1
|
Zhang Y, Nomura M, Nishimura K, Zang W, Koike Y, Xiao M, Ito H, Fukumoto M, Tanaka A, Aoyama Y, Saika W, Hasegawa C, Yamazaki H, Takaori-Kondo A, Inoue D. In-depth functional analysis of BRD9 in fetal hematopoiesis reveals context-dependent roles. iScience 2025; 28:112010. [PMID: 40109374 PMCID: PMC11919606 DOI: 10.1016/j.isci.2025.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/19/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The hierarchical organization of hematopoietic stem cells (HSCs) governing adult hematopoiesis has been extensively investigated. However, the dynamic epigenomic transition from fetal to adult hematopoiesis remains incompletely understood, particularly regarding the involvement of epigenetic factors. In this study, we investigate the roles of BRD9, an essential component of the non-canonical BAF (ncBAF) complex known to govern the fate of adult HSCs, in fetal hematopoiesis. Consistent with observations in adult hematopoiesis, BRD9 loss impairs fetal HSC stemness and disturbs erythroid maturation. Intriguingly, the impact on myeloid lineage was discrepant: BRD9 loss inhibited and promoted myeloid differentiation in fetal and adult models, respectively. Through comprehensive transcriptomic and epigenomic analysis, we elucidate the differential roles of BRD9 in a context- and lineage-dependent manner. Our data uncover how BRD9/ncBAF complex modulates transcription in a stage-specific manner, providing deeper insights into the epigenetic regulation underlying the transition from fetal to adult hematopoiesis.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Nomura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Facility for iPS Cell Therapy, CiRA Foundation, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Yui Koike
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Muran Xiao
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hiromi Ito
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yumi Aoyama
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Department of Hematology, Shiga University of Medical Science, Otsu, Japan
| | - Chihiro Hasegawa
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Tanaka-Yano M, Sugden WW, Wang D, Badalamenti B, Côté P, Chin D, Goldstein J, George S, Rodrigues-Luiz GF, da Rocha EL, Li H, North TE, Gryder BE, Rowe RG. Dynamic activity of Erg promotes aging of the hematopoietic system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634563. [PMID: 39896635 PMCID: PMC11785177 DOI: 10.1101/2025.01.23.634563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Hematopoiesis changes to adapt to the physiology of development and aging. Temporal changes in hematopoiesis parallel age-dependent incidences of blood diseases. Several heterochronic regulators of hematopoiesis have been identified, but how the master transcription factor (TF) circuitry of definitive hematopoietic stem cells (HSCs) adapts over the lifespan is unknown. Here, we show that expression of the ETS family TF Erg is adult-biased, and that programmed upregulation of Erg expression during juvenile to adult aging is evolutionarily conserved and required for complete implementation of adult patterns of HSC self-renewal and myeloid, erythroid, and lymphoid differentiation. Erg deficiency maintains fetal transcriptional and epigenetic programs, and persistent juvenile phenotypes in Erg haploinsufficient mice are dependent on deregulation of the fetal-biased TF Hmga2 . Finally, Erg haploinsufficiency in the adult results in fetal-like resistance to leukemogenesis. Overall, we identify a mechanism whereby HSC TF networks are rewired to specify stage-specific hematopoiesis, a finding directly relevant to age-biased blood diseases. SUMMARY The hematopoietic system undergoes a process of coordinated aging from the juvenile to adult states. Here, we find that expression of ETS family transcription factor Erg is temporally regulated. Impaired upregulation of Erg during the hematopoietic maturation results in persistence of juvenile phenotypes.
Collapse
|
3
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Patrick R, Naval-Sanchez M, Deshpande N, Huang Y, Zhang J, Chen X, Yang Y, Tiwari K, Esmaeili M, Tran M, Mohamed AR, Wang B, Xia D, Ma J, Bayliss J, Wong K, Hun ML, Sun X, Cao B, Cottle DL, Catterall T, Barzilai-Tutsch H, Troskie RL, Chen Z, Wise AF, Saini S, Soe YM, Kumari S, Sweet MJ, Thomas HE, Smyth IM, Fletcher AL, Knoblich K, Watt MJ, Alhomrani M, Alsanie W, Quinn KM, Merson TD, Chidgey AP, Ricardo SD, Yu D, Jardé T, Cheetham SW, Marcelle C, Nilsson SK, Nguyen Q, White MD, Nefzger CM. The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening. Cell Metab 2024; 36:1858-1881.e23. [PMID: 38959897 DOI: 10.1016/j.cmet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.
Collapse
Affiliation(s)
- Ralph Patrick
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Nikita Deshpande
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yifei Huang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jingyu Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ying Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kanupriya Tiwari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Mohammadhossein Esmaeili
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Amin R Mohamed
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Binxu Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Ma
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tara Catterall
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Hila Barzilai-Tutsch
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Robin-Lee Troskie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhian Chen
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ye Mon Soe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Snehlata Kumari
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tobias D Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Surgery, Cabrini Monash University, Malvern, VIC 3144, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Agrawal H, Mehatre SH, Khurana S. The hematopoietic stem cell expansion niche in fetal liver: Current state of the art and the way forward. Exp Hematol 2024; 136:104585. [PMID: 39068980 DOI: 10.1016/j.exphem.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Hematopoietic development goes through a number of embryonic sites that host hematopoietic progenitor and stem cells with function required at specific developmental stages. Among embryonic sites, the fetal liver (FL) hosts definitive hematopoietic stem cells (HSCs) capable of engrafting adult hematopoietic system and supports their rapid expansion. Hence, this site provides an excellent model to understand the cellular and molecular components of the machinery involved in HSC-proliferative events, leading to their overall expansion. It has been unequivocally established that extrinsic regulators orchestrate events that maintain HSC function. Although most studies on extrinsic regulation of HSC function are targeted at adult bone marrow (BM) hematopoiesis, little is known about how FL HSC function is regulated by their microniche. This review provides the current state of our understanding on molecular and cellular niche factors that support FL hematopoiesis.
Collapse
Affiliation(s)
- Harsh Agrawal
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Shubham Haribhau Mehatre
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India..
| |
Collapse
|
6
|
He M, Li X, Xu B, Lu Y, Lai J, Ling Y, Liu H, An Z, Zhang W, Li F. Reprogramming of 3D genome structure underlying HSPC development in zebrafish. Stem Cell Res Ther 2024; 15:172. [PMID: 38886858 PMCID: PMC11184745 DOI: 10.1186/s13287-024-03798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Development of hematopoietic stem and progenitor cells (HSPC) is a multi-staged complex process that conserved between zebrafish and mammals. Understanding the mechanism underlying HSPC development is a holy grail of hematopoietic biology, which is helpful for HSPC clinical application. Chromatin conformation plays important roles in transcriptional regulation and cell fate decision; however, its dynamic and role in HSPC development is poorly investigated. METHODS We performed chromatin structure and multi-omics dissection across different stages of HSPC developmental trajectory in zebrafish for the first time, including Hi-C, RNA-seq, ATAC-seq, H3K4me3 and H3K27ac ChIP-seq. RESULTS The chromatin organization of zebrafish HSPC resemble mammalian cells with similar hierarchical structure. We revealed the multi-scale reorganization of chromatin structure and its influence on transcriptional regulation and transition of cell fate during HSPC development. Nascent HSPC is featured by loose conformation with obscure structure at all layers. Notably, PU.1 was identified as a potential factor mediating formation of promoter-involved loops and regulating gene expression of HSPC. CONCLUSIONS Our results provided a global view of chromatin structure dynamics associated with development of zebrafish HSPC and discovered key transcription factors involved in HSPC chromatin interactions, which will provide new insights into the epigenetic regulatory mechanisms underlying vertebrate HSPC fate decision.
Collapse
Affiliation(s)
- Min He
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoli Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Bingxiang Xu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yinbo Lu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jingyi Lai
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yiming Ling
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Huakai Liu
- Vehicle Engineering, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Ziyang An
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Sankaran DG, Zhu H, Maymi VI, Forlastro IM, Jiang Y, Laniewski N, Scheible KM, Rudd BD, Grimson AW. Gene Regulatory Programs that Specify Age-Related Differences during Thymocyte Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599011. [PMID: 38948840 PMCID: PMC11212896 DOI: 10.1101/2024.06.14.599011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
T cell development is fundamental to immune system establishment, yet how this development changes with age remains poorly understood. Here, we construct a transcriptional and epigenetic atlas of T cell developmental programs in neonatal and adult mice, revealing the ontogeny of divergent gene regulatory programs and their link to age-related differences in phenotype and function. Specifically, we identify a gene module that diverges with age from the earliest stages of genesis and includes programs that govern effector response and cell cycle regulation. Moreover, we reveal that neonates possess more accessible chromatin during early thymocyte development, likely establishing poised gene expression programs that manifest later in thymocyte development. Finally, we leverage this atlas, employing a CRISPR-based perturbation approach coupled with single-cell RNA sequencing as a readout to uncover a conserved transcriptional regulator, Zbtb20, that contributes to age-dependent differences in T cell development. Altogether, our study defines transcriptional and epigenetic programs that regulate age-specific differences in T cell development.
Collapse
|
8
|
Ning M, Song L, Niu X, Wang Y, Liu W, Hu J, Cai H, Song W, Liu L, Li H, Gong D, Smith J, Huang Y. Multiscale 3D genome organization underlies duck fatty liver with no adipose inflammation or serious injury. Int J Biol Macromol 2024; 271:132452. [PMID: 38777007 DOI: 10.1016/j.ijbiomac.2024.132452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Little is known about how gene expression and chromatin structure are regulated in NAFLD due to lack of suitable model. Ducks naturally develop fatty liver similar to serious human non-alcoholic fatty liver (NAFL) without adipose inflammation and liver fibrosis, thus serves as a good model for investigating molecular mechanisms of adipose metabolism and anti-inflammation. Here, we constructed a NAFLD model without adipose inflammation and liver fibrosis in ducks. By performing dynamic pathological and transcriptomic analyses, we identified critical genes involving in regulation of the NF-κB and MHCII signaling, which usually lead to adipose inflammation and liver fibrosis. We further generated dynamic three-dimensional chromatin maps during liver fatty formation and recovery. This showed that ducks enlarged hepatocyte cell nuclei to reduce inter-chromosomal interaction, decompress chromatin structure, and alter strength of intra-TAD and loop interactions during fatty liver formation. These changes partially contributed to the tight control the NF-κB and the MHCII signaling. Our analysis uncovers duck chromatin reorganization might be advantageous to maintain liver regenerative capacity and reduce adipose inflammation. These findings shed light on new strategies for NAFLD control.
Collapse
Affiliation(s)
- Mengfei Ning
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, China
| | - Linfei Song
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, China
| | - Xinyu Niu
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, China
| | - Yiming Wang
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, China
| | - Wenjie Liu
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, China
| | - Jiaxiang Hu
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, China
| | - Han Cai
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, China
| | - Weitao Song
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Huifang Li
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Yinhua Huang
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Cortés-Fernández de Lara J, Núñez-Martínez HN, Tapia-Urzúa G, Garza-Manero S, Peralta-Alvarez CA, Furlan-Magaril M, González-Buendía E, Escamilla-Del-Arenal M, Casasola A, Guerrero G, Recillas-Targa F. A novel cis-regulatory element regulates αD and αA-globin gene expression in chicken erythroid cells. Front Genet 2024; 15:1384167. [PMID: 38706797 PMCID: PMC11066237 DOI: 10.3389/fgene.2024.1384167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Background Cis-regulatory elements (CREs) play crucial roles in regulating gene expression during erythroid cell differentiation. Genome-wide erythroid-specific CREs have not been characterized in chicken erythroid cells, which is an organism model used to study epigenetic regulation during erythropoiesis. Methods Analysis of public genome-wide accessibility (ATAC-seq) maps, along with transcription factor (TF) motif analysis, CTCF, and RNA Pol II occupancy, as well as transcriptome analysis in fibroblasts and erythroid HD3 cells, were used to characterize erythroid-specific CREs. An α-globin CRE was identified, and its regulatory activity was validated in vitro and in vivo by luciferase activity and genome-editing assays in HD3 cells, respectively. Additionally, circular chromosome conformation capture (UMI-4C) assays were used to distinguish its role in structuring the α-globin domain in erythroid chicken cells. Results Erythroid-specific CREs displayed occupancy by erythroid TF binding motifs, CTCF, and RNA Pol II, as well as an association with genes involved in hematopoiesis and cell differentiation. An α-globin CRE, referred to as CRE-2, was identified as exhibiting enhancer activity over αD and αA genes in vitro and in vivo. Induction of terminal erythroid differentiation showed that α-globin CRE-2 is required for the induction of αD and αA. Analysis of TF binding motifs at α-globin CRE-2 shows apparent regulation mediated by GATA-1, YY1, and CTCF binding. Conclusion Our findings demonstrate that cell-specific CREs constitute a key mechanism that contributes to the fine-tuning gene regulation of erythroid cell differentiation and provide insights into the annotation and characterization of CREs in chicken cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Felix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
10
|
Waraky A, Östlund A, Nilsson T, Weichenhan D, Lutsik P, Bähr M, Hey J, Tunali G, Adamsson J, Jacobsson S, Morsy MHA, Li S, Fogelstrand L, Plass C, Palmqvist L. Aberrant MNX1 expression associated with t(7;12)(q36;p13) pediatric acute myeloid leukemia induces the disease through altering histone methylation. Haematologica 2024; 109:725-739. [PMID: 37317878 PMCID: PMC10905087 DOI: 10.3324/haematol.2022.282255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Certain subtypes of acute myeloid leukemia (AML) in children have inferior outcome, such as AML with translocation t(7;12)(q36;p13) leading to an MNX1::ETV6 fusion along with high expression of MNX1. We have identified the transforming event in this AML and possible ways of treatment. Retroviral expression of MNX1 was able to induce AML in mice, with similar gene expression and pathway enrichment to t(7;12) AML patient data. Importantly, this leukemia was only induced in immune incompetent mice using fetal but not adult hematopoietic stem and progenitor cells. The restriction in transforming capacity to cells from fetal liver is in alignment with t(7;12)(q36;p13) AML being mostly seen in infants. Expression of MNX1 led to increased histone 3 lysine 4 mono-, di- and trimethylation, reduction in H3K27me3, accompanied with changes in genome-wide chromatin accessibility and genome expression, likely mediated through MNX1 interaction with the methionine cycle and methyltransferases. MNX1 expression increased DNA damage, depletion of the Lin-/Sca1+/c-Kit+ population and skewing toward the myeloid lineage. These effects, together with leukemia development, were prevented by pre-treatment with the S-adenosylmethionine analog Sinefungin. In conclusion, we have shown the importance of MNX1 in development of AML with t(7;12), supporting a rationale for targeting MNX1 and downstream pathways.
Collapse
Affiliation(s)
- Ahmed Waraky
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, and; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Anders Östlund
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg
| | - Tina Nilsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Marion Bähr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Gürcan Tunali
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg
| | - Jenni Adamsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg
| | - Susanna Jacobsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | | | - Susann Li
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, and; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Lars Palmqvist
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, and; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg.
| |
Collapse
|
11
|
Zhang Y, Liu F. The evolving views of hematopoiesis: from embryo to adulthood and from in vivo to in vitro. J Genet Genomics 2024; 51:3-15. [PMID: 37734711 DOI: 10.1016/j.jgg.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The hematopoietic system composed of hematopoietic stem and progenitor cells (HSPCs) and their differentiated lineages serves as an ideal model to uncover generic principles of cell fate transitions. From gastrulation onwards, there successively emerge primitive hematopoiesis (that produces specialized hematopoietic cells), pro-definitive hematopoiesis (that produces lineage-restricted progenitor cells), and definitive hematopoiesis (that produces multipotent HSPCs). These nascent lineages develop in several transient hematopoietic sites and finally colonize into lifelong hematopoietic sites. The development and maintenance of hematopoietic lineages are orchestrated by cell-intrinsic gene regulatory networks and cell-extrinsic microenvironmental cues. Owing to the progressive methodology (e.g., high-throughput lineage tracing and single-cell functional and omics analyses), our understanding of the developmental origin of hematopoietic lineages and functional properties of certain hematopoietic organs has been updated; meanwhile, new paradigms to characterize rare cell types, cell heterogeneity and its causes, and comprehensive regulatory landscapes have been provided. Here, we review the evolving views of HSPC biology during developmental and postnatal hematopoiesis. Moreover, we discuss recent advances in the in vitro induction and expansion of HSPCs, with a focus on the implications for clinical applications.
Collapse
Affiliation(s)
- Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Kasbekar M, Mitchell CA, Proven MA, Passegué E. Hematopoietic stem cells through the ages: A lifetime of adaptation to organismal demands. Cell Stem Cell 2023; 30:1403-1420. [PMID: 37865087 PMCID: PMC10842631 DOI: 10.1016/j.stem.2023.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Hematopoietic stem cells (HSCs), which govern the production of all blood lineages, transition through a series of functional states characterized by expansion during fetal development, functional quiescence in adulthood, and decline upon aging. We describe central features of HSC regulation during ontogeny to contextualize how adaptive responses over the life of the organism ultimately form the basis for HSC functional degradation with age. We particularly focus on the role of cell cycle regulation, inflammatory response pathways, epigenetic changes, and metabolic regulation. We then explore how the knowledge of age-related changes in HSC regulation can inform strategies for the rejuvenation of old HSCs.
Collapse
Affiliation(s)
- Monica Kasbekar
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA; Division of Hematology and Medical Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Melissa A Proven
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
13
|
Nguyen JP, Arthur TD, Fujita K, Salgado BM, Donovan MKR, Matsui H, Kim JH, D'Antonio-Chronowska A, D'Antonio M, Frazer KA. eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk. Nat Commun 2023; 14:6928. [PMID: 37903777 PMCID: PMC10616100 DOI: 10.1038/s41467-023-42560-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
The impact of genetic regulatory variation active in early pancreatic development on adult pancreatic disease and traits is not well understood. Here, we generate a panel of 107 fetal-like iPSC-derived pancreatic progenitor cells (iPSC-PPCs) from whole genome-sequenced individuals and identify 4065 genes and 4016 isoforms whose expression and/or alternative splicing are affected by regulatory variation. We integrate eQTLs identified in adult islets and whole pancreas samples, which reveal 1805 eQTL associations that are unique to the fetal-like iPSC-PPCs and 1043 eQTLs that exhibit regulatory plasticity across the fetal-like and adult pancreas tissues. Colocalization with GWAS risk loci for pancreatic diseases and traits show that some putative causal regulatory variants are active only in the fetal-like iPSC-PPCs and likely influence disease by modulating expression of disease-associated genes in early development, while others with regulatory plasticity likely exert their effects in both the fetal and adult pancreas by modulating expression of different disease genes in the two developmental stages.
Collapse
Affiliation(s)
- Jennifer P Nguyen
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Timothy D Arthur
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kyohei Fujita
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bianca M Salgado
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Margaret K R Donovan
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Ji Hyun Kim
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, South Korea
| | | | - Matteo D'Antonio
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
Ng M, Verboon L, Issa H, Bhayadia R, Vermunt MW, Winkler R, Schüler L, Alejo O, Schuschel K, Regenyi E, Borchert D, Heuser M, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. Myeloid leukemia vulnerabilities embedded in long noncoding RNA locus MYNRL15. iScience 2023; 26:107844. [PMID: 37766974 PMCID: PMC10520325 DOI: 10.1016/j.isci.2023.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The noncoding genome presents a largely untapped source of new biological insights, including thousands of long noncoding RNA (lncRNA) loci. While lncRNA dysregulation has been reported in myeloid malignancies, their functional relevance remains to be systematically interrogated. We performed CRISPRi screens of lncRNA signatures from normal and malignant hematopoietic cells and identified MYNRL15 as a myeloid leukemia dependency. Functional dissection suggests an RNA-independent mechanism mediated by two regulatory elements embedded in the locus. Genetic perturbation of these elements triggered a long-range chromatin interaction and downregulation of leukemia dependency genes near the gained interaction sites, as well as overall suppression of cancer dependency pathways. Thus, this study describes a new noncoding myeloid leukemia vulnerability and mechanistic concept for myeloid leukemia. Importantly, MYNRL15 perturbation caused strong and selective impairment of leukemia cells of various genetic backgrounds over normal hematopoietic stem and progenitor cells in vitro, and depletion of patient-derived xenografts in vivo.
Collapse
Affiliation(s)
- Michelle Ng
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Lonneke Verboon
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hasan Issa
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marit Willemijn Vermunt
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Winkler
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leah Schüler
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oriol Alejo
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Konstantin Schuschel
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eniko Regenyi
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dorit Borchert
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Reinhardt
- Clinic for Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dirk Heckl
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Walker M, Li Y, Morales-Hernandez A, Qi Q, Parupalli C, Brown S, Christian C, Clements WK, Cheng Y, McKinney-Freeman S. An NFIX-mediated regulatory network governs the balance of hematopoietic stem and progenitor cells during hematopoiesis. Blood Adv 2023; 7:4677-4689. [PMID: 36478187 PMCID: PMC10468369 DOI: 10.1182/bloodadvances.2022007811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/07/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
The transcription factor (TF) nuclear factor I-X (NFIX) is a positive regulator of hematopoietic stem and progenitor cell (HSPC) transplantation. Nfix-deficient HSPCs exhibit a severe loss of repopulating activity, increased apoptosis, and a loss of colony-forming potential. However, the underlying mechanism remains elusive. Here, we performed cellular indexing of transcriptomes and epitopes by high-throughput sequencing (CITE-seq) on Nfix-deficient HSPCs and observed a loss of long-term hematopoietic stem cells and an accumulation of megakaryocyte and myelo-erythroid progenitors. The genome-wide binding profile of NFIX in primitive murine hematopoietic cells revealed its colocalization with other hematopoietic TFs, such as PU.1. We confirmed the physical interaction between NFIX and PU.1 and demonstrated that the 2 TFs co-occupy super-enhancers and regulate genes implicated in cellular respiration and hematopoietic differentiation. In addition, we provide evidence suggesting that the absence of NFIX negatively affects PU.1 binding at some genomic loci. Our data support a model in which NFIX collaborates with PU.1 at super-enhancers to promote the differentiation and homeostatic balance of hematopoietic progenitors.
Collapse
Affiliation(s)
- Megan Walker
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yichao Li
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Qian Qi
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Scott Brown
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Claiborne Christian
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wilson K. Clements
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yong Cheng
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | |
Collapse
|
16
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
17
|
Rappoport N, Chomsky E, Nagano T, Seibert C, Lubling Y, Baran Y, Lifshitz A, Leung W, Mukamel Z, Shamir R, Fraser P, Tanay A. Single cell Hi-C identifies plastic chromosome conformations underlying the gastrulation enhancer landscape. Nat Commun 2023; 14:3844. [PMID: 37386027 PMCID: PMC10310791 DOI: 10.1038/s41467-023-39549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Embryonic development involves massive proliferation and differentiation of cell lineages. This must be supported by chromosome replication and epigenetic reprogramming, but how proliferation and cell fate acquisition are balanced in this process is not well understood. Here we use single cell Hi-C to map chromosomal conformations in post-gastrulation mouse embryo cells and study their distributions and correlations with matching embryonic transcriptional atlases. We find that embryonic chromosomes show a remarkably strong cell cycle signature. Despite that, replication timing, chromosome compartment structure, topological associated domains (TADs) and promoter-enhancer contacts are shown to be variable between distinct epigenetic states. About 10% of the nuclei are identified as primitive erythrocytes, showing exceptionally compact and organized compartment structure. The remaining cells are broadly associated with ectoderm and mesoderm identities, showing only mild differentiation of TADs and compartment structures, but more specific localized contacts in hundreds of ectoderm and mesoderm promoter-enhancer pairs. The data suggest that while fully committed embryonic lineages can rapidly acquire specific chromosomal conformations, most embryonic cells are showing plastic signatures driven by complex and intermixed enhancer landscapes.
Collapse
Affiliation(s)
- Nimrod Rappoport
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Elad Chomsky
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Takashi Nagano
- Laboratory for Nuclear Dynamics, Institute for Protein Research, Osaka University, Osaka, Japan
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Charlie Seibert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Yaniv Lubling
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Baran
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Wing Leung
- Laboratory for Nuclear Dynamics, Institute for Protein Research, Osaka University, Osaka, Japan
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Zohar Mukamel
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shamir
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK.
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Amos Tanay
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
18
|
Liu P, Li D, Zhang J, He M, Gao D, Wang Y, Lin Y, Pan D, Li P, Wang T, Li J, Kong F, Zeng B, Lu L, Ma J, Long K, Li G, Tang Q, Jin L, Li M. Comparative three-dimensional genome architectures of adipose tissues provide insight into human-specific regulation of metabolic homeostasis. J Biol Chem 2023; 299:104757. [PMID: 37116707 PMCID: PMC10245122 DOI: 10.1016/j.jbc.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Elucidating the regulatory mechanisms of human adipose tissues (ATs) evolution is essential for understanding human-specific metabolic regulation, but the functional importance and evolutionary dynamics of three-dimensional (3D) genome organizations of ATs are not well defined. Here, we compared the 3D genome architectures of anatomically distinct ATs from humans and six representative mammalian models. We recognized evolutionarily conserved and human-specific chromatin conformation in ATs at multiple scales, including compartmentalization, topologically associating domain (TAD), and promoter-enhancer interactions (PEI), which have not been described previously. We found PEI are much more evolutionarily dynamic with respect to compartmentalization and topologically associating domain. Compared to conserved PEIs, human-specific PEIs are enriched for human-specific sequence, and the binding motifs of their potential mediators (transcription factors) are less conserved. Our data also demonstrated that genes involved in the evolutionary dynamics of chromatin organization have weaker transcriptional conservation than those associated with conserved chromatin organization. Furthermore, the genes involved in energy metabolism and the maintenance of metabolic homeostasis are enriched in human-specific chromatin organization, while housekeeping genes, health-related genes, and genetic variations are enriched in evolutionarily conserved compared to human-specific chromatin organization. Finally, we showed extensively divergent human-specific 3D genome organizations among one subcutaneous and three visceral ATs. Together, these findings provide a global overview of 3D genome architecture dynamics between ATs from human and mammalian models and new insights into understanding the regulatory evolution of human ATs.
Collapse
Affiliation(s)
- Pengliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China.
| | - Jiaman Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Wildlife Conservation Research Department, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dengke Pan
- Institute of Organ Transplantation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine & Genetics, Chengdu Xi'nan Gynecology Hospital, Chengdu, Sichuan, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jing Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guisen Li
- Renal Department & Nephrology Institute, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Yang BA, Larouche JA, Sabin KM, Fraczek PM, Parker SCJ, Aguilar CA. Three-dimensional chromatin re-organization during muscle stem cell aging. Aging Cell 2023; 22:e13789. [PMID: 36727578 PMCID: PMC10086523 DOI: 10.1111/acel.13789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Age-related skeletal muscle atrophy or sarcopenia is a significant societal problem that is becoming amplified as the world's population continues to increase. The regeneration of damaged skeletal muscle is mediated by muscle stem cells, but in old age muscle stem cells become functionally attenuated. The molecular mechanisms that govern muscle stem cell aging encompass changes across multiple regulatory layers and are integrated by the three-dimensional organization of the genome. To quantitatively understand how hierarchical chromatin architecture changes during muscle stem cell aging, we generated 3D chromatin conformation maps (Hi-C) and integrated these datasets with multi-omic (chromatin accessibility and transcriptome) profiles from bulk populations and single cells. We observed that muscle stem cells display static behavior at global scales of chromatin organization during aging and extensive rewiring of local contacts at finer scales that were associated with variations in transcription factor binding and aberrant gene expression. These data provide insights into genome topology as a regulator of molecular function in stem cell aging.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Jacqueline A. Larouche
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Kaitlyn M. Sabin
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Paula M. Fraczek
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Stephen C. J. Parker
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Computational Medicine & BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
- Department of Human GeneticsUniversity of MichiganAnn ArborMichiganUSA
| | - Carlos A. Aguilar
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
20
|
Cuartero S, Stik G, Stadhouders R. Three-dimensional genome organization in immune cell fate and function. Nat Rev Immunol 2022; 23:206-221. [PMID: 36127477 DOI: 10.1038/s41577-022-00774-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Immune cell development and activation demand the precise and coordinated control of transcriptional programmes. Three-dimensional (3D) organization of the genome has emerged as an important regulator of chromatin state, transcriptional activity and cell identity by facilitating or impeding long-range genomic interactions among regulatory elements and genes. Chromatin folding thus enables cell type-specific and stimulus-specific transcriptional responses to extracellular signals, which are essential for the control of immune cell fate, for inflammatory responses and for generating a diverse repertoire of antigen receptor specificities. Here, we review recent findings connecting 3D genome organization to the control of immune cell differentiation and function, and discuss how alterations in genome folding may lead to immune dysfunction and malignancy.
Collapse
Affiliation(s)
- Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. .,Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| | - Grégoire Stik
- Centre for Genomic Regulation (CRG), Institute of Science and Technology (BIST), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands. .,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
3D chromatin remodeling potentiates transcriptional programs driving cell invasion. Proc Natl Acad Sci U S A 2022; 119:e2203452119. [PMID: 36037342 PMCID: PMC9457068 DOI: 10.1073/pnas.2203452119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contribution of deregulated chromatin architecture, including topologically associated domains (TADs), to cancer progression remains ambiguous. CCCTC-binding factor (CTCF) is a central regulator of higher-order chromatin structure that undergoes copy number loss in over half of all breast cancers, but the impact of this defect on epigenetic programming and chromatin architecture remains unclear. We find that under physiological conditions, CTCF organizes subTADs to limit the expression of oncogenic pathways, including phosphatidylinositol 3-kinase (PI3K) and cell adhesion networks. Loss of a single CTCF allele potentiates cell invasion through compromised chromatin insulation and a reorganization of chromatin architecture and histone programming that facilitates de novo promoter-enhancer contacts. However, this change in the higher-order chromatin landscape leads to a vulnerability to inhibitors of mTOR. These data support a model whereby subTAD reorganization drives both modification of histones at de novo enhancer-promoter contacts and transcriptional up-regulation of oncogenic transcriptional networks.
Collapse
|
22
|
Vignjević Petrinović S, Jauković A, Milošević M, Bugarski D, Budeč M. Targeting Stress Erythropoiesis Pathways in Cancer. Front Physiol 2022; 13:844042. [PMID: 35694408 PMCID: PMC9174937 DOI: 10.3389/fphys.2022.844042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer-related anemia (CRA) is a common multifactorial disorder that adversely affects the quality of life and overall prognosis in patients with cancer. Safety concerns associated with the most common CRA treatment options, including intravenous iron therapy and erythropoietic-stimulating agents, have often resulted in no or suboptimal anemia management for many cancer patients. Chronic anemia creates a vital need to restore normal erythropoietic output and therefore activates the mechanisms of stress erythropoiesis (SE). A growing body of evidence demonstrates that bone morphogenetic protein 4 (BMP4) signaling, along with glucocorticoids, erythropoietin, stem cell factor, growth differentiation factor 15 (GDF15) and hypoxia-inducible factors, plays a pivotal role in SE. Nevertheless, a chronic state of SE may lead to ineffective erythropoiesis, characterized by the expansion of erythroid progenitor pool, that largely fails to differentiate and give rise to mature red blood cells, further aggravating CRA. In this review, we summarize the current state of knowledge on the emerging roles for stress erythroid progenitors and activated SE pathways in tumor progression, highlighting the urgent need to suppress ineffective erythropoiesis in cancer patients and develop an optimal treatment strategy as well as a personalized approach to CRA management.
Collapse
Affiliation(s)
- Sanja Vignjević Petrinović
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Milošević
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirela Budeč
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Developmental cues license megakaryocyte priming in murine hematopoietic stem cells. Blood Adv 2022; 6:6228-6241. [PMID: 35584393 PMCID: PMC9792704 DOI: 10.1182/bloodadvances.2021006861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
The fetal-to-adult switch in hematopoietic stem cell (HSC) behavior is characterized by alterations in lineage output and entry into deep quiescence. Here we identify the emergence of megakaryocyte (Mk)-biased HSCs as an event coinciding with this developmental switch. Single-cell chromatin accessibility analysis reveals a ubiquitous acquisition of Mk lineage priming signatures in HSCs during the fetal-to-adult transition. These molecular changes functionally coincide with increased amplitude of early Mk differentiation events after acute inflammatory insult. Importantly, we identify LIN28B, known for its role in promoting fetal-like self-renewal, as an insulator against the establishment of an Mk-biased HSC pool. LIN28B protein is developmentally silenced in the third week of life, and its prolonged expression delays emergency platelet output in young adult mice. We propose that developmental regulation of Mk priming may represent a switch for HSCs to toggle between prioritizing self-renewal in the fetus and increased host protection in postnatal life.
Collapse
|
24
|
Gilbertson SE, Walter HC, Gardner K, Wren SN, Vahedi G, Weinmann AS. Topologically associating domains are disrupted by evolutionary genome rearrangements forming species-specific enhancer connections in mice and humans. Cell Rep 2022; 39:110769. [PMID: 35508135 PMCID: PMC9142060 DOI: 10.1016/j.celrep.2022.110769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Distinguishing between conserved and divergent regulatory mechanisms is
essential for translating preclinical research from mice to humans, yet there is
a lack of information about how evolutionary genome rearrangements affect the
regulation of the immune response, a rapidly evolving system. The current model
is topologically associating domains (TADs) are conserved between species,
buffering evolutionary rearrangements and conserving long-range interactions
within a TAD. However, we find that TADs frequently span evolutionary
translocation and inversion breakpoints near genes with species-specific
expression in immune cells, creating unique enhancer-promoter interactions
exclusive to the mouse or human genomes. This includes TADs encompassing
immune-related transcription factors, cytokines, and receptors. For example, we
uncover an evolutionary rearrangement that created a shared LPS-inducible
regulatory module between OASL and P2RX7 in
human macrophages that is absent in mice. Therefore, evolutionary genome
rearrangements disrupt TAD boundaries, enabling sequence-conserved enhancer
elements from divergent genomic locations between species to create unique
regulatory modules. It is currently unclear how evolutionary genome rearrangements affecting
the mouse and human genomes influence the expression of genes important in
immunity. Gilbertson et al. report that evolutionary genome rearrangements
disrupt topologically associating domain boundaries, enabling sequence-conserved
enhancer elements from divergent locations between species to create unique
regulatory modules.
Collapse
Affiliation(s)
- Sarah E Gilbertson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hannah C Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine Gardner
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Spencer N Wren
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Golnaz Vahedi
- Department of Genetics, Institute of Immunology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Antoszewski M, Fournier N, Ruiz Buendía GA, Lourenco J, Liu Y, Sugrue T, Dubey C, Nkosi M, Pritchard CE, Huijbers IJ, Segat GC, Alonso-Moreno S, Serracanta E, Belver L, Ferrando AA, Ciriello G, Weng AP, Koch U, Radtke F. Tcf1 is essential for initiation of oncogenic Notch1-driven chromatin topology in T-ALL. Blood 2022; 139:2483-2498. [PMID: 35020836 PMCID: PMC9710489 DOI: 10.1182/blood.2021012077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023] Open
Abstract
NOTCH1 is a well-established lineage specifier for T cells and among the most frequently mutated genes throughout all subclasses of T cell acute lymphoblastic leukemia (T-ALL). How oncogenic NOTCH1 signaling launches a leukemia-prone chromatin landscape during T-ALL initiation is unknown. Here we demonstrate an essential role for the high-mobility-group transcription factor Tcf1 in orchestrating chromatin accessibility and topology, allowing aberrant Notch1 signaling to convey its oncogenic function. Although essential, Tcf1 is not sufficient to initiate leukemia. The formation of a leukemia-prone epigenetic landscape at the distal Notch1-regulated Myc enhancer, which is fundamental to this disease, is Tcf1-dependent and occurs within the earliest progenitor stage even before cells adopt a T lymphocyte or leukemic fate. Moreover, we discovered a unique evolutionarily conserved Tcf1-regulated enhancer element in the distal Myc-enhancer, which is important for the transition of preleukemic cells to full-blown disease.
Collapse
Affiliation(s)
- Mateusz Antoszewski
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Nadine Fournier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gustavo A. Ruiz Buendía
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Joao Lourenco
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yuanlong Liu
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tara Sugrue
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Botnar Research Centre for Child Health, University of Basel & ETH Zürich, Basel, Switzerland
| | - Christelle Dubey
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- INSELSPITAL, Universitätsspital Bern, Universitätsklinik für Thoraxchirurgie, Forschungsabteilung Thoraxchirurgie, Bern, Switzerland
| | - Marianne Nkosi
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Colin E.J. Pritchard
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Laura Belver
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Catalan Institute of Oncology-Immuno Procure, Barcelona, Spain
| | - Adolfo A. Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Giovanni Ciriello
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| |
Collapse
|
26
|
Chen C, Yu W, Alikarami F, Qiu Q, Chen CH, Flournoy J, Gao P, Uzun Y, Fang L, Davenport JW, Hu Y, Zhu Q, Wang K, Libbrecht C, Felmeister A, Rozich I, Ding YY, Hunger SP, Felix CA, Wu H, Brown PA, Guest EM, Barrett DM, Bernt KM, Tan K. Single-cell multiomics reveals increased plasticity, resistant populations, and stem-cell-like blasts in KMT2A-rearranged leukemia. Blood 2022; 139:2198-2211. [PMID: 34864916 PMCID: PMC8990373 DOI: 10.1182/blood.2021013442] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
KMT2A-rearranged (KMT2A-r) infant acute lymphoblastic leukemia (ALL) is a devastating malignancy with a dismal outcome, and younger age at diagnosis is associated with increased risk of relapse. To discover age-specific differences and critical drivers that mediate poor outcome in KMT2A-r ALL, we subjected KMT2A-r leukemias and normal hematopoietic cells from patients of different ages to single-cell multiomics analyses. We uncovered the following critical new insights: leukemia cells from patients <6 months have significantly increased lineage plasticity. Steroid response pathways are downregulated in the most immature blasts from younger patients. We identify a hematopoietic stem and progenitor-like (HSPC-like) population in the blood of younger patients that contains leukemic blasts and form an immunosuppressive signaling circuit with cytotoxic lymphocytes. These observations offer a compelling explanation for the ability of leukemias in young patients to evade chemotherapy and immune-mediated control. Our analysis also revealed preexisting lymphomyeloid primed progenitors and myeloid blasts at initial diagnosis of B-ALL. Tracking of leukemic clones in 2 patients whose leukemia underwent a lineage switch documented the evolution of such clones into frank acute myeloid leukemia (AML). These findings provide critical insights into KMT2A-r ALL and have clinical implications for molecularly targeted and immunotherapy approaches. Beyond infant ALL, our study demonstrates the power of single-cell multiomics to detect tumor intrinsic and extrinsic factors affecting rare but critical subpopulations within a malignant population that ultimately determines patient outcome.
Collapse
Affiliation(s)
- Changya Chen
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Wenbao Yu
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine
| | | | - Qi Qiu
- Department of Genetics, Perelman School of Medicine
- Penn Epigenetics Institute, and
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research and
| | - Jennifer Flournoy
- Department of Genetics, Perelman School of Medicine
- Penn Epigenetics Institute, and
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Yasin Uzun
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Qin Zhu
- Graduate Group in Genomics and Computational Biology
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, and
| | - Clara Libbrecht
- Division of Oncology and Center for Childhood Cancer Research and
| | - Alex Felmeister
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Isaiah Rozich
- Graduate Group in Immunology, University of Pennsylvania, Philadelphia, PA
| | - Yang-Yang Ding
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Pediatrics, Perelman School of Medicine
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Pediatrics, Perelman School of Medicine
| | - Carolyn A Felix
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Pediatrics, Perelman School of Medicine
| | - Hao Wu
- Department of Genetics, Perelman School of Medicine
- Penn Epigenetics Institute, and
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Patrick A Brown
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD; and
| | - Erin M Guest
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO
| | - David M Barrett
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Pediatrics, Perelman School of Medicine
| | - Kathrin M Bernt
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Pediatrics, Perelman School of Medicine
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine
- Department of Genetics, Perelman School of Medicine
- Penn Epigenetics Institute, and
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
27
|
Wang D, Tanaka-Yano M, Meader E, Kinney MA, Morris V, Lummertz da Rocha E, Liu N, Liu T, Zhu Q, Orkin SH, North TE, Daley GQ, Rowe RG. Developmental maturation of the hematopoietic system controlled by a Lin28b-let-7-Cbx2 axis. Cell Rep 2022; 39:110587. [PMID: 35385744 PMCID: PMC9029260 DOI: 10.1016/j.celrep.2022.110587] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 01/06/2023] Open
Abstract
Hematopoiesis changes over life to meet the demands of maturation and aging. Here, we find that the definitive hematopoietic stem and progenitor cell (HSPC) compartment is remodeled from gestation into adulthood, a process regulated by the heterochronic Lin28b/let-7 axis. Native fetal and neonatal HSPCs distribute with a pro-lymphoid/erythroid bias with a shift toward myeloid output in adulthood. By mining transcriptomic data comparing juvenile and adult HSPCs and reconstructing coordinately activated gene regulatory networks, we uncover the Polycomb repressor complex 1 (PRC1) component Cbx2 as an effector of Lin28b/let-7's control of hematopoietic maturation. We find that juvenile Cbx2-/- hematopoietic tissues show impairment of B-lymphopoiesis, a precocious adult-like myeloid bias, and that Cbx2/PRC1 regulates developmental timing of expression of key hematopoietic transcription factors. These findings define a mechanism of regulation of HSPC output via chromatin modification as a function of age with potential impact on age-biased pediatric and adult blood disorders.
Collapse
Affiliation(s)
- Dahai Wang
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mayuri Tanaka-Yano
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eleanor Meader
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Melissa A Kinney
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vivian Morris
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil
| | - Nan Liu
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tianxin Liu
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Qian Zhu
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Stuart H Orkin
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Trista E North
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - George Q Daley
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - R Grant Rowe
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Stem Cell Transplantation Program, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Watt SM. The long and winding road: homeostatic and disordered haematopoietic microenvironmental niches: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:31-54. [PMID: 35837343 PMCID: PMC9255786 DOI: 10.12336/biomatertransl.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Haematopoietic microenvironmental niches have been described as the 'gatekeepers' for the blood and immune systems. These niches change during ontogeny, with the bone marrow becoming the predominant site of haematopoiesis in post-natal life under steady state conditions. To determine the structure and function of different haematopoietic microenvironmental niches, it is essential to clearly define specific haematopoietic stem and progenitor cell subsets during ontogeny and to understand their temporal appearance and anatomical positioning. A variety of haematopoietic and non-haematopoietic cells contribute to haematopoietic stem and progenitor cell niches. The latter is reported to include endothelial cells and mesenchymal stromal cells (MSCs), skeletal stem cells and/or C-X-C motif chemokine ligand 12-abundant-reticular cell populations, which form crucial components of these microenvironments under homeostatic conditions. Dysregulation or deterioration of such cells contributes to significant clinical disorders and diseases worldwide and is associated with the ageing process. A critical appraisal of these issues and of the roles of MSC/C-X-C motif chemokine ligand 12-abundant-reticular cells and the more recently identified skeletal stem cell subsets in bone marrow haematopoietic niche function under homeostatic conditions and during ageing will form the basis of this research review. In the context of haematopoiesis, clinical translation will deal with lessons learned from the vast experience garnered from the development and use of MSC therapies to treat graft versus host disease in the context of allogeneic haematopoietic transplants, the recent application of these MSC therapies to treating emerging and severe coronavirus disease 2019 (COVID-19) infections, and, given that skeletal stem cell ageing is one proposed driver for haematopoietic ageing, the potential contributions of these stem cells to haematopoiesis in healthy bone marrow and the benefits and challenges of using this knowledge for rejuvenating the age-compromised bone marrow haematopoietic niches and restoring haematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
29
|
Watt SM, Hua P, Roberts I. Increasing Complexity of Molecular Landscapes in Human Hematopoietic Stem and Progenitor Cells during Development and Aging. Int J Mol Sci 2022; 23:3675. [PMID: 35409034 PMCID: PMC8999121 DOI: 10.3390/ijms23073675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, and NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
30
|
Liu Y, Chen Q, Jeong HW, Koh BI, Watson EC, Xu C, Stehling M, Zhou B, Adams RH. A specialized bone marrow microenvironment for fetal haematopoiesis. Nat Commun 2022; 13:1327. [PMID: 35288551 PMCID: PMC8921288 DOI: 10.1038/s41467-022-28775-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
In adult mammalian bone marrow (BM), vascular endothelial cells and perivascular reticular cells control the function of haematopoietic stem and progenitor cells (HSPCs). During fetal development, the mechanisms regulating the de novo haematopoietic cell colonization of BM remain largely unknown. Here, we show that fetal and adult BM exhibit fundamental differences in cellular composition and molecular interactions by single cell RNA sequencing. While fetal femur is largely devoid of leptin receptor-expressing cells, arterial endothelial cells (AECs) provide Wnt ligand to control the initial HSPC expansion. Haematopoietic stem cells and c-Kit+ HSPCs are reduced when Wnt secretion by AECs is genetically blocked. We identify Wnt2 as AEC-derived signal that activates β-catenin-dependent proliferation of fetal HSPCs. Treatment of HSPCs with Wnt2 promotes their proliferation and improves engraftment after transplantation. Our work reveals a fundamental switch in the cellular organization and molecular regulation of BM niches in the embryonic and adult organism. The colonization of bone marrow by haematopoietic stem and progenitor cells is critical for lifelong blood cell formation. Here the authors report distinct features of fetal bone marrow and show that artery-derived signals promote haematopoietic colonization.
Collapse
|
31
|
Zhang J, Liu P, He M, Wang Y, Kui H, Jin L, Li D, Li M. Reorganization of 3D genome architecture across wild boar and Bama pig adipose tissues. J Anim Sci Biotechnol 2022; 13:32. [PMID: 35277200 PMCID: PMC8917667 DOI: 10.1186/s40104-022-00679-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A growing body of evidence has revealed that the mammalian genome is organized into hierarchical layers that are closely correlated with and may even be causally linked with variations in gene expression. Recent studies have characterized chromatin organization in various porcine tissues and cell types and compared them among species and during the early development of pigs. However, how chromatin organization differs among pig breeds is poorly understood. RESULTS In this study, we investigated the 3D genome organization and performed transcriptome characterization of two adipose depots (upper layer of backfat [ULB] and greater omentum [GOM]) in wild boars and Bama pigs; the latter is a typical indigenous pig in China. We found that over 95% of the A/B compartments and topologically associating domains (TADs) are stable between wild boars and Bama pigs. In contrast, more than 70% of promoter-enhancer interactions (PEIs) are dynamic and widespread, involving over a thousand genes. Alterations in chromatin structure are associated with changes in the expression of genes that are involved in widespread biological functions such as basic cellular functions, endocrine function, energy metabolism and the immune response. Approximately 95% and 97% of the genes associated with reorganized A/B compartments and PEIs in the two pig breeds differed between GOM and ULB, respectively. CONCLUSIONS We reported 3D genome organization in adipose depots from different pig breeds. In a comparison of Bama pigs and wild boar, large-scale compartments and TADs were mostly conserved, while fine-scale PEIs were extensively reorganized. The chromatin architecture in these two pig breeds was reorganized in an adipose depot-specific manner. These results contribute to determining the regulatory mechanism of phenotypic differences between Bama pigs and wild boar.
Collapse
Affiliation(s)
- Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Pengliang Liu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yujie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Hua Kui
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
32
|
Owens DDG, Anselmi G, Oudelaar AM, Downes DJ, Cavallo A, Harman JR, Schwessinger R, Bucakci A, Greder L, de Ornellas S, Jeziorska D, Telenius J, Hughes JR, de Bruijn MFTR. Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development. Nat Commun 2022; 13:773. [PMID: 35140205 PMCID: PMC8828719 DOI: 10.1038/s41467-022-28376-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/12/2022] [Indexed: 01/22/2023] Open
Abstract
The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures. Runx1 resides in a 1.1 Mb topologically associating domain (TAD) demarcated by convergent CTCF motifs. As ESCs differentiate to mesoderm, chromatin accessibility, Runx1 enhancer-promoter (E-P) interactions, and CTCF-CTCF interactions increase in the TAD, along with initiation of Runx1 expression from the P2 promoter. Differentiation to hematopoietic progenitor cells is associated with the formation of tissue-specific sub-TADs over Runx1, a shift in E-P interactions, P1 promoter demethylation, and robust expression from both Runx1 promoters. Deletion of promoter-proximal CTCF sites at the sub-TAD boundaries has no obvious effects on E-P interactions but leads to partial loss of domain structure, mildly affects gene expression, and delays hematopoietic development. Together, our analysis of gene regulation at a large multi-promoter developmental gene reveals that dynamic sub-TAD chromatin boundaries play a role in establishing TAD structure and coordinated gene expression.
Collapse
Affiliation(s)
- Dominic D G Owens
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Damien J Downes
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alessandro Cavallo
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ron Schwessinger
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Akin Bucakci
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lucas Greder
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara de Ornellas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Physical and Theoretical Chemistry Building, Department of Chemistry, University of Oxford, Oxford, UK
| | - Danuta Jeziorska
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jelena Telenius
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Li CC, Zhang G, Du J, Liu D, Li Z, Ni Y, Zhou J, Li Y, Hou S, Zheng X, Lan Y, Liu B, He A. Pre-configuring chromatin architecture with histone modifications guides hematopoietic stem cell formation in mouse embryos. Nat Commun 2022; 13:346. [PMID: 35039499 PMCID: PMC8764075 DOI: 10.1038/s41467-022-28018-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
The gene activity underlying cell differentiation is regulated by a diverse set of transcription factors (TFs), histone modifications, chromatin structures and more. Although definitive hematopoietic stem cells (HSCs) are known to emerge via endothelial-to-hematopoietic transition (EHT), how the multi-layered epigenome is sequentially unfolded in a small portion of endothelial cells (ECs) transitioning into the hematopoietic fate remains elusive. With optimized low-input itChIP-seq and Hi-C assays, we performed multi-omics dissection of the HSC ontogeny trajectory across early arterial ECs (eAECs), hemogenic endothelial cells (HECs), pre-HSCs and long-term HSCs (LT-HSCs) in mouse embryos. Interestingly, HSC regulatory regions are already pre-configurated with active histone modifications as early as eAECs, preceding chromatin looping dynamics within topologically associating domains. Chromatin looping structures between enhancers and promoters only become gradually strengthened over time. Notably, RUNX1, a master TF for hematopoiesis, enriched at half of these loops is observed early from eAECs through pre-HSCs but its enrichment further increases in HSCs. RUNX1 and co-TFs together constitute a central, progressively intensified enhancer-promoter interactions. Thus, our study provides a framework to decipher how temporal epigenomic configurations fulfill cell lineage specification during development.
Collapse
Affiliation(s)
- Chen C Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Guangyu Zhang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, 100850, Beijing, China
| | - Junjie Du
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, 100850, Beijing, China
| | - Di Liu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, 100850, Beijing, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, 100850, Beijing, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, 100850, Beijing, China
| | - Yunqiao Li
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, 100850, Beijing, China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaona Zheng
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, 100850, Beijing, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, 100850, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, 100850, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
34
|
Shim AR, Huang K, Backman V, Szleifer I. Chromatin as self-returning walks: From population to single cell and back. BIOPHYSICAL REPORTS 2021; 2:100042. [PMID: 36425085 PMCID: PMC9680733 DOI: 10.1016/j.bpr.2021.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
With a growing understanding of the chromatin structure, many efforts remain focused on bridging the gap between what is suggested by population-averaged data and what is visualized for single cells. A popular approach to traversing these scales is to fit a polymer model to Hi-C contact data. However, Hi-C is an average of millions to billions of cells, and each cell may not contain all population-averaged contacts. Therefore, we employ a novel approach of summing individual chromosome trajectories-determined by our Self-Returning Random Walk model-to create populations of cells. We allow single cells to consist of disparate structures and reproduce a variety of experimentally relevant contact maps. We show that the amount of shared topology between cells, and their mechanism of formation, changes the population-averaged structure. Therefore, we present a modeling technique that, with few constraints and little oversight, can be used to understand which single-cell chromatin structures underlie population-averaged behavior.
Collapse
Affiliation(s)
- Anne R. Shim
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Kai Huang
- Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, P. R. China,Corresponding author
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois,Department of Chemistry, Northwestern University, Evanston, Illinois,Corresponding author
| |
Collapse
|
35
|
Cova G, Taroni C, Deau MC, Cai Q, Mittelheisser V, Philipps M, Jung M, Cerciat M, Le Gras S, Thibault-Carpentier C, Jost B, Carlsson L, Thornton AM, Shevach EM, Kirstetter P, Kastner P, Chan S. Helios represses megakaryocyte priming in hematopoietic stem and progenitor cells. J Exp Med 2021; 218:e20202317. [PMID: 34459852 PMCID: PMC8406645 DOI: 10.1084/jem.20202317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/28/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of cell fate decisions in hematopoietic stem cells is incomplete. Here, we show that the transcription factor Helios is highly expressed in murine hematopoietic stem and progenitor cells (HSPCs), where it is required to suppress the separation of the platelet/megakaryocyte lineage from the HSPC pool. Helios acts mainly in quiescent cells, where it directly represses the megakaryocyte gene expression program in cells as early as the stem cell stage. Helios binding promotes chromatin compaction, notably at the regulatory regions of platelet-specific genes recognized by the Gata2 and Runx1 transcriptional activators, implicated in megakaryocyte priming. Helios null HSPCs are biased toward the megakaryocyte lineage at the expense of the lymphoid and partially resemble cells of aging animals. We propose that Helios acts as a guardian of HSPC pluripotency by continuously repressing the megakaryocyte fate, which in turn allows downstream lymphoid priming to take place. These results highlight the importance of negative and positive priming events in lineage commitment.
Collapse
Affiliation(s)
- Giovanni Cova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Chiara Taroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Marie-Céline Deau
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Qi Cai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Vincent Mittelheisser
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Muriel Philipps
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Matthieu Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Marie Cerciat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Stéphanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Christelle Thibault-Carpentier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Bernard Jost
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Leif Carlsson
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Angela M. Thornton
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ethan M. Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Peggy Kirstetter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
36
|
Zhang C, Xu Z, Yang S, Sun G, Jia L, Zheng Z, Gu Q, Tao W, Cheng T, Li C, Cheng H. tagHi-C Reveals 3D Chromatin Architecture Dynamics during Mouse Hematopoiesis. Cell Rep 2021; 32:108206. [PMID: 32997998 DOI: 10.1016/j.celrep.2020.108206] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/08/2020] [Accepted: 09/08/2020] [Indexed: 01/10/2023] Open
Abstract
Spatiotemporal chromatin reorganization during hematopoietic differentiation has not been comprehensively characterized, mainly because of the large numbers of starting cells required for current chromatin conformation capture approaches. Here, we introduce a low-input tagmentation-based Hi-C (tagHi-C) method to capture the chromatin structures of hundreds of cells. Using tagHi-C, we are able to map the spatiotemporal dynamics of chromatin structure in ten primary hematopoietic stem, progenitor, and differentiated cell populations from mouse bone marrow. Our results reveal that changes in compartment dynamics and the Rabl configuration occur during hematopoietic cell differentiation. We identify gene-body-associating domains (GADs) as general structures for highly expressed genes. Moreover, we extend the body of knowledge regarding genes influenced by genome-wide association study (GWAS) loci through spatial chromatin looping. Our study provides the tagHi-C method for studying the three-dimensional (3D) genome of a small number of cells and maps the comprehensive 3D chromatin landscape of bone marrow hematopoietic cells.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China; Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China; PKU-Tsinghua-NIBS Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Zihan Xu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lumeng Jia
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Zhaofeng Zheng
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Quan Gu
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wei Tao
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
37
|
Li Y, Magee JA. Transcriptional reprogramming in neonatal hematopoietic stem and progenitor cells. Exp Hematol 2021; 101-102:25-33. [PMID: 34303776 PMCID: PMC8557639 DOI: 10.1016/j.exphem.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/04/2023]
Abstract
Hematopoietic stem cells (HSCs) and lineage-committed hematopoietic progenitor cells (HPCs) undergo profound shifts in gene expression during the neonatal and juvenile stages of life. Temporal changes in HSC/HPC gene expression underlie concomitant changes in self-renewal capacity, lineage biases, and hematopoietic output. Moreover, they can modify disease phenotypes. For example, childhood leukemias have distinct driver mutation profiles relative to adult leukemias, and they may arise from distinct cells of origin. The putative relationship between neonatal HSC/HPC ontogeny and childhood blood disorders highlights the importance of understanding how, at a mechanistic level, HSCs transition from fetal to adult transcriptional states. In this perspective piece, we summarize recent work indicating that the transition is uncoordinated and imprecisely timed. We discuss implications of these findings, including mechanisms that might enable neonatal HSCs and HPCs to acquire adultlike properties over a drawn-out period, in lieu of precise gene regulatory networks. The transition from fetal to adult transcriptional programs coincides with a pulse of type I interferon signaling that activates many genes associated with the adultlike state. This pulse may sensitize HSCs/HPCs to mutations that drive leukemogenesis shortly after birth. If we can understand how developmental switches modulate HSC and HPC fate after birth-both under normal circumstances and in the setting of disease-causing mutations-we can potentially reprogram these switches to treat or prevent childhood leukemias.
Collapse
|
38
|
Mack R, Zhang L, Breslin Sj P, Zhang J. The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Rev Rep 2021; 17:2059-2080. [PMID: 34424480 DOI: 10.1007/s12015-021-10230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.
Collapse
Affiliation(s)
- Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin Sj
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
39
|
Borsari B, Villegas-Mirón P, Pérez-Lluch S, Turpin I, Laayouni H, Segarra-Casas A, Bertranpetit J, Guigó R, Acosta S. Enhancers with tissue-specific activity are enriched in intronic regions. Genome Res 2021; 31:1325-1336. [PMID: 34290042 PMCID: PMC8327915 DOI: 10.1101/gr.270371.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/23/2021] [Indexed: 01/07/2023]
Abstract
Tissue function and homeostasis reflect the gene expression signature by which the combination of ubiquitous and tissue-specific genes contribute to the tissue maintenance and stimuli-responsive function. Enhancers are central to control this tissue-specific gene expression pattern. Here, we explore the correlation between the genomic location of enhancers and their role in tissue-specific gene expression. We find that enhancers showing tissue-specific activity are highly enriched in intronic regions and regulate the expression of genes involved in tissue-specific functions, whereas housekeeping genes are more often controlled by intergenic enhancers, common to many tissues. Notably, an intergenic-to-intronic active enhancers continuum is observed in the transition from developmental to adult stages: the most differentiated tissues present higher rates of intronic enhancers, whereas the lowest rates are observed in embryonic stem cells. Altogether, our results suggest that the genomic location of active enhancers is key for the tissue-specific control of gene expression.
Collapse
Affiliation(s)
- Beatrice Borsari
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain
| | - Sílvia Pérez-Lluch
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Isabel Turpin
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain.,Bioinformatic Studies, ESCI-UPF, 08003, Barcelona, Spain
| | - Alba Segarra-Casas
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Catalonia, Spain
| | - Sandra Acosta
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain.,Department of Pathology and Experimental Therapeutics, Medical School, University of Barcelona, 08907, L'Hospitalet de Llobregat, Catalonia, Spain
| |
Collapse
|
40
|
Hallab JC, Nim HT, Stolper J, Chahal G, Waylen L, Bolk F, Elliott DA, Porrello E, Ramialison M. Towards spatio-temporally resolved developmental cardiac gene regulatory networks in zebrafish. Brief Funct Genomics 2021:elab030. [PMID: 34170300 DOI: 10.1093/bfgp/elab030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022] Open
Abstract
Heart formation in the zebrafish involves a rapid, complex series of morphogenetic events in three-dimensional space that spans cardiac lineage specification through to chamber formation and maturation. This process is tightly orchestrated by a cardiac gene regulatory network (GRN), which ensures the precise spatio-temporal deployment of genes critical for heart formation. Alterations of the timing or spatial localisation of gene expression can have a significant impact in cardiac ontogeny and may lead to heart malformations. Hence, a better understanding of the cellular and molecular basis of congenital heart disease relies on understanding the behaviour of cardiac GRNs with precise spatiotemporal resolution. Here, we review the recent technical advances that have expanded our capacity to interrogate the cardiac GRN in zebrafish. In particular, we focus on studies utilising high-throughput technologies to systematically dissect gene expression patterns, both temporally and spatially during heart development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mirana Ramialison
- Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| |
Collapse
|
41
|
Transcriptional and epigenetic control of hematopoietic stem cell fate decisions in vertebrates. Dev Biol 2021; 475:156-164. [PMID: 33689804 DOI: 10.1016/j.ydbio.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) are the foundation of adult hematopoiesis that produce all types of mature blood lineages. In vertebrates, HSC development is a stepwise process, coordinately regulated by chromatin architectures and a group of transcriptional and epigenetic regulators. A deeper understanding of the molecular mechanisms governing the generation, expansion, and function of HSCs holds great promise in the generation and expansion of engraftable HSCs in vitro for clinical applications. This study reviewed recent advances in transcriptional and epigenetic control of hematopoietic stem cell fate decisions in vertebrates.
Collapse
|
42
|
Lewis K, Yoshimoto M, Takebe T. Fetal liver hematopoiesis: from development to delivery. Stem Cell Res Ther 2021; 12:139. [PMID: 33597015 PMCID: PMC7890853 DOI: 10.1186/s13287-021-02189-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Clinical transplants of hematopoietic stem cells (HSC) can provide a lifesaving therapy for many hematological diseases; however, therapeutic applications are hampered by donor availability. In vivo, HSC exist in a specified microenvironment called the niche. While most studies of the niche focus on those residing in the bone marrow (BM), a better understanding of the fetal liver niche during development is vital to design human pluripotent stem cell (PSC) culture and may provide valuable insights with regard to expanding HSCs ex vivo for transplantation. This review will discuss the importance of the fetal liver niche in HSC expansion, a feat that occurs during development and has great clinical potential. We will also discuss emerging approaches to generate expandable HSC in cell culture that attain more complexity in the form of cells or organoid models in combination with engineering and systems biology approaches. Overall, delivering HSC by charting developmental principles will help in the understanding of the molecular and biological interactions between HSCs and fetal liver cells for their controlled maturation and expansion.
Collapse
Affiliation(s)
- Kyle Lewis
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Gastroenterology, Hepatology and Nutrition and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Momoko Yoshimoto
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA.
| | - Takanori Takebe
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Gastroenterology, Hepatology and Nutrition and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Institute of Research, Tokyo Medical and Dental University 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
43
|
Tsagaratou A. Deciphering the multifaceted roles of TET proteins in T-cell lineage specification and malignant transformation. Immunol Rev 2021; 300:22-36. [PMID: 33410200 DOI: 10.1111/imr.12940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
TET proteins are DNA demethylases that can oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC) and other oxidized mC bases (oxi-mCs). Importantly, TET proteins govern cell fate decisions during development of various cell types by activating a cell-specific gene expression program. In this review, we focus on the role of TET proteins in T-cell lineage specification. We explore the multifaceted roles of TET proteins in regulating gene expression in the contexts of T-cell development, lineage specification, function, and disease. Finally, we discuss the future directions and experimental strategies required to decipher the precise mechanisms employed by TET proteins to fine-tune gene expression and safeguard cell identity.
Collapse
Affiliation(s)
- Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Institute of Inflammatory Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Wiggans M, Pearson BJ. One stem cell program to rule them all? FEBS J 2020; 288:3394-3406. [PMID: 33063917 DOI: 10.1111/febs.15598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Many species of animals have stem cells that they maintain throughout their lives, which suggests that stem cells are an ancestral feature of all animals. From this, we take the viewpoint that cells with the biological properties of 'stemness'-self-renewal and multipotency-may share ancestral genetic circuitry. However, in practice is it very difficult to identify and compare stemness gene signatures across diverse animals and large evolutionary distances? First, it is critical to experimentally demonstrate self-renewal and potency. Second, genomic methods must be used to determine specific gene expression in stem cell types compared with non-stem cell types to determine stem cell gene enrichment. Third, gene homology must be mapped between diverse animals across large evolutionary distances. Finally, conserved genes that fulfill these criteria must be tested for role in stem cell function. It is our viewpoint that by comparing stem cell-specific gene signatures across evolution, ancestral programs of stemness can be uncovered, and ultimately, the dysregulation of stemness programs drives the state of cancer stem cells.
Collapse
Affiliation(s)
- Mallory Wiggans
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, ON, Canada
| | - Bret J Pearson
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| |
Collapse
|
45
|
Rodrigues CP, Shvedunova M, Akhtar A. Epigenetic Regulators as the Gatekeepers of Hematopoiesis. Trends Genet 2020; 37:S0168-9525(20)30251-1. [PMID: 34756331 DOI: 10.1016/j.tig.2020.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Hematopoiesis is the process by which both fetal and adult organisms derive the full repertoire of blood cells from a single multipotent progenitor cell type, the hematopoietic stem cells (HSCs). Correct enactment of this process relies on a synergistic interplay between genetically encoded differentiation programs and a host of cell-intrinsic and cell-extrinsic factors. These include the influence of the HSC niche microenvironment, action of specific transcription factors, and alterations in intracellular metabolic state. The consolidation of these inputs with the genetically encoded program into a coherent differentiation program for each lineage is thought to rely on epigenetic modifiers. Recent work has delineated the precise contributions of different classes of epigenetic modifiers to HSC self-renewal as well as lineage specification and differentiation into various cell types. Here, we bring together what is currently known about chromatin status and the development of cells in the hematopoietic system under normal and abnormal conditions.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
46
|
Zhu Q, Gao P, Tober J, Bennett L, Chen C, Uzun Y, Li Y, Howell ED, Mumau M, Yu W, He B, Speck NA, Tan K. Developmental trajectory of prehematopoietic stem cell formation from endothelium. Blood 2020; 136:845-856. [PMID: 32392346 PMCID: PMC7426642 DOI: 10.1182/blood.2020004801] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) in the bone marrow are derived from a small population of hemogenic endothelial (HE) cells located in the major arteries of the mammalian embryo. HE cells undergo an endothelial to hematopoietic cell transition, giving rise to HSPCs that accumulate in intra-arterial clusters (IAC) before colonizing the fetal liver. To examine the cell and molecular transitions between endothelial (E), HE, and IAC cells, and the heterogeneity of HSPCs within IACs, we profiled ∼40 000 cells from the caudal arteries (dorsal aorta, umbilical, vitelline) of 9.5 days post coitus (dpc) to 11.5 dpc mouse embryos by single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing. We identified a continuous developmental trajectory from E to HE to IAC cells, with identifiable intermediate stages. The intermediate stage most proximal to HE, which we term pre-HE, is characterized by increased accessibility of chromatin enriched for SOX, FOX, GATA, and SMAD motifs. A developmental bottleneck separates pre-HE from HE, with RUNX1 dosage regulating the efficiency of the pre-HE to HE transition. A distal candidate Runx1 enhancer exhibits high chromatin accessibility specifically in pre-HE cells at the bottleneck, but loses accessibility thereafter. Distinct developmental trajectories within IAC cells result in 2 populations of CD45+ HSPCs; an initial wave of lymphomyeloid-biased progenitors, followed by precursors of hematopoietic stem cells (pre-HSCs). This multiomics single-cell atlas significantly expands our understanding of pre-HSC ontogeny.
Collapse
Affiliation(s)
- Qin Zhu
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Peng Gao
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Joanna Tober
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Laura Bennett
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Changya Chen
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Yasin Uzun
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Yan Li
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Elizabeth D Howell
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Melanie Mumau
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Wenbao Yu
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Bing He
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Kai Tan
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
47
|
Qiu Y, Huang S. CTCF-mediated genome organization and leukemogenesis. Leukemia 2020; 34:2295-2304. [PMID: 32518417 DOI: 10.1038/s41375-020-0906-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Recent technological advancements and genome-wide studies provide compelling evidence that dynamic chromatin interaction and three-dimensional genome organization in nuclei play an important role in regulating gene expression. Mammalian genomes consist of many small functional domains termed topologically associated domains (TADs), many of them organized by CCCTC-binding factor (CTCF) and the cohesion complex. Changes in genome TADs might result in inappropriate promoter/enhancer communications leading to activation of oncogenes or suppression of tumor suppressors. During normal hematopoiesis and leukemogenesis, genome structure alters considerably to facilitate normal and malignant hematopoiesis, respectively. Delineating theses normal and abnormal processes will evolve our understanding of disease pathogenesis and development of potential treatment strategies. This review highlights the role of CTCF and its associated protein complexes in three-dimensional genome organization in development and leukemogenesis, as well as the roles of CTCF boundary defined TAD in transcription regulation. We further explore the function of chromatin modulators, such as CTCF, cohesin, and long noncoding RNAs (lncRNAs) in chromosomal interactions and hematopoietic genome organization. Finally, we focus on the implication of 3D genome alteration in the pathogenesis of leukemia and provide a scientific basis for targeted intervention.
Collapse
Affiliation(s)
- Yi Qiu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 16033, USA. .,Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 16033, USA.
| | - Suming Huang
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 16033, USA. .,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 16033, USA.
| |
Collapse
|
48
|
Gao P, Chen C, Howell ED, Li Y, Tober J, Uzun Y, He B, Gao L, Zhu Q, Siekmann AF, Speck NA, Tan K. Transcriptional regulatory network controlling the ontogeny of hematopoietic stem cells. Genes Dev 2020; 34:950-964. [PMID: 32499402 PMCID: PMC7328518 DOI: 10.1101/gad.338202.120] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
In this study from Gao et al., the authors performed RNA-seq and histone mark ChIP-seq to define the transcriptomes and epigenomes of cells representing key developmental stages of HSC ontogeny in mice. Using a novel computational algorithm, target inference via physical connection (TIPC), they constructed developmental stage-specific transcriptional regulatory networks by linking enhancers and predicted bound transcription factors to their target promoters, thus providing a useful resource for uncovering regulators of HSC formation. Hematopoietic stem cell (HSC) ontogeny is accompanied by dynamic changes in gene regulatory networks. We performed RNA-seq and histone mark ChIP-seq to define the transcriptomes and epigenomes of cells representing key developmental stages of HSC ontogeny in mice. The five populations analyzed were embryonic day 10.5 (E10.5) endothelium and hemogenic endothelium from the major arteries, an enriched population of prehematopoietic stem cells (pre-HSCs), fetal liver HSCs, and adult bone marrow HSCs. Using epigenetic signatures, we identified enhancers for each developmental stage. Only 12% of enhancers are primed, and 78% are active, suggesting the vast majority of enhancers are established de novo without prior priming in earlier stages. We constructed developmental stage-specific transcriptional regulatory networks by linking enhancers and predicted bound transcription factors to their target promoters using a novel computational algorithm, target inference via physical connection (TIPC). TIPC predicted known transcriptional regulators for the endothelial-to-hematopoietic transition, validating our overall approach, and identified putative novel transcription factors, including the broadly expressed transcription factors SP3 and MAZ. Finally, we validated a role for SP3 and MAZ in the formation of hemogenic endothelium. Our data and computational analyses provide a useful resource for uncovering regulators of HSC formation.
Collapse
Affiliation(s)
- Peng Gao
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Changya Chen
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Elizabeth D Howell
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yan Li
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joanna Tober
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yasin Uzun
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Bing He
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Long Gao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Qin Zhu
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arndt F Siekmann
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kai Tan
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|