1
|
Roubanis A, Hilaire M, Le Teuff M, Devergne O, Sparwasser T, Berod L, Salomon BL. A new method to measure cell metabolism of rare cells in vivo reveals a high oxidative phosphorylation dependence of lung T cells. Immunol Cell Biol 2025. [PMID: 40268295 DOI: 10.1111/imcb.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 04/25/2025]
Abstract
Regulation of cellular metabolism is a central element governing the fate and function of T cells. However, the in vivo metabolic characteristics of rare cells, such as nonlymphoid tissue T cells, are poorly understood because of experimental limitations. Most techniques measuring cell metabolism require large cell numbers. The recent SCENITH method allows for studying the metabolism of rare cells by flow cytometry. However, this technique requires cells to be isolated and cultured ex vivo, which may alter their metabolism. Here, we propose a new experimental approach, called in vivo SCENITH, to investigate the cellular metabolism of T cells in vivo at a steady state in the spleen and lungs. For this purpose, we administered the metabolic modulators directly in mice, instead of applying these reagents ex vivo, as in the classical SCENITH method. Whereas ex vivo manipulation impacted the viability and phenotype of T cells, this toxic effect was not observed in the in vivo SCENITH. We observed that conventional and regulatory T cells shared similar metabolic profiles. Importantly, whereas spleen T cells used both oxidative phosphorylation and glycolysis, the metabolism of T cells in the lungs was mainly based on oxidative phosphorylation. Finally, metabolic inhibitors that interfere with protein translation and energy availability downregulated Foxp3 expression in regulatory T cells. These results describe an expansion of SCENITH that allows to measure the metabolic profile of rare cells in vivo, revealing a high dependence on oxidative phosphorylation of lung T cells.
Collapse
Affiliation(s)
- Aristeidis Roubanis
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Morgane Hilaire
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Morgane Le Teuff
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM - CNRS - University Toulouse III, Toulouse, France
| | - Odile Devergne
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luciana Berod
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benoît L Salomon
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM - CNRS - University Toulouse III, Toulouse, France
| |
Collapse
|
2
|
Jackson JL, Saxena R, Murray MG, Staub AJ, Klochkova A, Bordner TH, Worrell C, Fuller AD, Crespo JM, Klein-Szanto AJ, Elrod J, Karakasheva TA, Ruffner M, Muir AB, Whelan KA. Interleukin-13-mediated alterations in esophageal epithelial mitochondria contribute to tissue remodeling in eosinophilic esophagitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646853. [PMID: 40236098 PMCID: PMC11996498 DOI: 10.1101/2025.04.02.646853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background The significance of mitochondria in EoE pathobiology remains elusive. Objective To determine the impact of EoE inflammatory mediators upon mitochondrial biology in esophageal epithelium, the mechanisms mediating these effects, and their functional significance to EoE pathobiology. Methods Mitochondria were evaluated in human biopsies, MC903/Ovalbumin-induced murine EoE, and human esophageal keratinocytes. Esophageal keratinocytes were treated with EoE-relevant cytokines and JAK/STAT inhibitor ruxolitinib. To deplete mitochondria, 3D organoids generated from TFAM loxp/loxp mice were subjected ex vivo to Cre or siRNA against Transcription factor A, mitochondria (TFAM) was transfected into esophageal keratinocytes. Mitochondrial respiration, membrane potential, and superoxide levels were measured. Results We find evidence of increased mitochondria in esophageal epithelium of patients with EoE and mice with EoE-like inflammation. In esophageal keratinocytes, IL-4 and IL-13 increase mitochondrial mass. IL-13 increases mitochondrial biogenesis in a JAK/STAT-dependent manner. In 3D organoids, IL-13 limits squamous cell differentiation (SCD), and this is blunted upon TFAM depletion. IL-13 decreases mitochondrial respiration and superoxide level, although mitochondria remain intact. IL-13-mediated suppression of superoxide was abrogated upon TFAM depletion in esophageal keratinocytes. Conclusions We report that increased mitochondrial mass is a feature of EoE. Among EoE-relevant cytokines, IL-13 is the primary driver of increased mitochondrial mass in esophageal keratinocytes by promoting mitochondrial biogenesis in a JAK/STAT-dependent manner. IL-13-mediated accumulation of mitochondria impairs SCD in esophageal keratinocytes and also suppresses oxidative stress, a factor that is known to induce SCD. These findings identify a novel mechanism through which IL-13 promotes EoE-associated epithelial remodeling. Clinical Implication These findings further lay a foundation for exploration of level of esophageal epithelial mitochondria as a predictive biomarker for response to dupilumab. Capsule summary IL-13 promotes mitochondrial biogenesis in esophageal epithelium, contributing to impaired squamous cell differentiation.
Collapse
|
3
|
Norton EG, Chapman NM, Shi H, Meng X, Huang H, KC A, Rankin S, Saravia J, Yuan S, Hu H, Vogel P, Chi H. Vps34-orchestrated lipid signaling processes regulate the transitional heterogeneity and functional adaptation of effector regulatory T cells. PLoS Biol 2025; 23:e3003074. [PMID: 40215232 PMCID: PMC11990774 DOI: 10.1371/journal.pbio.3003074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/19/2025] [Indexed: 04/14/2025] Open
Abstract
Regulatory T cell (Treg) heterogeneity exists in lymphoid and non-lymphoid tissues, but we have limited understanding of context-dependent functions and spatiotemporal regulators of heterogenous Treg states, especially during perinatal life when immune tolerance is established. Here, we revealed that the class III PI3K Vps34 orchestrates effector Treg (eTreg) transitional heterogeneity during perinatal life. We found that loss of Vps34 reduced terminal eTreg accumulation in lymphoid tissues, associated with decreased Treg generation in non-lymphoid tissues and development of an early-onset autoimmune-like disease. After perinatal life, Vps34-deficient eTreg accumulation was further impaired due to reduced cell survival, highlighting temporal regulation of eTreg heterogeneity and maintenance by Vps34. Accordingly, inhibition of Vps34 in mature Tregs disrupted immune homeostasis but boosted anti-tumor immunity. Mechanistically, multiomics profiling approaches uncovered that Vps34-orchestrated transcriptional and epigenetic remodeling promotes terminal eTreg programming. Further, via genetic deletion of the Vps34-interacting proteins Atg14 or Uvrag in Tregs, we established that Atg14 but not Uvrag was required for the overall survival, but not terminal differentiation, of eTregs, suggesting that autophagy but not endocytosis partly contributed to Vps34-dependent effects. Accordingly, mice with Treg-specific loss of Atg14, but not Uvrag, had moderately disrupted immune homeostasis and reduced tumor growth, with Vps34- or Atg14-dependent gene signatures also being elevated in intratumoral Tregs from human cancer patients. Collectively, our study reveals distinct Vps34-orchestrated signaling events that regulate eTreg heterogeneity and functional adaptation and the pathophysiological consequences on autoimmunity versus anti-tumor immunity.
Collapse
Affiliation(s)
- Erienne G. Norton
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Nicole M. Chapman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xiaoxi Meng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hongling Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anil KC
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sherri Rankin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jordy Saravia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sujing Yuan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Haoran Hu
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
4
|
Xiao J, Liu T, Zeng F, Zhang J. New insights into T cell metabolism in liver cancer: from mechanism to therapy. Cell Death Discov 2025; 11:118. [PMID: 40122853 PMCID: PMC11930970 DOI: 10.1038/s41420-025-02397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Liver cancer is the sixth most common cancer worldwide and the third most common cause of cancer mortality. The development and progression of liver cancer and metastases is a multifaceted process involving numerous metabolic pathways. T cells have a protective role in the defense against cancer, and manipulating metabolic pathways in T cells can alter their antitumor activity. Furthermore, Liver cancer and T cell nutrition competition lead to T cell dysfunction through various molecular mechanisms. Some nanomaterials and drugs can improve T cell metabolism and promote the anti-liver cancer function of T cells. This review discusses the current literature regarding metabolic changes in liver cancer, the role of T cells in liver cancer, T cell metabolism in liver cancer, and targeted T cell metabolism therapy for liver cancer. The promise and challenges of studying target T cell metabolism for treating liver cancer are also addressed. Targeting T cell metabolism is a promising approach for treating liver cancer.
Collapse
Affiliation(s)
- Jie Xiao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China
| | - Ting Liu
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichua, China.
| | - Jinhua Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China.
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China.
| |
Collapse
|
5
|
Subirana Slotos R, Nguyen TT, Fiska L, Friedland K, Endres K. A subcellular sampling instrument allows spatial resolution of amyloid deposit-derived organelle-specific effects in microglia. Commun Biol 2025; 8:3. [PMID: 39753747 PMCID: PMC11699115 DOI: 10.1038/s42003-024-07405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
Methodological developments in biomedical research are currently moving towards single-cell approaches. This allows for a much better spatial and functional characterization of, for example, the deterioration of cells within a tissue in response to noxae. However, subcellular resolution is also essential to elucidate whether observed impairments are driven by an explicit organelle. Here, we use the Single Cellome™ System SS2000 (Yokogawa) to investigate the local effects of Aβ plaque-like deposits (characteristic for Alzheimer's disease) on mitochondria in the mouse microglial cell line SIM-A9. First, the specificity of subcellular extraction is demonstrated by detecting subcellular staining and RT-qPCR concerning marker genes by comparing nuclear and mitochondrial samples. Oxygen consumption and gene expression is then assessed in cells near and far from peptide deposits. Mostly, all analyses confirm the high specificity and integrity of the sampled material. In addition, impact of the peptide deposits occur concerning spatial distribution of the cells: e.g., oxygen consumption is only reduced in cells close to Aβ deposits but not in proximity to deposits of biologically inactive Aβ (scrambled) or in far distance. Moreover, a distance-related gene expression pattern occurs, demonstrating the local initiation of mitochondrial changes of microglia when approaching toxic peptide deposits.
Collapse
Affiliation(s)
- Robert Subirana Slotos
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tinh Thi Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Ledjona Fiska
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kristina Friedland
- Institute of Pharmacy, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Zweibrücken, Germany.
| |
Collapse
|
6
|
Kenny TC, Birsoy K. Mitochondria and Cancer. Cold Spring Harb Perspect Med 2024; 14:a041534. [PMID: 38692736 PMCID: PMC11610758 DOI: 10.1101/cshperspect.a041534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mitochondria are semiautonomous organelles with diverse metabolic and cellular functions including anabolism and energy production through oxidative phosphorylation. Following the pioneering observations of Otto Warburg nearly a century ago, an immense body of work has examined the role of mitochondria in cancer pathogenesis and progression. Here, we summarize the current state of the field, which has coalesced around the position that functional mitochondria are required for cancer cell proliferation. In this review, we discuss how mitochondria influence tumorigenesis by impacting anabolism, intracellular signaling, and the tumor microenvironment. Consistent with their critical functions in tumor formation, mitochondria have become an attractive target for cancer therapy. We provide a comprehensive update on the numerous therapeutic modalities targeting the mitochondria of cancer cells making their way through clinical trials.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
7
|
Lu D, Huang A, Tong X, Zhang X, Li S, Yu X. Nobiletin protects against alcohol-induced mitochondrial dysfunction and liver injury by regulating the hepatic NRF1-TFAM signaling pathway. Redox Rep 2024; 29:2395779. [PMID: 39221774 PMCID: PMC11370696 DOI: 10.1080/13510002.2024.2395779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Alcohol and its metabolites, such as acetaldehyde, induced hepatic mitochondrial dysfunction play a pathological role in the development of alcohol-related liver disease (ALD). METHODS In this study, we investigated the potential of nobiletin (NOB), a polymethoxylated flavone, to counter alcohol-induced mitochondrial dysfunction and liver injury. RESULTS Our findings demonstrate that NOB administration markedly attenuated alcohol-induced hepatic steatosis, endoplasmic reticulum stress, inflammation, and tissue damage in mice. NOB reversed hepatic mitochondrial dysfunction and oxidative stress in both alcohol-fed mice and acetaldehyde-treated hepatocytes. Mechanistically, NOB restored the reduction of hepatic mitochondrial transcription factor A (TFAM) at both mRNA and protein levels. Notably, the protective effects of NOB against acetaldehyde-induced mitochondrial dysfunction and cell death were abolished in hepatocytes lacking Tfam. Furthermore, NOB administration reinstated the levels of hepatocellular NRF1, a key transcriptional regulator of TFAM, which were decreased by alcohol and acetaldehyde exposure. Consistent with these findings, hepatocyte-specific overexpression of Nrf1 protected against alcohol-induced hepatic Tfam reduction, mitochondrial dysfunction, oxidative stress, and liver injury. CONCLUSIONS Our study elucidates the involvement of the NRF1-TFAM signaling pathway in the protective mechanism of NOB against chronic-plus-binge alcohol consumption-induced mitochondrial dysfunction and liver injury, suggesting NOB supplementation as a potential therapeutic strategy for ALD.
Collapse
Affiliation(s)
- Dan Lu
- Department of Digestion, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Aiping Huang
- Department of Blood donation service, Blood Center of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Xiaoqing Tong
- Department of Nutrition, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Xiaoyan Zhang
- Department of Nutrition, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiaolong Yu
- Department of Nutrition, Zhejiang Hospital, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Singer M, Elsayed AM, Husseiny MI. Regulatory T-cells: The Face-off of the Immune Balance. FRONT BIOSCI-LANDMRK 2024; 29:377. [PMID: 39614434 DOI: 10.31083/j.fbl2911377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, ensuring a balanced immune response. Tregs primarily operate in an antigen-specific fashion, facilitated by their distinct distribution within discrete niches. Tregs have been studied extensively, from their point of origin in the thymus origin to their fate in the periphery or organs. Signals received from antigen-presenting cells (APCs) stimulate Tregs to dampen inflammation. Almost all tumors are characterized by a pathological abundance of immune suppression in their microenvironment. Conversely, the lack thereof proves detrimental to immunological disorders. Achieving a balanced expression of Tregs in relation to other immune compartments is important in establishing an effective and adaptable immune tolerance towards cancer cells and autoantigens. In the context of cancer, it is essential to decrease the frequency of Tregs to overcome tumor suppression. A lower survival rate is associated with the presence of excessive exhausted effector immune cells and an increased frequency of regulatory cells. However, when it comes to treating graft rejection and autoimmune diseases, the focus lies on immune tolerance and the transfer of Tregs. Here, we explore the complex mechanisms that Tregs use in human disease to balance effector immune cells.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Ahmed M Elsayed
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Feng L, Li B, Yong SS, Wen X, Tian Z. The emerging role of exercise in Alzheimer's disease: Focus on mitochondrial function. Ageing Res Rev 2024; 101:102486. [PMID: 39243893 DOI: 10.1016/j.arr.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory impairment and cognitive dysfunction, which eventually leads to the disability and mortality of older adults. Although the precise mechanisms by which age promotes the development of AD remains poorly understood, mitochondrial dysfunction plays a central role in the development of AD. Currently, there is no effective treatment for this debilitating disease. It is well accepted that exercise exerts neuroprotective effects by ameliorating mitochondrial dysfunction in the neurons of AD, which involves multiple mechanisms, including mitochondrial dynamics, biogenesis, mitophagy, transport, and signal transduction. In addition, exercise promotes mitochondria communication with other organelles in AD neurons, which should receive more attentions in the future.
Collapse
Affiliation(s)
- Lili Feng
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Bowen Li
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Su Sean Yong
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Xu Wen
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
10
|
Li Y, Tian L, Li S, Chen X, Lei F, Bao J, Wu Q, Wen Y, Jie Y. Disrupted mitochondrial transcription factor A expression promotes mitochondrial dysfunction and enhances ocular surface inflammation by activating the absent in melanoma 2 inflammasome. Free Radic Biol Med 2024; 222:106-121. [PMID: 38797339 DOI: 10.1016/j.freeradbiomed.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE Severe dry eye disease causes ocular surface damage, which is highly associated with mitochondrial dysfunction. Mitochondrial transcription factor A (TFAM) is essential for packaging mitochondrial DNA (mtDNA) and is crucial for maintaining mitochondrial function. Herein, we aimed to explore the effect of a decreased TFAM expression on ocular surface damage. METHODS Female C57BL/6 mice were induced ocular surface injury by topical administrating benzalkonium chloride (BAC). Immortalized human corneal epithelial cells (HCECs) were stimulated by tert-butyl hydroperoxide (t-BHP) to create oxidative stress damage. HCECs with TFAM knockdown were established. RNA sequencing was employed to analyze the whole-genome expression. Mitochondrial changes were measured by transmission electron microscopy, Seahorse metabolic flux analysis, mitochondrial membrane potential, and mtDNA copy number. TFAM expression and inflammatory cytokines were determined using RT-qPCR, immunohistochemistry, immunofluorescence, and immunoblotting. RESULTS In both the corneas of BAC-treated mice and t-BHP-induced HCECs, we observed impaired TFAM expression, accompanied by mitochondrial structure and function defects. TFAM downregulation in HCECs suppressed mitochondrial respiratory capacity, reduced mtDNA content, induced mtDNA leakage into the cytoplasm, and led to inflammation. RNA sequencing revealed the absent in melanoma 2 (AIM2) inflammasome was activated in the corneas of BAC-treated mice. The AIM2 inflammasome activation was confirmed in TFAM knockdown HCECs. TFAM knockdown in t-BHP-stimulated HCECs aggravated mitochondrial dysfunction and the AIM2 inflammasome activation, thereby further triggering the secretion of inflammatory factors such as interleukin (IL) -1β and IL-18. CONCLUSIONS TFAM reduction impaired mitochondrial function, activated AIM2 inflammasome and promoted ocular surface inflammation, revealing an underlying molecular mechanism for ocular surface disorders.
Collapse
Affiliation(s)
- Yaqiong Li
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Siyuan Li
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Xiaoniao Chen
- Department of Ophthalmology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China.
| | - Fengyang Lei
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Jiayu Bao
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Qianru Wu
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Ya Wen
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| |
Collapse
|
11
|
Yazicioglu YF, Mitchell RJ, Clarke AJ. Mitochondrial control of lymphocyte homeostasis. Semin Cell Dev Biol 2024; 161-162:42-53. [PMID: 38608498 DOI: 10.1016/j.semcdb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.
Collapse
|
12
|
Bonetti L, Horkova V, Grusdat M, Longworth J, Guerra L, Kurniawan H, Franchina DG, Soriano-Baguet L, Binsfeld C, Verschueren C, Spath S, Ewen A, Koncina E, Gérardy JJ, Kobayashi T, Dostert C, Farinelle S, Härm J, Fan YT, Chen Y, Harris IS, Lang PA, Vasiliou V, Waisman A, Letellier E, Becher B, Mittelbronn M, Brenner D. A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation. Cell Metab 2024; 36:1726-1744.e10. [PMID: 38986617 DOI: 10.1016/j.cmet.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.
Collapse
Affiliation(s)
- Lynn Bonetti
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Veronika Horkova
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Davide G Franchina
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carole Binsfeld
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sabine Spath
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland; Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Anouk Ewen
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
| | - Takumi Kobayashi
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Janika Härm
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Yu-Tong Fan
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Isaac S Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
13
|
Carbone F, Colamatteo A, La Rocca C, Lepore MT, Russo C, De Rosa G, Matarese A, Procaccini C, Matarese G. Metabolic Plasticity of Regulatory T Cells in Health and Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1859-1866. [PMID: 38830147 DOI: 10.4049/jimmunol.2400079] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Immunometabolism has been demonstrated to control immune tolerance and the pathogenic events leading to autoimmunity. Compelling experimental evidence also suggests that intracellular metabolic programs influence differentiation, phenotype, proliferation, and effector functions of anti-inflammatory CD4+CD25+Foxp3+ regulatory T (Treg) cells. Indeed, alterations in intracellular metabolism associate with quantitative and qualitative impairments of Treg cells in several pathological conditions. In this review, we summarize the most recent advances linking how metabolic pathways control Treg cell homeostasis and their alterations occurring in autoimmunity. Also, we analyze how metabolic manipulations could be employed to restore Treg cell frequency and function with the aim to create novel therapeutic opportunities to halt immune-mediated disorders.
Collapse
Grants
- 2022LNHZAP Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PE00000007 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PE00000006 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- RF-2019-12371111 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- PNRR-MAD-2022-12375634 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- GR-2018-12366154 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- 2022-PRsingle/013 Fondazione Italiana Sclerosi Multipla (FISM)
- P2022T4PKT Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PNRR-MAD-2022-12376126 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- GR-2021-12373337 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- 2022YMJXYT Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- P2022CMK43 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- 20225KH7BZ Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II," Napoli, Italy
| | - Giusy De Rosa
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| |
Collapse
|
14
|
Gill JS, Bansal B, Guo K, Huang F, Singh H, Hur J, Khan N, Mathur R. Mitochondrial Oxidative Stress Regulates FOXP3+ T-Cell Activity and CD4-Mediated Inflammation in Older Adults with Frailty. Int J Mol Sci 2024; 25:6235. [PMID: 38892421 PMCID: PMC11173216 DOI: 10.3390/ijms25116235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy older adults, the immune system generally preserves its response and contributes to a long, healthy lifespan. However, rapid deterioration in immune regulation can lead to chronic inflammation, termed inflammaging, which accelerates pathological aging and diminishes the quality of life in older adults with frailty. A significant limitation in current aging research is the predominant focus on comparisons between young and older populations, often overlooking the differences between healthy older adults and those experiencing pathological aging. Our study elucidates the intricate immunological dynamics of the CD4/Treg axis in frail older adults compared to comparable age-matched healthy older adults. By utilizing publicly available RNA sequencing and single-cell RNA sequencing (scRNAseq) data from peripheral blood mononuclear cells (PBMCs), we identified a specific Treg cell subset and transcriptional landscape contributing to the dysregulation of CD4+ T-cell responses. We explored the molecular mechanisms underpinning Treg dysfunction, revealing that Tregs from frail older adults exhibit reduced mitochondrial protein levels, impairing mitochondrial oxidative phosphorylation. This impairment is driven by the TNF/NF-kappa B pathway, leading to cumulative inflammation. Further, we gained a deeper understanding of the CD4/Treg axis by predicting the effects of gene perturbations on cellular signaling networks. Collectively, these findings highlight the age-related relationship between mitochondrial dysfunction in the CD4/Treg axis and its role in accelerating aging and frailty in older adults. Targeting Treg dysfunction offers a critical basis for developing tailored therapeutic strategies aimed at improving the quality of life in older adults.
Collapse
Affiliation(s)
- Jappreet Singh Gill
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58292, USA
| | - Benu Bansal
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58292, USA
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
| | - Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Huang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
| | - Harpreet Singh
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
| | - Nadeem Khan
- Department of Oral Biology, University of Florida, Gainsville, FL 32603, USA;
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
| |
Collapse
|
15
|
Zhang J, Peng Y, Song H, Liu S, Li C, Zhang Y, Shi X, Guo H, Xu Y. Mitochondrial-dependent oxidative phosphorylation is key for postnatal metabolic adaptation of alveolar macrophages in the lung. Int Immunopharmacol 2024; 133:112012. [PMID: 38657501 DOI: 10.1016/j.intimp.2024.112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Alveolar macrophages (AMs) seed in lung during embryogenesis and become mature in perinatal period. Establishment of acclimatization to environmental challenges is important, whereas the detailed mechanisms that drive metabolic adaptation of AMs remains to be elucidated. Here, we showed that energy metabolism of AMs was transformed from glycolysis prenatally to oxidative phosphorylation (OXPHOS) postnatally accompanied by up-regulated expression of mitochondrial transcription factor A (TFAM). TFAM deficiency disturbed mitochondrial stability and decreased OXPHOS, which finally impaired AM maintenance and function, but not AM embryonic development. Mechanistically, Tfam-deletion resulted in impaired mitochondrial respiration and decreased ATP production, which triggered endoplasmic reticulum (ER) stress to cause B cell lymphoma 2 ovarian killer (BOK) accumulation and abnormal distribution of intracellular Ca2+, eventually led to induce AM apoptotic death. Thus, our data illustrated mitochondrial-dependent OXPHOS played a key role in orchestrating AM postnatal metabolic adaptation.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yu Peng
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Haosen Song
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Siqi Liu
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Chuanwei Li
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yi Zhang
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaowei Shi
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.
| | - Huifang Guo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510091, China.
| | - Yingping Xu
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.
| |
Collapse
|
16
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
17
|
Shan Y, Xie T, Sun Y, Lu Z, Topatana W, Juengpanich S, Chen T, Han Y, Cao J, Hu J, Li S, Cai X, Chen M. Lipid metabolism in tumor-infiltrating regulatory T cells: perspective to precision immunotherapy. Biomark Res 2024; 12:41. [PMID: 38644503 PMCID: PMC11034130 DOI: 10.1186/s40364-024-00588-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to the negative regulation of the immune system, as they avoid excessive inflammation and mediate tumor development. The abundance of Tregs in tumor tissues suggests that Tregs may be eliminated or functionally inhibited to stimulate antitumor immunity. However, immunotherapy targeting Tregs has been severely hampered by autoimmune diseases due to the systemic elimination of Tregs. Recently, emerging studies have shown that metabolic regulation can specifically target tumor-infiltrating immune cells, and lipid accumulation in TME is associated with immunosuppression. Nevertheless, how Tregs actively regulate metabolic reprogramming to outcompete effector T cells (Teffs), and how lipid metabolic reprogramming contributes to the immunomodulatory capacity of Tregs have not been fully discussed. This review will discuss the physiological processes by which lipid accumulation confers a metabolic advantage to tumor-infiltrating Tregs (TI-Tregs) and amplifies their immunosuppressive functions. Furthermore, we will provide a summary of the driving effects of various metabolic regulators on the metabolic reprogramming of Tregs. Finally, we propose that targeting the lipid metabolism of TI-Tregs could be efficacious either alone or in conjunction with immune checkpoint therapy.
Collapse
Affiliation(s)
- Yukai Shan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Tianao Xie
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Yuchao Sun
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Ziyi Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
- School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Sarun Juengpanich
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Tianen Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Yina Han
- Department of Pathology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
18
|
Lee S, Song SG, Kim G, Kim S, Yoo HJ, Koh J, Kim YJ, Tian J, Cho E, Choi YS, Chang S, Shin HM, Jung KC, Kim JH, Kim TM, Jeon YK, Kim HY, Shong M, Kim JH, Chung DH. CRIF1 deficiency induces FOXP3 LOW inflammatory non-suppressive regulatory T cells, thereby promoting antitumor immunity. SCIENCE ADVANCES 2024; 10:eadj9600. [PMID: 38536932 PMCID: PMC10971410 DOI: 10.1126/sciadv.adj9600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
Recently identified human FOXP3lowCD45RA- inflammatory non-suppressive (INS) cells produce proinflammatory cytokines, exhibit reduced suppressiveness, and promote antitumor immunity unlike conventional regulatory T cells (Tregs). In spite of their implication in tumors, the mechanism for generation of FOXP3lowCD45RA- INS cells in vivo is unclear. We showed that the FOXP3lowCD45RA- cells in human tumors demonstrate attenuated expression of CRIF1, a vital mitochondrial regulator. Mice with CRIF1 deficiency in Tregs bore Foxp3lowINS-Tregs with mitochondrial dysfunction and metabolic reprograming. The enhanced glutaminolysis activated α-ketoglutarate-mTORC1 axis, which promoted proinflammatory cytokine expression by inducing EOMES and SATB1 expression. Moreover, chromatin openness of the regulatory regions of the Ifng and Il4 genes was increased, which facilitated EOMES/SATB1 binding. The increased α-ketoglutarate-derived 2-hydroxyglutarate down-regulated Foxp3 expression by methylating the Foxp3 gene regulatory regions. Furthermore, CRIF1 deficiency-induced Foxp3lowINS-Tregs suppressed tumor growth in an IFN-γ-dependent manner. Thus, CRIF1 deficiency-mediated mitochondrial dysfunction results in the induction of Foxp3lowINS-Tregs including FOXP3lowCD45RA- cells that promote antitumor immunity.
Collapse
Affiliation(s)
- Sangsin Lee
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Geun Song
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jung Yoo
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jingwen Tian
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Eunji Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sunghoe Chang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Kim
- Department of Pathology, Asan Medical Center (AMC), Ulsan University College of Medicine, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ji Hyung Kim
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Noble J, Macek Jilkova Z, Aspord C, Malvezzi P, Fribourg M, Riella LV, Cravedi P. Harnessing Immune Cell Metabolism to Modulate Alloresponse in Transplantation. Transpl Int 2024; 37:12330. [PMID: 38567143 PMCID: PMC10985621 DOI: 10.3389/ti.2024.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Immune cell metabolism plays a pivotal role in shaping and modulating immune responses. The metabolic state of immune cells influences their development, activation, differentiation, and overall function, impacting both innate and adaptive immunity. While glycolysis is crucial for activation and effector function of CD8 T cells, regulatory T cells mainly use oxidative phosphorylation and fatty acid oxidation, highlighting how different metabolic programs shape immune cells. Modification of cell metabolism may provide new therapeutic approaches to prevent rejection and avoid immunosuppressive toxicities. In particular, the distinct metabolic patterns of effector and suppressive cell subsets offer promising opportunities to target metabolic pathways that influence immune responses and graft outcomes. Herein, we review the main metabolic pathways used by immune cells, the techniques available to assay immune metabolism, and evidence supporting the possibility of shifting the immune response towards a tolerogenic profile by modifying energetic metabolism.
Collapse
Affiliation(s)
- Johan Noble
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, University Hospital Grenoble, Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
| | - Zuzana Macek Jilkova
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
- Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Grenoble, Grenoble, France
| | - Caroline Aspord
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
- Établissement Français du Sang Auvergne-Rhône-Alpes, R&D-Laboratory, Grenoble, France
| | - Paolo Malvezzi
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, University Hospital Grenoble, Grenoble, France
| | - Miguel Fribourg
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai New York, New York, NY, United States
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai New York, New York, NY, United States
| |
Collapse
|
20
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
21
|
Xuekai L, Yan S, Jian C, Yifei S, Xinyue W, Wenyuan Z, Shuwen H, Xi Y. Advances in reprogramming of energy metabolism in tumor T cells. Front Immunol 2024; 15:1347181. [PMID: 38415258 PMCID: PMC10897011 DOI: 10.3389/fimmu.2024.1347181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer is a leading cause of human death worldwide, and the modulation of the metabolic properties of T cells employed in cancer immunotherapy holds great promise for combating cancer. As a crucial factor, energy metabolism influences the activation, proliferation, and function of T cells, and thus metabolic reprogramming of T cells is a unique research perspective in cancer immunology. Special conditions within the tumor microenvironment and high-energy demands lead to alterations in the energy metabolism of T cells. In-depth research on the reprogramming of energy metabolism in T cells can reveal the mechanisms underlying tumor immune tolerance and provide important clues for the development of new tumor immunotherapy strategies as well. Therefore, the study of T cell energy metabolism has important clinical significance and potential applications. In the study, the current achievements in the reprogramming of T cell energy metabolism were reviewed. Then, the influencing factors associated with T cell energy metabolism were introduced. In addition, T cell energy metabolism in cancer immunotherapy was summarized, which highlighted its potential significance in enhancing T cell function and therapeutic outcomes. In summary, energy exhaustion of T cells leads to functional exhaustion, thus resulting in immune evasion by cancer cells. A better understanding of reprogramming of T cell energy metabolism may enable immunotherapy to combat cancer and holds promise for optimizing and enhancing existing therapeutic approaches.
Collapse
Affiliation(s)
- Liu Xuekai
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Song Yan
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Chu Jian
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Department of Gastroenterology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Department of Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Song Yifei
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Department of Gastroenterology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Department of Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Wu Xinyue
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Department of Gastroenterology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Department of Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Zhang Wenyuan
- Department of Gynecology, Heyuan Hospital of Traditional Chinese Medicine, Heyuan, China
| | - Han Shuwen
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Department of Gastroenterology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Department of Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Yang Xi
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Department of Gastroenterology, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Department of Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| |
Collapse
|
22
|
Nguyen J, Win PW, Nagano TS, Shin EH, Newcomb C, Arking DE, Castellani CA. Mitochondrial DNA copy number reduction via in vitro TFAM knockout remodels the nuclear epigenome and transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577835. [PMID: 38352513 PMCID: PMC10862824 DOI: 10.1101/2024.01.29.577835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is associated with several age-related chronic diseases and is a predictor of all-cause mortality. Here, we examine site-specific differential nuclear DNA (nDNA) methylation and differential gene expression resulting from in vitro reduction of mtDNA-CN to uncover shared genes and biological pathways mediating the effect of mtDNA-CN on disease. Epigenome and transcriptome profiles were generated for three independent human embryonic kidney (HEK293T) cell lines harbouring a mitochondrial transcription factor A (TFAM) heterozygous knockout generated via CRISPR-Cas9, and matched control lines. We identified 4,242 differentially methylated sites, 228 differentially methylated regions, and 179 differentially expressed genes associated with mtDNA-CN. Integrated analysis uncovered 381 Gene-CpG pairs. GABAA receptor genes and related pathways, the neuroactive ligand receptor interaction pathway, ABCD1/2 gene activity, and cell signalling processes were overrepresented, providing insight into the underlying biological mechanisms facilitating these associations. We also report evidence implicating chromatin state regulatory mechanisms as modulators of mtDNA-CN effect on gene expression. We demonstrate that mitochondrial DNA variation signals to the nuclear DNA epigenome and transcriptome and may lead to nuclear remodelling relevant to development, aging, and complex disease.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tyler Shin Nagano
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elly H. Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles Newcomb
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Children’s Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
23
|
Jiang Y, Gao S, Sun H, Wu X, Gu J, Wu H, Liao Y, Ben-Ami R, Miao C, Shen R, Liu J, Chen W. Targeting NEDD8 suppresses surgical stress-facilitated metastasis of colon cancer via restraining regulatory T cells. Cell Death Dis 2024; 15:8. [PMID: 38177106 PMCID: PMC10767093 DOI: 10.1038/s41419-023-06396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
Regulatory T cells (Tregs) are a key determinant for the immunosuppressive and premetastatic niche for cancer progression after surgery resection. However, the precise mechanisms regulating Tregs function during surgical stress-facilitated cancer metastasis remain unknown. This study aims to unravel the mechanisms and explore potential strategies for preventing surgical stress-induced metastasis by targeting NEDD8. Using a surgical stress mouse model, we found that surgical stress results in the increased expression of NEDD8 in Tregs. NEDD8 depletion abrogates postoperative lung metastasis of colon cancer cells by inhibiting Treg immunosuppression and thereby partially recovering CD8+T cell and NK cell-mediated anti-tumor immunity. Furthermore, Treg mitophagy and mitochondrial respiration exacerbated in surgically stressed mice were attenuated by NEDD8 depletion. Our observations suggest that cancer progression may result from surgery-induced enhancement of NEDD8 expression and the subsequent immunosuppressive function of Tregs. More importantly, depleting or inhibiting NEDD8 can be an efficient strategy to reduce cancer metastasis after surgery resection by regulating the function of Tregs.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Hao Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Xinyi Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Jiahui Gu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Han Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Yun Liao
- School of Basic Medical Science, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Rong Shen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China.
- Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai, 201104, China.
- Department of Anesthesiology, QingPu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201799, China.
| |
Collapse
|
24
|
Xiang P, Du Y, Chen G, Mao Y, Li S, Li Q, Yang Y, Li X, Wang D. Dietary Achievable Dose of Protocatechuic Acid, a Metabolite of Flavonoids, Inhibits High-Fat Diet-Induced Obesity in Mice. Mol Nutr Food Res 2024; 68:e2300451. [PMID: 37997172 DOI: 10.1002/mnfr.202300451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Indexed: 11/25/2023]
Abstract
SCOPE Protocatechuic acid (PCA), a gut microbiota metabolite of flavonoids, inhibits dietary obesity and increases uncoupling protein 1 (UCP1), a critical regulator responsible for adipose thermogenesis; however, these effects are achieved at dietary unachievable (pharmacological) dose. It evaluates whether dietary achievable dose of PCA inhibits adiposity by activating adipose thermogenesis. METHODS AND RESULTS Six-week-old male C57BL/6J mice are fed a high-fat diet (HFD) alone (control) or supplemented with 0.003% PCA w/w for 16 weeks. PCA consumption does not affect food intake but appreciably reduces body weight gain, improves insulin sensitivity, and attenuates hepatic steatosis. These effects are associated with no significant changes in the abundance of UCP1 in adipose tissues. Instead, PCA consumption increases the abundance and enzymatic activity of carnitine palmitoyltransferase 1 (the first rate-limiting enzyme in fatty acid oxidation) in the livers, inguinal white, and brown adipose tissues. Surprisingly, PCA at physiologically achievable dose does not affect the abundance and enzymatic activity of carnitine acyltransferase-1 expression and the capacity of fatty acid oxidation in 3T3-L1-derived white or brown adipocytes and human hepatoma HepG2 cells. CONCLUSIONS Dietary achievable dose of PCA attenuates HFD-induced adiposity, which is likely achieved by increasing fatty acid oxidation other than activating adipose thermogenesis.
Collapse
Affiliation(s)
- Panyin Xiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080, PR China
| | - Yushi Du
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080, PR China
| | - Guanyu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080, PR China
| | - Yihui Mao
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080, PR China
| | - Shuangshuang Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080, PR China
| | - Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080, PR China
| | - Yuting Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080, PR China
| | - Xueyu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080, PR China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080, PR China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, 510080, PR China
| |
Collapse
|
25
|
Kang JH, Zappasodi R. Modulating Treg stability to improve cancer immunotherapy. Trends Cancer 2023; 9:911-927. [PMID: 37598003 DOI: 10.1016/j.trecan.2023.07.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
Immunosuppressive regulatory T cells (Tregs) provide a main mechanism of tumor immune evasion. Targeting Tregs, especially in the tumor microenvironment (TME), continues to be investigated to improve cancer immunotherapy. Recent studies have unveiled intratumoral Treg heterogeneity and plasticity, furthering the complexity of the role of Tregs in tumor immunity and immunotherapy response. The phenotypic and functional diversity of intratumoral Tregs can impact their response to therapy and may offer new targets to modulate specific Treg subsets. In this review we provide a unifying framework of critical factors contributing to Treg heterogeneity and plasticity in the TME, and we discuss how this information can guide the development of more specific Treg-targeting therapies for cancer immunotherapy.
Collapse
Affiliation(s)
- Jee Hye Kang
- Weill Cornell Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA
| | - Roberta Zappasodi
- Weill Cornell Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA.
| |
Collapse
|
26
|
Lee H, Jeon JH, Kim ES. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front Immunol 2023; 14:1219422. [PMID: 37809060 PMCID: PMC10556505 DOI: 10.3389/fimmu.2023.1219422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Mitochondria has emerged as a critical ruler of metabolic reprogramming in immune responses and inflammation. In the context of colitogenic T cells and IBD, there has been increasing research interest in the metabolic pathways of glycolysis, pyruvate oxidation, and glutaminolysis. These pathways have been shown to play a crucial role in the metabolic reprogramming of colitogenic T cells, leading to increased inflammatory cytokine production and tissue damage. In addition to metabolic reprogramming, mitochondrial dysfunction has also been implicated in the pathogenesis of IBD. Studies have shown that colitogenic T cells exhibit impaired mitochondrial respiration, elevated levels of mROS, alterations in calcium homeostasis, impaired mitochondrial biogenesis, and aberrant mitochondria-associated membrane formation. Here, we discuss our current knowledge of the metabolic reprogramming and mitochondrial dysfunctions in colitogenic T cells, as well as the potential therapeutic applications for treating IBD with evidence from animal experiments.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
27
|
Escrig-Larena JI, Delgado-Pulido S, Mittelbrunn M. Mitochondria during T cell aging. Semin Immunol 2023; 69:101808. [PMID: 37473558 DOI: 10.1016/j.smim.2023.101808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of aging that contributes to inflammaging. It is characterized by alterations of the mitochondrial DNA, reduced respiratory capacity, decreased mitochondrial membrane potential and increased reactive oxygen species production. These primary alterations disrupt other interconnected and important mitochondrial-related processes such as metabolism, mitochondrial dynamics and biogenesis, mitophagy, calcium homeostasis or apoptosis. In this review, we gather the current knowledge about the different mitochondrial processes which are altered during aging, with special focus on their contribution to age-associated T cell dysfunction and inflammaging.
Collapse
Affiliation(s)
- Jose Ignacio Escrig-Larena
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sandra Delgado-Pulido
- Departamento de Biología Molecular, Facultad de Ciencias (UAM), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
28
|
Wang Y, Huang T, Gu J, Lu L. Targeting the metabolism of tumor-infiltrating regulatory T cells. Trends Immunol 2023:S1471-4906(23)00109-6. [PMID: 37442660 DOI: 10.1016/j.it.2023.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
Although targeting the tumor metabolism is performed in cooperation with immunotherapy in the era of precision oncology, ignorance of immune cells' metabolism has resulted in unstable antitumor responses. Tumor-infiltrating regulatory T cells (TI-Tregs) are unique, overcoming the hypoxic, acidic, and nutrient-deficient tumor microenvironments (TMEs) and maintaining immunosuppressive functions. However, secondary autoimmunity caused by systemic Treg depletion remains the 'Sword of Damocles' for current Treg-targeted therapies. In this opinion piece, we propose that metabolically reprogrammed TI-Tregs might represent an obstacle to cancer therapies. Indeed, metabolism-based Treg-targeted therapy might provide higher selectivity for clearing TI-Tregs than traditional kinase/checkpoint inhibitors and chemokine/chemokine receptor blockade; it might also restore the efficacy of targeting the tumor metabolism and eliminate certain metabolic barriers to immunotherapy.
Collapse
Affiliation(s)
- Yiming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianning Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Bonetti L, Horkova V, Longworth J, Guerra L, Kurniawan H, Franchina DG, Soriano-Baguet L, Grusdat M, Spath S, Koncina E, Ewen A, Binsfeld C, Verschueren C, Gérardy JJ, Kobayashi T, Dostert C, Farinelle S, Härm J, Chen Y, Harris IS, Lang PA, Vasiliou V, Waisman A, Letellier E, Becher B, Mittelbronn M, Brenner D. A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547932. [PMID: 37489135 PMCID: PMC10363291 DOI: 10.1101/2023.07.06.547932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.
Collapse
Affiliation(s)
- Lynn Bonetti
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Veronika Horkova
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Davide G. Franchina
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sabine Spath
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, WA 98101, USA
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Anouk Ewen
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carole Binsfeld
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, L-3555, Luxembourg
| | - Takumi Kobayashi
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Janika Härm
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Isaac S. Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty Heinrich Heine University Düsseldorf, Germany
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, L-3555, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg, L-1526, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
Zhang J, Peng Y, Hu Y, Guo H, Sun Y, Zhang X, Mi QS, Xu Y. TFAM Deficiency‒Mediated Mitochondrial Disorder Affects Langerhans Cell Maintenance and Function. J Invest Dermatol 2023; 143:508-513.e2. [PMID: 36049540 DOI: 10.1016/j.jid.2022.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Jun Zhang
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yu Peng
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yongfei Hu
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Huifang Guo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yuzhe Sun
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoqian Zhang
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Yingping Xu
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Wang J, Gong R, Zhao C, Lei K, Sun X, Ren H. Human FOXP3 and tumour microenvironment. Immunology 2023; 168:248-255. [PMID: 35689826 DOI: 10.1111/imm.13520] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 01/17/2023] Open
Abstract
The tumour microenvironment (TME) is a complex system composed of cancer cells, stromal cells and immune cells. Regulatory T cells (Tregs) in the TME impede immune surveillance of tumours and suppress antitumor immune responses. Transcription factor forkhead box protein 3 (FOXP3) is the main marker of Tregs, which dominates the function of Tregs. FOXP3 was originally thought to be a Tregs-specific expression molecule, and recent studies have found that FOXP3 is expressed in a variety of tumours with inconsistent functional roles. This review summarizes the recent progress of infiltrating Treg-FOXP3 and tumour-FOXP3 in TME, discusses the communication mechanism between FOXP3+ cells and effector T cells in TME, the relationship between FOXP3 and clinical prognosis, and the potential of FOXP3-targeted therapy.
Collapse
Affiliation(s)
- Jia Wang
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Qingdao Medical School, Qingdao University, Qingdao, Shandong, China
| | - Ruining Gong
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chenyang Zhao
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyuan Sun
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - He Ren
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Tianjin, China
| |
Collapse
|
32
|
Greeck VB, Williams SK, Haas J, Wildemann B, Fairless R. Alterations in Lymphocytic Metabolism-An Emerging Hallmark of MS Pathophysiology? Int J Mol Sci 2023; 24:ijms24032094. [PMID: 36768415 PMCID: PMC9917089 DOI: 10.3390/ijms24032094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterised by acute inflammation and subsequent neuro-axonal degeneration resulting in progressive neurological impairment. Aberrant immune system activation in the periphery and subsequent lymphocyte migration to the CNS contribute to the pathophysiology. Recent research has identified metabolic dysfunction as an additional feature of MS. It is already well known that energy deficiency in neurons caused by impaired mitochondrial oxidative phosphorylation results in ionic imbalances that trigger degenerative pathways contributing to white and grey matter atrophy. However, metabolic dysfunction in MS appears to be more widespread than the CNS. This review focuses on recent research assessing the metabolism and mitochondrial function in peripheral immune cells of MS patients and lymphocytes isolated from murine models of MS. Emerging evidence suggests that pharmacological modulation of lymphocytic metabolism may regulate their subtype differentiation and rebalance pro- and anti-inflammatory functions. As such, further understanding of MS immunometabolism may aid the identification of novel treatments to specifically target proinflammatory immune responses.
Collapse
Affiliation(s)
- Viktoria B. Greeck
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah K. Williams
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Haas
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Brigitte Wildemann
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
33
|
de Candia P, Procaccini C, Russo C, Lepore MT, Matarese G. Regulatory T cells as metabolic sensors. Immunity 2022; 55:1981-1992. [PMID: 36351373 DOI: 10.1016/j.immuni.2022.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Compelling experimental evidence links immunity and metabolism. In this perspective, we propose forkhead-box-P3 (FoxP3)+CD4+CD25+ regulatory T (Treg) cells as key metabolic sensors controlling the immunological state in response to their intrinsic capacity to perceive nutritional changes. Treg cell high anabolic state in vivo, residency in metabolically crucial districts, and recirculation between lymphoid and non-lymphoid sites enable them to recognize the metabolic cues and adapt their intracellular metabolism and anti-inflammatory function at the paracrine and systemic levels. As privileged regulators at the interface between neuroendocrine and immune systems, the role of Treg cells in maintaining metabolic homeostasis makes these cells promising targets of therapeutic strategies aimed at restoring organismal homeostasis not only in autoimmune but also metabolic disorders.
Collapse
Affiliation(s)
- Paola de Candia
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Claudia Russo
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy.
| |
Collapse
|
34
|
Qiu Y, Ke S, Chen J, Qin Z, Zhang W, Yuan Y, Meng D, Zhao G, Wu K, Li B, Li D. FOXP3+ regulatory T cells and the immune escape in solid tumours. Front Immunol 2022; 13:982986. [PMID: 36569832 PMCID: PMC9774953 DOI: 10.3389/fimmu.2022.982986] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 01/15/2023] Open
Abstract
FOXP3+ regulatory T (Treg) cells play critical roles in establishing the immunosuppressive tumour microenvironment, which is achieved and dynamically maintained with the contribution of various stromal and immune cell subsets. However, the dynamics of non-lymphoid FOXP3+ Treg cells and the mutual regulation of Treg cells and other cell types in solid tumour microenvironment remains largely unclear. In this review, we summarize the latest findings on the dynamic connections and reciprocal regulations of non-lymphoid Treg cell subsets in accordance with well-established and new emerging hallmarks of cancer, especially on the immune escape of tumour cells in solid tumours. Our comprehension of the interplay between FOXP3+ Treg cells and key hallmarks of cancer may provide new insights into the development of next-generation engineered T cell-based immune treatments for solid tumours.
Collapse
Affiliation(s)
- Yiran Qiu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University School of Medicine, Shanghai, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouyu Ke
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqiong Chen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhizhen Qin
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenle Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqin Yuan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dehua Meng
- Department of Orthopedics, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Gang Zhao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Integrated TCM & Western Medicine at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Hino Y, Nagaoka K, Oki S, Etoh K, Hino S, Nakao M. Mitochondrial stress induces AREG expression and epigenomic remodeling through c-JUN and YAP-mediated enhancer activation. Nucleic Acids Res 2022; 50:9765-9779. [PMID: 36095121 PMCID: PMC9508833 DOI: 10.1093/nar/gkac735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Nucleus–mitochondria crosstalk is essential for cellular and organismal homeostasis. Although anterograde (nucleus-to-mitochondria) pathways have been well characterized, retrograde (mitochondria-to-nucleus) pathways remain to be clarified. Here, we found that mitochondrial dysfunction triggered a retrograde signaling via unique transcriptional and chromatin factors in hepatic cells. Our transcriptomic analysis revealed that the loss of mitochondrial transcription factor A led to mitochondrial dysfunction and dramatically induced expression of amphiregulin (AREG) and other secretory protein genes. AREG expression was also induced by various mitochondria stressors and was upregulated in murine liver injury models, suggesting that AREG expression is a hallmark of mitochondrial damage. Using epigenomic and informatic approaches, we identified that mitochondrial dysfunction-responsive enhancers of AREG gene were activated by c-JUN/YAP1/TEAD axis and were repressed by chromatin remodeler BRG1. Furthermore, while mitochondrial dysfunction-activated enhancers were enriched with JUN and TEAD binding motifs, the repressed enhancers possessed the binding motifs for hepatocyte nuclear factor 4α, suggesting that both stress responsible and cell type-specific enhancers were reprogrammed. Our study revealed that c-JUN and YAP1-mediated enhancer activation shapes the mitochondrial stress-responsive phenotype, which may shift from metabolism to stress adaptation including protein secretion under such stressed conditions.
Collapse
Affiliation(s)
- Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Katsuya Nagaoka
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kan Etoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
36
|
Hurrell BP, Helou DG, Howard E, Painter JD, Shafiei-Jahani P, Sharpe AH, Akbari O. PD-L2 controls peripherally induced regulatory T cells by maintaining metabolic activity and Foxp3 stability. Nat Commun 2022; 13:5118. [PMID: 36045140 PMCID: PMC9433378 DOI: 10.1038/s41467-022-32899-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Regulatory T (Treg) cells are central to limit immune responses to allergens. Here we show that PD-L2 deficiency prevents the induction of tolerance to ovalbumin and control of airway hyperreactivity, in particular by limiting pTreg numbers and function. In vitro, PD-1/PD-L2 interactions increase iTreg numbers and stability. In mice lacking PD-L2 we find lower numbers of splenic pTregs at steady state, producing less IL-10 upon activation and with reduced suppressive activity. Remarkably, the numbers of splenic pTregs are restored by adoptively transferring PD-L2high dendritic cells to PD-L2KO mice. Functionally, activated pTregs lacking PD-L2 show lower Foxp3 expression, higher methylation of the Treg-Specific Demethylation Region (TSDR) and a decreased Tricarboxylic Acid (TCA) cycle associated with a defect in mitochondrial function and ATP production. Consequently, pyruvate treatment of PD-L2KO mice partially restores IL-10 production and airway tolerance. Together, our study highlights the importance of the PD-1/PD-L2 axis in the control of metabolic pathways regulating pTreg Foxp3 stability and suppressive functions, opening up avenues to further improve mucosal immunotherapy.
Collapse
Affiliation(s)
- Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Yan Y, Huang L, Liu Y, Yi M, Chu Q, Jiao D, Wu K. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: implications for antitumor immunity. J Hematol Oncol 2022; 15:104. [PMID: 35948909 PMCID: PMC9364625 DOI: 10.1186/s13045-022-01322-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Characterized by the expression of the critical transcription factor forkhead box protein P3, regulatory T (Treg) cells are an essential part of the immune system, with a dual effect on the pathogenesis of autoimmune diseases and cancer. Targeting Tregs to reestablish the proinflammatory and immunogenic tumor microenvironment (TME) is an increasingly attractive strategy for cancer treatment and has been emphasized in recent years. However, attempts have been significantly hindered by the subsequent autoimmunity after Treg ablation owing to systemic loss of their suppressive capacity. Cellular metabolic reprogramming is acknowledged as a hallmark of cancer, and emerging evidence suggests that elucidating the underlying mechanisms of how intratumoral Tregs acquire metabolic fitness and superior immunosuppression in the TME may contribute to clinical benefits. In this review, we discuss the common and distinct metabolic profiles of Tregs in peripheral tissues and the TME, as well as the differences between Tregs and other conventional T cells in their metabolic preferences. By focusing on the critical roles of different metabolic programs, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, fatty acid synthesis, and amino acid metabolism, as well as their essential regulators in modulating Treg proliferation, migration, and function, we hope to provide new insights into Treg cell-targeted antitumor immunotherapies.
Collapse
Affiliation(s)
- Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiming Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
38
|
Divakaruni AS, Jastroch M. A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nat Metab 2022; 4:978-994. [PMID: 35971004 PMCID: PMC9618452 DOI: 10.1038/s42255-022-00619-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/17/2022] [Indexed: 12/14/2022]
Abstract
Measurement of oxygen consumption is a powerful and uniquely informative experimental technique. It can help identify mitochondrial mechanisms of action following pharmacologic and genetic interventions, and characterize energy metabolism in physiology and disease. The conceptual and practical benefits of respirometry have made it a frontline technique to understand how mitochondrial function can interface with-and in some cases control-cell physiology. Nonetheless, an appreciation of the complexity and challenges involved with such measurements is required to avoid common experimental and analytical pitfalls. Here we provide a practical guide to oxygen consumption measurements covering the selection of experimental models and instrumentation, as well as recommendations for the collection, interpretation and normalization of data. These guidelines are provided with the intention of aiding experimental design and enhancing the overall reputability, transparency and reliability of oxygen consumption measurements.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| |
Collapse
|
39
|
Dopamine D2 Receptor Signaling Attenuates Acinar Cell Necroptosis in Acute Pancreatitis through the Cathepsin B/TFAM/ROS Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4499219. [PMID: 35927992 PMCID: PMC9345736 DOI: 10.1155/2022/4499219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory disease that is associated with trypsinogen activation, mitochondrial dysfunction, cell death, and inflammation. Dopamine D2 receptor (DRD2) plays an essential role in alleviating AP, while it is unclear whether it is involved in regulating acinar cell necroptosis. Here, we found that DRD2 agonist quinpirole alleviated acinar cell necroptosis via inhibiting cathepsin B (CTSB). Moreover, CTSB inhibition by CA-074Me ameliorated AP severity by reducing necroptosis. Notably, knockdown of TFAM reversed the therapeutic effect of either quinpirole or CA-074Me. We identified a new mechanism that DRD2 signaling inhibited CTSB and promoted the expression of mitochondrial transcription factor A(TFAM), leading to reduction of ROS production in AP, which attenuated acinar cell necroptosis ultimately. Collectively, our findings provide new evidence that DRD2 agonist could be a new potential therapeutic strategy for AP treatment.
Collapse
|
40
|
Yang K. Regulation of Treg Cell Metabolism and Function in Non-Lymphoid Tissues. Front Immunol 2022; 13:909705. [PMID: 35720275 PMCID: PMC9200993 DOI: 10.3389/fimmu.2022.909705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Regulator T cells (Tregs) play pivotal roles in maintaining immune tolerance and regulating immune responses against pathogens and tumors. Reprogramming of cellular metabolism has been determined as a crucial process that connects microenvironmental cues and signaling networks to influence homeostasis and function of tissue Tregs. In adaptation to a variety of non-lymphoid tissues, Tregs coordinate local immune signals and signaling networks to rewire cellular metabolic programs to sustain their suppressive function. Altered Treg metabolism in turn shapes Treg activation and function. In light of the advanced understanding of immunometabolism, manipulation of systemic metabolites has been emerging as an attractive strategy aiming to modulate metabolism and function of tissue Tregs and improve the treatment of immune-related diseases. In this review, we summarize key immune signals and metabolic programs involved in the regulation of tissue Tregs, review the mechanisms underlying the differentiation and function of Tregs in various non-lymphoid tissues, and discuss therapeutic intervention of metabolic modulators of tissue Tregs for the treatment of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Kai Yang
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
41
|
Kazmi S, Khan MA, Shamma T, Altuhami A, Assiri AM, Broering DC. Therapeutic nexus of T cell immunometabolism in improving transplantation immunotherapy. Int Immunopharmacol 2022; 106:108621. [PMID: 35189469 DOI: 10.1016/j.intimp.2022.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
Immunometabolism is a therapeutic strategy to tune immune cells through metabolic reprogramming, which allows immune cells to be differentiated according to their energy requirements. Recent therapeutic strategies targeting immunometabolism suggest that intracellular metabolic reprogramming controls T cell activation, proliferation, and differentiation into effector (Teff) or regulatory (Treg) cells. Immunometabolism is being studied for the treatment of inflammatory diseases, including those associated with solid organ transplantation (SOT). Here, we review immunometabolic regulation of immune cells, with a particular focus on Treg metabolic regulation and liver kinase B1 (LKB1) signaling, which stabilize Tregs and prevent inflammation-associated tissue injuries. All in all, here we discussed how targeting T cell immunometabolism modulates Teff and Treg-mediated immune responses, which can be used to boost Treg differentiation, stability, and ultimately favor immunotolerance in clinical transplants.
Collapse
Affiliation(s)
- Shadab Kazmi
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Mohammad Afzal Khan
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Talal Shamma
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Abdullah Altuhami
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| | - Dieter Clemens Broering
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| |
Collapse
|
42
|
Huang Q, Wu D, Zhao J, Yan Z, Chen L, Guo S, Wang D, Yuan C, Wang Y, Liu X, Xing J. TFAM loss induces nuclear actin assembly upon mDia2 malonylation to promote liver cancer metastasis. EMBO J 2022; 41:e110324. [PMID: 35451091 PMCID: PMC9156967 DOI: 10.15252/embj.2021110324] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
The mechanisms underlying cancer metastasis remain poorly understood. Here, we report that TFAM deficiency rapidly and stably induced spontaneous lung metastasis in mice with liver cancer. Interestingly, unexpected polymerization of nuclear actin was observed in TFAM-knockdown HCC cells when cytoskeleton was examined. Polymerization of nuclear actin is causally linked to the high-metastatic ability of HCC cells by modulating chromatin accessibility and coordinating the expression of genes associated with extracellular matrix remodeling, angiogenesis, and cell migration. Mechanistically, TFAM deficiency blocked the TCA cycle and increased the intracellular malonyl-CoA levels. Malonylation of mDia2, which drives actin assembly, promotes its nuclear translocation. Importantly, inhibition of malonyl-CoA production or nuclear actin polymerization significantly impeded the spread of HCC cells in mice. Moreover, TFAM was significantly downregulated in metastatic HCC tissues and was associated with overall survival and time to tumor recurrence of HCC patients. Taken together, our study connects mitochondria to the metastasis of human cancer via uncovered mitochondria-to-nucleus retrograde signaling, indicating that TFAM may serve as an effective target to block HCC metastasis.
Collapse
Affiliation(s)
- Qichao Huang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Dan Wu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jing Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Zeyu Yan
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Chen
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Shanshan Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Dalin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chong Yuan
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yinping Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
43
|
Saini N, Lakshminarayanan S, Kundu P, Sarin A. Notch1 Modulation of Cellular Calcium Regulates Mitochondrial Metabolism and Anti-Apoptotic Activity in T-Regulatory Cells. Front Immunol 2022; 13:832159. [PMID: 35222416 PMCID: PMC8866856 DOI: 10.3389/fimmu.2022.832159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
As the major hub of metabolic activity and an organelle sequestering pro-apoptogenic intermediates, mitochondria lie at the crossroads of cellular decisions of death and survival. Intracellular calcium is a key regulator of these outcomes with rapid, uncontrolled uptake into mitochondria, activating pro-apoptotic cascades that trigger cell death. Here, we show that calcium uptake and mitochondrial metabolism in murine T-regulatory cells (Tregs) is tuned by Notch1 activity. Based on analysis of Tregs and the HEK cell line, we present evidence that modulation of cellular calcium dynamics underpins Notch1 regulation of mitochondrial homeostasis and consequently anti-apoptotic activity. Targeted siRNA-mediated ablations reveal dependency on molecules controlling calcium release from the endoplasmic reticulum (ER) and the chaperone, glucose-regulated protein 75 (Grp75), the associated protein Voltage Dependent Anion Channel (VDAC)1 and the Mitochondrial Calcium Uniporter (MCU), which together facilitate ER calcium transfer and uptake into the mitochondria. Endogenous Notch1 is detected in immune-complexes with Grp75 and VDAC1. Deficits in mitochondrial oxidative and survival in Notch1 deficient Tregs, were corrected by the expression of recombinant Notch1 intracellular domain, and in part by recombinant Grp75. Thus, the modulation of calcium dynamics and consequently mitochondrial metabolism underlies Treg survival in conditions of nutrient stress. This work positions a key role for Notch1 activity in these outcomes.
Collapse
Affiliation(s)
- Neetu Saini
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, India.,Department of Biology, Manipal Academy of Higher Education, Manipal, India
| | - Sowmya Lakshminarayanan
- National Centre for Biological Science, TATA Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Priyanka Kundu
- National Centre for Biological Science, TATA Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Apurva Sarin
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, India
| |
Collapse
|
44
|
Zhang K, Yao E, Chen B, Chuang E, Wong J, Seed RI, Nishimura SL, Wolters PJ, Chuang PT. Acquisition of cellular properties during alveolar formation requires differential activity and distribution of mitochondria. eLife 2022; 11:e68598. [PMID: 35384838 PMCID: PMC9183236 DOI: 10.7554/elife.68598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Alveolar formation requires coordinated movement and interaction between alveolar epithelial cells, mesenchymal myofibroblasts, and endothelial cells/pericytes to produce secondary septa. These processes rely on the acquisition of distinct cellular properties to enable ligand secretion for cell-cell signaling and initiate morphogenesis through cellular contraction, cell migration, and cell shape change. In this study, we showed that mitochondrial activity and distribution play a key role in bestowing cellular functions on both alveolar epithelial cells and mesenchymal myofibroblasts for generating secondary septa to form alveoli in mice. These results suggest that mitochondrial function is tightly regulated to empower cellular machineries in a spatially specific manner. Indeed, such regulation via mitochondria is required for secretion of ligands, such as platelet-derived growth factor, from alveolar epithelial cells to influence myofibroblast proliferation and contraction/migration. Moreover, mitochondrial function enables myofibroblast contraction/migration during alveolar formation. Together, these findings yield novel mechanistic insights into how mitochondria regulate pivotal steps of alveologenesis. They highlight selective utilization of energy in cells and diverse energy demands in different cellular processes during development. Our work serves as a paradigm for studying how mitochondria control tissue patterning.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Erica Yao
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Biao Chen
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Ethan Chuang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Julia Wong
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Robert I Seed
- Department of Pathology, University of CaliforniaSan FranciscoUnited States
| | | | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| |
Collapse
|
45
|
Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 2022; 55:14-30. [PMID: 35021054 PMCID: PMC8842882 DOI: 10.1016/j.immuni.2021.12.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
Abstract
Adaptive immune responses mediated by T cells and B cells are crucial for protective immunity against pathogens and tumors. Differentiation and function of immune cells require dynamic reprogramming of cellular metabolism. Metabolic inputs, pathways, and enzymes display remarkable flexibility and heterogeneity, especially in vivo. How metabolic plasticity and adaptation dictate functional specialization of immune cells is fundamental to our understanding and therapeutic modulation of the immune system. Extensive progress has been made in characterizing the effects of metabolic networks on immune cell fate and function in discrete microenvironments or immunological contexts. In this review, we summarize how rewiring of cellular metabolism determines the outcome of adaptive immunity in vivo, with a focus on how metabolites, nutrients, and driver genes in immunometabolism instruct cellular programming and immune responses during infection, inflammation, and cancer in mice and humans. Understanding context-dependent metabolic remodeling will manifest legitimate opportunities for therapeutic intervention of human disease.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
46
|
Zhou X, Trinh-Minh T, Tran-Manh C, Gießl A, Bergmann C, Györfi AH, Schett G, Distler JHW. Impaired TFAM expression promotes mitochondrial damage to drive fibroblast activation and fibrosis in systemic sclerosis. Arthritis Rheumatol 2021; 74:871-881. [PMID: 34807516 DOI: 10.1002/art.42033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The transcription factor TFAM is controlling the transcription of core proteins required for mitochondrial homeostasis. The aim of the current study was to investigate changes in TFAM expression in systemic sclerosis (SSc), to analyze mitochondrial function and to evaluate the consequences for fibroblast activation. METHODS The expression of TFAM was analyzed by immunofluorescence and Western blot. The effects of TFAM knockout were investigated in cultured fibroblasts and in bleomycin-induced skin and lung fibrosis and in TβRIact -induced skin fibrosis. RESULTS The expression of TFAM was downregulated in fibroblasts in SSc skin and in cultured SSc fibroblasts. The downregulation of TFAM was associated with decreased mitochondrial number and accumulation of damaged mitochondria with release of mtDNA, accumulation of deletions in mtDNA, metabolic alterations with impaired OXPHOS and release of the mitokine GDF15. Chronic, but not acute, exposure of normal fibroblasts to TGFβ mimicked the finding in SSc fibroblasts with downregulation of TFAM and accumulation of mitochondrial damage. Downregulation of TFAM promotes fibroblast activation with upregulation of fibrosis-relevant GO-terms in RNASeq, partially in a ROS-dependent manner. Mice with fibroblast-specific knockout of TFAM are prone to fibrotic tissue remodeling with fibrotic responses even to NaCl instillation and enhanced sensitivity to bleomycin injection and TβRIact-overexpression. TFAM knockout fosters SMAD3 signaling to promote fibroblast activation. CONCLUSIONS Alterations in the key mitochondrial transcription factor TFAM in response to prolonged activation of TGFβ and associated mitochondrial damage induce transcriptional programs that promote fibroblast-to-myofibroblast transition and drive tissue fibrosis.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Cuong Tran-Manh
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Andreas Gießl
- Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Andrea-Hermina Györfi
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
47
|
Tran DT, Sundararaj K, Atkinson C, Nadig SN. T-cell Immunometabolism: Therapeutic Implications in Organ Transplantation. Transplantation 2021; 105:e191-e201. [PMID: 33795597 PMCID: PMC8464628 DOI: 10.1097/tp.0000000000003767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although solid-organ transplantation has evolved steadily with many breakthroughs in the past 110 y, many problems remain to be addressed, and advanced therapeutic strategies need to be considered. T-cell immunometabolism is a rapidly advancing field that has gathered much attention recently, providing ample mechanistic insight from which many novel therapeutic approaches have been developed. Applications from the field include antitumor and antimicrobial therapies, as well as for reversing graft-versus-host disease and autoimmune diseases. However, the immunometabolism of T cells remains underexplored in solid-organ transplantation. In this review, we will highlight key findings from hallmark studies centered around various metabolic modes preferred by different T-cell subtypes (categorized into naive, effector, regulatory, and memory T cells), including glycolysis, glutaminolysis, oxidative phosphorylation, fatty acid synthesis, and oxidation. This review will discuss the underlying cellular signaling components that affect these processes, including the transcription factors myelocytomatosis oncogene, hypoxia-inducible factor 1-alpha, estrogen-related receptor alpha, and sterol regulatory element-binding proteins, along with the mechanistic target of rapamycin and adenosine monophosphate-activated protein kinase signaling. We will also explore potential therapeutic strategies targeting these pathways, as applied to the potential for tolerance induction in solid-organ transplantation.
Collapse
Affiliation(s)
- Danh T. Tran
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
| | - Kamala Sundararaj
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Carl Atkinson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Satish N. Nadig
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
48
|
Lu J, Liang Y, Meng H, Zhang A, Zhao J, Zhang C. Metabolic Controls on Epigenetic Reprogramming in Regulatory T Cells. Front Immunol 2021; 12:728783. [PMID: 34421930 PMCID: PMC8374078 DOI: 10.3389/fimmu.2021.728783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 01/20/2023] Open
Abstract
Forkhead box protein 3 (Foxp3+)-expressing regulatory T (Treg) cells are a unique CD4+T cell subset that suppresses excessive immune responses. The epigenetic plasticity and metabolic traits of Treg cells are crucial for the acquisition of their phenotypic and functional characteristics. Therefore, alterations to the epigenetics and metabolism affect Treg cell development and function. Recent evidence reveals that altering the metabolic pathways and generation of metabolites can regulate the epigenetics of Treg cells. Specifically, some intermediates of cell metabolism can directly act as substrates or cofactors of epigenetic-modifying enzymes. Here, we describe the metabolic and epigenetic features during Treg cell development, and discuss how metabolites can contribute to epigenetic alterations of Treg cells, which affects Treg cell activation, differentiation, and function.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ailing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Green CL, Englund DA, Das S, Herrerias MM, Yousefzadeh MJ, Grant RA, Clark J, Pak HH, Liu P, Bai H, Prahlad V, Lamming DW, Chusyd DE. The Second Annual Symposium of the Midwest Aging Consortium: The Future of Aging Research in the Midwestern United States. J Gerontol A Biol Sci Med Sci 2021; 76:2156-2161. [PMID: 34323268 PMCID: PMC8599030 DOI: 10.1093/gerona/glab210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 01/07/2023] Open
Abstract
While the average human life span continues to increase, there is little evidence that this is leading to a contemporaneous increase in "healthy years" experienced by our aging population. Consequently, many scientists focus their research on understanding the process of aging and trialing interventions that can promote healthspan. The 2021 Midwest Aging Consortium consensus statement is to develop and further the understanding of aging and age-related disease using the wealth of expertise across universities in the Midwestern United States. This report summarizes the cutting-edge research covered in a virtual symposium held by a consortium of researchers in the Midwestern United States, spanning topics such as senescence biomarkers, serotonin-induced DNA protection, immune system development, multisystem impacts of aging, neural decline following severe infection, the unique transcriptional impact of calorie restriction of different fat depots, the pivotal role of fasting in calorie restriction, the impact of peroxisome dysfunction, and the influence of early life trauma on health. The symposium speakers presented data from studies conducted in a variety of common laboratory animals as well as less-common species, including Caenorhabditis elegans, Drosophila, mice, rhesus macaques, elephants, and humans. The consensus of the symposium speakers is that this consortium highlights the strength of aging research in the Midwestern United States as well as the benefits of a collaborative and diverse approach to geroscience.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Davis A Englund
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Srijit Das
- Department of Biology, Aging Mind & Brain Initiative, University of Iowa, Iowa City, Iowa, USA
| | - Mariana M Herrerias
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Matthew J Yousefzadeh
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Josef Clark
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Peiduo Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind & Brain Initiative, University of Iowa, Iowa City, Iowa, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Daniella E Chusyd
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, Bloomington, Indiana, USA,Address correspondence to: Daniella E. Chusyd, PhD, School of Public Health, Indiana University-Bloomington, 701 E. Kirkwood Ave., Bloomington, IN 47405-7100, USA. E-mail:
| |
Collapse
|
50
|
Sun V, Sharpley M, Kaczor-Urbanowicz KE, Chang P, Montel-Hagen A, Lopez S, Zampieri A, Zhu Y, de Barros SC, Parekh C, Casero D, Banerjee U, Crooks GM. The Metabolic Landscape of Thymic T Cell Development In Vivo and In Vitro. Front Immunol 2021; 12:716661. [PMID: 34394122 PMCID: PMC8355594 DOI: 10.3389/fimmu.2021.716661] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
Although metabolic pathways have been shown to control differentiation and activation in peripheral T cells, metabolic studies on thymic T cell development are still lacking, especially in human tissue. In this study, we use transcriptomics and extracellular flux analyses to investigate the metabolic profiles of primary thymic and in vitro-derived mouse and human thymocytes. Core metabolic pathways, specifically glycolysis and oxidative phosphorylation, undergo dramatic changes between the double-negative (DN), double-positive (DP), and mature single-positive (SP) stages in murine and human thymus. Remarkably, despite the absence of the complex multicellular thymic microenvironment, in vitro murine and human T cell development recapitulated the coordinated decrease in glycolytic and oxidative phosphorylation activity between the DN and DP stages seen in primary thymus. Moreover, by inducing in vitro T cell differentiation from Rag1-/- mouse bone marrow, we show that reduced metabolic activity at the DP stage is independent of TCR rearrangement. Thus, our findings suggest that highly conserved metabolic transitions are critical for thymic T cell development.
Collapse
Affiliation(s)
- Victoria Sun
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, United States
| | - Mark Sharpley
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Karolina E. Kaczor-Urbanowicz
- Division of Oral Biology & Medicine, School of Dentistry, UCLA, Los Angeles, CA, United States
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA, United States
| | - Patrick Chang
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, United States
| | - Amélie Montel-Hagen
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Shawn Lopez
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Alexandre Zampieri
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yuhua Zhu
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Stéphanie C. de Barros
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Chintan Parekh
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - David Casero
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars- Sinai Medical Center, Los Angeles, CA, United States
| | - Utpal Banerjee
- Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, United States
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, United States
- Department of Biological Chemistry, UCLA, Los Angeles, CA, United States
- Eli and Edythe Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States
| | - Gay M. Crooks
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Eli and Edythe Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|