-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
The emergence of new highly pathogenic and drug-resistant influenza strains urges the development of novel therapeutics for influenza A virus (IAV). Here, we report the discovery of an anti-IAV microbial metabolite called APL-16-5 that was originally isolated from the plant endophytic fungus Aspergillus sp. CPCC 400735. APL-16-5 binds to both the E3 ligase TRIM25 and IAV polymerase subunit PA, leading to TRIM25 ubiquitination of PA and subsequent degradation of PA in the proteasome. This mode of action conforms to that of a proteolysis targeting chimera which employs the cellular ubiquitin-proteasome machinery to chemically induce the degradation of target proteins. Importantly, APL-16-5 potently inhibits IAV and protects mice from lethal IAV infection. Therefore, we have identified a natural microbial metabolite with potent in vivo anti-IAV activity and the potential of becoming a new IAV therapeutic. The antiviral mechanism of APL-16-5 opens the possibility of improving its anti-IAV potency and specificity by adjusting its affinity for TRIM25 and viral PA protein through medicinal chemistry.
Collapse
Affiliation(s)
- Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Xu Pang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, H3T 1E2, Canada
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Xiaomei Fang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Zhe Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Wancang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China
| | - Chen Liang
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, H3T 1E2, Canada
| | - Tao Deng
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100730, Beijing, PR China.
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, 100050, Beijing, PR China.
| |
Collapse
|
34
|
The long non-coding RNA LNC_000397 negatively regulates PRRSV replication through induction of interferon-stimulated genes. Virol J 2022; 19:40. [PMID: 35248059 PMCID: PMC8897765 DOI: 10.1186/s12985-022-01761-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant threats to the global swine industry. It is of great importance to understand viral-host interactions to develop novel antiviral strategies. Long non-coding RNAs (lncRNAs) have emerged as critical factors regulating host antiviral immune responses. However, lncRNAs participating in virus-host interactions during PRRSV infection remain largely unexplored.
Method
RNA transcripts of porcine alveolar macrophages (PAMs) infected with two different PRRSV strains, GSWW/2015 and VR2332, at 24 h post-infection were sequenced by high-throughput sequencing. Four programs namely, CNCI, CPC, PFAM, and phyloCSF, were utilized to predict the coding potential of transcripts. mRNAs co-localized or co-expressed with differentially expressed lncRNAs were considered as their targets. Fuction of lncRNAs was predicted by GO and KEGG analysis of their target mRNAs. The effect of LNC_000397 on PRRSV replication was validated by knockdown its expression using siRNA. Target genes of LNC_000397 were identified by RNA-Sequencing and validated by RT-qPCR.
Result
In this study, we analyzed lncRNA and mRNA expression profiles of PRRSV GSWW/2015 and VR2332 infected porcine alveolar macrophages. A total of 1,147 novel lncRNAs were characterized, and 293 lncRNAs were differentially expressed. mRNAs co-localized and co-expressed with lncRNAs were enriched in pathogen-infection-related biological processes such as Influenza A and Herpes simplex infection. Functional analysis revealed the lncRNA, LNC_000397, which was up-regulated by PRRSV infection, negatively regulated PRRSV replication. Knockdown of LNC_000397 significantly impaired expression of antiviral ISGs such as MX dynamin-like GTPase 1 (MX1), ISG15 Ubiquitin-like modifier (ISG15), and radical S-adenosyl methionine domain containing 2 (RSAD2).
Conclusions
LNC_000397 negatively regulated PRRSV replication by inducing interferon-stimulated genes (ISGs) expression. Our study is the first report unveiling the role of host lncRNA in regulating PRRSV replication, which might be beneficial for the development of novel antiviral therapeutics.
Collapse
|
35
|
Pushparaj S, Zhu Z, Huang C, More S, Liang Y, Lin K, Vaddadi K, Liu L. Regulation of influenza A virus infection by Lnc-PINK1-2:5. J Cell Mol Med 2022; 26:2285-2298. [PMID: 35201667 PMCID: PMC8995437 DOI: 10.1111/jcmm.17249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza virus causes approximately 291,000 to 646,000 human deaths worldwide annually. It is also a disease of zoonotic importance, affecting animals such as pigs, horses, and birds. Even though vaccination is being used to prevent influenza virus infection, there are limited options available to treat the disease. Long noncoding RNAs (lncRNAs) are RNA molecules with more than 200 nucleotides that do not translate into proteins. They play important roles in the physiological and pathological processes. In this study, we identified a novel transcript, Lnc‐PINK1‐2:5 that was upregulated by influenza virus. This lncRNA was predominantly located in the nucleus and was not affected by type I interferons. Overexpression of Lnc‐PINK1‐2:5 reduced the influenza viral mRNA and protein levels in cells as well as titres in culture media. Knockdown of Lnc‐PINK1‐2:5 using CRISPR interference enhanced the virus replication. Antiviral activity of Lnc‐PINK1‐2:5 was independent of influenza virus strains. RNA sequencing analysis revealed that Lnc‐PINK1‐2:5 upregulated thioredoxin interacting protein (TXNIP) during influenza virus infection. Overexpression of TXNIP reduced influenza virus infection, suggesting that TXNIP is an antiviral gene. Knockdown of TXNIP abolished the Lnc‐PINK1‐2:5‐mediated increase in influenza virus infection. In conclusion, the newly identified Lnc‐PINK1‐2:5 isoform is an anti‐influenza lncRNA acting through the upregulation of TXNIP gene expression.
Collapse
Affiliation(s)
- Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sunil More
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kong Lin
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kishore Vaddadi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
36
|
Liao Y, Guo S, Liu G, Qiu Z, Wang J, Yang D, Tian X, Qiao Z, Ma Z, Liu Z. Host Non-Coding RNA Regulates Influenza A Virus Replication. Viruses 2021; 14:v14010051. [PMID: 35062254 PMCID: PMC8779696 DOI: 10.3390/v14010051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year in various regions worldwide, seriously endangering human health. Studies have shown that host non-coding RNA is an important regulator of host-virus interactions in the process of IAV infection. In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with regard to the regulation of IAV replication. According to the regulation mode of host non-coding RNAs, the signal pathways involved, and the specific target genes, we found that a large number of host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1 and other key genes regulate the replication of IAV and indirectly participate in the regulation of the retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway, Janus kinase signal transducer and activator of transcription signaling pathway, and other major intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response to the influenza virus. These findings will provide a more comprehensive understanding of the function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues to the mechanism of cell-virus interactions and the discovery of antiviral drug targets.
Collapse
Affiliation(s)
- Yuejiao Liao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Shouqing Guo
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Geng Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zhenyu Qiu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Jiamin Wang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Di Yang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiaojing Tian
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ziling Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
37
|
Ren Z, Yu Y, Chen C, Yang D, Ding T, Zhu L, Deng J, Xu Z. The Triangle Relationship Between Long Noncoding RNA, RIG-I-like Receptor Signaling Pathway, and Glycolysis. Front Microbiol 2021; 12:807737. [PMID: 34917069 PMCID: PMC8670088 DOI: 10.3389/fmicb.2021.807737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNA (LncRNA), a noncoding RNA over 200nt in length, can regulate glycolysis through metabolic pathways, glucose metabolizing enzymes, and epigenetic reprogramming. Upon viral infection, increased aerobic glycolysis providzes material and energy for viral replication. Mitochondrial antiviral signaling protein (MAVS) is the only protein-specified downstream of retinoic acid-inducible gene I (RIG-I) that bridges the gap between antiviral immunity and glycolysis. MAVS binding to RIG-I inhibits MAVS binding to Hexokinase (HK2), thereby impairing glycolysis, while excess lactate production inhibits MAVS and the downstream antiviral immune response, facilitating viral replication. LncRNAs can also regulate antiviral innate immunity by interacting with RIG-I and downstream signaling pathways and by regulating the expression of interferons and interferon-stimulated genes (ISGs). Altogether, we summarize the relationship between glycolysis, antiviral immunity, and lncRNAs and propose that lncRNAs interact with glycolysis and antiviral pathways, providing a new perspective for the future treatment against virus infection, including SARS-CoV-2.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueru Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chaoxi Chen
- College of Life Since and Technology, Southwest Minzu University, Chengdu, China
| | - Dingyong Yang
- College of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
38
|
Staller E, Barclay WS. Host Cell Factors That Interact with Influenza Virus Ribonucleoproteins. Cold Spring Harb Perspect Med 2021; 11:a038307. [PMID: 32988980 PMCID: PMC8559542 DOI: 10.1101/cshperspect.a038307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Influenza viruses hijack host cell factors at each stage of the viral life cycle. After host cell entry and endosomal escape, the influenza viral ribonucleoproteins (vRNPs) are released into the cytoplasm where the classical cellular nuclear import pathway is usurped for nuclear translocation of the vRNPs. Transcription takes place inside the nucleus at active host transcription sites, and cellular mRNA export pathways are subverted for export of viral mRNAs. Newly synthesized RNP components cycle back into the nucleus using various cellular nuclear import pathways and host-encoded chaperones. Replication of the negative-sense viral RNA (vRNA) into complementary RNA (cRNA) and back into vRNA requires complex interplay between viral and host factors. Progeny vRNPs assemble at the host chromatin and subsequently exit from the nucleus-processes orchestrated by sets of host and viral proteins. Finally, several host pathways appear to play a role in vRNP trafficking from the nuclear envelope to the plasma membrane for egress.
Collapse
Affiliation(s)
- Ecco Staller
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| | - Wendy S Barclay
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| |
Collapse
|
39
|
Sajjad N, Wang S, Liu P, Chen JL, Chi X, Liu S, Ma S. Functional Roles of Non-coding RNAs in the Interaction Between Host and Influenza A Virus. Front Microbiol 2021; 12:742984. [PMID: 34745043 PMCID: PMC8569443 DOI: 10.3389/fmicb.2021.742984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are extensively expressed in various cells and tissues, and studies have shown that ncRNAs play significant roles in cell regulation. However, in the past few decades, the knowledge of ncRNAs has been increased dramatically due to their transcriptional ability and multiple regulatory functions. Typically, regulatory ncRNAs include long ncRNAs (lncRNAs), miRNAs, piRNAs, Y RNAs, vault RNAs, and circular RNAs (circRNAs), etc. Previous studies have revealed that various ncRNAs are involved in the host responses to virus infection and play critical roles in the regulation of host-virus interactions. In this review, we discuss the conceptual framework and biological regulations of ncRNAs to elucidate their functions in response to viral infection, especially influenza A virus (IAV) infection. In addition, we summarize the ncRNAs that are associated with innate immunity and involvement of interferons and their stimulated genes (ISGs) during IAV infection.
Collapse
Affiliation(s)
- Nelam Sajjad
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Chi
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shujie Ma
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
40
|
Wang Y, Luo W, Huang L, Xiao J, Song X, Li F, Ma Y, Wang X, Jin F, Liu P, Zhu Y, Kitazato K, Wang Y, Ren Z. A novel lncRNA linc-AhRA negatively regulates innate antiviral response in murine microglia upon neurotropic herpesvirus infection. Am J Cancer Res 2021; 11:9623-9651. [PMID: 34646390 PMCID: PMC8490526 DOI: 10.7150/thno.64880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/07/2021] [Indexed: 01/17/2023] Open
Abstract
Microglia are the primary cellular source of type I interferons (I-IFNs) in the brain upon neurotropic virus infection. Although the I-IFN-based antiviral innate immune response is crucial for eliminating viruses, overproduction led to immune disorders. Therefore, the relatively long-lasting I-IFNs must be precisely controlled, but the regulatory mechanism for the innate antiviral response in microglia remains largely unknown. Long non-coding RNAs (lncRNAs) are being recognized as crucial factors in numerous diseases, but their regulatory roles in the innate antiviral response in microglia are undefined. Methods: The high-throughput RNA sequencing was performed to obtain differentially expressed lncRNAs (DELs) in primary microglia infected with or without the neurotropic herpes simplex virus type 1 (HSV-1). We selected four DELs ranked in the top 15 in basic level and their fold change induced by HSV-1, i.e., FPKMHSV-1/FPKMCells.We subsequently found a key lncRNA affecting the innate antiviral response of microglia significantly. We next used dual-luciferase reporter assays, bioinformatical tools, and truncation mutants of both lncRNA and targeted proteins to elucidate the downstream and upstream mechanism of action of lncRNA. Further, we established microglia-specific knock-in (KI) mice to investigate the role of lncRNA in vivo. Results: We identified a long intergenic non-coding RNA, linc-AhRA, involved in regulating the innate antiviral response in murine microglia. linc-AhRA is activated by aryl hydrocarbon receptor (AhR) and restricts I-IFN production in microglia upon neurotropic herpesvirus infection and innate immune stimulation. Mechanistically, linc-AhRA binds to both tripartite motif-containing 27 (TRIM27) and TANK-binding kinase 1 (TBK1) through its conserved 117nt fragment as a molecular scaffold to enhance TRIM27-TBK1 interaction. This interaction facilitates the TRIM27-mediated ubiquitination of TBK1 and results in ubiquitin-proteasome-dependent degradation of TBK1. Consequently, linc-AhRA suppresses I-IFN production through facilitating TBK1 degradation and limits the microglial innate immune response against neurotropic herpesvirus infection. Microglia-specific KI of linc-AhRA mice shows a weakened antiviral immune response upon neurotropic herpesvirus challenge due to a reduction of TBK1 in microglia. Conclusion: Our findings indicate that linc-AhRA is a negative regulator of I-IFN production in microglia to avoid excessive autoimmune responses. These findings uncover a previously unappreciated role for lncRNA conserved fragments in the innate antiviral response, providing a strong foundation for developing nucleotide drugs based on conserved functional fragments within lncRNAs.
Collapse
|
41
|
Zhang L, Zheng X, Li J, Wang G, Hu Z, Chen Y, Wang X, Gu M, Gao R, Hu S, Liu X, Jiao X, Peng D, Hu J, Liu X. Long noncoding RNA#45 exerts broad inhibitory effect on influenza a virus replication via its stem ring arms. Virulence 2021; 12:2443-2460. [PMID: 34517783 PMCID: PMC8451462 DOI: 10.1080/21505594.2021.1975494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A growing body of evidence suggests the pivotal role of long non-coding RNA (lncRNA) in influenza virus infection. Based on next-generation sequencing, we previously demonstrated that Lnc45 was distinctively stimulated by H5N1 influenza virus in mice. In this study, we systematically investigated the specific role of Lnc45 during influenza A virus (IAV) infection. Through qRT-PCR, we first demonstrated that Lnc45 is highly up-regulated by different subtypes of IAV strains, including H5N1, H7N9, and H1N1 viruses. Using RNA-FISH and qRT-PCR, we then found that Lnc45 can translocate from nuclear to cytoplasm during H5N1 virus infection. In addition, forced Lnc45 expression dramatically impeded viral replication of H1N1, H5N1, and H7N9 virus, while abolish of Lnc45 expression by RNA interference favored replication of these viruses, highlighting the potential broad antiviral activity of Lnc45 to IAV. Correspondingly, overexpression of Lnc45 inhibited viral polymerase activity and suppressed IAV-induced cell apoptosis. Moreover, Lnc45 significantly restrained nuclear aggregation of viral NP and PA proteins during H5N1 virus infection. Further functional study revealed that the stem ring arms of Lnc45 mainly mediated the antiviral effect. Therefore, we here demonstrated that Lnc45 functions as a broad-spectrum antiviral factor to inhibit influenza virus replication probably through inhibiting polymerase activity and NP and PA nuclear accumulation via its stem ring arms. Our study not only advances our understanding of the complexity of the IAV pathogenesis but also lays the foundation for developing novel anti-IAV therapeutics targeting the host lncRNA.
Collapse
Affiliation(s)
- Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinxin Zheng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jun Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Guoqing Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| |
Collapse
|
42
|
Yang Q, Lin F, Wang Y, Zeng M, Luo M. Long Noncoding RNAs as Emerging Regulators of COVID-19. Front Immunol 2021; 12:700184. [PMID: 34408749 PMCID: PMC8366413 DOI: 10.3389/fimmu.2021.700184] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which has high incidence rates with rapid rate of transmission, is a pandemic that spread across the world, resulting in more than 3,000,000 deaths globally. Currently, several drugs have been used for the clinical treatment of COVID-19, such as antivirals (radecivir, baritinib), monoclonal antibodies (tocilizumab), and glucocorticoids (dexamethasone). Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are essential regulators of virus infections and antiviral immune responses including biological processes that are involved in the regulation of COVID-19 and subsequent disease states. Upon viral infections, cellular lncRNAs directly regulate viral genes and influence viral replication and pathology through virus-mediated changes in the host transcriptome. Additionally, several host lncRNAs could help the occurrence of viral immune escape by inhibiting type I interferons (IFN-1), while others could up-regulate IFN-1 production to play an antiviral role. Consequently, understanding the expression and function of lncRNAs during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection will provide insights into the development of lncRNA-based methods. In this review, we summarized the current findings of lncRNAs in the regulation of the strong inflammatory response, immune dysfunction and thrombosis induced by SARS-CoV-2 infection, discussed the underlying mechanisms, and highlighted the therapeutic challenges of COVID-19 treatment and its future research directions.
Collapse
Affiliation(s)
- Qinzhi Yang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yanan Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
43
|
Kesheh MM, Mahmoudvand S, Shokri S. Long noncoding RNAs in respiratory viruses: A review. Rev Med Virol 2021; 32:e2275. [PMID: 34252234 PMCID: PMC8420315 DOI: 10.1002/rmv.2275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are defined as RNA molecules longer than 200 nucleotides that can regulate gene expression at the transcriptional or post‐transcriptional levels. Both human lncRNAs and lncRNAs encoded by viruses can modulate the expression of host genes which are critical for viral replication, latency, activation of signalling pathways, cytokine and chemokine production, RNAi processing, expression of interferons (IFNs) and interferon‐stimulated genes (ISGs). Studies on lncRNAs as key regulators of host‐virus interactions may give new insights into therapeutic strategies for the treatment of related diseases. This current review focuses on the role of lncRNAs, and their interactions with respiratory viruses including influenza A virus (IAV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2).
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mahmoudvand
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Shokri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
44
|
Schmerer N, Schulte LN. Long noncoding RNAs in bacterial infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1664. [PMID: 33989449 DOI: 10.1002/wrna.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022]
Abstract
Infectious and inflammatory diseases remain major causes of mortality and morbidity worldwide. To combat bacterial infections, the mammalian immune system employs a myriad of regulators, which secure the effective initiation of inflammatory responses while preventing pathologies due to overshooting immunity. Recently, the human genome has been shown to be pervasively transcribed and to generate thousands of still poorly characterized long noncoding RNAs (lncRNAs). A growing body of literature suggests that lncRNAs play important roles in the regulatory circuitries controlling innate and adaptive immune responses to bacterial pathogens. This review provides an overview of the roles of lncRNAs in the interaction of human and rodent host cells with bacterial pathogens. Further decoding of the lncRNA networks that underlie pathological inflammation and immune subversion could provide new insights into the host cell mechanisms and microbial strategies that determine the outcome of bacterial infections. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Nils Schmerer
- Institute for Lung Research, Philipps-University, Marburg, Germany
| | - Leon N Schulte
- Institute for Lung Research, Philipps-University, Marburg, Germany.,German Center for Lung Research, Giessen, Germany
| |
Collapse
|
45
|
Bamunuarachchi G, Pushparaj S, Liu L. Interplay between host non-coding RNAs and influenza viruses. RNA Biol 2021; 18:767-784. [PMID: 33404285 PMCID: PMC8078518 DOI: 10.1080/15476286.2021.1872170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/20/2023] Open
Abstract
Influenza virus infection through seasonal epidemics and occasional pandemics has been a major public health concern for decades. Incomplete protection from vaccination and increased antiviral resistance due to frequent mutations of influenza viruses have led to a continuous need for new therapeutic options. The functional significance of host protein and influenza virus interactions has been established, but relatively less is known about the interaction of host noncoding RNAs, including microRNAs and long noncoding RNAs, with influenza viruses. In this review, we summarize host noncoding RNA profiles during influenza virus infection and the regulation of influenza virus infection by host noncoding RNAs. Influenza viral non-coding RNAs are briefly discussed. Increased understanding of the molecular regulation of influenza viral replication will be beneficial in identifying potential therapeutic targets against the influenza virus.
Collapse
Affiliation(s)
- Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| |
Collapse
|
46
|
Ma L, Chen S, Wang Z, Guo S, Zhao J, Yi D, Li Q, Liu Z, Guo F, Li X, Jia P, Ding J, Liang C, Cen S. The CREB Regulated Transcription Coactivator 2 Suppresses HIV-1 Transcription by Preventing RNA Pol II from Binding to HIV-1 LTR. Virol Sin 2021; 36:796-809. [PMID: 33723808 DOI: 10.1007/s12250-021-00363-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 10/21/2022] Open
Abstract
The CREB-regulated transcriptional co-activators (CRTCs), including CRTC1, CRTC2 and CRTC3, enhance transcription of CREB-targeted genes. In addition to regulating host gene expression in response to cAMP, CRTCs also increase the infection of several viruses. While human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) promoter harbors a cAMP response element and activation of the cAMP pathway promotes HIV-1 transcription, it remains unknown whether CRTCs have any effect on HIV-1 transcription and HIV-1 infection. Here, we reported that CRTC2 expression was induced by HIV-1 infection, but CRTC2 suppressed HIV-1 infection and diminished viral RNA expression. Mechanistic studies revealed that CRTC2 inhibited transcription from HIV-1 LTR and diminished RNA Pol II occupancy at the LTR independent of its association with CREB. Importantly, CRTC2 inhibits the activation of latent HIV-1. Together, these data suggest that in response to HIV-1 infection, cells increase the expression of CRTC2 which inhibits HIV-1 gene expression and may play a role in driving HIV-1 into latency.
Collapse
Affiliation(s)
- Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Shumin Chen
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhen Wang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100176, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Pingping Jia
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China. .,Beijing Friendship Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
47
|
Abstract
Recent studies have identified host long noncoding RNAs (lncRNAs) as key regulators of
host-virus interactions during viral infection. The influenza A virus (IAV) remains a
serious threat to public health and economic stability. It is well known that thousands of
lncRNAs are differentially expressed upon IAV infection, some of which regulate IAV
infection by modulating the host innate immune response, affecting cellular metabolism, or
directly interacting with viral proteins. Some of these lncRNAs appear to be required for
IAV infection, but the molecular mechanisms are not completely elucidated. In this review,
we summarize the roles of host lncRNAs in regulating IAV infection and provide an overview
of the lncRNA-mediated regulatory network. The goal of this review is to stimulate further
research on the function of both well-established and newly discovered lncRNAs in IAV
infection.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, People's Repbulic of People's Republic of China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, People's Repbulic of People's Republic of China.,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Repbulic of People's Republic of China.,Beijing Friendship Hospital, Capital Medical University, Beijing, People's Repbulic of People's Republic of China
| |
Collapse
|
48
|
Affiliation(s)
- Lucy Ginn
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| | - Manuela La Montagna
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| | - Qinghua Wu
- College of Life Science Yangtze University Jingzhou Hubei China
- Department of Chemistry Faculty of Science University of Hradec Kralove Hradec Kralove East Bohemia Czech Republic
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| |
Collapse
|
49
|
Shirahama S, Onoguchi-Mizutani R, Kawata K, Taniue K, Miki A, Kato A, Kawaguchi Y, Tanaka R, Kaburaki T, Kawashima H, Urade Y, Aihara M, Akimitsu N. Long noncoding RNA U90926 is crucial for herpes simplex virus type 1 proliferation in murine retinal photoreceptor cells. Sci Rep 2020; 10:19406. [PMID: 33173149 PMCID: PMC7656448 DOI: 10.1038/s41598-020-76450-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play vital roles in the pathogenesis of infectious diseases, but the role of lncRNAs in herpes simplex virus 1 (HSV-1) infection remains unknown. Using RNA sequencing analysis, we explored lncRNAs that were highly expressed in murine retinal photoreceptor cell-derived 661W cells infected with HSV-1. U90926 RNA (522 nucleotides) was the most upregulated lncRNA detected post HSV-1 infection. The level of U90926 RNA was continuously increased post HSV-1 infection, reaching a 100-fold increase at 24 h. Cellular fractionation showed that U90926 RNA was located in the nucleus post HSV-1 infection. Downregulation of U90926 expression by RNA interference markedly suppressed HSV-1 DNA replication (80% reduction at 12 h post infection) and HSV-1 proliferation (93% reduction at 12 h post infection) in 661W cells. The survival rates of U90926-knockdown cells were significantly increased compared to those of control cells (81% and 21%, respectively; p < 0.0001). Thus, lncRNA U90926 is crucial for HSV-1 proliferation in retinal photoreceptor cells and consequently leads to host cell death by promoting HSV-1 proliferation.
Collapse
Affiliation(s)
- Shintaro Shirahama
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kentaro Kawata
- Isotope Science Centre, The University of Tokyo, Tokyo, Japan
| | - Kenzui Taniue
- Isotope Science Centre, The University of Tokyo, Tokyo, Japan
| | - Atsuko Miki
- Isotope Science Centre, The University of Tokyo, Tokyo, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rie Tanaka
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Ophthalmology, Jichi Medical University Saitama Medical Centre, Saitama, Japan
| | | | - Yoshihiro Urade
- Isotope Science Centre, The University of Tokyo, Tokyo, Japan.,Daiichi University of Pharmacy, Fukuoka, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
50
|
Suarez B, Prats-Mari L, Unfried JP, Fortes P. LncRNAs in the Type I Interferon Antiviral Response. Int J Mol Sci 2020; 21:E6447. [PMID: 32899429 PMCID: PMC7503479 DOI: 10.3390/ijms21176447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
The proper functioning of the immune system requires a robust control over a delicate equilibrium between an ineffective response and immune overactivation. Poor responses to viral insults may lead to chronic or overwhelming infection, whereas unrestrained activation can cause autoimmune diseases and cancer. Control over the magnitude and duration of the antiviral immune response is exerted by a finely tuned positive or negative regulation at the DNA, RNA, and protein level of members of the type I interferon (IFN) signaling pathways and on the expression and activity of antiviral and proinflammatory factors. As summarized in this review, committed research during the last decade has shown that several of these processes are exquisitely regulated by long non-coding RNAs (lncRNAs), transcripts with poor coding capacity, but highly versatile functions. After infection, viruses, and the antiviral response they trigger, deregulate the expression of a subset of specific lncRNAs that function to promote or repress viral replication by inactivating or potentiating the antiviral response, respectively. These IFN-related lncRNAs are also highly tissue- and cell-type-specific, rendering them as promising biomarkers or therapeutic candidates to modulate specific stages of the antiviral immune response with fewer adverse effects.
Collapse
Affiliation(s)
- Beatriz Suarez
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Laura Prats-Mari
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Juan P. Unfried
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Puri Fortes
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|