1
|
Lopez-Atalaya JP, Bhojwani-Cabrera AM. Type I interferon signalling and interferon-responsive microglia in health and disease. FEBS J 2025. [PMID: 40299722 DOI: 10.1111/febs.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025]
Abstract
Recent evidence suggests that type I interferon (IFN-I) signalling extends beyond its canonical roles in antiviral defence and immunomodulation. Over the past decade, dysregulated IFN-I signalling has been linked to genetic disorders and neurodegenerative diseases, where it may contribute to neurological impairments. Microglia have emerged as key mediators of IFN-I responses in the central nervous system. A distinct transcriptional state responsive to interferons has recently been identified in microglia. The activation of the IFN-I pathway in these cells is now recognised as pivotal in both development and neurodegeneration. This review is divided into two main sections: the first examines the broader role of IFN-I signalling in the central nervous system, particularly its contribution to neurological dysfunction; the second focuses on the specific state of interferon-responsive microglia, exploring its mechanisms and relevance in neurodegenerative conditions. Finally, we discuss how these areas intersect and their implications for both healthy and diseased states.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| | - Aysha M Bhojwani-Cabrera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
2
|
He J, Burova E, Taduriyasas C, Ni M, Adler C, Wei Y, Negron N, Xiong K, Bai Y, Shavlakadze T, Ioffe E, Lin JC, Ferrando A, Glass DJ. Single cell-resolved cellular, transcriptional, and epigenetic changes in mouse T cell populations linked to age-associated immune decline. Proc Natl Acad Sci U S A 2025; 122:e2425992122. [PMID: 40163732 PMCID: PMC12002302 DOI: 10.1073/pnas.2425992122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Splenic T cells are pivotal to the immune system, yet their function deteriorates with age. To elucidate the specific aspects of T cell biology affected by aging, we conducted a comprehensive multi-time point single-cell RNA sequencing study, complemented by single-cell Assay for Transposase Accessible Chromatin (ATAC) sequencing and single-cell T cell repertoire (TCR) sequencing on splenic T cells from mice across 10 different age groups. This map of age-related changes in the distribution of T cell lineages and functional states reveals broad changes in T cell function and composition, including a prominent enrichment of Gzmk+ T cells in aged mice, encompassing both CD4+ and CD8+ T cell subsets. Notably, there is a marked decrease in TCR diversity across specific T cell populations in aged mice. We identified key pathways that may underlie the perturbation of T cell functions with aging, supporting cytotoxic T cell clonal expansion with age. This study provides insights into the aging process of splenic T cells and also highlights potential targets for therapeutic intervention to enhance immune function in the elderly. The dataset should serve as a resource for further research into age-related immune dysfunction and for identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Jing He
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | | | - Min Ni
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | - Yi Wei
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | - Kun Xiong
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | - Yu Bai
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | - Ella Ioffe
- Preclinical and Early Development, Cullinan Therapeutics, Cambridge, MA02142
| | - John C. Lin
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | | |
Collapse
|
3
|
Duran I, Tsurumi A. Evaluating transcriptional alterations associated with ageing and developing age prediction models based on the human blood transcriptome. Biogerontology 2025; 26:86. [PMID: 40186010 DOI: 10.1007/s10522-025-10216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Ageing-related DNA methylome and proteome changes and machine-learned ageing clock models have been described previously; however, there is a dearth of ageing clock prediction models based on human blood transcript information. Applying various machine learning algorithms is expected to aid in the development of age prediction models. Using blood transcriptome data from healthy subjects ranging in age from 21 to 90 in the 10 K Immunomes repository, we evaluated differentially regulated transcripts, assessed enriched gene ontology, pathway and disease ontology analysis to characterize biological functions associated with the genes associated with age. Furthermore, we constructed and compared age prediction models developed by applying the Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (EN), eXtreme Gradient Boosting (XGBoost) and Light Gradient-Boosting Machine (LightGBM) algorithms. Compared to LASSO (7 genes) and EN (9 genes) regularized regression, XGBoost (142 genes) and LightGBM (149 genes) Gradient Boosted Decision Tree methods performed better in this dataset (training set r = 0.836 (LASSO), 0.837 (EN), 1.000 (XGBoost) and 0.995 (LightGBM); test set: r = 0.883 (LASSO), 0.876 (EN), 0.931 (XGBoost) and 0.915 (LightGBM); external validation set: r = 0.535 (LASSO), 0.534 (EN), 0.591 (XGBoost) and 0.645 (LightGBM)). Blood transcriptome-based age prediction models may provide a simple method to monitor biological ageing, and provide additional molecular insight. Future studies to externally validate these models in various diverse large populations and molecular studies to elucidate the underlying mechanisms by which the gene expression levels may be related to ageing phenotypes would be advantageous.
Collapse
Affiliation(s)
- Ivan Duran
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Boston, MA, 02114, USA
| | - Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Boston, MA, 02114, USA.
- Shriners Hospitals for Children-Boston, 51 Blossom St., Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Xu J, Wakai M, Xiong K, Yang Y, Prabakaran A, Wu S, Ahrens D, Molina-Portela MDP, Ni M, Bai Y, Shavlakadze T, Glass DJ. The pro-inflammatory cytokine IL6 suppresses mitochondrial function via the gp130-JAK1/STAT1/3-HIF1α/ERRα axis. Cell Rep 2025; 44:115403. [PMID: 40056415 DOI: 10.1016/j.celrep.2025.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 02/14/2025] [Indexed: 03/10/2025] Open
Abstract
Chronic inflammation and a decline in mitochondrial function are hallmarks of aging. Here, we show that the two mechanisms may be linked. We found that interleukin-6 (IL6) suppresses mitochondrial function in settings where PGC1 (both PGC1α and PGC1β) expression is low. This suppression is mediated by the JAK1/STAT1/3 axis, which activates HIF1α through non-canonical mechanisms involving upregulation of HIF1A and ERRα transcription, and subsequent stabilization of the HIF1A protein by ERRα. HIF1α, in turn, inhibits ERRα, which is a master regulator of mitochondrial biogenesis, thus contributing to the inhibition of mitochondrial function. When expressed at higher levels, PGC1 rescues ERRα to boost baseline mitochondrial respiration, including under IL6-treated conditions. Our study suggests that inhibition of the IL6 signaling axis could be a potential treatment for those inflammatory settings where mitochondrial function is compromised.
Collapse
Affiliation(s)
- Jianing Xu
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| | - Matthew Wakai
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Kun Xiong
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Yanfeng Yang
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Adithya Prabakaran
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Sophia Wu
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Diana Ahrens
- Research Flow Cytometry Core, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | | | - Min Ni
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Yu Bai
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Tea Shavlakadze
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| | - David J Glass
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| |
Collapse
|
5
|
Egerman MA, Zhang Y, Donne R, Xu J, Gadi A, McEwen C, Salmon H, Xiong K, Bai Y, Germino M, Barringer K, Jimenez Y, Del Pilar Molina-Portela M, Shavlakadze T, Glass DJ. ActRII or BMPR ligands inhibit skeletal myoblast differentiation, and BMPs promote heterotopic ossification in skeletal muscles in mice. Skelet Muscle 2025; 15:4. [PMID: 39994804 PMCID: PMC11853584 DOI: 10.1186/s13395-025-00373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Prior studies suggested that canonical Activin Receptor II (ActRII) and BMP receptor (BMPR) ligands can have opposing, distinct effects on skeletal muscle depending in part on differential downstream SMAD activation. It was therefore of interest to test ActRII ligands versus BMP ligands in settings of muscle differentiation and in vivo. METHODS AND RESULTS In human skeletal muscle cells, both ActRII ligands and BMP ligands inhibited myogenic differentiation: ActRII ligands in a SMAD2/3-dependent manner, and BMP ligands via SMAD1/5. Surprisingly, a neutralizing ActRIIA/B antibody mitigated the negative effects of both classes of ligands, indicating that some BMPs act at least partially through the ActRII receptors in skeletal muscle. Gene expression analysis showed that both ActRII and BMP ligands repress muscle differentiation genes in human myoblasts and myotubes. In mice, hepatic BMP9 over-expression induced liver toxicity, caused multi-organ wasting, and promoted a pro-atrophy gene signature despite elevated SMAD1/5 signaling in skeletal muscle. Local overexpression of BMP7 or BMP9, achieved by intramuscular AAV delivery, induced heterotopic ossification. Elevated SMAD1/5 signaling with increased expression of BMP target genes was also observed in sarcopenic muscles of old rats. CONCLUSIONS The canonical ActRII ligand-SMAD2/3 and BMP ligand-SMAD1/5 axes can both block human myoblast differentiation. Our observations further demonstrate the osteoinductive function of BMP ligands while pointing to a potential relevancy of blocking the BMP-SMAD1/5 axis in the setting of therapeutic anti-ActRIIA/B inhibition.
Collapse
Affiliation(s)
- Marc A Egerman
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Yuhong Zhang
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Romain Donne
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jianing Xu
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Abhilash Gadi
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Corissa McEwen
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Hunter Salmon
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Kun Xiong
- Molecular Profiling, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Yu Bai
- Molecular Profiling, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Mary Germino
- Imaging Sciences, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Kevin Barringer
- Inflammation & Immune Diseases, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Yasalp Jimenez
- Inflammation & Immune Diseases, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Tea Shavlakadze
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - David J Glass
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA.
| |
Collapse
|
6
|
Tello-Palencia MA, Yang T, Sularz O, Demers LE, Ma Y, Boycott C, Zhang HA, Lubecka-Gajewska K, Kumar S, Ramsey BS, Torregrosa-Allen S, Elzey BD, Lanman NA, Korthauer K, Stefanska B. Pterostilbene Targets Hallmarks of Aging in the Gene Expression Landscape in Blood of Healthy Rats. Mol Nutr Food Res 2024; 68:e2400662. [PMID: 39562169 DOI: 10.1002/mnfr.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Indexed: 11/21/2024]
Abstract
SCOPE Polyphenols from the phytoestrogen group, including pterostilbene (PTS), are known for their antioxidant, anti-inflammatory, and anti-cancer effects. In recent reports, phytoestrogens attenuate age-related diseases; however, their pro-longevity effects in healthy models in mammals remain unknown. As longevity research demonstrates age-related transcriptomic signatures in human blood, the current study hypothesizes that phytoestrogen-supplemented diet may induce changes in gene expression that ultimately confer pro-longevity benefits. METHODS AND RESULTS In the present study, RNA sequencing is conducted to determine transcriptome-wide changes in gene expression in whole blood of healthy rats consuming diets supplemented with phytoestrogens. Ortholog cell deconvolution is applied to analyze the omics data. The study discovered that PTS leads to changes in the gene expression landscape and PTS-target genes are associated with functions counteracting hallmarks of aging, including genomic instability, epigenetic alterations, compromised autophagy, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular interaction, and loss of proteostasis. These functions bridge together under anti-inflammatory effects through multiple pathways, including immunometabolism, where changes in cellular metabolism (e.g., ribosome biogenesis) impact the immune system. CONCLUSION The findings provide a rationale for pre-clinical and clinical longevity studies and encourage investigations on PTS in maintaining cellular homeostasis, decelerating the process of aging, and improving conditions with chronic inflammation.
Collapse
Affiliation(s)
- Marco A Tello-Palencia
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Olga Sularz
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, 31-120, Poland
| | - Louis Erik Demers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Huiying Amelie Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Sadhri Kumar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Benjamin S Ramsey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Sandra Torregrosa-Allen
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Bennett D Elzey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Nadia Atallah Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Keegan Korthauer
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, V6H 0B3, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
7
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
8
|
Shen X, Wang C, Zhou X, Zhou W, Hornburg D, Wu S, Snyder MP. Nonlinear dynamics of multi-omics profiles during human aging. NATURE AGING 2024; 4:1619-1634. [PMID: 39143318 PMCID: PMC11564093 DOI: 10.1038/s43587-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Aging is a complex process associated with nearly all diseases. Understanding the molecular changes underlying aging and identifying therapeutic targets for aging-related diseases are crucial for increasing healthspan. Although many studies have explored linear changes during aging, the prevalence of aging-related diseases and mortality risk accelerates after specific time points, indicating the importance of studying nonlinear molecular changes. In this study, we performed comprehensive multi-omics profiling on a longitudinal human cohort of 108 participants, aged between 25 years and 75 years. The participants resided in California, United States, and were tracked for a median period of 1.7 years, with a maximum follow-up duration of 6.8 years. The analysis revealed consistent nonlinear patterns in molecular markers of aging, with substantial dysregulation occurring at two major periods occurring at approximately 44 years and 60 years of chronological age. Distinct molecules and functional pathways associated with these periods were also identified, such as immune regulation and carbohydrate metabolism that shifted during the 60-year transition and cardiovascular disease, lipid and alcohol metabolism changes at the 40-year transition. Overall, this research demonstrates that functions and risks of aging-related diseases change nonlinearly across the human lifespan and provides insights into the molecular and biological pathways involved in these changes.
Collapse
Affiliation(s)
- Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Singapore, Singapore
| | - Chuchu Wang
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Takasugi M, Nonaka Y, Takemura K, Yoshida Y, Stein F, Schwarz JJ, Adachi J, Satoh J, Ito S, Tombline G, Biashad SA, Seluanov A, Gorbunova V, Ohtani N. An atlas of the aging mouse proteome reveals the features of age-related post-transcriptional dysregulation. Nat Commun 2024; 15:8520. [PMID: 39353907 PMCID: PMC11445428 DOI: 10.1038/s41467-024-52845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
To what extent and how post-transcriptional dysregulation affects aging proteome remains unclear. Here, we provide proteomic data of whole-tissue lysates (WTL) and low-solubility protein-enriched fractions (LSF) of major tissues collected from mice of 6, 15, 24, and 30 months of age. Low-solubility proteins are preferentially affected by age and the analysis of LSF doubles the number of proteins identified to be differentially expressed with age. Simultaneous analysis of proteome and transcriptome using the same tissue homogenates reveals the features of age-related post-transcriptional dysregulation. Post-transcriptional dysregulation becomes evident especially after 24 months of age and age-related post-transcriptional dysregulation leads to accumulation of core matrisome proteins and reduction of mitochondrial membrane proteins in multiple tissues. Based on our in-depth proteomic data and sample-matched transcriptome data of adult, middle-aged, old, and geriatric mice, we construct the Mouse aging proteomic atlas ( https://aging-proteomics.info/ ), which provides a thorough and integrative view of age-related gene expression changes.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - Yoshiki Nonaka
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Kazuaki Takemura
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Yuya Yoshida
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Frank Stein
- Proteomic Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | | | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Gregory Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
10
|
Yang JC, Liu M, Huang RH, Zhao L, Niu QJ, Xu ZJ, Wei JT, Lei XG, Sun LH. Loss of SELENOW aggravates muscle loss with regulation of protein synthesis and the ubiquitin-proteasome system. SCIENCE ADVANCES 2024; 10:eadj4122. [PMID: 39303039 DOI: 10.1126/sciadv.adj4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
Sarcopenia is characterized by accelerated muscle mass and function loss, which burdens and challenges public health worldwide. Several studies indicated that selenium deficiency is associated with sarcopenia; however, the specific mechanism remains unclear. Here, we demonstrated that selenoprotein W (SELENOW) containing selenium in the form of selenocysteine functioned in sarcopenia. SELENOW expression is up-regulated in dexamethasone (DEX)-induced muscle atrophy and age-related sarcopenia mouse models. Knockout (KO) of SELENOW profoundly aggravated the process of muscle mass loss in the two mouse models. Mechanistically, SELENOW KO suppressed the RAC1-mTOR cascade by the interaction between SELENOW and RAC1 and induced the imbalance of protein synthesis and degradation. Consistently, overexpression of SELENOW in vivo and in vitro alleviated the muscle and myotube atrophy induced by DEX. SELENOW played a role in age-related sarcopenia and regulated the genes associated with aging. Together, our study uncovered the function of SELENOW in age-related sarcopenia and provides promising evidence for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rong-Hui Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin-Jian Niu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin-Tao Wei
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
11
|
Xia C, Dai W, Carreno J, Rogando A, Wu X, Simmons D, Astraea N, Dalleska NF, Fonteh AN, Vasudevan A, Arakaki X, Kloner RA. Higher sodium in older individuals or after stroke/reperfusion, but not in migraine or Alzheimer's disease - a study in different preclinical models. Sci Rep 2024; 14:21636. [PMID: 39284837 PMCID: PMC11405707 DOI: 10.1038/s41598-024-72280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Sodium serves as one of the primary cations in the central nervous system, playing a crucial role in maintaining normal brain function. In this study, we investigated alterations in sodium concentrations in the brain and/or cerebrospinal fluid across multiple models, including an aging model, a stroke model, a nitroglycerin (NTG)-induced rat migraine model, a familial hemiplegic migraine type 2 (FHM2) mouse model, and a transgenic mouse model of Alzheimer's disease (AD). Our results reveal that older rats exhibited higher sodium concentrations in cerebrospinal fluid (CSF), plasma, and various brain regions compared to their younger counterparts. Additionally, findings from the stroke model demonstrated a significant increase in sodium in the ischemic/reperfused region, accompanied by a decrease in potassium and an elevated sodium/potassium ratio. However, we did not detect significant changes in sodium in the NTG-induced rat migraine model or the FHM2 mouse model. Furthermore, AD transgenic mice showed no significant differences in sodium levels compared to wild-type mice in CSF, plasma, or the hippocampus. These results underscore the nuanced regulation of sodium homeostasis in various neurological conditions and aging, providing valuable insights into potential mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Chenchen Xia
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Wangde Dai
- Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Juan Carreno
- Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Andrea Rogando
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Xiaomeng Wu
- Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Darren Simmons
- Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Natalie Astraea
- Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Nathan F Dalleska
- Water and Environment Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Alfred N Fonteh
- Biomarker and Neuro-Disease Mechanism Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA.
| | - Robert A Kloner
- Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| |
Collapse
|
12
|
Belenguer Á, Naya-Català F, Calduch-Giner JÀ, Pérez-Sánchez J. Exploring Multifunctional Markers of Biological Age in Farmed Gilthead Sea Bream ( Sparus aurata): A Transcriptomic and Epigenetic Interplay for an Improved Fish Welfare Assessment Approach. Int J Mol Sci 2024; 25:9836. [PMID: 39337324 PMCID: PMC11432111 DOI: 10.3390/ijms25189836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA methylation clocks provide information not only about chronological but also biological age, offering a high-resolution and precise understanding of age-related pathology and physiology. Attempts based on transcriptomic and epigenetic approaches arise as integrative biomarkers linking the quantification of stress responses with specific fitness traits and may help identify biological age markers, which are also considered welfare indicators. In gilthead sea bream, targeted gene expression and DNA methylation analyses in white skeletal muscle proved sirt1 as a reliable marker of age-mediated changes in energy metabolism. To complete the list of welfare auditing biomarkers, wide analyses of gene expression and DNA methylation in one- and three-year-old fish were combined. After discriminant analysis, 668 differentially expressed transcripts were matched with those containing differentially methylated (DM) regions (14,366), and 172 were overlapping. Through enrichment analyses and selection, two sets of genes were retained: 33 showing an opposite trend for DNA methylation and expression, and 57 down-regulated and hypo-methylated. The first set displayed an apparently more reproducible and reliable pattern and 10 multifunctional genes with DM CpG in regulatory regions (sirt1, smad1, ramp1, psmd2-up-regulated; col5a1, calcrl, bmp1, thrb, spred2, atp1a2-down-regulated) were deemed candidate biological age markers for improved welfare auditing in gilthead sea bream.
Collapse
Affiliation(s)
- Álvaro Belenguer
- Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Fernando Naya-Català
- Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
13
|
Madigan LA, Jaime D, Chen I, Fallon JR. MuSK-BMP signaling in adult muscle stem cells maintains quiescence and regulates myofiber size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541238. [PMID: 37292636 PMCID: PMC10245747 DOI: 10.1101/2023.05.17.541238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A central question in adult stem cell biology is elucidating the signaling pathways regulating their dynamics and function in diverse physiological and age-related contexts. Muscle stem cells in adults (Satellite Cells; SCs) are generally quiescent but can activate and contribute to muscle repair and growth. Here we tested the role of the MuSK-BMP pathway in regulating adult SC quiescence by deletion of the BMP-binding MuSK Ig3 domain ('ΔIg3-MuSK'). At 3 months of age SC and myonuclei numbers and myofiber size were comparable to WT. However, at 5 months of age SC density was decreased while myofiber size, myonuclear number and grip strength were increased - indicating that SCs had activated and productively fused into the myofibers over this interval. Transcriptomic analysis showed that SCs from uninjured ΔIg3-MuSK mice exhibit signatures of activation. Regeneration experiments showed that ΔIg3-MuSK SCs maintain full stem cell function. Expression of ΔIg3-MuSK in adult SCs was sufficient to break quiescence and increase myofiber size. We conclude that the MuSK-BMP pathway regulates SC quiescence and myofiber size in a cell autonomous, age-dependent manner. Targeting MuSK-BMP signaling in muscle stem cells thus emerges a therapeutic strategy for promoting muscle growth and function in the settings of injury, disease, and aging. Highlights MuSK, in its role as a BMP co-receptor, regulates adult muscle stem cell quiescenceThe MuSK-BMP pathway acts cell autonomouslyIncreased muscle size and function with preservation of myonuclear density and stemness in mice with attenuated MuSK-BMP signaling.
Collapse
|
14
|
Roy ER, Li S, Saroukhani S, Wang Y, Cao W. Fate-mapping and functional dissection reveal perilous influence of type I interferon signaling in mouse brain aging. Mol Neurodegener 2024; 19:48. [PMID: 38886816 PMCID: PMC11184889 DOI: 10.1186/s13024-024-00736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Aging significantly elevates the risk of developing neurodegenerative diseases. Neuroinflammation is a universal hallmark of neurodegeneration as well as normal brain aging. Which branches of age-related neuroinflammation, and how they precondition the brain toward pathological progression, remain ill-understood. The presence of elevated type I interferon (IFN-I) has been documented in the aged brain, but its role in promoting degenerative processes, such as the loss of neurons in vulnerable regions, has not been studied in depth. METHODS To comprehend the scope of IFN-I activity in the aging brain, we surveyed IFN-I-responsive reporter mice at multiple ages. We also examined 5- and 24-month-old mice harboring selective ablation of Ifnar1 in microglia to observe the effects of manipulating this pathway during the aging process using bulk RNA sequencing and histological parameters. RESULTS We detected age-dependent IFN-I signal escalation in multiple brain cell types from various regions, especially in microglia. Selective ablation of Ifnar1 from microglia in aged mice significantly reduced overall brain IFN-I signature, dampened microglial reactivity, lessened neuronal loss, restored expression of key neuronal genes and pathways, and diminished the accumulation of lipofuscin, a core hallmark of cellular aging in the brain. CONCLUSIONS Overall, our study demonstrates pervasive IFN-I activity during normal mouse brain aging and reveals a pathogenic, pro-degenerative role played by microglial IFN-I signaling in perpetuating neuroinflammation, neuronal dysfunction, and molecular aggregation. These findings extend the understanding of a principal axis of age-related inflammation in the brain, one likely shared with multiple neurological disorders, and provide a rationale to modulate aberrant immune activation to mitigate neurodegenerative process at all stages.
Collapse
Affiliation(s)
- Ethan R Roy
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| | - Sanming Li
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Sepideh Saroukhani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Biostatistics, Epidemiology and Research Design, Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanyu Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Wei Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Langston PK, Mathis D. Immunological regulation of skeletal muscle adaptation to exercise. Cell Metab 2024; 36:1175-1183. [PMID: 38670108 DOI: 10.1016/j.cmet.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Exercise has long been acknowledged for its powerful disease-preventing, health-promoting effects. However, the cellular and molecular mechanisms responsible for the beneficial effects of exercise are not fully understood. Inflammation is a component of the stress response to exercise. Recent work has revealed that such inflammation is not merely a symptom of exertion; rather, it is a key regulator of exercise adaptations, particularly in skeletal muscle. The purpose of this piece is to provide a conceptual framework that we hope will integrate exercise immunology with exercise physiology, muscle biology, and cellular immunology. We start with an overview of early studies in the field of exercise immunology, followed by an exploration of the importance of stromal cells and immunocytes in the maintenance of muscle homeostasis based on studies of experimental muscle injury. Subsequently, we discuss recent advances in our understanding of the functions and physiological relevance of the immune system in exercised muscle. Finally, we highlight a potential immunological basis for the benefits of exercise in musculoskeletal diseases and aging.
Collapse
Affiliation(s)
- P Kent Langston
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Roy ER, Li S, Wang Y, Cao W. Fate-mapping and functional dissection reveal perilous influence of type I interferon signaling in mouse brain aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595027. [PMID: 38826478 PMCID: PMC11142053 DOI: 10.1101/2024.05.20.595027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Although aging significantly elevates the risk of developing neurodegenerative diseases, how age-related neuroinflammation preconditions the brain toward pathological progression is ill-understood. To comprehend the scope of type I interferon (IFN-I) activity in the aging brain, we surveyed IFN-I-responsive reporter mice and detected age-dependent signal escalation in multiple brain cell types from various regions. Selective ablation of Ifnar1 from microglia in aged mice significantly reduced overall brain IFN-I signature, dampened microglial reactivity, lessened neuronal loss, and diminished the accumulation of lipofuscin, a core hallmark of cellular aging in the brain. Overall, our study demonstrates pervasive IFN-I activity during normal mouse brain aging and reveals a pathogenic role played by microglial IFN-I signaling in perpetuating neuroinflammation, neuronal dysfunction, and molecular aggregation. These findings extend the understanding of a principal axis of age-related inflammation in the brain, and provide a rationale to modulate aberrant immune activation to mitigate neurodegenerative process at all stages.
Collapse
|
17
|
Mildenberger J, Rebours C. Green ( Ulva fenestrata) and Brown ( Saccharina latissima) Macroalgae Similarly Modulate Inflammatory Signaling by Activating NF- κB and Dampening IRF in Human Macrophage-Like Cells. J Immunol Res 2024; 2024:8121284. [PMID: 38799117 PMCID: PMC11126347 DOI: 10.1155/2024/8121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Macroalgae are considered healthy food ingredients due to their content in numerous bioactive compounds, and the traditional use of whole macroalgae in Asian cuisine suggests a contribution to longevity. Although much information is available about the bioactivity of pure algal compounds, such as different polyphenols and polysaccharides, documentation of potential effects of whole macroalgae as part of Western diets is limited. Lifestyle- and age-related diseases, which have a high impact on population health, are closely connected to underlying chronic inflammation. Therefore, we have studied crude extracts of green (Ulva fenestrata) and brown (Saccharina latissima) macroalgae, as two of the most promising food macroalgae in the Nordic countries for their effect on inflammation in vitro. Human macrophage-like reporter THP-1 cells were treated with macroalgae extracts and stimulated with lipopolysaccharide (LPS) to induce inflammatory signalling. Effects of the macroalgae extracts were assessed on transcription factor activity of NF-κB and IRF as well as secretion and/or expression of the cytokines TNF-α and IFN-β and chemokines IL-8 and CXCL10. The crude macroalgae extracts were further separated into polyphenol-enriched and polysaccharide-enriched fractions, which were also tested for their effect on transcription factor activity. Interestingly, we observed a selective activation of NF-κB, when cells were treated with macroalgae extracts. On the other hand, pretreatment with macroalgae extracts selectively repressed IRF activation when inflammatory signaling was subsequently induced by LPS. This effect was consistent for both tested species as well as for polyphenol- and polysaccharide-enriched fractions, of which the latter had more pronounced effects. Overall, this is the first indication of how macroalgae could modulate inflammatory signaling by selective activation and subsequent repression of different pathways. Further in vitro and in vivo studies of this mechanism would be needed to understand how macroalgae consumption could influence the prevention of noncommunicable, lifestyle- and age-related diseases that are highly related to unbalanced inflammatory processes.
Collapse
|
18
|
Cao W. In sickness and in health-Type I interferon and the brain. Front Aging Neurosci 2024; 16:1403142. [PMID: 38774266 PMCID: PMC11106474 DOI: 10.3389/fnagi.2024.1403142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Type I interferons (IFN-I) represent a group of pleiotropic cytokines renowned for their antiviral activity and immune regulatory functions. A multitude of studies have unveiled a critical role of IFN-I in the brain, influencing various neurological processes and diseases. In this mini-review, I highlight recent findings on IFN-I's effects on brain aging, Alzheimer's disease (AD) progression, and central nervous system (CNS) homeostasis. The multifaceted influence of IFN-I on brain health and disease sheds light on the complex interplay between immune responses and neurological processes. Of particular interest is the cGAS-STING-IFN-I axis, which extensively participates in brain aging and various forms of neurodegeneration. Understanding the intricate role of IFN-I and its associated pathways in the CNS not only advances our comprehension of brain health and disease but also presents opportunities for developing interventions to modify the process of neurodegeneration and prevent age-related cognitive decline.
Collapse
Affiliation(s)
- Wei Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
19
|
Many GM, Sanford JA, Sagendorf TJ, Hou Z, Nigro P, Whytock KL, Amar D, Caputo T, Gay NR, Gaul DA, Hirshman MF, Jimenez-Morales D, Lindholm ME, Muehlbauer MJ, Vamvini M, Bergman BC, Fernández FM, Goodyear LJ, Hevener AL, Ortlund EA, Sparks LM, Xia A, Adkins JN, Bodine SC, Newgard CB, Schenk S. Sexual dimorphism and the multi-omic response to exercise training in rat subcutaneous white adipose tissue. Nat Metab 2024; 6:963-979. [PMID: 38693320 PMCID: PMC11132991 DOI: 10.1038/s42255-023-00959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/01/2023] [Indexed: 05/03/2024]
Abstract
Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training (ExT) and sex on its molecular landscape is not fully established. Utilizing an integrative multi-omics approach, and leveraging data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we show profound sexual dimorphism in the scWAT of sedentary rats and in the dynamic response of this tissue to ExT. Specifically, the scWAT of sedentary females displays -omic signatures related to insulin signaling and adipogenesis, whereas the scWAT of sedentary males is enriched in terms related to aerobic metabolism. These sex-specific -omic signatures are preserved or amplified with ExT. Integration of multi-omic analyses with phenotypic measures identifies molecular hubs predicted to drive sexually distinct responses to training. Overall, this study underscores the powerful impact of sex on adipose tissue biology and provides a rich resource to investigate the scWAT response to ExT.
Collapse
Affiliation(s)
- Gina M Many
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - James A Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tyler J Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Zhenxin Hou
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - David Amar
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nicole R Gay
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - David A Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - David Jimenez-Morales
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Malene E Lindholm
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
| | - Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Ashley Xia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - Christopher B Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA.
| | - Simon Schenk
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Roschke NN, Hillebrandt KH, Polenz D, Klein O, Gassner JMGV, Pratschke J, Krenzien F, Sauer IM, Raschzok N, Moosburner S. Optimizing environmental enrichment for Sprague Dawley rats: Exemplary insights into the liver proteome. PLoS One 2024; 19:e0297497. [PMID: 38635534 PMCID: PMC11025844 DOI: 10.1371/journal.pone.0297497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/07/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Considering the expected increase in the elderly population and the growing emphasis on aging-related biomedical research, the demand for aged laboratory animals has surged, challenging established husbandry practices. Our objective was to establish a cost-effective method for environmental enrichment, utilizing the liver as a representative organ to assess potential metabolic changes in response to differing enrichment levels. METHODS We conducted a six-month study involving 24 male Sprague Dawley rats, randomly assigned to four environmental enrichment groups. Two groups were housed in standard cages, while the others were placed in modified rabbit cages. Half of the groups received weekly playtime in an activity focused rat housing unit. We evaluated hormone levels, playtime behavior, and subjective handling experience. Additionally, liver tissue proteomic analysis was performed. RESULTS Initial corticosterone levels and those after 3 and 6 months showed no significant differences. Yet, testosterone levels were lower in the control group by the end of the study (p = 0.007). We observed 1871 distinct proteins in liver tissue, with 77% being common across groups. In gene ontology analysis, no specific pathways were overexpressed. In semiquantitative analysis, we observed differences in proteins associated in lipid metabolism such as Apolipoprotein A-I and Acyl-CoA 6-desaturase, which were lower in the control group (p = 0.024 and p = 0.009). Rats in the intervention groups with weekly playtime displayed the least amount of reported distress during inspection or upon room entry and were less prone to accepting treats. Removing animals from their enclosure was most effortless for those in the large cage group. Over time, there was a decrease in conflicts among rats that interacted only twice weekly during playpen time. DISCUSSION In summary, refining husbandry practices for aging rats is both simple and budget-friendly, with no apparent adverse effects on stress levels, animal development, or relevant metabolic changes in the liver.
Collapse
Affiliation(s)
- Nathalie N. Roschke
- Department of Surgery, Experimental Surgery, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Karl H. Hillebrandt
- Department of Surgery, Experimental Surgery, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
| | - Dietrich Polenz
- Department of Surgery, Experimental Surgery, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Klein
- Berlin Institute of Health, Center for Regenerative Therapies, Berlin, Germany
| | - Joseph M. G. V. Gassner
- Department of Surgery, Experimental Surgery, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Experimental Surgery, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
| | - Igor M. Sauer
- Department of Surgery, Experimental Surgery, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Experimental Surgery, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Experimental Surgery, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
21
|
Belotti E, Lacoste N, Iftikhar A, Simonet T, Papin C, Osseni A, Streichenberger N, Mari PO, Girard E, Graies M, Giglia-Mari G, Dimitrov S, Hamiche A, Schaeffer L. H2A.Z is involved in premature aging and DSB repair initiation in muscle fibers. Nucleic Acids Res 2024; 52:3031-3049. [PMID: 38281187 PMCID: PMC11014257 DOI: 10.1093/nar/gkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.
Collapse
Affiliation(s)
- Edwige Belotti
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nicolas Lacoste
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Arslan Iftikhar
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Thomas Simonet
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Christophe Papin
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Alexis Osseni
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nathalie Streichenberger
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Pierre-Olivier Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Emmanuelle Girard
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Mohamed Graies
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Giuseppina Giglia-Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Ali Hamiche
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Laurent Schaeffer
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
22
|
Lee GY, Ham S, Sohn J, Kwon HC, Lee SJV. Meta-analysis of the transcriptome identifies aberrant RNA processing as common feature of aging in multiple species. Mol Cells 2024; 47:100047. [PMID: 38508494 PMCID: PMC11026732 DOI: 10.1016/j.mocell.2024.100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Aging is accompanied by the gradual deregulation of the transcriptome. However, whether age-dependent changes in the transcriptome are evolutionarily conserved or diverged remains largely unexplored. Here, we performed a meta-analysis examining the age-dependent changes in the transcriptome using publicly available datasets of 11 representative metazoans, ranging from Caenorhabditis elegans to humans. To identify the transcriptomic changes associated with aging, we analyzed various aspects of the transcriptome, including genome composition, RNA processing, and functional consequences. The use of introns and novel splice sites tended to increase with age, particularly in the brain. In addition, our analysis suggests that the age-dependent accumulation of premature termination codon-containing transcripts is a common feature of aging across multiple animal species. Using C. elegans as a test model, we showed that several splicing factors that are evolutionarily conserved and age-dependently downregulated were required to maintain a normal lifespan. Thus, aberrant RNA processing appears to be associated with aging and a short lifespan in various species.
Collapse
Affiliation(s)
- Gee-Yoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Hyunwoo C Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
23
|
Soheili-Nezhad S, Ibáñez-Solé O, Izeta A, Hoeijmakers JHJ, Stoeger T. Time is ticking faster for long genes in aging. Trends Genet 2024; 40:299-312. [PMID: 38519330 PMCID: PMC11003850 DOI: 10.1016/j.tig.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/24/2024]
Abstract
Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer's disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Olga Ibáñez-Solé
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ander Izeta
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Tecnun-University of Navarra, 20018 Donostia-San Sebastian, Spain.
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute for Genome Stability in Ageing and Disease, Cologne, Germany; Princess Maxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands.
| | - Thomas Stoeger
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA; Potocsnak Longevity Institute, Northwestern University, Chicago, IL, USA; Simpson Querrey Lung Institute for Translational Science, Chicago, IL, USA.
| |
Collapse
|
24
|
Jaime D, Fish LA, Madigan LA, Xi C, Piccoli G, Ewing MD, Blaauw B, Fallon JR. The MuSK-BMP pathway maintains myofiber size in slow muscle through regulation of Akt-mTOR signaling. Skelet Muscle 2024; 14:1. [PMID: 38172960 PMCID: PMC10763067 DOI: 10.1186/s13395-023-00329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024] Open
Abstract
Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at all neuromuscular junctions and is also present extrasynaptically in the mouse soleus, whose predominantly oxidative fiber composition is akin to that of human muscle. To investigate the role of the MuSK-BMP pathway in vivo, we generated mice lacking the BMP-binding MuSK Ig3 domain. These ∆Ig3-MuSK mice are viable and fertile with innervation levels comparable to wild type. In 3-month-old mice, myofibers are smaller in the slow soleus, but not in the fast tibialis anterior (TA). Transcriptomic analysis revealed soleus-selective decreases in RNA metabolism and protein synthesis pathways as well as dysregulation of IGF1-Akt-mTOR pathway components. Biochemical analysis showed that Akt-mTOR signaling is reduced in soleus but not TA. We propose that the MuSK-BMP pathway acts extrasynaptically to maintain myofiber size in slow muscle by promoting protein synthetic pathways including IGF1-Akt-mTOR signaling. These results reveal a novel mechanism for regulating myofiber size in slow muscle and introduce the MuSK-BMP pathway as a target for promoting muscle growth and combatting atrophy.
Collapse
Grants
- R41 AG073144 NIA NIH HHS
- T32 MH020068 NIMH NIH HHS
- U01 NS064295, R41 AG073144, R21 NS112743, R21 AG073743, P30 GM103410, P30 RR031153, P20 RR018728, S10 RR02763, R25GM083270, 2T32AG041688, and T32 MH20068 NIH HHS
- P30 GM103410 NIGMS NIH HHS
- T32 AG041688 NIA NIH HHS
- P30 RR031153 NCRR NIH HHS
- U01 NS064295 NINDS NIH HHS
- R21 NS112743 NINDS NIH HHS
- P20 RR018728 NCRR NIH HHS
- R21 AG073743 NIA NIH HHS
- R25 GM083270 NIGMS NIH HHS
- National Institutes of Health
- Carney Institute for Brain Sciences
- ALS Finding a Cure
- AFM-Téléthon
Collapse
Affiliation(s)
- Diego Jaime
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Lauren A Fish
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Laura A Madigan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Chengjie Xi
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Giorgia Piccoli
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Madison D Ewing
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Bert Blaauw
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA.
- Carney Institute for Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
25
|
Cikes D, Leutner M, Cronin SJF, Novatchkova M, Pfleger L, Klepochová R, Lair B, Lac M, Bergoglio C, Viguerie N, Dürnberger G, Roitinger E, Grivej M, Rullman E, Gustafsson T, Hagelkruys A, Tavernier G, Bourlier V, Knauf C, Krebs M, Kautzky-Willer A, Moro C, Krssak M, Orthofer M, Penninger JM. Gpcpd1-GPC metabolic pathway is dysfunctional in aging and its deficiency severely perturbs glucose metabolism. NATURE AGING 2024; 4:80-94. [PMID: 38238601 DOI: 10.1038/s43587-023-00551-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Skeletal muscle plays a central role in the regulation of systemic metabolism during lifespan. With aging, this function is perturbed, initiating multiple chronic diseases. Our knowledge of mechanisms responsible for this decline is limited. Glycerophosphocholine phosphodiesterase 1 (Gpcpd1) is a highly abundant muscle enzyme that hydrolyzes glycerophosphocholine (GPC). The physiological functions of Gpcpd1 remain largely unknown. Here we show, in mice, that the Gpcpd1-GPC metabolic pathway is perturbed in aged muscles. Further, muscle-specific, but not liver- or fat-specific, inactivation of Gpcpd1 resulted in severely impaired glucose metabolism. Western-type diets markedly worsened this condition. Mechanistically, Gpcpd1 muscle deficiency resulted in accumulation of GPC, causing an 'aged-like' transcriptomic signature and impaired insulin signaling in young Gpcpd1-deficient muscles. Finally, we report that the muscle GPC levels are markedly altered in both aged humans and patients with type 2 diabetes, displaying a high positive correlation between GPC levels and chronological age. Our findings reveal that the muscle GPCPD1-GPC metabolic pathway has an important role in the regulation of glucose homeostasis and that it is impaired during aging, which may contribute to glucose intolerance in aging.
Collapse
Affiliation(s)
- Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria.
| | - Michael Leutner
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Radka Klepochová
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benjamin Lair
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Marlène Lac
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Camille Bergoglio
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Nathalie Viguerie
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | | | | | - Mihaela Grivej
- Vienna Biocenter Core Facilities, Vienna Biocenter, Vienna, Austria
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Cardiovascular Theme, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Geneviève Tavernier
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Virginie Bourlier
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Cedric Moro
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Martin Krssak
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Orthofer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- JLP health, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Moon HS, Mahzarnia A, Stout J, Anderson RJ, Strain M, Tremblay JT, Han ZY, Niculescu A, MacFarlane A, King J, Ashley-Koch A, Clark D, Lutz MW, Badea A. Multivariate investigation of aging in mouse models expressing the Alzheimer's protective APOE2 allele: integrating cognitive metrics, brain imaging, and blood transcriptomics. Brain Struct Funct 2024; 229:231-249. [PMID: 38091051 PMCID: PMC11082910 DOI: 10.1007/s00429-023-02731-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/03/2023] [Indexed: 01/31/2024]
Abstract
APOE allelic variation is critical in brain aging and Alzheimer's disease (AD). The APOE2 allele associated with cognitive resilience and neuroprotection against AD remains understudied. We employed a multipronged approach to characterize the transition from middle to old age in mice with APOE2 allele, using behavioral assessments, image-derived morphometry and diffusion metrics, structural connectomics, and blood transcriptomics. We used sparse multiple canonical correlation analyses (SMCCA) for integrative modeling, and graph neural network predictions. Our results revealed brain sub-networks associated with biological traits, cognitive markers, and gene expression. The cingulate cortex emerged as a critical region, demonstrating age-associated atrophy and diffusion changes, with higher fractional anisotropy in males and middle-aged subjects. Somatosensory and olfactory regions were consistently highlighted, indicating age-related atrophy and sex differences. The hippocampus exhibited significant volumetric changes with age, with differences between males and females in CA3 and CA1 regions. SMCCA underscored changes in the cingulate cortex, somatosensory cortex, olfactory regions, and hippocampus in relation to cognition and blood-based gene expression. Our integrative modeling in aging APOE2 carriers revealed a central role for changes in gene pathways involved in localization and the negative regulation of cellular processes. Our results support an important role of the immune system and response to stress. This integrative approach offers novel insights into the complex interplay among brain connectivity, aging, and sex. Our study provides a foundation for understanding the impact of APOE2 allele on brain aging, the potential for detecting associated changes in blood markers, and revealing novel therapeutic intervention targets.
Collapse
Affiliation(s)
- Hae Sol Moon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Ali Mahzarnia
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Jacques Stout
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Anderson
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Madison Strain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jessica T Tremblay
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Zay Yar Han
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrei Niculescu
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Anna MacFarlane
- Department of Neuroscience, Duke University, Durham, NC, USA
| | - Jasmine King
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Darin Clark
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael W Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Alexandra Badea
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA.
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
27
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
28
|
Granic A, Suetterlin K, Shavlakadze T, Grounds M, Sayer A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin Sci (Lond) 2023; 137:1721-1751. [PMID: 37986616 PMCID: PMC10665130 DOI: 10.1042/cs20230319] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ageing is a complex biological process associated with increased morbidity and mortality. Nine classic, interdependent hallmarks of ageing have been proposed involving genetic and biochemical pathways that collectively influence ageing trajectories and susceptibility to pathology in humans. Ageing skeletal muscle undergoes profound morphological and physiological changes associated with loss of strength, mass, and function, a condition known as sarcopenia. The aetiology of sarcopenia is complex and whilst research in this area is growing rapidly, there is a relative paucity of human studies, particularly in older women. Here, we evaluate how the nine classic hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication contribute to skeletal muscle ageing and the pathophysiology of sarcopenia. We also highlight five novel hallmarks of particular significance to skeletal muscle ageing: inflammation, neural dysfunction, extracellular matrix dysfunction, reduced vascular perfusion, and ionic dyshomeostasis, and discuss how the classic and novel hallmarks are interconnected. Their clinical relevance and translational potential are also considered.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| | - Karen Suetterlin
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, U.K
| | - Tea Shavlakadze
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, NY, U.S.A
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| |
Collapse
|
29
|
Munkhzul C, Yi SS, Kim J, Lee S, Kim H, Moon JS, Lee M. The microRNA-mediated gene regulatory network in the hippocampus and hypothalamus of the aging mouse. PLoS One 2023; 18:e0291943. [PMID: 37943864 PMCID: PMC10635555 DOI: 10.1371/journal.pone.0291943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023] Open
Abstract
Aging leads to time-dependent functional decline of all major organs. In particular, the aging brain is prone to cognitive decline and several neurodegenerative diseases. Various studies have attempted to understand the aging process and underlying molecular mechanisms by monitoring changes in gene expression in the aging mouse brain using high-throughput sequencing techniques. However, the effect of microRNA (miRNA) on the post-transcriptional regulation of gene expression has not yet been comprehensively investigated. In this study, we performed global analysis of mRNA and miRNA expression simultaneously in the hypothalamus and hippocampus of young and aged mice. We identified aging-dependent differentially expressed genes, most of which were specific either to the hypothalamus or hippocampus. However, genes related to immune response-related pathways were enriched in upregulated differentially expressed genes, whereas genes related to metabolism-related pathways were enriched in downregulated differentially expressed genes in both regions of the aging brain. Furthermore, we identified many differentially expressed miRNAs, including three that were upregulated and three that were downregulated in both the hypothalamus and hippocampus. The two downregulated miRNAs, miR-322-3p, miR-542-3p, and the upregulated protein-encoding coding gene C4b form a regulatory network involved in complement and coagulation cascade pathways in the hypothalamus and hippocampus of the aging brain. These results advance our understanding of the miRNA-mediated gene regulatory network and its influence on signaling pathways in the hypothalamus and hippocampus of the aging mouse brain.
Collapse
Affiliation(s)
- Choijamts Munkhzul
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Hyuntae Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Korea
| | - Jong-Seok Moon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
30
|
Langston PK, Sun Y, Ryback BA, Mueller AL, Spiegelman BM, Benoist C, Mathis D. Regulatory T cells shield muscle mitochondria from interferon-γ-mediated damage to promote the beneficial effects of exercise. Sci Immunol 2023; 8:eadi5377. [PMID: 37922340 PMCID: PMC10860652 DOI: 10.1126/sciimmunol.adi5377] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2023]
Abstract
Exercise enhances physical performance and reduces the risk of many disorders such as cardiovascular disease, type 2 diabetes, dementia, and cancer. Exercise characteristically incites an inflammatory response, notably in skeletal muscles. Although some effector mechanisms have been identified, regulatory elements activated in response to exercise remain obscure. Here, we have addressed the roles of Foxp3+CD4+ regulatory T cells (Tregs) in the healthful activities of exercise via immunologic, transcriptomic, histologic, metabolic, and biochemical analyses of acute and chronic exercise models in mice. Exercise rapidly induced expansion of the muscle Treg compartment, thereby guarding against overexuberant production of interferon-γ and consequent metabolic disruptions, particularly mitochondrial aberrancies. The performance-enhancing effects of exercise training were dampened in the absence of Tregs. Thus, exercise is a natural Treg booster with therapeutic potential in disease and aging contexts.
Collapse
Affiliation(s)
- P. Kent Langston
- Department of Immunology, Harvard Medical School; Boston, 02115, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute; Boston, 02115, USA
- Department of Cell Biology, Harvard Medical School; Boston, 02115, USA
| | - Birgitta A. Ryback
- Department of Cancer Biology, Dana-Farber Cancer Institute; Boston, 02115, USA
| | - Amber L. Mueller
- Department of Genetics, Harvard Medical School; Boston, 02115, USA
| | - Bruce M. Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute; Boston, 02115, USA
- Department of Cell Biology, Harvard Medical School; Boston, 02115, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, 02115, USA
| |
Collapse
|
31
|
Perry AS, Zhao S, Gajjar P, Murthy VL, Lehallier B, Miller P, Nair S, Neill C, Carr JJ, Fearon W, Kapadia S, Kumbhani D, Gillam L, Lindenfeld J, Farrell L, Marron MM, Tian Q, Newman AB, Murabito J, Gerszten RE, Nayor M, Elmariah S, Lindman BR, Shah R. Proteomic architecture of frailty across the spectrum of cardiovascular disease. Aging Cell 2023; 22:e13978. [PMID: 37731195 PMCID: PMC10652351 DOI: 10.1111/acel.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
While frailty is a prominent risk factor in an aging population, the underlying biology of frailty is incompletely described. Here, we integrate 979 circulating proteins across a wide range of physiologies with 12 measures of frailty in a prospective discovery cohort of 809 individuals with severe aortic stenosis (AS) undergoing transcatheter aortic valve implantation. Our aim was to characterize the proteomic architecture of frailty in a highly susceptible population and study its relation to clinical outcome and systems-wide phenotypes to define potential novel, clinically relevant frailty biology. Proteomic signatures (specifically of physical function) were related to post-intervention outcome in AS, specifying pathways of innate immunity, cell growth/senescence, fibrosis/metabolism, and a host of proteins not widely described in human aging. In published cohorts, the "frailty proteome" displayed heterogeneous trajectories across age (20-100 years, age only explaining a small fraction of variance) and were associated with cardiac and non-cardiac phenotypes and outcomes across two broad validation cohorts (N > 35,000) over ≈2-3 decades. These findings suggest the importance of precision biomarkers of underlying multi-organ health status in age-related morbidity and frailty.
Collapse
Affiliation(s)
- Andrew S. Perry
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Shilin Zhao
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Priya Gajjar
- Cardiovascular Medicine Section, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | | | | | - Patricia Miller
- Department of Medicine, and Department of BiostatisticsBoston University School of MedicineBostonMassachusettsUSA
| | - Sangeeta Nair
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Colin Neill
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin Hospital and ClinicsMadisonWisconsinUSA
| | - J. Jeffrey Carr
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - William Fearon
- Department of Medicine, Division of CardiologyStanford Medical CenterPalo AltoCaliforniaUSA
| | - Samir Kapadia
- Department of Medicine, Division of CardiologyCleveland Clinic FoundationClevelandOhioUSA
| | - Dharam Kumbhani
- Department of Medicine, Division of CardiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Linda Gillam
- Department of Cardiovascular MedicineMorristown Medical CenterMorristownNew JerseyUSA
| | - JoAnn Lindenfeld
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Laurie Farrell
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - Megan M. Marron
- Department of Epidemiology, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qu Tian
- National Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Anne B. Newman
- Department of Epidemiology, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
- Departments of Medicine and Clinical and Translational ScienceUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Joanne Murabito
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Robert E. Gerszten
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Sammy Elmariah
- Department of Medicine, Division of CardiologyThe University of CaliforniaSan FranciscoCaliforniaUSA
| | - Brian R. Lindman
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Ravi Shah
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
32
|
Arif M, Matyas C, Mukhopadhyay P, Yokus B, Trojnar E, Paloczi J, Paes-Leme B, Zhao S, Lohoff FW, Haskó G, Pacher P. Data-driven transcriptomics analysis identifies PCSK9 as a novel key regulator in liver aging. GeroScience 2023; 45:3059-3077. [PMID: 37726433 PMCID: PMC10643490 DOI: 10.1007/s11357-023-00928-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The liver, as a crucial metabolic organ, undergoes significant pathological changes during the aging process, which can have a profound impact on overall health. To gain a comprehensive understanding of these alterations, we employed data-driven approaches, along with biochemical methods, histology, and immunohistochemistry techniques, to systematically investigate the effects of aging on the liver. Our study utilized a well-established rat aging model provided by the National Institute of Aging. Systems biology approaches were used to analyze genome-wide transcriptomics data from liver samples obtained from young (4-5 months old) and aging (20-21 months old) Fischer 344 rats. Our findings revealed pathological changes occurring in various essential biological processes in aging livers. These included mitochondrial dysfunction, increased oxidative/nitrative stress, decreased NAD + content, impaired amino acid and protein synthesis, heightened inflammation, disrupted lipid metabolism, enhanced apoptosis, senescence, and fibrosis. These results were validated using independent datasets from both human and rat aging studies. Furthermore, by employing co-expression network analysis, we identified novel driver genes responsible for liver aging, confirmed our findings in human aging subjects, and pointed out the cellular localization of the driver genes using single-cell RNA-sequencing human data. Our study led to the discovery and validation of a liver-specific gene, proprotein convertase subtilisin/kexin type 9 (PCSK9), as a potential therapeutic target for mitigating the pathological processes associated with aging in the liver. This finding envisions new possibilities for developing interventions aimed to improve liver health during the aging process.
Collapse
Affiliation(s)
- Muhammad Arif
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Section On Fibrotic Disorders, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Burhan Yokus
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bruno Paes-Leme
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Suxian Zhao
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Falk W Lohoff
- Section On Clinical Genomics and Experimental Therapeutics, National Institute On Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Liu J, Si H, Huang D, Lu D, Zou S, Qi D, Pei X, Huang S, Li Z. Mechanisms of Extraorbital Lacrimal Gland Aging in Mice: An Integrative Analysis of the Temporal Transcriptome. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 37695604 PMCID: PMC10501490 DOI: 10.1167/iovs.64.12.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose This study used high-throughput RNA sequencing (RNA-Seq) and bioinformatics analysis to investigate the altered transcriptome profile of aging lacrimal glands in mice that occurs over the course of a 24-hour cycle. Methods Male C57BL/6J mice aged 12 weeks (young) and 20 months (aging) were housed in a pathogen-free setting with a 12-hour light/12-hour dark cycle. Throughout a 24-hour cycle, mouse extraorbital lacrimal glands (ELGs) were collected at eight time points at three-hour intervals. To prepare for the high-throughput RNA-Seq, whole mRNA was extracted. Differentially expressed genes (DEGs) in the young and aging groups were subjected to bioinformatic analysis based on diurnal patterns. Furthermore, the cell populations in which significant DEGs express and signaling pathways occur were validated at the single-cell RNA sequencing (scRNA-seq) level. Results The total transcriptome composition was significantly altered in aging ELGs compared with that in young mouse ELGs at eight time points during the 24-hour cycle, with 864 upregulated and 228 downregulated DEGs, which were primarily enriched in inflammatory pathways. Further comparative analysis of the point-to-point transcriptome revealed that aging ELGs underwent alterations in the temporal transcriptome profile in several pathways, including the inflammation-related, metabolism-related, mitochondrial bioenergetic function-associated, synaptome neural activity-associated, cell processes-associated, DNA processing-associated and fibrosis-associated pathways. Most of these pathways occurred separately in distinct cell populations. Conclusions Transcriptome profiles of aging lacrimal glands undergo considerable diurnal time-dependent changes; this finding offers a comprehensive source of information to better understand the pathophysiology of lacrimal gland aging and its underlying mechanisms.
Collapse
Affiliation(s)
- Jiangman Liu
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Sen Zou
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
34
|
Gulen MF, Samson N, Keller A, Schwabenland M, Liu C, Glück S, Thacker VV, Favre L, Mangeat B, Kroese LJ, Krimpenfort P, Prinz M, Ablasser A. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 2023; 620:374-380. [PMID: 37532932 PMCID: PMC10412454 DOI: 10.1038/s41586-023-06373-1] [Citation(s) in RCA: 332] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/27/2023] [Indexed: 08/04/2023]
Abstract
Low-grade inflammation is a hallmark of old age and a central driver of ageing-associated impairment and disease1. Multiple factors can contribute to ageing-associated inflammation2; however, the molecular pathways that transduce aberrant inflammatory signalling and their impact in natural ageing remain unclear. Here we show that the cGAS-STING signalling pathway, which mediates immune sensing of DNA3, is a critical driver of chronic inflammation and functional decline during ageing. Blockade of STING suppresses the inflammatory phenotypes of senescent human cells and tissues, attenuates ageing-related inflammation in multiple peripheral organs and the brain in mice, and leads to an improvement in tissue function. Focusing on the ageing brain, we reveal that activation of STING triggers reactive microglial transcriptional states, neurodegeneration and cognitive decline. Cytosolic DNA released from perturbed mitochondria elicits cGAS activity in old microglia, defining a mechanism by which cGAS-STING signalling is engaged in the ageing brain. Single-nucleus RNA-sequencing analysis of microglia and hippocampi of a cGAS gain-of-function mouse model demonstrates that engagement of cGAS in microglia is sufficient to direct ageing-associated transcriptional microglial states leading to bystander cell inflammation, neurotoxicity and impaired memory capacity. Our findings establish the cGAS-STING pathway as a driver of ageing-related inflammation in peripheral organs and the brain, and reveal blockade of cGAS-STING signalling as a potential strategy to halt neurodegenerative processes during old age.
Collapse
Affiliation(s)
- Muhammet F Gulen
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Natasha Samson
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Alexander Keller
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Marius Schwabenland
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chong Liu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Selene Glück
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Vivek V Thacker
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Lucie Favre
- Division of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Bastien Mangeat
- Gene Expression Core Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Lona J Kroese
- Animal Modeling Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Krimpenfort
- Animal Modeling Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- Institute for Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
35
|
Xu Z, Peng Q, Liu W, Demongeot J, Wei D. Antibody Dynamics Simulation-A Mathematical Exploration of Clonal Deletion and Somatic Hypermutation. Biomedicines 2023; 11:2048. [PMID: 37509687 PMCID: PMC10377040 DOI: 10.3390/biomedicines11072048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
We have employed mathematical modeling techniques to construct a comprehensive framework for elucidating the intricate response mechanisms of the immune system, facilitating a deeper understanding of B-cell clonal deletion and somatic hypermutation. Our improved model introduces innovative mechanisms that shed light on positive and negative selection processes during T-cell and B-cell development. Notably, clonal deletion is attributed to the attenuated immune stimulation exerted by self-antigens with high binding affinities, rendering them less effective in eliciting subsequent B-cell maturation and differentiation. Secondly, our refined model places particular emphasis on the crucial role played by somatic hypermutation in modulating the immune system's functionality. Through extensive investigation, we have determined that somatic hypermutation not only expedites the production of highly specific antibodies pivotal in combating microbial infections but also serves as a regulatory mechanism to dampen autoimmunity and enhance self-tolerance within the organism. Lastly, our model advances the understanding of the implications of antibody in vivo evolution in the overall process of organismal aging. With the progression of time, the age-associated amplification of autoimmune activity becomes apparent. While somatic hypermutation effectively delays this process, mitigating the levels of autoimmune response, it falls short of reversing this trajectory entirely. In conclusion, our advanced mathematical model offers a comprehensive and scholarly approach to comprehend the intricacies of the immune system. By encompassing novel mechanisms for selection, emphasizing the functional role of somatic hypermutation, and illuminating the consequences of in vivo antibody evolution, our model expands the current understanding of immune responses and their implications in aging.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Qingzhi Peng
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Weidong Liu
- Department of Physical Education, Dezhou University, Dezhou 253023, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
36
|
Shavlakadze T, Xiong K, Mishra S, McEwen C, Gadi A, Wakai M, Salmon H, Stec MJ, Negron N, Ni M, Wei Y, Atwal GS, Bai Y, Glass DJ. Age-related gene expression signatures from limb skeletal muscles and the diaphragm in mice and rats reveal common and species-specific changes. Skelet Muscle 2023; 13:11. [PMID: 37438807 DOI: 10.1186/s13395-023-00321-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND As a result of aging, skeletal muscle undergoes atrophy and a decrease in function. This age-related skeletal muscle weakness is known as "sarcopenia". Sarcopenia is part of the frailty observed in humans. In order to discover treatments for sarcopenia, it is necessary to determine appropriate preclinical models and the genes and signaling pathways that change with age in these models. METHODS AND RESULTS To understand the changes in gene expression that occur as a result of aging in skeletal muscles, we generated a multi-time-point gene expression signature throughout the lifespan of mice and rats, as these are the most commonly used species in preclinical research and intervention testing. Gastrocnemius, tibialis anterior, soleus, and diaphragm muscles from male and female C57Bl/6J mice and male Sprague Dawley rats were analyzed at ages 6, 12, 18, 21, 24, and 27 months, plus an additional 9-month group was used for rats. More age-related genes were identified in rat skeletal muscles compared with mice; this was consistent with the finding that rat muscles undergo more robust age-related decline in mass. In both species, pathways associated with innate immunity and inflammation linearly increased with age. Pathways linked with extracellular matrix remodeling were also universally downregulated. Interestingly, late downregulated pathways were exclusively found in the rat limb muscles and these were linked to metabolism and mitochondrial respiration; this was not seen in the mouse. CONCLUSIONS This extensive, side-by-side transcriptomic profiling shows that the skeletal muscle in rats is impacted more by aging compared with mice, and the pattern of decline in the rat may be more representative of the human. The observed changes point to potential therapeutic interventions to avoid age-related decline in skeletal muscle function.
Collapse
Affiliation(s)
- Tea Shavlakadze
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Kun Xiong
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Shawn Mishra
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Corissa McEwen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Abhilash Gadi
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Matthew Wakai
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Hunter Salmon
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Michael J Stec
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Nicole Negron
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Min Ni
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gurinder S Atwal
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - David J Glass
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| |
Collapse
|
37
|
Yu X, Wang Y, Song Y, Gao X, Deng H. AP-1 is a regulatory transcription factor of inflammaging in the murine kidney and liver. Aging Cell 2023; 22:e13858. [PMID: 37154113 PMCID: PMC10352569 DOI: 10.1111/acel.13858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Aging is characterized by chronic low-grade inflammation in multiple tissues, also termed "inflammaging", which represents a significant risk factor for many aging-related chronic diseases. However, the mechanisms and regulatory networks underlying inflammaging across different tissues have not yet been fully elucidated. Here, we profiled the transcriptomes and epigenomes of the kidney and liver from young and aged mice and found that activation of the inflammatory response is a conserved signature in both tissues. Moreover, we revealed links between transcriptome changes and chromatin dynamics through integrative analysis and identified AP-1 and ETS family transcription factors (TFs) as potential regulators of inflammaging. Further in situ validation showed that c-JUN (a member of the AP-1 family) was mainly activated in aged renal and hepatic cells, while increased SPI1 (a member of the ETS family) was mostly induced by elevated infiltration of macrophages, indicating that these TFs have different mechanisms in inflammaging. Functional data demonstrated that genetic knockdown of Fos, a major member of the AP-1 family, significantly attenuated the inflammatory response in aged kidneys and livers. Taken together, our results revealed conserved signatures and regulatory TFs of inflammaging in the kidney and liver, providing novel targets for the development of anti-aging interventions.
Collapse
Affiliation(s)
- Xiaojie Yu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yuting Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yifan Song
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Xianda Gao
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| | - Hongkui Deng
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| |
Collapse
|
38
|
Cheng Z, Ferris C, Crowe MA, Ingvartsen KL, Grelet C, Vanlierde A, Foldager L, Becker F, Wathes DC. Hepatic Global Transcriptomic Profiles of Holstein Cows According to Parity Reveal Age-Related Changes in Early Lactation. Int J Mol Sci 2023; 24:9906. [PMID: 37373054 PMCID: PMC10298156 DOI: 10.3390/ijms24129906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cows can live for over 20 years, but their productive lifespan averages only around 3 years after first calving. Liver dysfunction can reduce lifespan by increasing the risk of metabolic and infectious disease. This study investigated the changes in hepatic global transcriptomic profiles in early lactation Holstein cows in different lactations. Cows from five herds were grouped as primiparous (lactation number 1, PP, 534.7 ± 6.9 kg, n = 41), or multiparous with lactation numbers 2-3 (MP2-3, 634.5 ± 7.5 kg, n = 87) or 4-7 (MP4-7, 686.6 ± 11.4 kg, n = 40). Liver biopsies were collected at around 14 days after calving for RNA sequencing. Blood metabolites and milk yields were measured, and energy balance was calculated. There were extensive differences in hepatic gene expression between MP and PP cows, with 568 differentially expressed genes (DEGs) between MP2-3 and PP cows, and 719 DEGs between MP4-7 and PP cows, with downregulated DEGs predominating in MP cows. The differences between the two age groups of MP cows were moderate (82 DEGs). The gene expression differences suggested that MP cows had reduced immune functions compared with the PP cows. MP cows had increased gluconeogenesis but also evidence of impaired liver functionality. The MP cows had dysregulated protein synthesis and glycerophospholipid metabolism, and impaired genome and RNA stability and nutrient transport (22 differentially expressed solute carrier transporters). The genes associated with cell cycle arrest, apoptosis, and the production of antimicrobial peptides were upregulated. More surprisingly, evidence of hepatic inflammation leading to fibrosis was present in the primiparous cows as they started their first lactation. This study has therefore shown that the ageing process in the livers of dairy cows is accelerated by successive lactations and increasing milk yields. This was associated with evidence of metabolic and immune disorders together with hepatic dysfunction. These problems are likely to increase involuntary culling, thus reducing the average longevity in dairy herds.
Collapse
Affiliation(s)
- Zhangrui Cheng
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK;
| | - Conrad Ferris
- Agri-Food and Biosciences Institute, Newforge Lane, Upper Malone Road, Belfast BT9 5PX, UK;
| | - Mark A. Crowe
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Klaus L. Ingvartsen
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (K.L.I.); (L.F.)
| | - Clément Grelet
- Valorisation of Agricultural Products Department, Walloon Agricultural Research Centre, 5030 Gembloux, Belgium; (C.G.); (A.V.)
| | - Amélie Vanlierde
- Valorisation of Agricultural Products Department, Walloon Agricultural Research Centre, 5030 Gembloux, Belgium; (C.G.); (A.V.)
| | - Leslie Foldager
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (K.L.I.); (L.F.)
- Bioinformatics Research Centre, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Frank Becker
- Research Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - D. Claire Wathes
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK;
| | | |
Collapse
|
39
|
Graber TG, Maroto R, Thompson JK, Widen SG, Man Z, Pajski ML, Rasmussen BB. Skeletal Muscle Transcriptome Alterations Related to Declining Physical Function in Older Mice. JOURNAL OF AGEING AND LONGEVITY 2023; 3:159-178. [PMID: 37876943 PMCID: PMC10597580 DOI: 10.3390/jal3020013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
One inevitable consequence of aging is the gradual deterioration of physical function and exercise capacity, driven in part by the adverse effect of age on muscle tissue. We hypothesized that relationships exist between age-related differentially expressed genes (DEGs) in skeletal muscle and age-associated declines in physical function and exercise capacity. Previously, male C57BL/6mice (6m, months old, 24m, and 28m) were tested for physical function using a composite scoring system (comprehensive functional assessment battery, CFAB) comprised of five well-validated tests of physical function. In this study, total RNA was isolated from tibialis anterior samples (n = 8) randomly selected from each age group in the parent study. Using Next Generation Sequencing RNAseq to determine DEGs during aging (6m vs. 28m, and 6m vs. 24m), we found a greater than five-fold increase in DEGs in 28m compared to the 24m. Furthermore, regression of the normalized expression of each DEG with the CFAB score of the corresponding mouse revealed many more DEGs strongly associated (R ≥ |0.70|) with functional status in the older mice. Gene ontology results indicate highly enriched axon guidance and acetyl choline receptor gene sets, suggesting that denervation/reinnervation flux might potentially play a critical role in functional decline. We conclude that specific age-related DEG patterns are associated with declines in physical function, and the data suggest accelerated aging occurring between 24 and 28 months.
Collapse
Affiliation(s)
- Ted G. Graber
- Department of Physical Therapy, East Carolina University, Greenville, NC 27834, USA
| | - Rosario Maroto
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jill K. Thompson
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Steven G. Widen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zhaohui Man
- Bioinformatics and Analytics Research Collaborative, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Megan L. Pajski
- Department of Physical Therapy, East Carolina University, Greenville, NC 27834, USA
| | - Blake B. Rasmussen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
40
|
Kim HS, Jang S, Kim J. Genome-Wide Integrative Transcriptional Profiling Identifies Age-Associated Signatures in Dogs. Genes (Basel) 2023; 14:1131. [PMID: 37372311 DOI: 10.3390/genes14061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mammals experience similar stages of embryonic development, birth, infancy, youth, adolescence, maturity, and senescence. While embryonic developmental processes have been extensively researched, many molecular mechanisms regulating the different life stages after birth, such as aging, remain unresolved. We investigated the conserved and global molecular transitions in transcriptional remodeling with age in dogs of 15 breeds, which revealed that genes underlying hormone level regulation and developmental programs were differentially regulated during aging. Subsequently, we show that the candidate genes associated with tumorigenesis also exhibit age-dependent DNA methylation patterns, which might have contributed to the tumor state through inhibiting the plasticity of cell differentiation processes during aging, and ultimately suggesting the molecular events that link the processes of aging and cancer. These results highlight that the rate of age-related transcriptional remodeling is influenced not only by the lifespan, but also by the timing of critical physiological milestones.
Collapse
Affiliation(s)
- Hyun Seung Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Subin Jang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaemin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
41
|
Li M, Wang D, Liu Z, Huang Y, Zhang Q, Pan C, Lin Y, Sun L, Zheng Y. Assessing the effects of aging on the renal endothelial cell landscape using single-cell RNA sequencing. Front Genet 2023; 14:1175716. [PMID: 37214419 PMCID: PMC10196692 DOI: 10.3389/fgene.2023.1175716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Endothelial cells (ECs) with senescence-associated secretory phenotypes (SASP) have been identified as a key mechanism of aging that contributes to various age-related kidney diseases. In this study, we used single-cell RNA sequencing (scRNA-seq) to create a transcriptome atlas of murine renal ECs and identify transcriptomic changes that occur during aging. We identified seven different subtypes of renal ECs, with glomerular ECs and angiogenic ECs being the most affected by senescence. We confirmed our scRNA-seq findings by using double immunostaining for an EC marker (CD31) and markers of specialized EC phenotypes. Our analysis of the dynamics of capillary lineage development revealed a chronic state of inflammation and compromised glomerular function as prominent aging features. Additionally, we observed an elevated pro-inflammatory and pro-coagulant microenvironment in aged glomerular ECs, which may contribute to age-related glomerulosclerosis and renal fibrosis. Through intercellular communication analysis, we also identified changes in signaling involved in immune regulation that may contribute to a hostile microenvironment for renal homeostasis and function. Overall, our findings provide new insights into the mechanisms of aging in the renal endothelium and may pave the way for the discovery of diagnostic biomarkers and therapeutic interventions against age-related kidney diseases.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Wang K, Smith SH, Iijima H, Hettinger ZR, Mallepally A, Shroff SG, Ambrosio F. Bioengineered 3D Skeletal Muscle Model Reveals Complement 4b as a Cell-Autonomous Mechanism of Impaired Regeneration with Aging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207443. [PMID: 36650030 DOI: 10.1002/adma.202207443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Indexed: 05/17/2023]
Abstract
A mechanistic understanding of cell-autonomous skeletal muscle changes after injury can lead to novel interventions to improve functional recovery in an aged population. However, major knowledge gaps persist owing to limitations of traditional biological aging models. 2D cell culture represents an artificial environment, while aging mammalian models are contaminated by influences from non-muscle cells and other organs. Here, a 3D muscle aging system is created to overcome the limitations of these traditional platforms. It is shown that old muscle constructs (OMC) manifest a sarcopenic phenotype, as evidenced by hypotrophic myotubes, reduced contractile function, and decreased regenerative capacity compared to young muscle constructs. OMC also phenocopy the regenerative responses of aged muscle to two interventions, pharmacological and biological. Interrogation of muscle cell-specific mechanisms that contribute to impaired regeneration over time further reveals that an aging-induced increase of complement component 4b (C4b) delays muscle progenitor cell amplification and impairs functional recovery. However, administration of complement factor I, a C4b inactivator, improves muscle regeneration in vitro and in vivo, indicating that C4b inhibition may be a novel approach to enhance aged muscle repair. Collectively, the model herein exhibits capabilities to study cell-autonomous changes in skeletal muscle during aging, regeneration, and intervention.
Collapse
Affiliation(s)
- Kai Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen H Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hirotaka Iijima
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zachary R Hettinger
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Adarsh Mallepally
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sanjeev G Shroff
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
43
|
Yu J, Li T, Zhu J. Gene Therapy Strategies Targeting Aging-Related Diseases. Aging Dis 2023; 14:398-417. [PMID: 37008065 PMCID: PMC10017145 DOI: 10.14336/ad.2022.00725] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Rapid advancements have taken place in gene therapy technology. However, effective methods for treating aging- or age-related chronic diseases, which are often closely related to genes or even multiple genes, are still lacking. The path to developing cures is winding, while gene therapy that targets genes related to aging represents an exciting research direction with tremendous potential. Among aging-related genes, some candidates have been studied at different levels, from cell to organismal levels (e.g., mammalian models) with different methods, from overexpression to gene editing. The TERT and APOE have even entered the stage of clinical trials. Even those displaying only a preliminary association with diseases have potential applications. This article discusses the foundations and recent breakthroughs in the field of gene therapy, providing a summary of current mainstream strategies and gene therapy products with clinical and preclinical applications. Finally, we review representative target genes and their potential for treating aging or age-related diseases.
Collapse
Affiliation(s)
| | | | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China.
| |
Collapse
|
44
|
Porukala M, Vinod PK. Network-level analysis of ageing and its relationship with diseases and tissue regeneration in the mouse liver. Sci Rep 2023; 13:4632. [PMID: 36944690 PMCID: PMC10030664 DOI: 10.1038/s41598-023-31315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
The liver plays a vital role in maintaining whole-body metabolic homeostasis, compound detoxification and has the unique ability to regenerate itself post-injury. Ageing leads to functional impairment of the liver and predisposes the liver to non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Mapping the molecular changes of the liver with ageing may help to understand the crosstalk of ageing with different liver diseases. A systems-level analysis of the ageing-induced liver changes and its crosstalk with liver-associated conditions is lacking. In the present study, we performed network-level analyses of the ageing liver using mouse transcriptomic data and a protein-protein interaction (PPI) network. A sample-wise analysis using network entropy measure was performed, which showed an increasing trend with ageing and helped to identify ageing genes based on local entropy changes. To gain further insights, we also integrated the differentially expressed genes (DEGs) between young and different age groups with the PPI network and identified core modules and nodes associated with ageing. Finally, we computed the network proximity of the ageing network with different networks of liver diseases and regeneration to quantify the effect of ageing. Our analysis revealed the complex interplay of immune, cancer signalling, and metabolic genes in the ageing liver. We found significant network proximities between ageing and NAFLD, HCC, liver damage conditions, and the early phase of liver regeneration with common nodes including NLRP12, TRP53, GSK3B, CTNNB1, MAT1 and FASN. Overall, our study maps the network-level changes of ageing and their interconnections with the physiology and pathology of the liver.
Collapse
Affiliation(s)
- Manisri Porukala
- Centre for Computational Natural Sciences and Bioinformatics, IIIT, Hyderabad, 500032, India
| | - P K Vinod
- Centre for Computational Natural Sciences and Bioinformatics, IIIT, Hyderabad, 500032, India.
| |
Collapse
|
45
|
Witte S, Boshnakovska A, Özdemir M, Chowdhury A, Rehling P, Aich A. Defective COX1 expression in aging mice liver. Biol Open 2023; 12:292575. [PMID: 36861685 PMCID: PMC10003073 DOI: 10.1242/bio.059844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 03/03/2023] Open
Abstract
Mitochondrial defects are associated with aging processes and age-related diseases, including cardiovascular diseases, neurodegenerative diseases and cancer. In addition, some recent studies suggest mild mitochondrial dysfunctions appear to be associated with longer lifespans. In this context, liver tissue is considered to be largely resilient to aging and mitochondrial dysfunction. Yet, in recent years studies report dysregulation of mitochondrial function and nutrient sensing pathways in ageing livers. Therefore, we analyzed the effects of the aging process on mitochondrial gene expression in liver using wildtype C57BL/6N mice. In our analyses, we observed alteration in mitochondrial energy metabolism with age. To assess if defects in mitochondrial gene expression are linked to this decline, we applied a Nanopore sequencing based approach for mitochondrial transcriptomics. Our analyses show that a decrease of the Cox1 transcript correlates with reduced respiratory complex IV activity in older mice livers.
Collapse
Affiliation(s)
- Steffen Witte
- Department of Cellular Biochemistry, University Medical Center, Göttingen, 37073, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center, Göttingen, 37073, Germany
| | - Metin Özdemir
- Department of Cellular Biochemistry, University Medical Center, Göttingen, 37073, Germany
| | - Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center, Göttingen, 37073, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center, Göttingen, 37073, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, 37075, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Göttingen, 37075, Germany.,Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center, Göttingen, 37073, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, 37075, Germany
| |
Collapse
|
46
|
Gasperi RD, Gama Sosa MA, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Statz JK, Patterson J, Hof PR, Katsel P, Cook DG, Ahlers ST, Elder GA. Progressive Transcriptional Changes in the Amygdala Implicate Neuroinflammation in the Effects of Repetitive Low-Level Blast Exposure in Male Rats. J Neurotrauma 2023; 40:561-577. [PMID: 36262047 PMCID: PMC10040418 DOI: 10.1089/neu.2022.0282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic mental health problems are common among military veterans who sustained blast-related traumatic brain injuries. The reasons for this association remain unexplained. Male rats exposed to repetitive low-level blast overpressure (BOP) exposures exhibit chronic cognitive and post-traumatic stress disorder (PTSD)-related traits that develop in a delayed fashion. We examined blast-induced alterations on the transcriptome in four brain areas (anterior cortex, hippocampus, amygdala, and cerebellum) across the time frame over which the PTSD-related behavioral phenotype develops. When analyzed at 6 weeks or 12 months after blast exposure, relatively few differentially expressed genes (DEGs) were found. However, longitudinal analysis of amygdala, hippocampus, and anterior cortex between 6 weeks and 12 months revealed blast-specific DEG patterns. Six DEGs (hyaluronan and proteoglycan link protein 1 [Hapln1], glutamate metabotropic receptor 2 [Grm2], purinergic receptor P2y12 [P2ry12], C-C chemokine receptor type 5 [Ccr5], phenazine biosynthesis-like protein domain containing 1 [Pbld1], and cadherin related 23 [Cdh23]) were found altered in all three brain regions in blast-exposed animals. Pathway enrichment analysis using all DEGs or those uniquely changed revealed different transcription patterns in blast versus sham. In particular, the amygdala in blast-exposed animals had a unique set of enriched pathways related to stress responses, oxidative phosphorylation, and mitochondrial dysfunction. Upstream analysis implicated tumor necrosis factor (TNF)α signaling in blast-related effects in amygdala and anterior cortex. Eukaryotic initiating factor eIF4E (EIF4e), an upstream regulator of P2ry12 and Ccr5, was predicted to be activated in the amygdala. Quantitative polymerase chain reaction (qPCR) validated longitudinal changes in two TNFα regulated genes (cathepsin B [Ctsb], Hapln1), P2ry12, and Grm2. These studies have implications for understanding how blast injury damages the brain and implicates inflammation as a potential therapeutic target.
Collapse
Affiliation(s)
- Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Georgina S. Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Parsons Corporation, Centreville, Virginia, USA
| | - Patrick R. Hof
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pavel Katsel
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
47
|
Cikes D, Elsayad K, Sezgin E, Koitai E, Torma F, Orthofer M, Yarwood R, Heinz LX, Sedlyarov V, Miranda ND, Taylor A, Grapentine S, Al-Murshedi F, Abot A, Weidinger A, Kutchukian C, Sanchez C, Cronin SJF, Novatchkova M, Kavirayani A, Schuetz T, Haubner B, Haas L, Hagelkruys A, Jackowski S, Kozlov AV, Jacquemond V, Knauf C, Superti-Furga G, Rullman E, Gustafsson T, McDermot J, Lowe M, Radak Z, Chamberlain JS, Bakovic M, Banka S, Penninger JM. PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing. Nat Metab 2023; 5:495-515. [PMID: 36941451 DOI: 10.1038/s42255-023-00766-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/10/2023] [Indexed: 03/23/2023]
Abstract
Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.
Collapse
Affiliation(s)
- Domagoj Cikes
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Kareem Elsayad
- Division of Anatomy, Center for Anatomy and Cell Biology and Medical Imaging Cluster (MIC), Vienna, Austria.
| | - Erdinc Sezgin
- MRC Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, Oxford, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Erika Koitai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ferenc Torma
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Michael Orthofer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Adrian Taylor
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Fathiya Al-Murshedi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Anne Abot
- Enterosys SAS, Prologue Biotech, Labège, France
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Candice Kutchukian
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Colline Sanchez
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Maria Novatchkova
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Anoop Kavirayani
- VBCF, Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Thomas Schuetz
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernhard Haubner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisa Haas
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Vincent Jacquemond
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Cardiovascular Theme, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - John McDermot
- Manchester Centre for Genomics Medicine, St Mary's Hospital, Manchester University Hospital Foundation Trust, Manchester, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington, Seattle, WA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, WA, USA
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Siddharth Banka
- Manchester Centre for Genomics Medicine, St Mary's Hospital, Manchester University Hospital Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
48
|
Jaime D, Fish LA, Madigan LA, Ewing MD, Fallon JR. The MuSK-BMP pathway maintains myofiber size in slow muscle through regulation of Akt- mTOR signaling. RESEARCH SQUARE 2023:rs.3.rs-2613527. [PMID: 36909467 PMCID: PMC10002845 DOI: 10.21203/rs.3.rs-2613527/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at all neuromuscular junctions and is also present extrasynaptically in the slow soleus muscle. To investigate the role of the MuSK-BMP pathway in vivo we generated mice lacking the BMP-binding MuSK Ig3 domain. These ΔIg3-MuSKmice are viable and fertile with innervation levels comparable to wild type. In 3-month-old mice myofibers are smaller in the slow soleus, but not in the fast tibialis anterior (TA). Transcriptomic analysis revealed soleus-selective decreases in RNA metabolism and protein synthesis pathways as well as dysregulation of IGF1-Akt-mTOR pathway components. Biochemical analysis showed that Akt-mTOR signaling is reduced in soleus but not TA. We propose that the MuSK-BMP pathway acts extrasynaptically to maintain myofiber size in slow muscle by promoting protein synthetic pathways including IGF1-Akt-mTOR signaling. These results reveal a novel mechanism for regulating myofiber size in slow muscle and introduce the MuSK-BMP pathway as a target for promoting muscle growth and combatting atrophy.
Collapse
|
49
|
Ma Y, Zheng S, Xu M, Chen C, He H. Establishing and Validating an Aging-Related Prognostic Signature in Osteosarcoma. Stem Cells Int 2023; 2023:6245160. [PMID: 37964984 PMCID: PMC10643040 DOI: 10.1155/2023/6245160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2023] Open
Abstract
Aging is an inevitable process that biological changes accumulate with time and results in increased susceptibility to different tumors. But currently, aging-related genes (ARGs) in osteosarcoma were not clear. We investigated the potential prognostic role of ARGs and established an ARG-based prognostic signature for osteosarcoma. The transcriptome data and corresponding clinicopathological information of patients with osteosarcoma were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Molecular subtypes were generated based on prognosis-related ARGs obtained from univariate Cox analysis. With ARGs, a risk signature was built by univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Differences in clinicopathological features, immune infiltration, immune checkpoints, responsiveness to immunotherapy and chemotherapy, and biological pathways were assessed according to molecular subtypes and the risk signature. Based on risk signature and clinicopathological variables, a nomogram was established and validated. Three molecular subtypes with distinct clinical outcomes were classified based on 36 prognostic ARGs for osteosarcoma. A nine-ARG-based signature in the TCGA cohort, including BMP8A, CORT, SLC17A9, VEGFA, GAL, SSX1, RASGRP2, SDC3, and EVI2B, has been created and developed and could well perform patient stratification into the high- and low-risk groups. There were significant differences in clinicopathological features, immune checkpoints and infiltration, responsiveness to immunotherapy and chemotherapy, cancer stem cell, and biological pathways among the molecular subtypes. The risk signature and metastatic status were identified as independent prognostic factors for osteosarcoma. A nomogram combining ARG-based risk signature and metastatic status was established, showing great prediction accuracy and clinical benefit for osteosarcoma OS. We characterized three ARG-based molecular subtypes with distinct characteristics and built an ARG-based risk signature for osteosarcoma prognosis, which could facilitate prognosis prediction and making personalized treatment in osteosarcoma.
Collapse
Affiliation(s)
- Yibo Ma
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China 116044
| | - Shuo Zheng
- The Second Ward of Department of Orthopedics, The Second Hospital of Dalian Medical University, Dalian, China 116000
| | - Mingjun Xu
- The Second Hospital of Dalian Medical University, Dalian Medical University, Dalian, China 116000
| | - Changjian Chen
- The First Ward of Department of Orthopedics, The Second Hospital of Dalian Medical University, Dalian, China 116000
| | - Hongtao He
- The Third Ward of Department of Orthopedics, The Second Hospital of Dalian Medical University, Dalian, China 116000
| |
Collapse
|
50
|
Okada D, Cheng JH, Zheng C, Kumaki T, Yamada R. Data-driven identification and classification of nonlinear aging patterns reveals the landscape of associations between DNA methylation and aging. Hum Genomics 2023; 17:8. [PMID: 36774528 PMCID: PMC9922449 DOI: 10.1186/s40246-023-00453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/26/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Aging affects the incidence of diseases such as cancer and dementia, so the development of biomarkers for aging is an important research topic in medical science. While such biomarkers have been mainly identified based on the assumption of a linear relationship between phenotypic parameters, including molecular markers, and chronological age, numerous nonlinear changes between markers and aging have been identified. However, the overall landscape of the patterns in nonlinear changes that exist in aging is unknown. RESULT We propose a novel computational method, Data-driven Identification and Classification of Nonlinear Aging Patterns (DICNAP), that is based on functional data analysis to identify biomarkers for aging and potential patterns of change during aging in a data-driven manner. We applied the proposed method to large-scale, public DNA methylation data to explore the potential patterns of age-related changes in methylation intensity. The results showed that not only linear, but also nonlinear changes in DNA methylation patterns exist. A monotonous demethylation pattern during aging, with its rate decreasing at around age 60, was identified as the candidate stable nonlinear pattern. We also analyzed the age-related changes in methylation variability. The results showed that the variability of methylation intensity tends to increase with age at age-associated sites. The representative variability pattern is a monotonically increasing pattern that accelerates after middle age. CONCLUSION DICNAP was able to identify the potential patterns of the changes in the landscape of DNA methylation during aging. It contributes to an improvement in our theoretical understanding of the aging process.
Collapse
Affiliation(s)
- Daigo Okada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jian Hao Cheng
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Cheng Zheng
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuro Kumaki
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Yamada
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|