1
|
Matz HC, McIntire KM, Ellebedy AH. 'Persistent germinal center responses: slow-growing trees bear the best fruits'. Curr Opin Immunol 2023; 83:102332. [PMID: 37150126 PMCID: PMC10829534 DOI: 10.1016/j.coi.2023.102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Germinal centers (GCs) are key microanatomical sites in lymphoid organs where responding B cells mature and undergo affinity-based selection. The duration of the GC reaction has long been assumed to be relatively brief, but recent studies in humans, nonhuman primates, and mice indicate that GCs can last for weeks to months after initial antigen exposure. This review examines recent studies investigating the factors that influence GC duration, including antigen persistence, T-follicular helper cells, and mode of immunization. Potential mechanisms for how persistent GCs influence the B-cell repertoire are considered. Overall, these studies provide a blueprint for how to design better vaccines that elicit persistent GC responses.
Collapse
Affiliation(s)
- Hanover C Matz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Katherine M McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, USA.
| |
Collapse
|
2
|
Generation of a single-cell B cell atlas of antibody repertoires and transcriptomes to identify signatures associated with antigen specificity. iScience 2023; 26:106055. [PMID: 36852274 PMCID: PMC9958373 DOI: 10.1016/j.isci.2023.106055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Although new genomics-based pipelines have potential to augment antibody discovery, these methods remain in their infancy due to an incomplete understanding of the selection process that governs B cell clonal selection, expansion, and antigen specificity. Furthermore, it remains unknown how factors such as aging and reduction of tolerance influence B cell selection. Here we perform single-cell sequencing of antibody repertoires and transcriptomes of murine B cells following immunizations with a model therapeutic antigen target. We determine the relationship between antibody repertoires, gene expression signatures, and antigen specificity across 100,000 B cells. Recombinant expression and characterization of 227 monoclonal antibodies revealed the existence of clonally expanded and class-switched antigen-specific B cells that were more frequent in young mice. Although integrating multiple repertoire features such as germline gene usage and transcriptional signatures failed to distinguish antigen-specific from nonspecific B cells, other features such as immunoglobulin G (IgG) subtype and sequence composition correlated with antigen specificity.
Collapse
|
3
|
Han J, Masserey S, Shlesinger D, Kuhn R, Papadopoulou C, Agrafiotis A, Kreiner V, Dizerens R, Hong KL, Weber C, Greiff V, Oxenius A, Reddy ST, Yermanos A. Echidna: integrated simulations of single-cell immune receptor repertoires and transcriptomes. BIOINFORMATICS ADVANCES 2022; 2:vbac062. [PMID: 36699357 PMCID: PMC9710610 DOI: 10.1093/bioadv/vbac062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/31/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023]
Abstract
Motivation Single-cell sequencing now enables the recovery of full-length immune receptor repertoires [B cell receptor (BCR) and T cell receptor (TCR) repertoires], in addition to gene expression information. The feature-rich datasets produced from such experiments require extensive and diverse computational analyses, each of which can significantly influence the downstream immunological interpretations, such as clonal selection and expansion. Simulations produce validated standard datasets, where the underlying generative model can be precisely defined and furthermore perturbed to investigate specific questions of interest. Currently, there is no tool that can be used to simulate single-cell datasets incorporating immune receptor repertoires and gene expression. Results We developed Echidna, an R package that simulates immune receptors and transcriptomes at single-cell resolution with user-tunable parameters controlling a wide range of features such as clonal expansion, germline gene usage, somatic hypermutation, transcriptional phenotypes and spatial location. Echidna can additionally simulate time-resolved B cell evolution, producing mutational networks with complex selection histories incorporating class-switching and B cell subtype information. We demonstrated the benchmarking potential of Echidna by simulating clonal lineages and comparing the known simulated networks with those inferred from only the BCR sequences as input. Finally, we simulated immune repertoire information onto existing spatial transcriptomic experiments, thereby generating novel datasets that could be used to develop and integrate methods to profile clonal selection in a spatially resolved manner. Together, Echidna provides a framework that can incorporate experimental data to simulate single-cell immune repertoires to aid software development and bioinformatic benchmarking of clonotyping, phylogenetics, transcriptomics and machine learning strategies. Availability and implementation The R package and code used in this manuscript can be found at github.com/alexyermanos/echidna and also in the R package Platypus (Yermanos et al., 2021). Installation instructions and the vignette for Echidna is described in the Platypus Computational Ecosystem (https://alexyermanos.github.io/Platypus/index.html). Publicly available data and corresponding sample accession numbers can be found in Supplementary Tables S2 and S3. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Jiami Han
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Solène Masserey
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Chrysa Papadopoulou
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Victor Kreiner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Raphael Dizerens
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Cédric Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo 0450, Norway
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | | |
Collapse
|
4
|
Shlesinger D, Hong KL, Shammas G, Page N, Sandu I, Agrafiotis A, Kreiner V, Fonta N, Vincenti I, Wagner I, Piccinno M, Mariotte A, Klimek B, Dizerens R, Manero-Carranza M, Kuhn R, Ehling R, Frei L, Khodaverdi K, Panetti C, Joller N, Oxenius A, Merkler D, Reddy ST, Yermanos A. Single-cell immune repertoire sequencing of B and T cells in murine models of infection and autoimmunity. Genes Immun 2022; 23:183-195. [PMID: 36028771 PMCID: PMC9519453 DOI: 10.1038/s41435-022-00180-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Adaptive immune repertoires are composed by the ensemble of B and T-cell receptors within an individual, reflecting both past and current immune responses. Recent advances in single-cell sequencing enable recovery of the complete adaptive immune receptor sequences in addition to transcriptional information. Here, we recovered transcriptome and immune repertoire information for polyclonal T follicular helper cells following lymphocytic choriomeningitis virus (LCMV) infection, CD8+ T cells with binding specificity restricted to two distinct LCMV peptides, and B and T cells isolated from the nervous system in the context of experimental autoimmune encephalomyelitis. We could relate clonal expansion, germline gene usage, and clonal convergence to cell phenotypes spanning activation, memory, naive, antibody secretion, T-cell inflation, and regulation. Together, this dataset provides a resource for immunologists that can be integrated with future single-cell immune repertoire and transcriptome sequencing datasets.
Collapse
Affiliation(s)
- Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ghazal Shammas
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Victor Kreiner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nicolas Fonta
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Alexandre Mariotte
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Raphael Dizerens
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Roy Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Lester Frei
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Keywan Khodaverdi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Camilla Panetti
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Nicole Joller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Bocharov G, Grebennikov D, Cebollada Rica P, Domenjo-Vila E, Casella V, Meyerhans A. Functional cure of a chronic virus infection by shifting the virus - host equilibrium state. Front Immunol 2022; 13:904342. [PMID: 36110838 PMCID: PMC9468810 DOI: 10.3389/fimmu.2022.904342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical handling of chronic virus infections remains a challenge. Here we describe recent progress in the understanding of virus - host interaction dynamics. Based on the systems biology concept of multi-stability and the prediction of multiplicative cooperativity between virus-specific cytotoxic T cells and neutralising antibodies, we argue for the requirements to engage multiple immune system components for functional cure strategies. Our arguments are derived from LCMV model system studies and are translated to HIV-1 infection.
Collapse
Affiliation(s)
- Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitry Grebennikov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Paula Cebollada Rica
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Eva Domenjo-Vila
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentina Casella
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
6
|
Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH. Advances in antibody phage display technology. Drug Discov Today 2022; 27:2151-2169. [PMID: 35550436 DOI: 10.1016/j.drudis.2022.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 01/06/2023]
Abstract
Phage display technology can be used for the discovery of antibodies for research, diagnostic, and therapeutic purposes. In this review, we present and discuss key parameters that can be optimized when performing phage display selection campaigns, including the use of different antibody formats and advanced strategies for antigen presentation, such as immobilization, liposomes, nanodiscs, virus-like particles, and whole cells. Furthermore, we provide insights into selection strategies that can be used for the discovery of antibodies with complex binding requirements, such as targeting a specific epitope, cross-reactivity, or pH-dependent binding. Lastly, we provide a description of specialized phage display libraries for the discovery of bispecific antibodies and pH-sensitive antibodies. Together, these methods can be used to improve antibody discovery campaigns against all types of antigen. Teaser: This review provides an overview of the different strategies that can be exploited to improve the success rate of antibody phage display discovery campaigns, addressing key parameters, such as antigen presentation, selection methodologies, and specialized libraries.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yessica Wouters
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - John McCafferty
- Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK; Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
Kuhn R, Sandu I, Agrafiotis A, Hong KL, Shlesinger D, Neimeier D, Merkler D, Oxenius A, Reddy ST, Yermanos A. Clonally Expanded Virus-Specific CD8 T Cells Acquire Diverse Transcriptional Phenotypes During Acute, Chronic, and Latent Infections. Front Immunol 2022; 13:782441. [PMID: 35185882 PMCID: PMC8847396 DOI: 10.3389/fimmu.2022.782441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
CD8+ T cells play a crucial role in the control and resolution of viral infections and can adopt a wide range of phenotypes and effector functions depending on the inflammatory context and the duration and extent of antigen exposure. Similarly, viral infections can exert diverse selective pressures on populations of clonally related T cells. Technical limitations have nevertheless made it challenging to investigate the relationship between clonal selection and transcriptional phenotypes of virus-specific T cells. We therefore performed single-cell T cell receptor (TCR) repertoire and transcriptome sequencing of virus-specific CD8 T cells in murine models of acute, chronic and latent infection. We observed clear infection-specific populations corresponding to memory, effector, exhausted, and inflationary phenotypes. We further uncovered a mouse-specific and polyclonal T cell response, despite all T cells sharing specificity to a single viral epitope, which was accompanied by stereotypic TCR germline gene usage in all three infection types. Persistent antigen exposure during chronic and latent viral infections resulted in a higher proportion of clonally expanded T cells relative to acute infection. We furthermore observed a relationship between transcriptional heterogeneity and clonal expansion for all three infections, with highly expanded clones having distinct transcriptional phenotypes relative to less expanded clones. Together our work relates clonal selection to gene expression in the context of viral infection and further provides a dataset and accompanying software for the immunological community.
Collapse
Affiliation(s)
- Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel Neimeier
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | | | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
O’Neal KA, Latham LE, Ntirandekura E, Foscue CL, Stumhofer JS. ICOS Expression Is Required for Maintenance but Not the Formation of Germinal Centers in the Spleen in Response to Plasmodium yoelii Infection. Infect Immun 2022; 90:e0046821. [PMID: 35007126 PMCID: PMC8929343 DOI: 10.1128/iai.00468-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
Inducible T cell costimulator (ICOS) plays a key role in the differentiation and maintenance of follicular helper T (Tfh) cells and, thus, germinal center (GC) formation. Previously, our laboratory showed in a Plasmodium chabaudi infection model that Icos-/- mice were significantly impaired in their ability to form GCs despite persistent infection and, thus, a continued antigen (Ag) load. Here, we show that the resolution of primary infection with Plasmodium yoelii was delayed in Icos-/- mice. This phenotype was associated with a reduction in the accumulation of Tfh-like and GC Tfh cells and an early deficiency in Ag-specific antibody (Ab) production. However, Icos-/- mice could form GCs, although they were less frequent in number than in wild-type (WT) mice. Nonetheless, the Ag-specific Abs from Icos-/- mice lacked signs of affinity maturation, suggesting functional defects associated with these GCs. Eventually, these GC structures dissipated more rapidly in Icos-/- mice than in WT mice. Moreover, the ability of Icos-/- mice to form these GC structures is not reliant on the high Ag loads associated with P. yoelii infections, as GC formation was preserved in Icos-/- mice treated with atovaquone. Finally, mice were unable to form secondary GCs in the absence of ICOS after rechallenge. Overall, these data demonstrate the necessity of ICOS in the maintenance of Tfh cells, the formation and maintenance of sufficient numbers of functioning GCs, and the ability to generate new GC structures after reinfection with P. yoelii.
Collapse
Affiliation(s)
- Kara A. O’Neal
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| | - Leah E. Latham
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| | - Enatha Ntirandekura
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| | - Camille L. Foscue
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| | - Jason S. Stumhofer
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Wu H, Zhou Z, Xie S, Yan R, Gong M, Tian X, Wang Z. Similarity measurements of B cell receptor repertoire in baseline mice showed spectrum convergence of IgM. BMC Immunol 2022; 23:11. [PMID: 35246036 PMCID: PMC8895918 DOI: 10.1186/s12865-022-00482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The B cell receptor (BCR) repertoire is highly diverse among individuals. Poor similarity of the spectrum among inbred baseline mice may limit the ability to discriminate true signals from those involving specific experimental factors. The repertoire similarity of the baseline status lacks intensive measurements. RESULTS We measured the repertoire similarity of IgH in blood and spleen samples from untreated BALB/c and C57BL/6J mice to investigate the baseline status of the two inbred strains. The antibody pool was stratified by the isotype of IgA, IgG and IgM. Between individuals, the results showed better convergence of CDR3 and clonal lineage profiles in IgM than in IgA and IgG, and better robustness of somatic mutation networks in IgM than in IgA and IgG. It also showed that the CDR3 clonotypes and clonal lineages shared better in the spleen samples than in the blood samples. The animal batch differences were detected in CDR3 evenness, mutated clonotype proportions, and maximal network degrees. A cut-off of 95% identity in the CDR3 nucleotide sequences was suitable for clonal lineage establishment. CONCLUSIONS Our findings reveal a natural landscape of BCR repertoire similarities between baseline mice and provide a solid reference for designing studies of mouse BCR repertoires.
Collapse
Affiliation(s)
- Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shi Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxing Gong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhanhui Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Broketa M, Bruhns P. Single-Cell Technologies for the Study of Antibody-Secreting Cells. Front Immunol 2022; 12:821729. [PMID: 35173713 PMCID: PMC8841722 DOI: 10.3389/fimmu.2021.821729] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Antibody-secreting cells (ASC), plasmablasts and plasma cells, are terminally differentiated B cells responsible for large-scale production and secretion of antibodies. ASC are derived from activated B cells, which may differentiate extrafollicularly or form germinal center (GC) reactions within secondary lymphoid organs. ASC therefore consist of short-lived, poorly matured plasmablasts that generally secrete lower-affinity antibodies, or long-lived, highly matured plasma cells that generally secrete higher-affinity antibodies. The ASC population is responsible for producing an immediate humoral B cell response, the polyclonal antibody repertoire, as well as in parallel building effective humoral memory and immunity, or potentially driving pathology in the case of autoimmunity. ASC are phenotypically and transcriptionally distinct from other B cells and further distinguishable by morphology, varied lifespans, and anatomical localization. Single cell analyses are required to interrogate the functional and transcriptional diversity of ASC and their secreted antibody repertoire and understand the contribution of individual ASC responses to the polyclonal humoral response. Here we summarize the current and emerging functional and molecular techniques for high-throughput characterization of ASC with single cell resolution, including flow and mass cytometry, spot-based and microfluidic-based assays, focusing on functional approaches of the secreted antibodies: specificity, affinity, and secretion rate.
Collapse
Affiliation(s)
- Matteo Broketa
- Institut Pasteur, Université de Paris, INSERM UMR 1222, Unit of Antibodies in Therapy and Pathology, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris, INSERM UMR 1222, Unit of Antibodies in Therapy and Pathology, Paris, France
| |
Collapse
|
11
|
Neumeier D, Pedrioli A, Genovese A, Sandu I, Ehling R, Hong KL, Papadopoulou C, Agrafiotis A, Kuhn R, Shlesinger D, Robbiani D, Han J, Hauri L, Csepregi L, Greiff V, Merkler D, Reddy ST, Oxenius A, Yermanos A. Profiling the specificity of clonally expanded plasma cells during chronic viral infection by single-cell analysis. Eur J Immunol 2021; 52:297-311. [PMID: 34727578 PMCID: PMC9299196 DOI: 10.1002/eji.202149331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
Plasma cells and their secreted antibodies play a central role in the long-term protection against chronic viral infection. However, due to experimental limitations, a comprehensive description of linked genotypic, phenotypic, and antibody repertoire features of plasma cells (gene expression, clonal frequency, virus specificity, and affinity) has been challenging to obtain. To address this, we performed single-cell transcriptome and antibody repertoire sequencing of the murine BM plasma cell population following chronic lymphocytic choriomeningitis virus infection. Our single-cell sequencing approach recovered full-length and paired heavy- and light-chain sequence information for thousands of plasma cells and enabled us to perform recombinant antibody expression and specificity screening. Antibody repertoire analysis revealed that, relative to protein immunization, chronic infection led to increased levels of clonal expansion, class-switching, and somatic variants. Furthermore, antibodies from the highly expanded and class-switched (IgG) plasma cells were found to be specific for multiple viral antigens and a subset of clones exhibited cross-reactivity to nonviral and autoantigens. Integrating single-cell transcriptome data with antibody specificity suggested that plasma cell transcriptional phenotype was correlated to viral antigen specificity. Our findings demonstrate that chronic viral infection can induce and sustain plasma cell clonal expansion, combined with significant somatic hypermutation, and can generate cross-reactive antibodies.
Collapse
Affiliation(s)
- Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Roy Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Chrysa Papadopoulou
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Damiano Robbiani
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jiami Han
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Laura Hauri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Chronic LCMV Infection Is Fortified with Versatile Tactics to Suppress Host T Cell Immunity and Establish Viral Persistence. Viruses 2021; 13:v13101951. [PMID: 34696381 PMCID: PMC8537583 DOI: 10.3390/v13101951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Ever since the immune regulatory strains of lymphocytic choriomeningitis virus (LCMV), such as Clone 13, were isolated, LCMV infection of mice has served as a valuable model for the mechanistic study of viral immune suppression and virus persistence. The exhaustion of virus-specific T cells was demonstrated during LCMV infection, and the underlying mechanisms have been extensively investigated using LCMV infection in mouse models. In particular, the mechanism for gradual CD8+ T cell exhaustion at molecular and transcriptional levels has been investigated. These studies revealed crucial roles for inhibitory receptors, surface markers, regulatory cytokines, and transcription factors, including PD-1, PSGL-1, CXCR5, and TOX in the regulation of T cells. However, the action mode for CD4+ T cell suppression is largely unknown. Recently, sphingosine kinase 2 was proven to specifically repress CD4+ T cell proliferation and lead to LCMV persistence. As CD4+ T cell regulation was also known to be important for viral persistence, research to uncover the mechanism for CD4+ T cell repression could help us better understand how viruses launch and prolong their persistence. This review summarizes discoveries derived from the study of LCMV in regard to the mechanisms for T cell suppression and approaches for the termination of viral persistence with special emphasis on CD8+ T cells.
Collapse
|
13
|
Progress and challenges in mass spectrometry-based analysis of antibody repertoires. Trends Biotechnol 2021; 40:463-481. [PMID: 34535228 DOI: 10.1016/j.tibtech.2021.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
Humoral immunity is divided into the cellular B cell and protein-level antibody responses. High-throughput sequencing has advanced our understanding of both these fundamental aspects of B cell immunology as well as aspects pertaining to vaccine and therapeutics biotechnology. Although the protein-level serum and mucosal antibody repertoire make major contributions to humoral protection, the sequence composition and dynamics of antibody repertoires remain underexplored. This limits insight into important immunological and biotechnological parameters such as the number of antigen-specific antibodies, which are for example, relevant for pathogen neutralization, microbiota regulation, severity of autoimmunity, and therapeutic efficacy. High-resolution mass spectrometry (MS) has allowed initial insights into the antibody repertoire. We outline current challenges in MS-based sequence analysis of antibody repertoires and propose strategies for their resolution.
Collapse
|
14
|
Arulraj T, Binder SC, Robert PA, Meyer-Hermann M. Germinal Centre Shutdown. Front Immunol 2021; 12:705240. [PMID: 34305944 PMCID: PMC8293096 DOI: 10.3389/fimmu.2021.705240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Germinal Centres (GCs) are transient structures in secondary lymphoid organs, where affinity maturation of B cells takes place following an infection. While GCs are responsible for protective antibody responses, dysregulated GC reactions are associated with autoimmune disease and B cell lymphoma. Typically, ‘normal’ GCs persist for a limited period of time and eventually undergo shutdown. In this review, we focus on an important but unanswered question – what causes the natural termination of the GC reaction? In murine experiments, lack of antigen, absence or constitutive T cell help leads to premature termination of the GC reaction. Consequently, our present understanding is limited to the idea that GCs are terminated due to a decrease in antigen access or changes in the nature of T cell help. However, there is no direct evidence on which biological signals are primarily responsible for natural termination of GCs and a mechanistic understanding is clearly lacking. We discuss the present understanding of the GC shutdown, from factors impacting GC dynamics to changes in cellular interactions/dynamics during the GC lifetime. We also address potential missing links and remaining questions in GC biology, to facilitate further studies to promote a better understanding of GC shutdown in infection and immune dysregulation.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
15
|
Yermanos A, Agrafiotis A, Kuhn R, Robbiani D, Yates J, Papadopoulou C, Han J, Sandu I, Weber C, Bieberich F, Vazquez-Lombardi R, Dounas A, Neumeier D, Oxenius A, Reddy ST. Platypus: an open-access software for integrating lymphocyte single-cell immune repertoires with transcriptomes. NAR Genom Bioinform 2021; 3:lqab023. [PMID: 33884369 PMCID: PMC8046018 DOI: 10.1093/nargab/lqab023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
High-throughput single-cell sequencing (scSeq) technologies are revolutionizing the ability to molecularly profile B and T lymphocytes by offering the opportunity to simultaneously obtain information on adaptive immune receptor repertoires (VDJ repertoires) and transcriptomes. An integrated quantification of immune repertoire parameters, such as germline gene usage, clonal expansion, somatic hypermutation and transcriptional states opens up new possibilities for the high-resolution analysis of lymphocytes and the inference of antigen-specificity. While multiple tools now exist to investigate gene expression profiles from scSeq of transcriptomes, there is a lack of software dedicated to single-cell immune repertoires. Here, we present Platypus, an open-source software platform providing a user-friendly interface to investigate B-cell receptor and T-cell receptor repertoires from scSeq experiments. Platypus provides a framework to automate and ease the analysis of single-cell immune repertoires while also incorporating transcriptional information involving unsupervised clustering, gene expression and gene ontology. To showcase the capabilities of Platypus, we use it to analyze and visualize single-cell immune repertoires and transcriptomes from B and T cells from convalescent COVID-19 patients, revealing unique insight into the repertoire features and transcriptional profiles of clonally expanded lymphocytes. Platypus will expedite progress by facilitating the analysis of single-cell immune repertoire and transcriptome sequencing.
Collapse
Affiliation(s)
- Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Damiano Robbiani
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Josephine Yates
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Chrysa Papadopoulou
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Jiami Han
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Cédric Weber
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | | | - Andreas Dounas
- Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
16
|
Burton AR, Maini MK. Human antiviral B cell responses: Emerging lessons from hepatitis B and COVID-19. Immunol Rev 2021; 299:108-117. [PMID: 33559128 PMCID: PMC8014162 DOI: 10.1111/imr.12953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
Humoral immunity is a critical component of the coordinated response required to resolve viral infections and mediate protection following pathogen clearance or vaccination. A better understanding of factors shaping the memory B cell response will allow tailored development of efficient preventative vaccines against emerging acute viral infections, therapeutic vaccines, and immunotherapies for chronic viral infections. Here, we use recent data obtained by profiling antigen-specific B cell responses in hepatitis B as a framework to explore lessons that can be learnt from different viral infections about the diverse influences on humoral immunity. Hepatitis B provides a paradigm where successful B cell responses in resolved or vaccinated individuals can be contrasted to the failed response in chronic infection, while also exemplifying the degree to which B cell responses within infected individuals can differ to two antigens from the same virus. Drawing on studies in other human and murine infections, including emerging data from COVID-19, we consider the influence of antigen quantity and structure on the quality of the B cell response, the role of differential CD4 help, the importance of germinal center vs extrafollicular responses and the emerging concept that responses residing in non-lymphoid organs can participate in B cell memory.
Collapse
|
17
|
Fallet B, Hao Y, Florova M, Cornille K, de Los Aires AV, Girelli Zubani G, Ertuna YI, Greiff V, Menzel U, Hammad K, Merkler D, Reddy ST, Weill JC, Reynaud CA, Pinschewer DD. Chronic Viral Infection Promotes Efficient Germinal Center B Cell Responses. Cell Rep 2020; 30:1013-1026.e7. [PMID: 31995746 PMCID: PMC6996002 DOI: 10.1016/j.celrep.2019.12.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
Persistent viral infections subvert key elements of adaptive immunity. To compare germinal center (GC) B cell responses in chronic and acute lymphocytic choriomeningitis virus infection, we exploit activation-induced deaminase (AID) fate-reporter mice and perform adoptive B cell transfer experiments. Chronic infection yields GC B cell responses of higher cellularity than acute infections do, higher memory B cell and antibody secreting cell output for longer periods of time, a better representation of the late B cell repertoire in serum immunoglobulin, and higher titers of protective neutralizing antibodies. GC B cells of chronically infected mice are similarly hypermutated as those emerging from acute infection. They efficiently adapt to viral escape variants and even in hypermutation-impaired AID mutant mice, chronic infection selects for GC B cells with hypermutated B cell receptors (BCRs) and neutralizing antibody formation. These findings demonstrate that, unlike for CD8+ T cells, chronic viral infection drives a functional, productive, and protective GC B cell response. Chronic viral infection elicits potent and sustained germinal center (GC) responses Chronic infection triggers prolonged plasma cell and memory B cell output from GCs GC B cells hypermutate efficiently and are potently selected in chronic infection
Collapse
Affiliation(s)
- Bénédict Fallet
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Yi Hao
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marianna Florova
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Karen Cornille
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Alba Verge de Los Aires
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Giulia Girelli Zubani
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yusuf I Ertuna
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Victor Greiff
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Department of Immunology, University of Oslo, Oslo, Norway
| | - Ulrike Menzel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Karim Hammad
- Department of Pathology and Immunology, Division of Clinical Pathology, University & University Hospital of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University & University Hospital of Geneva, Geneva, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jean-Claude Weill
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claude-Agnès Reynaud
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Daniel D Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland.
| |
Collapse
|
18
|
Loos C, Lauffenburger DA, Alter G. Dissecting the antibody-OME: past, present, and future. Curr Opin Immunol 2020; 65:89-96. [PMID: 32755751 DOI: 10.1016/j.coi.2020.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Humoral immunity is key to protection for nearly all licensed vaccines. Yet, the design of vaccines has been more difficult for some of our most deadly killers (e.g. HIV, influenza, Dengue virus, etc.), likely due to our incomplete understanding of the precise immunological mechanisms associated with protection. Humoral immunity is governed both by B-cells and their bi-functional secreted antibodies, all of which have a unique capacity to evolve during an immune response. Current OMIC technologies capture individual features of the humoral immune response, providing a glimpse into humoral components (Fab/Fc/B-cell-omic), but fail to provide a wholistic view of the humoral response as a collective functional arm. Here, we dissect current OMIC strategies reviewing experimental and computational approaches, that if integrated could provide a true systems-level view of the humoral immune response.
Collapse
Affiliation(s)
- Carolin Loos
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Galit Alter
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Yermanos A, Sandu I, Pedrioli A, Borsa M, Wagen F, Oetiker N, Welten SPM, Pallmer K, Reddy ST, Oxenius A. Profiling Virus-Specific Tcf1+ T Cell Repertoires During Acute and Chronic Viral Infection. Front Immunol 2020; 11:986. [PMID: 32547546 PMCID: PMC7272574 DOI: 10.3389/fimmu.2020.00986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
CD8 T cells play a crucial role in providing protection from viral infections. It has recently been established that a subset of CD8 T cells expressing Tcf1 are responsible for sustaining exhausted T cells during chronic lymphocytic choriomeningitis virus (LCMV) infection. Many of these studies, however, have been performed using T cell receptor (TCR) transgenic mice, in which CD8 T cells express a monoclonal TCR specific for the LCMV glycoprotein. To investigate whether the Tcf1+ and Tcf1- repertoires are naturally composed of similar or different clones in wild-type mice exposed to acute or chronic LCMV infection, we performed TCR repertoire sequencing of virus-specific CD8 T cells, including Tcf1+ and Tcf1- populations. Our analysis revealed that the Tcf1+ TCR repertoire is maintained at an equal or higher degree of clonal diversity despite harboring fewer cells. Additionally, within the same animal, there was extensive clonal overlap between the Tcf1+ and Tcf1- repertoires in both chronic and acute LCMV infection. We could further detect these virus-specific clones in longitudinal blood samples earlier in the infection. With respect to common repertoire parameters (clonal overlap, germline gene usage, and clonal expansion), we found minor differences between the virus-specific TCR repertoire of acute and chronic LCMV infection 40 days post infection. Overall, our results indicate that the Tcf1+ population emerging during chronic LCMV infection is not clonally distinct from the Tcf1- population, supporting the notion that the Tcf1+ pool is indeed a fuel for the more exhausted Tcf1- population within the heterogenous repertoire of LCMV-specific CD8 T cells.
Collapse
Affiliation(s)
- Alexander Yermanos
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Mariana Borsa
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | - Sai T. Reddy
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
| | | |
Collapse
|
20
|
Yermanos A, Kräutler NJ, Pedrioli A, Menzel U, Greiff V, Stadler T, Oxenius A, Reddy ST. IgM Antibody Repertoire Fingerprints in Mice Are Personalized but Robust to Viral Infection Status. Front Cell Infect Microbiol 2020; 10:254. [PMID: 32547966 PMCID: PMC7270205 DOI: 10.3389/fcimb.2020.00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/30/2020] [Indexed: 01/11/2023] Open
Abstract
Antibody repertoire sequencing provides a molecular fingerprint of current and past pathogens encountered by the immune system. Most repertoire studies in humans require measuring the B cell response in the blood, resulting in a large bias to the IgM isotype. The extent to which the circulating IgM antibody repertoire correlates to lymphoid tissue-resident B cells in the setting of viral infection remains largely uncharacterized. Therefore, we compared the IgM repertoires from both blood and bone marrow (BM) plasma cells (PCs) following acute or chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Despite previously reported serum alterations between acute and chronic infection, IgM repertoire signatures based on clonal diversity metrics, public clones, network, and phylogenetic analysis were largely unable to distinguish infection cohorts. Our findings, however, revealed mouse-specific repertoire fingerprints between the blood and PC repertoires irrespective of infection status.
Collapse
Affiliation(s)
- Alexander Yermanos
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Ulrike Menzel
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Tanja Stadler
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Sai T Reddy
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|