1
|
Li Y, Xue J, Ma Y, Ye K, Zhao X, Ge F, Zheng F, Liu L, Gao X, Wang D, Xia Q. The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases. Neural Regen Res 2025; 20:1582-1598. [PMID: 38845217 PMCID: PMC11688559 DOI: 10.4103/nrr.nrr-d-23-01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Shen Y, Wong SZH, Ma T, Zhang F, Wang Q, Kawaguchi R, Geschwind DH, Wang J, He C, Ming GL, Song H. m 6A deficiency impairs hypothalamic neurogenesis of feeding-related neurons in mice and human organoids and leads to adult obesity in mice. Cell Stem Cell 2025; 32:727-743.e8. [PMID: 40112816 DOI: 10.1016/j.stem.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/07/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
N6-methyladenosine (m6A), the most prevalent internal modification on mRNAs, plays important roles in the nervous system. Whether neurogenesis in the hypothalamus, a region critical for controlling appetite, is regulated by m6A signaling, especially in humans, remains unclear. Here, we showed that deletion of m6A writer Mettl14 in the mouse embryonic hypothalamus led to adult obesity, with impaired glucose-insulin homeostasis and increased energy intake. Mechanistically, deletion of Mettl14 leads to hypothalamic arcuate nucleus neurogenesis deficits with reduced generation of feeding-related neurons and dysregulation of neurogenesis-related m6A-tagged transcripts. Deletion of m6A writer Mettl3 or m6A reader Ythdc1 shared similar phenotypes. METTL14 or YTHDC1 knockdown also led to reduced generation of feeding-related neurons in human brain subregion-specific arcuate nucleus organoids. Our studies reveal a conserved role of m6A signaling in arcuate nucleus neurogenesis in mice and human organoids and shed light on the developmental basis of epitranscriptomic regulation of food intake and energy homeostasis.
Collapse
Affiliation(s)
- Yachen Shen
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Zheng Hao Wong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tong Ma
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qing Wang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Chuan He
- Department of Chemistry, Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA; Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Liu L, Ge D, Lin Y, Han Z, Zhao H, Cao L, Wu X, Ma G. Epigenetic regulation in oogenesis and fetal development: insights into m6A modifications. Front Immunol 2025; 16:1516473. [PMID: 40356909 PMCID: PMC12066277 DOI: 10.3389/fimmu.2025.1516473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The unique physiological structure of women has led to a variety of diseases that have attracted the attention of many people in recent years. Disturbances in the reproductive system microenvironment lead to the progression of various female tumours and pregnancy disorders. Numerous studies have shown that epigenetic modifications crucially influence both oogenesis and foetal development. m6A, a modification at the mRNA level, consists of three parts, namely, writers, erasers, and readers, which are involved in several biological functions, such as the nucleation and stabilisation of mRNAs, thereby regulating the development of reproductive system diseases. In this manuscript, we delineate the constituents of m6A, their biological roles, and advancements in understanding m6A within the maternal-foetal immunological context. In addition, we summarise the mechanism of m6A in gynaecological diseases and provide a new perspective for targeting m6A to delay the progression of reproductive system diseases in clinical practice.
Collapse
Affiliation(s)
- Lusheng Liu
- Department of Acupuncture and Moxibustion, Shanghai Traditional Chinese Medicine (TCM)-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Clinical Medical College of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danxia Ge
- Department of Critical Care Medicine, Traditional Chinese Medicine Hospital of, Ningbo, Zhejiang, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- Department of Acupuncture and Moxibustion, Shanghai Traditional Chinese Medicine (TCM)-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Heng Zhao
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liqin Cao
- Department of Gynecology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Wu
- Department of Gynecology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guizhi Ma
- Department of Acupuncture and Moxibustion, Shanghai Traditional Chinese Medicine (TCM)-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Tainer JA, Tsutakawa SE. RNA sculpting by the primordial Helix-clasp-Helix-Strand-Loop (HcH-SL) motif enforces chemical recognition enabling diverse KH domain functions. J Biol Chem 2025; 301:108474. [PMID: 40185232 DOI: 10.1016/j.jbc.2025.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/07/2025] Open
Abstract
In all domains of life, the ancient K homology (KH) domain superfamily is central to RNA processes including splicing, transcription, posttranscriptional gene regulation, signaling, and translation. Proteins with 1 to 15 KH domains bind single-strand (ss) RNA or DNA with base sequence specificity. Here, we examine over 40 KH domain experimental structures in complex with nucleic acid (NA) and define a novel Helix-clasp-Helix-Strand-Loop (HcH-SL) NA recognition motif binding 4 to 5 nucleotides using 10 to 18 residues. HcH-SL includes and extends the Gly-X-X-Gly (GXXG) signature sequence "clasp" that brings together two helices as an ∼90° helical corner. The first helix primarily provides side chain interactions to unstack and sculpt 2 to 3 bases on the 5' end for recognition of sequence and chemistry. The clasp and second helix amino dipole recognize a central phosphodiester. Following the helical corner, a beta strand and its loop extension recognize the two 3' nucleotides, primarily through main chain interactions. The HcH-SL structural motif forms a right-handed triangle and concave functional interface for NA interaction that unexpectedly splays four bound nucleotides into conformations matching RNA recognition motif (RRM) bound RNA structures. Evolutionary analyses and its ability to recognize base sequence and chemistry make HcH-SL a primordial NA binding motif distinguished by its binding mode from other NA structural recognition motifs: helix-turn-helix, helix-hairpin-helix, and beta strand RRM motifs. Combined results explain its vulnerability as a viral hijacking target and how mutations and expression defects lead to diverse diseases spanning cancer, cardiovascular, fragile X syndrome, neurodevelopmental disorders, and paraneoplastic disease.
Collapse
Affiliation(s)
- John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
5
|
Kueck NA, Hüwel S, Hoffmann A, Rentmeister A. Quantification of Propargylated RNA Nucleosides After Metabolic Labeling Via the Methylation Pathway. Chembiochem 2025; 26:e202400986. [PMID: 39993262 DOI: 10.1002/cbic.202400986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
RNA modifications are involved in numerous biological processes and vary in different cell types. Methylation is the most widespread type of RNA modification and occurs via S-adenosyl-L-methionine (SAM). We recently developed a metabolic labeling approach based on intracellular formation of a clickable SAM analog (SeAdoYn) and demonstrated its use in mapping methyltransferase (MTase) target sites in mRNA from HeLa cells. Here we investigate how metabolic labeling via the clickable SAM analog modifies four different nucleosides in RNA of HEK293T in comparison to HeLa cells. We find that HEK293T cells retain higher cell viability upon feeding the clickable metabolic SAM precursor. In poly(A)+ RNA we find high Aprop/A levels (0.04 %) and in total RNA (but not poly(A)+ RNA) we detect prop3C, which had not been detected previously in HeLa cells. We discuss the findings in the context of data from the literature with respect to mRNA half-lives in cancer and non-cancer cell lines and suggest that CMTr2 is most likely responsible for the high Aprop level in poly(A)+ RNA.
Collapse
Affiliation(s)
- Nadine A Kueck
- University of Münster, Institute of Biochemistry, Corrensstr. 36, D-48149, Muenster, Germany
| | - Sabine Hüwel
- University of Münster, Institute of Biochemistry, Corrensstr. 36, D-48149, Muenster, Germany
| | - Arne Hoffmann
- Ludwig-Maximilians-University Munich, Department of Chemistry, Butenandtstr. 5-13, Haus F, D-81377, Munich, Germany
| | - Andrea Rentmeister
- Ludwig-Maximilians-University Munich, Department of Chemistry, Butenandtstr. 5-13, Haus F, D-81377, Munich, Germany
| |
Collapse
|
6
|
Xu L, Shen T, Li Y, Wu X. The Role of M 6A Modification in Autoimmunity: Emerging Mechanisms and Therapeutic Implications. Clin Rev Allergy Immunol 2025; 68:29. [PMID: 40085180 DOI: 10.1007/s12016-025-09041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
N6-methyladenosine (m6A), a prevalent and essential RNA modification, serves a key function in driving autoimmune disease pathogenesis. By modulating immune cell development, activation, migration, and polarization, as well as inflammatory pathways, m6A is crucial in forming innate defenses and adaptive immunity. This article provides a comprehensive overview of m6A modification features and reveals how its dysregulation affects the intensity and persistence of immune responses, disrupts immune tolerance, exacerbates tissue damage, and promotes the development of autoimmunity. Specific examples include its contributions to systemic autoimmune disorders like lupus and rheumatoid arthritis, as well as conditions that targeting specific organs like multiple sclerosis and type 1 diabetes. Furthermore, this review explores the therapeutic promise of target m6A-related enzymes ("writers," "erasers," and "readers") and summarizes recent advances in intervention strategies. By focusing on the mechanistic and therapeutic implications of m6A modification, this review sheds light on its role as a promising tool for both diagnosis and treatment in autoimmune disorders, laying the foundation for advancements in customized medicine.
Collapse
Affiliation(s)
- Liyun Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Shen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R, Fan Y. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health. Cell Death Discov 2025; 11:43. [PMID: 39904996 PMCID: PMC11794895 DOI: 10.1038/s41420-025-02324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
With the development of public health, female diseases have become the focus of current concern. The unique reproductive anatomy of women leads to the development of gynecological diseases gradually become an important part of the socio-economic burden. Epigenetics plays an irreplaceable role in gynecologic diseases. As an important mRNA modification, m6A is involved in the maturation of ovum cells and maternal-fetal microenvironment. At present, researchers have found that m6A is involved in the regulation of gestational diabetes and other reproductive system diseases, but the specific mechanism is not clear. In this manuscript, we summarize the components of m6A, the biological function of m6A, the progression of m6A in the maternal-fetal microenvironment and a variety of gynecological diseases as well as the progression of targeted m6A treatment-related diseases, providing a new perspective for clinical treatment-related diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiao Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiaorui Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Ruihua Yan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yang Fan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
| |
Collapse
|
8
|
Kim HS, Eun JW, Jang SH, Kim JY, Jeong JY. The diverse landscape of RNA modifications in cancer development and progression. Genes Genomics 2025; 47:135-155. [PMID: 39643826 DOI: 10.1007/s13258-024-01601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND RNA modifications, a central aspect of epitranscriptomics, add a regulatory layer to gene expression by modifying RNA function without altering nucleotide sequences. These modifications play vital roles across RNA species, influencing RNA stability, translation, and interaction dynamics, and are regulated by specific enzymes that add, remove, and interpret these chemical marks. OBJECTIVE This review examines the role of aberrant RNA modifications in cancer progression, exploring their potential as diagnostic and prognostic biomarkers and as therapeutic targets. We focus on how altered RNA modification patterns impact oncogenes, tumor suppressor genes, and overall tumor behavior. METHODS We performed an in-depth analysis of recent studies and advances in RNA modification research, highlighting key types and functions of RNA modifications and their roles in cancer biology. Studies involving preclinical models targeting RNA-modifying enzymes were reviewed to assess therapeutic efficacy and potential clinical applications. RESULTS Aberrant RNA modifications were found to significantly influence cancer initiation, growth, and metastasis. Dysregulation of RNA-modifying enzymes led to altered gene expression profiles in oncogenes and tumor suppressors, correlating with tumor aggressiveness, patient outcomes, and response to immunotherapy. Notably, inhibitors of these enzymes demonstrated potential in preclinical models by reducing tumor growth and enhancing the efficacy of existing cancer treatments. CONCLUSIONS RNA modifications present promising avenues for cancer diagnosis, prognosis, and therapy. Understanding the mechanisms of RNA modification dysregulation is essential for developing targeted treatments that improve patient outcomes. Further research will deepen insights into these pathways and support the clinical translation of RNA modification-targeted therapies.
Collapse
Affiliation(s)
- Hyung Seok Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Se Ha Jang
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Ji Yun Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea.
| |
Collapse
|
9
|
Nishizaki SS, Haghani NK, La GN, Mariano NAF, Uribe-Salazar JM, Kaya G, Regester M, Andrews DS, Nordahl CW, Amaral DG, Dennis MY. m 6A-mRNA Reader YTHDF2 Identified as a Potential Risk Gene in Autism With Disproportionate Megalencephaly. Autism Res 2025. [PMID: 39887636 DOI: 10.1002/aur.3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Among autistic individuals, a subphenotype of disproportionate megalencephaly (ASD-DM) seen at three years of age is associated with co-occurring intellectual disability and poorer prognoses later in life. However, many of the genes contributing to ASD-DM have yet to be delineated. In this study, we identified additional ASD-DM candidate genes with the aim to better define the genetic etiology of this subphenotype of autism. We expanded the previously studied sample size of ASD-DM individuals ten fold by including probands from the Autism Phenome Project and Simons Simplex Collection, totaling 766 autistic individuals meeting the criteria for megalencephaly or macrocephaly and revealing 154 candidate ASD-DM genes harboring de novo protein-impacting variants. Our findings include 14 high confidence autism genes and seven genes previously associated with DM. Five impacted genes have previously been associated with both autism and DM, including CHD8 and PTEN. By performing functional network analysis, we expanded to additional candidate genes, including one previously implicated in ASD-DM (PIK3CA) as well as 184 additional genes connected with ASD or DM alone. Using zebrafish, we modeled a de novo tandem duplication impacting YTHDF2, encoding an N6-methyladenosine (m6A)-mRNA reader, in an ASD-DM proband. Testing zebrafish CRISPR knockdown led to reduced head/brain size, while overexpressing YTHDF2 resulted in increased head/brain size matching that of the proband. Single-cell transcriptomes of YTHDF2 gain-of-function larvae point to reduced expression of Fragile-X-syndrome-associated FMRP-target genes globally and in the developing brain, providing insight into the mechanism underlying autistic phenotypes. We additionally discovered a variant impacting a different gene encoding an m6A reader, YTHDC1, in our ASD-DM cohort. Though we highlight only two cases to date, our study provides support for the m6A-RNA modification pathway as potentially contributing to this severe form of autism.
Collapse
Affiliation(s)
- Sierra S Nishizaki
- Genome Center, University of California, Davis, CA, USA
- Autism Research Training Program, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Nicholas K Haghani
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Gabriana N La
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Natasha Ann F Mariano
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Postbaccalaureate Research Education Program, University of California, Davis, California, USA
| | - José M Uribe-Salazar
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Gulhan Kaya
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Melissa Regester
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Derek Sayre Andrews
- Autism Research Training Program, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Christine Wu Nordahl
- Autism Research Training Program, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - David G Amaral
- Autism Research Training Program, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Megan Y Dennis
- Genome Center, University of California, Davis, CA, USA
- Autism Research Training Program, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| |
Collapse
|
10
|
Lu L, Sarkar AK, Dao L, Liu Y, Ma C, Thwin PH, Chang X, Yoshida G, Li A, Wang C, Westerkamp C, Schmitt L, Chelsey M, Stephanie M, Zhao Y, Liu Y, Wang X, Zhu LQ, Liu D, Tchieu J, Miyakoshi M, Zhu H, Gross C, Pedapati E, Salomonis N, Erickson C, Guo Z. An iPSC model of fragile X syndrome reflects clinical phenotypes and reveals m 6 A- mediated epi-transcriptomic dysregulation underlying synaptic dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.14.618205. [PMID: 39464060 PMCID: PMC11507714 DOI: 10.1101/2024.10.14.618205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fragile X syndrome (FXS), the leading genetic cause of intellectual disability, arises from FMR1 gene silencing and loss of the FMRP protein. N6-methyladenosine (m 6 A) is a prevalent mRNA modification essential for post-transcriptional regulation. FMRP is known to bind to and regulate the stability of m 6 A-containing transcripts. However, how loss of FMRP impacts on transcriptome-wide m 6 A modifications in FXS patients remains unknown. To answer this question, we generated cortical neurons differentiated from induced pluripotent stem cells (iPSC) derived from healthy subjects and FXS patients. In electrophysiology recordings, we validated that synaptic and neuronal network defects in iPSC-derived FXS neurons corresponded to the clinical EEG data of the patients from which the corresponding iPSC line was derived. In analysis of transcriptome-wide methylation, we show that FMRP deficiency led to increased translation of m 6 A writers, resulting in hypermethylation that primarily affecting synapse-associated transcripts and increased mRNA decay. Conversely, in the presence of an m 6 A writer inhibitor, synaptic defects in FXS neurons were rescued. Taken together, our findings uncover that an FMRP-dependent epi-transcriptomic mechanism contributes to FXS pathogenesis by disrupting m 6 A modifications in FXS, suggesting a promising avenue for m 6 A- targeted therapies.
Collapse
|
11
|
Mao D, Tang X, Zhang R, Hu S, Gou H, Zhang P, Li W, Pan Q, Shen B, Zhu X. Multichrome encoding-based multiplexed, spatially resolved imaging reveals single-cell RNA epigenetic modifications heterogeneity. Nat Commun 2025; 16:958. [PMID: 39843433 PMCID: PMC11754832 DOI: 10.1038/s41467-025-56331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Understanding the heterogeneity of epigenetic modifications within single cells is pivotal for unraveling the nature of the complexity of gene expression and cellular function. In this study, we have developed a strategy based on multichrome encoding and "AND" Boolean logic recognition for multiplexed, spatially resolved imaging of single-cell RNA epigenetic modifications, termed as PRoximity Exchange-assisted Encoding of Multichrome (PREEM). Through the implementation of this strategy, we can now map the expression and nuclear distribution of multiple site-specific RNA N6-methyladenosine (m6A) modifications at the single-molecule resolution level in single-cells, and reveal the previously unknown heterogeneity. Notably, we demonstrate how these patterns change after treatment with various drugs. Moreover, cyclic imaging with tailed DNA self-assembly further suggest the scalability and adaptability of PREEM's design. As an innovative epigenetic modification imaging tool, PREEM not only broadens the horizons of single-cell epigenetics research, enabling joint analysis of multiple targets beyond the limitations of imaging channels, but also reveals cell-to-cell variability, thereby enhancing our capacity to explore cellular functions.
Collapse
Affiliation(s)
- Dongsheng Mao
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Runchi Zhang
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Song Hu
- Shanghai Pudong New Area People's Hospital, Shanghai, PR China
| | - Hongquan Gou
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Penghui Zhang
- Shanghai Pudong New Area People's Hospital, Shanghai, PR China
| | - Wenxing Li
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Bing Shen
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| | - Xiaoli Zhu
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| |
Collapse
|
12
|
Qadri SW, Shah NM, Muddashetty RS. Epitranscriptome-Mediated Regulation of Neuronal Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70004. [PMID: 39963903 DOI: 10.1002/wrna.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 12/02/2024] [Accepted: 01/24/2025] [Indexed: 04/10/2025]
Abstract
Epitranscriptomic modification of RNA is an important layer of regulation for gene expression. RNA modifications come in many flavors and generate a complex tapestry of a regulatory network. Here, we focus on two major RNA modifications, one on rRNA (2'O Methylation) and another on mRNA (N6-Methyladenosine [m6A]) and their impact on translation. The 2'O methyl group addition on the ribose sugar of rRNA plays a critical role in RNA folding, ribosome assembly, and its interaction with many RNA binding proteins. Differential methylation of these sites contributes to ribosome heterogeneity and generates potential "specialized ribosomes." Specialized ribosomes are proposed to play a variety of important roles in maintaining pluripotency, lineage specification, and compartmentalized and activity-mediated translation in neurons. The m6A modification, on the other hand, determines the stability, transport, and translation of subclasses of mRNA. The dynamic nature of m6A owing to the localization and activity of its writers, readers, and erasers makes it a powerful tool for spatiotemporal regulation of translation. While substantial information has accumulated on the nature and abundance of these modifications, their functional consequences are still understudied. In this article, we review the literature constructing the body of our understanding of these two modifications and their outcome on the regulation of translation in general and their impact on the nervous system in particular. We also explore the possibility of how these modifications may collaborate in modulating translation and provoke the thought to integrate the functions of multiple epitranscriptome modifications.
Collapse
Affiliation(s)
- Syed Wasifa Qadri
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nisa Manzoor Shah
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Gillett DA, Tigro H, Wang Y, Suo Z. FMR1 Disorders: Basics of Biology and Therapeutics in Development. Cells 2024; 13:2100. [PMID: 39768191 PMCID: PMC11674747 DOI: 10.3390/cells13242100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fragile X Syndrome (FXS) presents with a constellation of phenotypes, including trouble regulating emotion and aggressive behaviors, disordered sleep, intellectual impairments, and atypical physical development. Genetic study of the X chromosome revealed that substantial repeat expansion of the 5' end of the gene fragile X messenger ribonucleoprotein 1 (FMR1) promoted DNA methylation and, consequently, silenced expression of FMR1. Further analysis proved that shorter repeat expansions in FMR1 also manifested in disease at later stages in life. Treatment and therapy options do exist, but they only manage symptoms. Up to now, no cure for FMR1 disorders exists. In this review, we aim to provide an overview of FMR1 biology and the latest research focused on developing therapeutic interventions that can potentially prevent and/or reverse FXS.
Collapse
Affiliation(s)
| | | | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
14
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Chen M, Xu G, Guo W, Lin Y, Yao Z. Bilobalide Activates Autophagy and Enhances the Efficacy of Bone Marrow Mesenchymal Stem Cells on Spinal Cord Injury Via Upregulating FMRP to Promote WNK1 mRNA Decay. Neurochem Res 2024; 50:33. [PMID: 39601946 DOI: 10.1007/s11064-024-04287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) represents an encouraging strategy for the repair of spinal cord injury (SCI), however, its effectiveness on treating SCI remains controversial. Bilobalide isolated from Ginkgo biloba leaves shows significant neuroprotective effects. We examined the role and underlying mechanism of bilobalide in the efficacy of BMSC transplantation on SCI. Primary BMSCs were isolated from neonatal rats, and cell viability was assessed by MTT assay. Neuronal markers (MAP-2, NeuN, NSE and Tuj1), autophagy markers (LC3 and Beclin1), and Fragile X mental retardation protein (FMRP)/With-no-lysine kinase-1 (WNK1) signaling were measured using RT-qPCR and western blotting. The relationship of FMRP and WNK1 was estimated by RNA immunoprecipitation, while WNK1 mRNA stability was assessed with actinomycin D assay. In a SCI rat model, tissue injury was examined using HE and Nissl staining. Bilobalide treatment facilitated neural differentiation of BMSCs, as well as enhanced autophagy and inhibited WNK1 signaling. The promotive effect of bilobalide on BMSC differentiation was antagonized when overexpressing WNK1 or inhibiting autophagy. Bilobalide upregulated FMRP to promote WNK1 mRNA decay, thus reducing WNK1 expression. FMRP knockdown reversed the promoted functions of bilobalide on autophagy and neuronal differentiation in BMSCs. Additionally, compared to either monotherapy, simultaneous treatments with bilobalide and BMSCs further facilitated autophagy and neuronal differentiation, thereby enhancing the repair of SCI in rats. Bilobalide enhances autophagy activity to promote BMSC neuronal differentiation via FMRP/WNK1 axis, thus improving functional recovery following SCI, which indicates a promising therapeutic approach for SCI.
Collapse
Affiliation(s)
- Min Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, No.29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, People's Republic of China
- Department of Orthopedics, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, Fujian Province, People's Republic of China
| | - Guanghui Xu
- Department of Orthopaedics, Fujian Provincial Governmental Hospital, Fuzhou, 350003, Fujian Province, People's Republic of China
| | - Wenbin Guo
- Department of Pathology, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, Fujian Province, People's Republic of China
| | - Yu Lin
- Department of Orthopedics, Fujian Medical University Union Hospital, No.29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, People's Republic of China
- Department of Orthopedics, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, Fujian Province, People's Republic of China
| | - Zhipeng Yao
- Department of Orthopedics, Fujian Medical University Union Hospital, No.29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
16
|
Wen J, Zhu Q, Liu Y, Gou LT. RNA modifications: emerging players in the regulation of reproduction and development. Acta Biochim Biophys Sin (Shanghai) 2024; 57:33-58. [PMID: 39574165 PMCID: PMC11802351 DOI: 10.3724/abbs.2024201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/05/2024] [Indexed: 01/25/2025] Open
Abstract
The intricate world of RNA modifications, collectively termed the epitranscriptome, covers over 170 identified modifications and impacts RNA metabolism and, consequently, almost all biological processes. In this review, we focus on the regulatory roles and biological functions of a panel of dominant RNA modifications (including m 6A, m 5C, Ψ, ac 4C, m 1A, and m 7G) on three RNA types-mRNA, tRNA, and rRNA-in mammalian development, particularly in the context of reproduction as well as embryonic development. We discuss in detail how those modifications, along with their regulatory proteins, affect RNA processing, structure, localization, stability, and translation efficiency. We also highlight the associations among dysfunctions in RNA modification-related proteins, abnormal modification deposition and various diseases, emphasizing the roles of RNA modifications in critical developmental processes such as stem cell self-renewal and cell fate transition. Elucidating the molecular mechanisms by which RNA modifications influence diverse developmental processes holds promise for developing innovative strategies to manage developmental disorders. Finally, we outline several unexplored areas in the field of RNA modification that warrant further investigation.
Collapse
Affiliation(s)
- Junfei Wen
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qifan Zhu
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yong Liu
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Lan-Tao Gou
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
17
|
Memon F, Nadeem M, Sulaiman M, Arain MI, Hani UE, Yuan S. Unraveling molecular and clinical aspects of ALKBH5 as dual role in colorectal cancer. J Pharm Pharmacol 2024; 76:1393-1403. [PMID: 39321327 DOI: 10.1093/jpp/rgae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES This study investigates the dual role of ALKBH5, an eraser enzyme, in colorectal cancer (CRC), focusing on how N6-methyladenosine (m6A) mutations influence CRC development and progression. METHODS We reviewed various studies that highlighted the role of ALKBH5 in colorectal cancer (CRC). This includes the impact of ALKBH5 on tumor cell behavior including immune system interactions, invasion, and proliferation in CRC. We also looked into how ALKBH5 acts as a tumor suppressor under different conditions analyzed clinical data to assess the impact of ALKBH5 expression on outcomes in colorectal cancer patients. KEY FINDINGS In CRC, ALKBH5 plays a dual role. In certain situations, it inhibits the progression of the tumor, but in other circumstances, it promotes tumor growth and immunosuppression. The interaction with RABA5 plays a role in the development of CRC. Having elevated levels of ALKBH5 has been associated with unfavorable patient outcomes, such as reduced survival rates and more advanced cancer stages. Various factors, including tumor differentiation, TNM stages, and carcinoembryonic antigen (CEA) levels, be linked to ALKBH5 expression. CONCLUSIONS ALKBH5 plays a complicated and situation-specific role in colorectal cancer (CRC). Targeting ALKBH5 could result in novel therapy options that balance its tumor-promoting and tumor-fighting properties in CRC. Further research into m6A alterations and ALKBH5 could enhance CRC treatment approaches and patient outcomes.
Collapse
Affiliation(s)
- Furqan Memon
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Momina Nadeem
- Faculty of Pharmacy, University of Sindh, Jamshoro-76080, Sindh, Pakistan
| | - Muhammad Sulaiman
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Mudassar Iqbal Arain
- San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92035, United States
- School of Pharmacy, University of Kansas, 2010 Becker Dr., Lawrenece, KS 66047, United States
- Pharmacy Practice, University of Sindh, Jamshoro, 76080 Sindh, Pakistan
| | - Umm-E- Hani
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
18
|
Wang N, Shi B, Ding L, Zhang X, Ma X, Guo S, Qiao X, Wang L, Ma D, Cao J. FMRP protects breast cancer cells from ferroptosis by promoting SLC7A11 alternative splicing through interacting with hnRNPM. Redox Biol 2024; 77:103382. [PMID: 39388855 PMCID: PMC11497378 DOI: 10.1016/j.redox.2024.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Ferroptosis is a unique modality of regulated cell death that is driven by iron-dependent phospholipid peroxidation. N6-methyladenosine (m6A) RNA modification participates in varieties of cellular processes. However, it remains elusive whether m6A reader Fragile X Mental Retardation Protein (FMRP) are involved in the modulation of ferroptosis in breast cancer (BC). In this study, we found that FMRP expression was elevated and associated with poor prognosis and pathological stage in BC patients. Overexpression of FMRP induced ferroptosis resistance and exerted oncogenic roles by positively regulating a critical ferroptosis defense gene SLC7A11. Mechanistically, upregulated FMRP catalyzes m6A modification of SLC7A11 mRNA and further influences the SLC7A11 translation through METTL3-dependent manner. Further studies revealed that FMRP interacts with splicing factor hnRNPM to recognize the splice site and then modulated the exon skip splicing event of SLC7A11 transcript. Interestingly, SLC7A11-S splicing variant can effectively promote FMRP overexpression-induced ferroptosis resistance in BC cells. Moreover, our clinical data suggested that FMRP/hnRNPM/SLC7A11 expression were significantly increased in the tumor tissues, and this signal axis was important evaluation factors closely related to the worse survival and prognosis of BC patients. Overall, our results uncovered a novel regulatory mechanism by which high FMRP expression protects BC cells from undergoing ferroptosis. Targeting the FMRP-SLC7A11 axis has a dual effect of inhibiting ferroptosis resistance and tumor growth, which could be a promising therapeutic target for treating BC.
Collapse
Affiliation(s)
- Nan Wang
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China; Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Shi
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lu Ding
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xu Zhang
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaolan Ma
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China; Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Songlin Guo
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xia Qiao
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Libin Wang
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, China.
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Jia Cao
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
19
|
Qiu Y, Man C, Zhu L, Zhang S, Wang X, Gong D, Fan Y. R-loops' m6A modification and its roles in cancers. Mol Cancer 2024; 23:232. [PMID: 39425197 PMCID: PMC11487993 DOI: 10.1186/s12943-024-02148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
R-loops are three-stranded nucleic acid structures composed of an RNA-DNA hybrid and a displaced DNA strand. They are widespread and play crucial roles in regulating gene expression, DNA replication, and DNA and histone modifications. However, their regulatory mechanisms remain unclear. As R-loop detection technology advances, changes in R-loop levels have been observed in cancer models, often associated with transcription-replication conflicts and genomic instability. N6-methyladenosine (m6A) is an RNA epigenetic modification that regulates gene expression by affecting RNA localization, splicing, translation, and degradation. Upon reviewing the literature, we found that R-loops with m6A modifications are implicated in tumor development and progression. This article summarizes the molecular mechanisms and detection methods of R-loops and m6A modifications in gene regulation, and reviews recent research on m6A-modified R-loops in oncology. Our goal is to provide new insights into the origins of genomic instability in cancer and potential strategies for targeted therapy.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Luyu Zhu
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China.
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| |
Collapse
|
20
|
Khan FA, Nsengimana B, Awan UA, Ji XY, Ji S, Dong J. Regulatory roles of N6-methyladenosine (m 6A) methylation in RNA processing and non-communicable diseases. Cancer Gene Ther 2024; 31:1439-1453. [PMID: 38839892 DOI: 10.1038/s41417-024-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Post-transcriptional RNA modification is an emerging epigenetic control mechanism in cells that is important in many different cellular and organismal processes. N6-methyladenosine (m6A) is one of the most prevalent, prolific, and ubiquitous internal transcriptional alterations in eukaryotic mRNAs, making it an important topic in the field of Epigenetics. m6A methylation acts as a dynamical regulatory process that regulates the activity of genes and participates in multiple physiological processes, by supporting multiple aspects of essential mRNA metabolic processes, including pre-mRNA splicing, nuclear export, translation, miRNA synthesis, and stability. Extensive research has linked aberrations in m6A modification and m6A-associated proteins to a wide range of human diseases. However, the impact of m6A on mRNA metabolism and its pathological connection between m6A and other non-communicable diseases, including cardiovascular disease, neurodegenerative disorders, liver diseases, and cancer remains in fragmentation. Here, we review the existing understanding of the overall role of mechanisms by which m6A exerts its activities and address new discoveries that highlight m6A's diverse involvement in gene expression regulation. We discuss m6A deposition on mRNA and its consequences on degradation, translation, and transcription, as well as m6A methylation of non-coding chromosomal-associated RNA species. This study could give new information about the molecular process, early detection, tailored treatment, and predictive evaluation of human non-communicable diseases like cancer. We also explore more about new data that suggests targeting m6A regulators in diseases may have therapeutic advantages.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.
| | - Bernard Nsengimana
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Usman Ayub Awan
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xin-Ying Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
| | - Shaoping Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Yu L, Alariqi M, Li B, Hussain A, Zhou H, Wang Q, Wang F, Wang G, Zhu X, Hui F, Yang X, Nie X, Zhang X, Jin S. CRISPR/dCas13(Rx) Derived RNA N 6-methyladenosine (m 6A) Dynamic Modification in Plant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401118. [PMID: 39229923 PMCID: PMC11497087 DOI: 10.1002/advs.202401118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/15/2024] [Indexed: 09/05/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification of mRNA and plays an important role in regulating plant growth. However, there is still a lack of effective tools to precisely modify m6A sites of individual transcripts in plants. Here, programmable m6A editing tools are developed by combining CRISPR/dCas13(Rx) with the methyltransferase GhMTA (Targeted RNA Methylation Editor, TME) or the demethyltransferase GhALKBH10 (Targeted RNA Demethylation Editor, TDE). These editors enable efficient deposition or removal of m6A modifications at targeted sites of endo-transcripts GhECA1 and GhDi19 within a broad editing window ranging from 0 to 46 nt. TDE editor significantly decreases m6A levels by 24%-76%, while the TME editor increases m6A enrichment, ranging from 1.37- to 2.51-fold. Furthermore, installation and removal of m6A modifications play opposing roles in regulating GhECA1 and GhDi19 mRNA transcripts, which may be attributed to the fact that their m6A sites are located in different regions of the genes. Most importantly, targeting the GhDi19 transcript with TME editor plants results in a significant increase in root length and enhanced drought resistance. Collectively, these m6A editors can be applied to study the function of specific m6A modifications and have the potential for future applications in crop improvement.
Collapse
Affiliation(s)
- Lu Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Baoqi Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Amjad Hussain
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Huifang Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Fuqiu Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Guanying Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xiangqian Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Fengjiao Hui
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xinhui Nie
- Key Laboratory of Oasis Eco‐agriculturalXinjiang Production and Construction Corps/Agricultural CollegeShihezi UniversityShihezi832003China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
22
|
Zhou Y, Jian N, Jiang C, Wang J. m 6A modification in non-coding RNAs: Mechanisms and potential therapeutic implications in fibrosis. Biomed Pharmacother 2024; 179:117331. [PMID: 39191030 DOI: 10.1016/j.biopha.2024.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and reversible forms of RNA methylation, with increasing evidence indicating its critical role in numerous physiological and pathological processes. m6A catalyzes messenger RNA(mRNA) as well as regulatory non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs, and circular RNAs. This modification modulates ncRNA fate and cell functions in various bioprocesses, including ncRNA splicing, maturity, export, and stability. Key m6A regulators, including writers, erasers, and readers, have been reported to modify the ncRNAs involved in fibrogenesis. NcRNAs affect fibrosis progression by targeting m6A regulators. The interactions between m6A and ncRNAs can influence multiple cellular life activities. In this review, we discuss the impact of the interaction between m6A modifications and ncRNAs on the pathological mechanisms of fibrosis, revealing the possibility of these interactions as diagnostic markers and therapeutic targets in fibrosis.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China.
| |
Collapse
|
23
|
Xia W, Liu Y, Lu J, Cheung HH, Meng Q, Huang B. RNA methylation in neurodevelopment and related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1723-1732. [PMID: 39344412 PMCID: PMC11693867 DOI: 10.3724/abbs.2024159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Biological development and genetic information transfer are governed by genetic, epigenetic, transcriptional, and posttranscriptional mechanisms. RNA methylation, the attachment of methyl (-CH 3) groups to RNA molecules, is a posttranscriptional modification that has gained increasing attention in recent years because of its role in RNA epitranscriptomics. RNA modifications (RMs) influence various aspects of RNA metabolism and are involved in the regulation of diverse biological processes and diseases. Neural cell types emerge at specific stages of brain development, and recent studies have revealed that neurodevelopment, aging, and disease are tightly linked to transcriptome dysregulation. In this review, we discuss the roles of N6-methyladenine (m6A) and 5-methylcytidine (m5C) RNA modifications in neurodevelopment, physiological functions, and related diseases.
Collapse
Affiliation(s)
- Wenjuan Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Hoi-Hung Cheung
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong 999077China
| | - Qingxia Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| |
Collapse
|
24
|
Jiao Y, Palli SR. RNA modifications in insects. FRONTIERS IN INSECT SCIENCE 2024; 4:1448766. [PMID: 39253349 PMCID: PMC11381373 DOI: 10.3389/finsc.2024.1448766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
More than 100 RNA chemical modifications to cellular RNA have been identified. N 6-methyladenosine (m6A) is the most prevalent modification of mRNA. RNA modifications have recently attracted significant attention due to their critical role in regulating mRNA processing and metabolism. tRNA and rRNA rank among the most heavily modified RNAs, and their modifications are essential for maintaining their structure and function. With our advanced understanding of RNA modifications, increasing evidence suggests RNA modifications are important in regulating various aspects of insect life. In this review, we will summarize recent studies investigating the impact of RNA modifications in insects, particularly highlighting the role of m6A in insect development, reproduction, and adaptation to the environment.
Collapse
Affiliation(s)
- Yaoyu Jiao
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
- Department of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
25
|
Xie L, Li H, Xiao M, Chen N, Zang X, Liu Y, Ye H, Tang C. Epigenetic insights into Fragile X Syndrome. Front Cell Dev Biol 2024; 12:1432444. [PMID: 39220684 PMCID: PMC11362040 DOI: 10.3389/fcell.2024.1432444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Fragile X Syndrome (FXS) is a genetic neurodevelopmental disorder closely associated with intellectual disability and autism spectrum disorders. The core of the disease lies in the abnormal expansion of the CGG trinucleotide repeat sequence at the 5'end of the FMR1 gene. When the repetition exceeds 200 times, it causes the silencing of the FMR1 gene, leading to the absence of the encoded Fragile X mental retardation protein 1 (FMRP). Although the detailed mechanism by which the CGG repeat expansion triggers gene silencing is yet to be fully elucidated, it is known that this process does not alter the promoter region or the coding sequence of the FMR1 gene. This discovery provides a scientific basis for the potential reversal of FMR1 gene silencing through interventional approaches, thereby improving the symptoms of FXS. Epigenetics, a mechanism of genetic regulation that does not depend on changes in the DNA sequence, has become a new focus in FXS research by modulating gene expression in a reversible manner. The latest progress in molecular genetics has revealed that epigenetics plays a key role in the pathogenesis and pathophysiological processes of FXS. This article compiles the existing research findings on the role of epigenetics in Fragile X Syndrome (FXS) with the aim of deepening the understanding of the pathogenesis of FXS to identify potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Liangqun Xie
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Huiying Li
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - MengLiang Xiao
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Ningjing Chen
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Xiaoxiao Zang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yingying Liu
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Hong Ye
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Chaogang Tang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
26
|
Cun Y, Guo W, Ma B, Okuno Y, Wang J. Decoding the specificity of m 6A RNA methylation and its implication in cancer therapy. Mol Ther 2024; 32:2461-2469. [PMID: 38796701 PMCID: PMC11405154 DOI: 10.1016/j.ymthe.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant endogenous modification in eukaryotic RNAs. It plays important roles in various biological processes and diseases, including cancers. More and more studies have revealed that the deposition of m6A is specifically regulated in a context-dependent manner. Here, we review the diverse mechanisms that determine the topology of m6A along RNAs and the cell-type-specific m6A methylomes. The exon junction complex (EJC) as well as histone modifications play important roles in determining the topological distribution of m6A along nascent RNAs, while the transcription factors and RNA-binding proteins, which usually bind specific DNAs and RNAs in a cell-type-specific manner, largely account for the cell-type-specific m6A methylomes. Due to the lack of specificity of m6A writers and readers, there are still challenges to target the core m6A machinery for cancer therapies. Therefore, understanding the mechanisms underlying the specificity of m6A modifications in cancers would be important for future cancer therapies through m6A intervention.
Collapse
Affiliation(s)
- Yixian Cun
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangdong 510080, China
| | - Wenbing Guo
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangdong 510080, China
| | - Biao Ma
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasushi Okuno
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jinkai Wang
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
27
|
Ma M, Wang W, Li L, Wang X, Huang Q, Zhou C, Huang Y, Zhao G, Ye L. RBM15 facilities lung adenocarcinoma cell progression by regulating RASSF8 stability through N6 Methyladenosine modification. Transl Oncol 2024; 46:102018. [PMID: 38838436 PMCID: PMC11214523 DOI: 10.1016/j.tranon.2024.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Invasion and migration are the primary factors for mortality in lung adenocarcinoma (LUAD) patients. The precise role of RNA-binding motif protein15 (RBM15)-mediated m6A modification in LUAD is not yet fully clarified. This research aims to elucidate the mechanism of RBM15 in the invasion and migration of LUAD. Western blot and dot blot assay results showed that RBM15 and methylation levels of m6A were highly expressed in LUAD tissues. Overexpression of RBM15 by lentivirus transfection increased m6A levels and promoted the invasion, migration, and proliferation of A549 and H1734 cells. Knockdown of RBM15 by lentivirus transfection had opposite effects on m6A levels, invasion, migration, and proliferation of A549 and H1734 cells. The results of nude mouse proliferation models confirmed that RBM15 knockdown inhibited in vivo tumor proliferation . Sequencing and immunoprecipitation identified RASSF8 as an interacting protein of RBM15 involved in cell invasion and migration. RBM15-mediated m6A modification inhibited RASSF8 protein levels and increased LUAD cell invasion and migration. The rescue assays demonstrated that the regulation of RBM15 on LUAD cell invasion and migration was partially rescued by RASSF8. In conclusion, RBM15-mediated m6A modification inhibits the RASSF8 protein levels and increases cell invasion and migration. Thus, targeting the RBM15-m6A-RASSF8 axis may be a promising strategy for repressing LUAD cell invasion and migration.
Collapse
Affiliation(s)
- Mingsheng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan,650118, China; Department of Thoracic Surgery, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan,653100, China
| | - Wei Wang
- Department of Thoracic Surgery, Taihe Hospital (Hubei University of Medicine), Shiyan, Hubei,442000, China
| | - Li Li
- Department of Biotherapy Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan,650118, China
| | - Xiaoyan Wang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan,653100, China
| | - Qiubo Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan,650118, China
| | - Chen Zhou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan,650118, China
| | - Yunchao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan,650118, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan,650118, China
| | - Lianhua Ye
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan,650118, China.
| |
Collapse
|
28
|
Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m 6A and other RNA modifications and their roles in cancer. Front Med 2024; 18:622-648. [PMID: 38907157 DOI: 10.1007/s11684-024-1064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/17/2024] [Indexed: 06/23/2024]
Abstract
RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.
Collapse
Affiliation(s)
- Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Kun-Xiong Guo
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing Li
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shu-Hui Xu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
29
|
Li C, Liu L, Li S, Liu YS. N 6-Methyladenosine in Vascular Aging and Related Diseases: Clinical Perspectives. Aging Dis 2024; 15:1447-1473. [PMID: 37815911 PMCID: PMC11272212 DOI: 10.14336/ad.2023.0924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Aging leads to progressive deterioration of the structure and function of arteries, which eventually contributes to the development of vascular aging-related diseases. N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic RNAs. This reversible m6A RNA modification is dynamically regulated by writers, erasers, and readers, playing a critical role in various physiological and pathological conditions by affecting almost all stages of the RNA life cycle. Recent studies have highlighted the involvement of m6A in vascular aging and related diseases, shedding light on its potential clinical significance. In this paper, we comprehensively discuss the current understanding of m6A in vascular aging and its clinical implications. We discuss the molecular insights into m6A and its association with clinical realities, emphasizing its significance in unraveling the mechanisms underlying vascular aging. Furthermore, we explore the possibility of m6A and its regulators as clinical indicators for early diagnosis and prognosis prediction and investigate the therapeutic potential of m6A-associated anti-aging approaches. We also examine the challenges and future directions in this field and highlight the necessity of integrating m6A knowledge into patient-centered care. Finally, we emphasize the need for multidisciplinary collaboration to advance the field of m6A research and its clinical application.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Le Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
30
|
Hu R, Liao P, Xu B, Qiu Y, Zhang H, Li Y. N6-methyladenosine RNA modifications: a potential therapeutic target for AML. Ann Hematol 2024; 103:2601-2612. [PMID: 37548690 DOI: 10.1007/s00277-023-05302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/26/2023] [Indexed: 08/08/2023]
Abstract
N6-methyladenosine (m6A) RNA modification has recently emerged as an essential regulator of normal and malignant hematopoiesis. As a reversible epigenetic modification found in messenger RNAs and non-coding RNAs, m6A affects the fate of the modified RNA molecules. It is essential in most vital bioprocesses, contributing to cancer development. Here, we review the up-to-date knowledge of the pathological functions and underlying molecular mechanism of m6A modifications in normal hematopoiesis, leukemia pathogenesis, and drug response/resistance. At last, we discuss the critical role of m6A in immune response, the therapeutic potential of targeting m6A regulators, and the possible combination therapy for AML.
Collapse
MESH Headings
- Humans
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Epigenesis, Genetic
- Hematopoiesis/genetics
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Molecular Targeted Therapy
- Animals
- Drug Resistance, Neoplasm/genetics
- RNA Processing, Post-Transcriptional
Collapse
Affiliation(s)
- Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, People's Republic of China.
| |
Collapse
|
31
|
Yang C, Huang YT, Yao YF, Fu JY, Long YS. Hippocampal proteome comparison of infant and adult Fmr1 deficiency mice reveals adult-related changes associated with postsynaptic density. J Proteomics 2024; 303:105202. [PMID: 38797434 DOI: 10.1016/j.jprot.2024.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Deficiency in fragile X mental retardation 1 (Fmr1) leads to loss of its encoded protein FMRP and causes fragile X syndrome (FXS) by dysregulating its target gene expression in an age-related fashion. Using comparative proteomic analysis, this study identified 105 differentially expressed proteins (DEPs) in the hippocampus of postnatal day 7 (P7) Fmr1-/y mice and 306 DEPs of P90 Fmr1-/y mice. We found that most DEPs in P90 hippocampus were not changed in P7 hippocampus upon FMRP absence, and some P90 DEPs exhibited diverse proteophenotypes with abnormal expression of protein isoform or allele variants. Bioinformatic analyses showed that the P7 DEPs were mainly enriched in fatty acid metabolism and oxidoreductase activity and nutrient responses; whereas the P90 PEPs (especially down-regulated DEPs) were primarily enriched in postsynaptic density (PSD), neuronal projection development and synaptic plasticity. Interestingly, 25 of 30 down-regulated PSD proteins present in the most enriched protein to protein interaction network, and 6 of them (ANK3, ATP2B2, DST, GRIN1, SHANK2 and SYNGAP1) are both FMRP targets and autism candidates. Therefore, this study suggests age-dependent alterations in hippocampal proteomes upon loss of FMRP that may be associated with the pathogenesis of FXS and its related disorders. SIGNIFICANCE: It is well known that loss of FMRP resulted from Fmr1 deficiency leads to fragile X syndrome (FXS), a common neurodevelopmental disorder accompanied by intellectual disability and autism spectrum disorder (ASD). FMRP exhibits distinctly spatiotemporal patterns in the hippocampus between early development and adulthood, which lead to distinct dysregulations of gene expression upon loss of FMRP at the two age stages potentially linked to age-related phenotypes. Therefore, comparison of hippocampal proteomes between infancy and adulthood is valuable to provide insights into the early causations and adult-dependent consequences for FXS and ASD. Using a comparative proteomic analysis, this study identified 105 and 306 differentially expressed proteins (DEPs) in the hippocampi of postnatal day 7 (P7) and P90 Fmr1-/y mice, respectively. Few overlapping DEPs were identified between P7 and P90 stages, and the P7 DEPs were mainly enriched in the regulation of fatty acid metabolism and oxidoreduction, whereas the P90 DEPs were preferentially enriched in the regulation of synaptic formation and plasticity. Particularly, the up-regulated P90 proteins are primarily involved in immune responses and neurodegeneration, and the down-regulated P90 proteins are associated with postsynaptic density, neuron projection and synaptic plasticity. Our findings suggest that distinctly changed proteins in FMRP-absence hippocampus between infancy and adulthood may contribute to age-dependent pathogenesis of FXS and ASD.
Collapse
Affiliation(s)
- Cui Yang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yu-Ting Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yi-Fei Yao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jun-Yi Fu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Yue-Sheng Long
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
32
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 PMCID: PMC11771131 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
33
|
Kunoh S, Nakashima H, Nakashima K. Epigenetic Regulation of Neural Stem Cells in Developmental and Adult Stages. EPIGENOMES 2024; 8:22. [PMID: 38920623 PMCID: PMC11203245 DOI: 10.3390/epigenomes8020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The development of the nervous system is regulated by numerous intracellular molecules and cellular signals that interact temporally and spatially with the extracellular microenvironment. The three major cell types in the brain, i.e., neurons and two types of glial cells (astrocytes and oligodendrocytes), are generated from common multipotent neural stem cells (NSCs) throughout life. However, NSCs do not have this multipotentiality from the beginning. During cortical development, NSCs sequentially obtain abilities to differentiate into neurons and glial cells in response to combinations of spatiotemporally modulated cell-intrinsic epigenetic alterations and extrinsic factors. After the completion of brain development, a limited population of NSCs remains in the adult brain and continues to produce neurons (adult neurogenesis), thus contributing to learning and memory. Many biological aspects of brain development and adult neurogenesis are regulated by epigenetic changes via behavioral control of NSCs. Epigenetic dysregulation has also been implicated in the pathogenesis of various brain diseases. Here, we present recent advances in the epigenetic regulation of NSC behavior and its dysregulation in brain disorders.
Collapse
Affiliation(s)
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
34
|
Jiang J, Duan M, Wang Z, Lai Y, Zhang C, Duan C. RNA epigenetics in pulmonary diseases: Insights into methylation modification of lncRNAs in lung cancer. Biomed Pharmacother 2024; 175:116704. [PMID: 38749181 DOI: 10.1016/j.biopha.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are pivotal controllers of gene expression through epigenetic mechanisms, Methylation, a prominent area of study in epigenetics, significantly impacts cellular processes. Various RNA base methylations, including m6A, m5C, m1A, and 2'-O-methylation, profoundly influence lncRNA folding, interactions, and stability, thereby shaping their functionality. LncRNAs and methylation significantly contribute to tumor development, especially in lung cancer. Their roles encompass cell differentiation, proliferation, the generation of cancer stem cells, and modulation of immune responses. Recent studies have suggested that dysregulation of lncRNA methylation can contribute to lung cancer development. Furthermore, methylation modifications of lncRNAs hold potential for clinical application in lung cancer. Dysregulated lncRNA methylation can promote lung cancer progression and may offer insights into potential biomarker or therapeutic target. This review summarizes the current knowledge of lncRNA methylation in lung cancer and its implications for RNA epigenetics and pulmonary diseases.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Minghao Duan
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 412017, Hunan, People's Republic of China
| | - Zheng Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, People's Republic of China.
| |
Collapse
|
35
|
Jin T, Yang L, Chang C, Luo H, Wang R, Gan Y, Sun Y, Guo Y, Tang R, Chen S, Meng D, Dai P, Liu M. HnRNPA2B1 ISGylation Regulates m6A-Tagged mRNA Selective Export via ALYREF/NXF1 Complex to Foster Breast Cancer Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307639. [PMID: 38626369 PMCID: PMC11200088 DOI: 10.1002/advs.202307639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Regulating nuclear export precisely is essential for maintaining mRNA homeostasis and impacts tumor progression. However, the mechanisms governing nuclear mRNA export remain poorly elucidated. Herein, it is revealed that the enhanced hypoxic long no-ncoding RNA (lncRNA prostate cancer associated transcript 6 (PCAT6) in breast cancer (BC) promotes the nuclear export of m6A-modified mRNAs, bolstering breast cancer stem cells (BCSCs) stemness and doxorubicin resistance. Clinically, hypoxic PCAT6 correlates with malignant BC features and poor prognosis. Mechanically, PCAT6 functions as a scaffold between interferon-stimulated gene 15 (ISG15) and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1), leading to ISGylation of hnRNPA2B1, thus protecting hnRNPA2B1 from ubiquitination-mediated proteasomal degradation. Interestingly, as an m6A reader, hnRNPA2B1 selectively mediates m6A-tagged mRNAs nuclear export via the Aly/REF export factor (ALYREF)/ nuclear RNA export factor 1 (NXF1) complex, which promotes stemness-related genes expression. HnRNPA2B1 knockdown or mRNA export inhibition can result in the retention of nuclear m6A-tagged mRNA associated with stemness maintenance, which suppresses BCSCs self-renewal and effectively improves the efficacy of doxorubicin therapy. These findings demonstrate the pivotal role of m6A-modified mRNA nuclear export in BC progression, highlighting that the inhibition of m6A-tagged mRNA and its nuclear export is a potential therapeutic strategy for the amelioration of cancer chemotherapy.
Collapse
Affiliation(s)
- Ting Jin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Liping Yang
- Department of Laboratory Medicinethe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Chao Chang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Haojun Luo
- Department of Breast and Thyroid Surgerythe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Rui Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Yubi Gan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical SchoolChongqing Medical UniversityChongqing400016China
| | - Yuetong Guo
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Rui Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Shanchun Chen
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Die Meng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Peijin Dai
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| |
Collapse
|
36
|
Kahl M, Xu Z, Arumugam S, Edens BM, Fischietti M, Zhu AC, Platanias LC, He C, Zhuang X, Ma YC. m6A RNA methylation regulates mitochondrial function. Hum Mol Genet 2024; 33:969-980. [PMID: 38483349 PMCID: PMC11102592 DOI: 10.1093/hmg/ddae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/17/2024] [Indexed: 05/20/2024] Open
Abstract
RNA methylation of N6-methyladenosine (m6A) is emerging as a fundamental regulator of every aspect of RNA biology. RNA methylation directly impacts protein production to achieve quick modulation of dynamic biological processes. However, whether RNA methylation regulates mitochondrial function is not known, especially in neuronal cells which require a high energy supply and quick reactive responses. Here we show that m6A RNA methylation regulates mitochondrial function through promoting nuclear-encoded mitochondrial complex subunit RNA translation. Conditional genetic knockout of m6A RNA methyltransferase Mettl14 (Methyltransferase like 14) by Nestin-Cre together with metabolomic analysis reveals that Mettl14 knockout-induced m6A depletion significantly downregulates metabolites related to energy metabolism. Furthermore, transcriptome-wide RNA methylation profiling of wild type and Mettl14 knockout mouse brains by m6A-Seq shows enrichment of methylation on mitochondria-related RNA. Importantly, loss of m6A leads to a significant reduction in mitochondrial respiratory capacity and membrane potential. These functional defects are paralleled by the reduced expression of mitochondrial electron transport chain complexes, as well as decreased mitochondrial super-complex assembly and activity. Mechanistically, m6A depletion decreases the translational efficiency of methylated RNA encoding mitochondrial complex subunits through reducing their association with polysomes, while not affecting RNA stability. Together, these findings reveal a novel role for RNA methylation in regulating mitochondrial function. Given that mitochondrial dysfunction and RNA methylation have been increasingly implicate in neurodegenerative disorders, our findings not only provide insights into fundamental mechanisms regulating mitochondrial function, but also open up new avenues for understanding the pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Michael Kahl
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, United States
| | - Zhaofa Xu
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, United States
| | - Saravanan Arumugam
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, United States
| | - Brittany M Edens
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, United States
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
| | - Allen C Zhu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, United States
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 924 East 57th Street, Chicago, IL 60612, United States
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, United States
| | - Xiaoxi Zhuang
- Department of Neurobiology, and Committee on Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, United States
| | - Yongchao C Ma
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, United States
| |
Collapse
|
37
|
Feng G, Wu Y, Hu Y, Shuai W, Yang X, Li Y, Ouyang L, Wang G. Small molecule inhibitors targeting m 6A regulators. J Hematol Oncol 2024; 17:30. [PMID: 38711100 PMCID: PMC11075261 DOI: 10.1186/s13045-024-01546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
As the most common form of epigenetic regulation by RNA, N6 methyladenosine (m6A) modification is closely involved in physiological processes, such as growth and development, stem cell renewal and differentiation, and DNA damage response. Meanwhile, its aberrant expression in cancer tissues promotes the development of malignant tumors, as well as plays important roles in proliferation, metastasis, drug resistance, immunity and prognosis. This close association between m6A and cancers has garnered substantial attention in recent years. An increasing number of small molecules have emerged as potential agents to target m6A regulators for cancer treatment. These molecules target the epigenetic level, enabling precise intervention in RNA modifications and efficiently disrupting the survival mechanisms of tumor cells, thus paving the way for novel approaches in cancer treatment. However, there is currently a lack of a comprehensive review on small molecules targeting m6A regulators for anti-tumor. Here, we have comprehensively summarized the classification and functions of m6A regulators, elucidating their interactions with the proliferation, metastasis, drug resistance, and immune responses in common cancers. Furthermore, we have provided a comprehensive overview on the development, mode of action, pharmacology and structure-activity relationships of small molecules targeting m6A regulators. Our aim is to offer insights for subsequent drug design and optimization, while also providing an outlook on future prospects for small molecule development targeting m6A.
Collapse
Affiliation(s)
- Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yuan Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiao Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
38
|
Tegowski M, Meyer KD. Studying m 6A in the brain: a perspective on current methods, challenges, and future directions. Front Mol Neurosci 2024; 17:1393973. [PMID: 38711483 PMCID: PMC11070500 DOI: 10.3389/fnmol.2024.1393973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
A major mechanism of post-transcriptional RNA regulation in cells is the addition of chemical modifications to RNA nucleosides, which contributes to nearly every aspect of the RNA life cycle. N6-methyladenosine (m6A) is a highly prevalent modification in cellular mRNAs and non-coding RNAs, and it plays important roles in the control of gene expression and cellular function. Within the brain, proper regulation of m6A is critical for neurodevelopment, learning and memory, and the response to injury, and m6A dysregulation has been implicated in a variety of neurological disorders. Thus, understanding m6A and how it is regulated in the brain is important for uncovering its roles in brain function and potentially identifying novel therapeutic pathways for human disease. Much of our knowledge of m6A has been driven by technical advances in the ability to map and quantify m6A sites. Here, we review current technologies for characterizing m6A and highlight emerging methods. We discuss the advantages and limitations of current tools as well as major challenges going forward, and we provide our perspective on how continued developments in this area can propel our understanding of m6A in the brain and its role in brain disease.
Collapse
Affiliation(s)
- Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
39
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
40
|
Li Q, Pan Y, Zhang J, Hu B, Qin D, Liu S, Chen N, Zhang L. TET2 regulation of alcoholic fatty liver via Srebp1 mRNA in paraspeckles. iScience 2024; 27:109278. [PMID: 38482502 PMCID: PMC10933471 DOI: 10.1016/j.isci.2024.109278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 01/06/2025] Open
Abstract
Epigenetic modifications have emerged as key regulators of metabolism-related complex diseases including the alcoholic fatty liver disease (AFLD) prevalent chronic liver disorder with significant economic implications. Building upon previous research that emphasizes ten-eleven translocation (TET) proteins' involvement in adipocyte insulin sensitization and fatty acid oxidation, we explored the role of TET2 protein in AFLD pathogenesis which catalyzes 5-methylcytosine into 5-hydroxymethylcytosine in DNA/RNA. Our findings revealed that TET2 deficiency exacerbates AFLD progression. And TET2 influenced the expression and activity of sterol regulatory element binding protein 1 (SREBP1), a key regulator of hepatic lipid synthesis, by modulating Srebp1 mRNA retention. Employing RIP-qPCR and bisulfite sequencing techniques, we provided evidence of TET2-mediated epigenetic modifications on Srebp1 mRNA, thereby affecting lipid metabolism. Through elucidating the role of methylation in RNA nuclear retention via paraspeckles, our study enhances understanding of AFLD pathogenesis from an epigenetic perspective, paving the way for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Qinjin Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanyan Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Boxu Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dan Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shenghui Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ning Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lisheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
41
|
Sun L, Chen X, Zhu S, Wang J, Diao S, Liu J, Xu J, Li X, Sun Y, Huang C, Meng X, Lv X, Li J. Decoding m 6A mRNA methylation by reader proteins in liver diseases. Genes Dis 2024; 11:711-726. [PMID: 37692496 PMCID: PMC10491919 DOI: 10.1016/j.gendis.2023.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/22/2023] [Indexed: 09/12/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic and reversible epigenetic regulation. As the most prevalent internal post-transcriptional modification in eukaryotic RNA, it participates in the regulation of gene expression through various mechanisms, such as mRNA splicing, nuclear export, localization, translation efficiency, mRNA stability, and structural transformation. The involvement of m6A in the regulation of gene expression depends on the specific recognition of m6A-modified RNA by reader proteins. In the pathogenesis and treatment of liver disease, studies have found that the expression levels of key genes that promote or inhibit the development of liver disease are regulated by m6A modification, in which abnormal expression of reader proteins determines the fate of these gene transcripts. In this review, we introduce m6A readers, summarize the recognition and regulatory mechanisms of m6A readers on mRNA, and focus on the biological functions and mechanisms of m6A readers in liver cancer, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), hepatic fibrosis (HF), acute liver injury (ALI), and other liver diseases. This information is expected to be of high value to researchers deciphering the links between m6A readers and human liver diseases.
Collapse
Affiliation(s)
- Lijiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jianan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinjin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Yingyin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
42
|
Esteva-Socias M, Aguilo F. METTL3 as a master regulator of translation in cancer: mechanisms and implications. NAR Cancer 2024; 6:zcae009. [PMID: 38444581 PMCID: PMC10914372 DOI: 10.1093/narcan/zcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Translational regulation is an important step in the control of gene expression. In cancer cells, the orchestration of both global control of protein synthesis and selective translation of specific mRNAs promote tumor cell survival, angiogenesis, transformation, invasion and metastasis. N6-methyladenosine (m6A), the most prevalent mRNA modification in higher eukaryotes, impacts protein translation. Over the past decade, the development of m6A mapping tools has facilitated comprehensive functional investigations, revealing the involvement of this chemical mark, together with its writer METTL3, in promoting the translation of both oncogenes and tumor suppressor transcripts, with the impact being context-dependent. This review aims to consolidate our current understanding of how m6A and METTL3 shape translation regulation in the realm of cancer biology. In addition, it delves into the role of cytoplasmic METTL3 in protein synthesis, operating independently of its catalytic activity. Ultimately, our goal is to provide critical insights into the interplay between m6A, METTL3 and translational regulation in cancer, offering a deeper comprehension of the mechanisms sustaining tumorigenesis.
Collapse
Affiliation(s)
- Margalida Esteva-Socias
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| |
Collapse
|
43
|
Delaunay S, Helm M, Frye M. RNA modifications in physiology and disease: towards clinical applications. Nat Rev Genet 2024; 25:104-122. [PMID: 37714958 DOI: 10.1038/s41576-023-00645-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules - to increase or decrease the expression of therapeutic proteins. Furthermore, naturally occurring biochemical modifications of nucleotides regulate RNA metabolism and function to modulate crucial cellular processes. Studies showing the mechanisms by which RNA modifications regulate basic cell functions in higher organisms have led to greater understanding of how aberrant RNA modification profiles can cause disease in humans. Together, these basic science discoveries have unravelled the molecular and cellular functions of RNA modifications, have provided new prospects for therapeutic manipulation and have led to a range of innovative clinical approaches.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Frye
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany.
| |
Collapse
|
44
|
Zhang F, Ignatova VV, Ming GL, Song H. Advances in brain epitranscriptomics research and translational opportunities. Mol Psychiatry 2024; 29:449-463. [PMID: 38123727 PMCID: PMC11116067 DOI: 10.1038/s41380-023-02339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Various chemical modifications of all RNA transcripts, or epitranscriptomics, have emerged as crucial regulators of RNA metabolism, attracting significant interest from both basic and clinical researchers due to their diverse functions in biological processes and immense clinical potential as highlighted by the recent profound success of RNA modifications in improving COVID-19 mRNA vaccines. Rapid accumulation of evidence underscores the critical involvement of various RNA modifications in governing normal neural development and brain functions as well as pathogenesis of brain disorders. Here we provide an overview of RNA modifications and recent advancements in epitranscriptomic studies utilizing animal models to elucidate important roles of RNA modifications in regulating mammalian neurogenesis, gliogenesis, synaptic formation, and brain function. Moreover, we emphasize the pivotal involvement of RNA modifications and their regulators in the pathogenesis of various human brain disorders, encompassing neurodevelopmental disorders, brain tumors, psychiatric and neurodegenerative disorders. Furthermore, we discuss potential translational opportunities afforded by RNA modifications in combatting brain disorders, including their use as biomarkers, in the development of drugs or gene therapies targeting epitranscriptomic pathways, and in applications for mRNA-based vaccines and therapies. We also address current limitations and challenges hindering the widespread clinical application of epitranscriptomic research, along with the improvements necessary for future progress.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valentina V Ignatova
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
45
|
He D, Xu Y, Liu M, Cui L. The Inflammatory Puzzle: Piecing together the Links between Neuroinflammation and Amyotrophic Lateral Sclerosis. Aging Dis 2024; 15:96-114. [PMID: 37307819 PMCID: PMC10796096 DOI: 10.14336/ad.2023.0519] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has a complex genetic basis. Through advancements in genetic screening, researchers have identified more than 40 mutant genes associated with ALS, some of which impact immune function. Neuroinflammation, with abnormal activation of immune cells and excessive production of inflammatory cytokines in the central nervous system, significantly contributes to the pathophysiology of ALS. In this review, we examine recent evidence on the involvement of ALS-associated mutant genes in immune dysregulation, with a specific focus on the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and N6-methyladenosine (m6A)-mediated immune regulation in the context of neurodegeneration. We also discuss the perturbation of immune cell homeostasis in both the central nervous system and peripheral tissues in ALS. Furthermore, we explore the advancements made in the emerging genetic and cell-based therapies for ALS. This review underscores the complex relationship between ALS and neuroinflammation, highlighting the potential to identify modifiable factors for therapeutic intervention. A deeper understanding of the connection between neuroinflammation and the risk of ALS is crucial for advancing effective treatments for this debilitating disorder.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yan Xu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
46
|
Shi J, Wang Z, Wang Z, Shao G, Li X. Epigenetic regulation in adult neural stem cells. Front Cell Dev Biol 2024; 12:1331074. [PMID: 38357000 PMCID: PMC10864612 DOI: 10.3389/fcell.2024.1331074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Neural stem cells (NSCs) exhibit self-renewing and multipotential properties. Adult NSCs are located in two neurogenic regions of adult brain: the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Maintenance and differentiation of adult NSCs are regulated by both intrinsic and extrinsic signals that may be integrated through expression of some key factors in the adult NSCs. A number of transcription factors have been shown to play essential roles in transcriptional regulation of NSC cell fate transitions in the adult brain. Epigenetic regulators have also emerged as key players in regulation of NSCs, neural progenitor cells and their differentiated progeny via epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling and RNA-mediated transcriptional regulation. This minireview is primarily focused on epigenetic regulations of adult NSCs during adult neurogenesis, in conjunction with transcriptional regulation in these processes.
Collapse
Affiliation(s)
- Jiajia Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zilin Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijun Wang
- Zhenhai Lianhua Hospital, Ningbo City, Zhejiang, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
47
|
Talvio K, Castrén ML. Astrocytes in fragile X syndrome. Front Cell Neurosci 2024; 17:1322541. [PMID: 38259499 PMCID: PMC10800791 DOI: 10.3389/fncel.2023.1322541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Astrocytes have an important role in neuronal maturation and synapse function in the brain. The interplay between astrocytes and neurons is found to be altered in many neurodevelopmental disorders, including fragile X syndrome (FXS) that is the most common inherited cause of intellectual disability and autism spectrum disorder. Transcriptional, functional, and metabolic alterations in Fmr1 knockout mouse astrocytes, human FXS stem cell-derived astrocytes as well as in in vivo models suggest autonomous effects of astrocytes in the neurobiology of FXS. Abnormalities associated with FXS astrocytes include differentiation of central nervous system cell populations, maturation and regulation of synapses, and synaptic glutamate balance. Recently, FXS-specific changes were found more widely in astrocyte functioning, such as regulation of inflammatory pathways and maintenance of lipid homeostasis. Changes of FXS astrocytes impact the brain homeostasis and function both during development and in the adult brain and offer opportunities for novel types of approaches for intervention.
Collapse
Affiliation(s)
| | - Maija L. Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Cerneckis J, Ming GL, Song H, He C, Shi Y. The rise of epitranscriptomics: recent developments and future directions. Trends Pharmacol Sci 2024; 45:24-38. [PMID: 38103979 PMCID: PMC10843569 DOI: 10.1016/j.tips.2023.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
The epitranscriptomics field has undergone tremendous growth since the discovery that the RNA N6-methyladenosine (m6A) modification is reversible and is distributed throughout the transcriptome. Efforts to map RNA modifications transcriptome-wide and reshape the epitranscriptome in disease settings have facilitated mechanistic understanding and drug discovery in the field. In this review we discuss recent advancements in RNA modification detection methods and consider how these developments can be applied to gain novel insights into the epitranscriptome. We also highlight drug discovery efforts aimed at developing epitranscriptomic therapeutics for cancer and other diseases. Finally, we consider engineering of the epitranscriptome as an emerging direction to investigate RNA modifications and their causal effects on RNA processing at high specificity.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Department of Cell and Developmental Biology, Department of Psychiatry, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Department of Cell and Developmental Biology, the Epigenetics Institute, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, the University of Chicago, Chicago, IL 60637, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
49
|
Wei H, Xu Y, Lin L, Li Y, Zhu X. A review on the role of RNA methylation in aging-related diseases. Int J Biol Macromol 2024; 254:127769. [PMID: 38287578 DOI: 10.1016/j.ijbiomac.2023.127769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Senescence is the underlying mechanism of organism aging and is robustly regulated at the post-transcriptional level. This regulation involves the chemical modifications, of which the RNA methylation is the most common. Recently, a rapidly growing number of studies have demonstrated that methylation is relevant to aging and aging-associated diseases. Owing to the rapid development of detection methods, the understanding on RNA methylation has gone deeper. In this review, we summarize the current understanding on the influence of RNA modification on cellular senescence, with a focus on mRNA methylation in aging-related diseases, and discuss the emerging potential of RNA modification in diagnosis and therapy.
Collapse
Affiliation(s)
- Hong Wei
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuhao Xu
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuefeng Li
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
50
|
Liu W, Zeng H. IGF2BP2 attenuates intestinal epithelial cell ferroptosis in colitis by stabilizing m 6A-modified GPX4 mRNA. Cytokine 2024; 173:156388. [PMID: 38039694 DOI: 10.1016/j.cyto.2023.156388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic and uncontrolled inflammatory bowel disease. N6-methyladenine (m6A) is a reversible mRNA modification method. IGF2BP2 is an RNA-binding protein regulated by m6A methylation. However, understanding of m6A-related proteins in UC is limited. This study was to analyze the function and related mechanism of IGF2BP2 in UC. METHODS The UC models were established by dextran sulfate sodium (DSS) in NCM460 cells and mice. The expression of IGF2BP2 and GPX4 in UC were detected by qPCR and western blot. The effects of IGF2BP2 on inflammation, ferroptosis and colon injury were measured by gain- and loss-of-function experiments. This study conducted a clinical evaluation of mice using the Disease Activity Index score. The molecular mechanism of IGF2BP2 in ferroptosis were analyzed by m6A RNA methylation quantification kit, RNA immunoprecipitation-qPCR analysis, and RNA stability assay. RESULTS IGF2BP2 and GPX4 were under-expressed in DSS-treated UC. IGF2BP2 enhanced the stability of GPX4 mRNA modified by m6A. IGF2BP2 overexpression repressed the ROS, MDA, and iron levels but enhanced the GSH and GPX4 levels in DSS-triggered NCM460 cells, which were partially reversed by GPX4 silencing. In UC mice, IGF2BP2 high-expression ameliorated symptoms, Disease Activity Index score, pathological changes, inflammatory reaction, and ferroptosis, which were also partly neutralized by GPX4 inhibition. CONCLUSIONS IGF2BP2 augmented the GPX4 expression by the m6A modification to weaken UC progression via suppressing ferroptosis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pediatric Gastroenterology, Children's Hospital of The First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan Province, PR China
| | - Hui Zeng
- Department of Pediatric Gastroenterology, Children's Hospital of The First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan Province, PR China.
| |
Collapse
|