1
|
Odeh A, Sela M, Zaffryar-Eilot S, Shemesh A, Saleh MA, Mizrahi I, Coren L, Schroeder A, Hasson P. Anti-fibrotic, muscle-promoting antibody-drug conjugates for the improvement and treatment of DMD. iScience 2025; 28:112335. [PMID: 40276765 PMCID: PMC12020903 DOI: 10.1016/j.isci.2025.112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/09/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Fibrosis, characterized by the deposition of excess and disorganized extracellular matrix (ECM), is a key pathological hallmark of multiple diseases, including Duchenne muscular dystrophy (DMD). Aiming to inhibit fibrosis progression, we generated an antibody-drug conjugate (ADC) that delivers an innovative small molecule conjugate to inhibit the ECM-modifying enzyme Lysyl oxidase (LOX) specifically in fibrotic lesions by targeting M2 macrophages. Administration of the ADC to mdx mice, the murine model of DMD, results in ADC accumulation in fibrotic muscles without affecting healthy tissues. Long-term ADC treatments of adult mdx mice lead to inhibition of the fibrotic process and to significant improvement of cardiac and skeletal muscle function. Our study demonstrates that targeted inhibition of LOX-dependent fibrotic diseases, such as DMD, facilitates improved outcomes for muscular dystrophies.
Collapse
Affiliation(s)
- Anas Odeh
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion – Israel Institute of Technology, Haifa 31096, Israel
| | - Mor Sela
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion – Israel Institute of Technology, Haifa 31096, Israel
| | - Ariel Shemesh
- Biomedical Core Facilities, The Rappaport Faculty of Medicine and Research Institute, Technion – Israel Institute of Technology, Haifa, Israel
| | - Maher Abu Saleh
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion – Israel Institute of Technology, Haifa 31096, Israel
| | - Ido Mizrahi
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion – Israel Institute of Technology, Haifa 31096, Israel
| | - Lavi Coren
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion – Israel Institute of Technology, Haifa 31096, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion – Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
2
|
Yi L, Wang K, Liufu S, Chen W, Chen B, Liu X, Liu C, Liu J, Xu X, Ma H. LC-MS/MS based metabolomics reveals the mechanism of skeletal muscle regeneration. BMC Musculoskelet Disord 2025; 26:457. [PMID: 40346552 PMCID: PMC12065226 DOI: 10.1186/s12891-025-08703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Skeletal muscle possesses a robust regenerative capacity and can effectively repair itself following injury. However, research on the metabolic changes during skeletal muscle regeneration in large animals remains relatively limited. Therefore, in this study, we used pigs as a model and applied non-targeted LC-MS/MS metabolomic technology to reveal the metabolic changes during skeletal muscle regeneration, and conducted an in-depth exploration of important signaling pathways, which can provide a reference for further research on the mechanisms promoting skeletal muscle regeneration. METHODS In this study, we used 18 piglets aged 35 days and weighing 7.10 ± 0.90 kg to construct a skeletal muscle regeneration model. These piglets were randomly divided into three treatment groups (n = 6) and injected with cardiotoxins (CTX) in the right longissimus dorsi muscle. They were euthanized on the 1st, 4th, and 16th days post-injection to collect right longissimus dorsi muscle samples as the treatment group. Additionally, the left longissimus dorsi muscle of piglets on the 4th day post-injection was selected as the control group. Phenotypic changes in skeletal muscle regeneration were determined through H&E staining, immunofluorescence, and Western Blot analysis, and LC-MS/MS untargeted metabolomics technology was utilized to explore the differential expressed metabolites (DEMs) involved in skeletal muscle regeneration. RESULTS Phenotyping results showed that the regeneration model showed 3 stages of inflammation, regeneration and remodeling, which indicated successful model construction. Non-targeted LC-MS/MS metabolomics analysis showed significant differences in the structure of metabolites in these 3 stages. (1) In the inflammatory stage, a total of 198 DEMs were identified, which were mainly enriched in the pathways regulating the inflammatory response. (2) in the repair stage, 264 DEMs were identified, which were mainly enriched in pathways that inhibit inflammatory response and promote protein synthesis. (3) During the remodeling stage, 102 DEMs were identified, which were mainly enriched in the pathways that inhibit protein depletion and promote protein deposition. Temporal expression analysis revealed metabolites consistent with changes in the skeletal muscle regeneration process and found that these metabolite functions were mainly enriched in inhibiting inflammatory responses, alleviating myofibrillar lysis, and promoting muscle growth. Among them, (R)-Lipoic acid, 8-Hydroxyguanosine, and Uridine 5'-monophosphate maybe key metabolites associated with skeletal muscle regeneration. CONCLUSION The skeletal muscle regeneration mechanism was systematically explored, and the metabolite time series analysis during skeletal muscle regeneration revealed some key metabolites that reflect the degree of skeletal muscle damage.
Collapse
Affiliation(s)
- Lei Yi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Kaiming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Sui Liufu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Wenwu Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Bohe Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Caihong Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Jingwen Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Xin Xu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China.
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha, PR, 410128, China.
- Yuelushan Laboratory, Changsha, PR, 410128, China.
| |
Collapse
|
3
|
Higaki K, Aiba S, Shimoyama T, Omatsu Y, Nagasawa T. Universal fibroblasts across tissues can differentiate into niche cells for hematopoietic stem cells. Cell Rep 2025; 44:115620. [PMID: 40315055 DOI: 10.1016/j.celrep.2025.115620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/13/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025] Open
Abstract
Hematopoietic stem cells (HSCs) generating all blood cells are maintained by their niche cells, termed CXCL12-abundant reticular (CAR) cells, which strongly overlap with leptin-receptor-expressing (LepR+) cells in the bone marrow. A meta-analysis of single-cell RNA sequencing datasets across tissues hypothesized that universal fibroblasts present in all organs give rise to distinct tissue-specific fibroblast subsets designated as specialized fibroblasts, including CAR/LepR+ cells. However, there is no direct evidence that universal fibroblasts can differentiate into specialized fibroblasts at a distant location. Here, we demonstrated that CD248+ universal fibroblasts from the lung and colon outside the skeletal system, as well as from muscle, generated CAR/LepR+ cells characterized by HSC niche functions and expression of cytokines and transcription factors essential for HSC maintenance during ectopic bone formation or after intra-bone marrow transplantation. These results demonstrate that universal fibroblasts with the potential to differentiate into bone marrow-specific HSC niche cells are scattered throughout the entire body.
Collapse
Affiliation(s)
- Kei Higaki
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shota Aiba
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Shimoyama
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshiki Omatsu
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Huang Z, Li Z, Ruan D, Xu Y, Cai H, Liu H, Jin H, He P, Fei Y, Huang J, Wang C, Chen X, Jiang J, Shen W. Dynamic changes of molecular pattern and cellular subpopulation in puncture-induced tendon injury model. iScience 2025; 28:112034. [PMID: 40230536 PMCID: PMC11994932 DOI: 10.1016/j.isci.2025.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/03/2024] [Accepted: 02/12/2025] [Indexed: 04/16/2025] Open
Abstract
Tendon degeneration and injury often result in significant pain and functional impairment. Typically, tendon healing occurs through a scar-mediated response and may progress to chronic tendinopathy without timely intervention. However, the molecular mechanisms underlying early tendon repair remain poorly understood. Further investigation is also impeded by the limited availability of early tendon injury samples in clinical settings. In this study, we established a puncture-induced tendon injury model to investigate the molecular patterns and cellular subpopulations involved in early tendon injury across multiple time points. RNA sequencing identified seven gene sets with distinct expression profiles during the early stages of tendon injury. Single-cell RNA sequencing further revealed eight myeloid cell types and seven mesenchymal cell types participating in the tendon repair process. Together, these findings illuminate the molecular and cellular dynamics coordinating early tendon repair, providing insights that could inform future clinical treatments for tendinopathy and tendon injury.
Collapse
Affiliation(s)
- Zizhan Huang
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Institute of Sports Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Clinical Research Center of Motor System Disease of Hangzhou City, Hangzhou City, Zhejiang Province, P.R. China
| | - Ziyang Li
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Institute of Sports Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Clinical Research Center of Motor System Disease of Hangzhou City, Hangzhou City, Zhejiang Province, P.R. China
| | - Dengfeng Ruan
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Institute of Sports Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Clinical Research Center of Motor System Disease of Hangzhou City, Hangzhou City, Zhejiang Province, P.R. China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yiwen Xu
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Institute of Sports Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Clinical Research Center of Motor System Disease of Hangzhou City, Hangzhou City, Zhejiang Province, P.R. China
| | - Honglu Cai
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Institute of Sports Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Clinical Research Center of Motor System Disease of Hangzhou City, Hangzhou City, Zhejiang Province, P.R. China
| | - Hengzhi Liu
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Institute of Sports Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Clinical Research Center of Motor System Disease of Hangzhou City, Hangzhou City, Zhejiang Province, P.R. China
| | - Haocheng Jin
- Department of Orthopedics, National Center for Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Peiwen He
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Institute of Sports Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Clinical Research Center of Motor System Disease of Hangzhou City, Hangzhou City, Zhejiang Province, P.R. China
| | - Yang Fei
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Institute of Sports Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Clinical Research Center of Motor System Disease of Hangzhou City, Hangzhou City, Zhejiang Province, P.R. China
| | - Jiayun Huang
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Institute of Sports Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Clinical Research Center of Motor System Disease of Hangzhou City, Hangzhou City, Zhejiang Province, P.R. China
| | - Canlong Wang
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Institute of Sports Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Clinical Research Center of Motor System Disease of Hangzhou City, Hangzhou City, Zhejiang Province, P.R. China
| | - Xiao Chen
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou City, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou City, Zhejiang Province, P.R. China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Jia Jiang
- Department of Orthopedics, National Center for Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Weiliang Shen
- Department of Sports Medicine & Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P.R. China
- Institute of Sports Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China
- Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, P.R. China
- Clinical Research Center of Motor System Disease of Hangzhou City, Hangzhou City, Zhejiang Province, P.R. China
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou City, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou City, Zhejiang Province, P.R. China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
5
|
Lei PJ, Ruscic KJ, Roh K, Rajotte JJ, O'Melia MJ, Bouta EM, Marquez M, Pereira ER, Kumar AS, Razavi MS, Zhou H, Menzel L, Huang L, Kumra H, Duquette M, Huang P, Baish JW, Munn LL, Kurpios NA, Ubellacker JM, Padera TP. Aging-induced changes in lymphatic muscle cell transcriptomes are associated with reduced pumping of peripheral collecting lymphatic vessels in mice. Dev Cell 2025; 60:1118-1133.e5. [PMID: 39731913 PMCID: PMC11981864 DOI: 10.1016/j.devcel.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/23/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024]
Abstract
Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas-including LMCs-of peripheral collecting lymphatic vessels from mice across the lifespan. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and identified a proinflammatory microenvironment that suppresses the contractile apparatus in LMCs from advanced-aged mice. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to improve lymphatic vessel function.
Collapse
Affiliation(s)
- Pin-Ji Lei
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Katarina J Ruscic
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Johanna J Rajotte
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Roswell Park Cancer Institute, Buffalo, NY 14203, USA
| | - Meghan J O'Melia
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Echoe M Bouta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marla Marquez
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ethel R Pereira
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ashwin S Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohammad S Razavi
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hengbo Zhou
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lutz Menzel
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Liqing Huang
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Heena Kumra
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mark Duquette
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Peigen Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James W Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, PA 17837, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
6
|
Teng H, Liu Y, Hao R, Zhang L, Zhang X, Li S, Li S, Tong H. The mechanism of EGF in promoting skeletal muscle post-injury regeneration. Differentiation 2025; 143:100862. [PMID: 40245761 DOI: 10.1016/j.diff.2025.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025]
Abstract
Epidermal Growth Factor (EGF) is a multifunctional cytokine that plays an important role in the growth and development of skeletal muscle. In this study, a mouse skeletal muscle post-injury regeneration model and the C2C12 myoblasts cell line were used to elucidate the molecular mechanism by which EGF promotes myoblast proliferation and differentiation and then improves skeletal muscle post-injury regeneration. EGF regulates the activities of p38-MAPK and PI3K/AKT/mTOR signaling pathways through the Epidermal Growth Factor Receptor (EGFR), thereby promoting the proliferation and differentiation of myoblasts. This finding will support the treatment of skeletal muscle injury, which is of great value in resolving muscle health problems such as muscular atrophy and sarcopenia.
Collapse
Affiliation(s)
- Huaixin Teng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China; Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Yongze Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China; Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Ruotong Hao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China; Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Lu Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China; Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Xiaoyu Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China; Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Shufeng Li
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China; Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Shuang Li
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China; Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Huili Tong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China; Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
7
|
DenAdel A, Ramseier ML, Navia AW, Shalek AK, Raghavan S, Winter PS, Amini AP, Crawford L. Artificial variables help to avoid over-clustering in single-cell RNA sequencing. Am J Hum Genet 2025; 112:940-951. [PMID: 40081375 DOI: 10.1016/j.ajhg.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Standard single-cell RNA sequencing (scRNA-seq) pipelines nearly always include unsupervised clustering as a key step in identifying biologically distinct cell types. A follow-up step in these pipelines is to test for differential expression between the identified clusters. When algorithms over-cluster, downstream analyses can produce misleading results. In this work, we present "recall" (calibrated clustering with artificial variables), a method for protecting against over-clustering by controlling for the impact of reusing the same data twice when performing differential expression analysis, commonly known as "double dipping." Importantly, our approach can be applied to a wide range of clustering algorithms. Using real and simulated data, we show that recall provides state-of-the-art clustering performance and can rapidly analyze large-scale scRNA-seq studies, even on a personal laptop.
Collapse
Affiliation(s)
- Alan DenAdel
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Michelle L Ramseier
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Andrew W Navia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Srivatsan Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter S Winter
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ava P Amini
- Microsoft Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
8
|
Xu QZ, Li YX, Shi WG, Dong Y, Li Z, Ip JCH, Galaska MP, Han C, Zhang Q, Sun YY, Zhao LL, Sun KM, Wang ZL, Qiu JW, Zhang XL. Chromosome-level genome assembly and single-cell analysis unveil molecular mechanisms of arm regeneration in the ophiuroid Ophiura sarsii vadicola. Genome Biol 2025; 26:82. [PMID: 40165295 PMCID: PMC11959729 DOI: 10.1186/s13059-025-03542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Ophiuroids, belonging to Ophiuroidea in Echinodermata, possess remarkable regenerative capacities in their arms, relying on cellular recruitment and de-differentiation. However, limited high-quality genomic resources have hindered the investigation of the underlying molecular mechanisms of ophiuroid regeneration. RESULTS Here, we report a chromosome-level genome of Ophiura sarsii vadicola, 259.28 Mbp in length with a scaffold N50 length of 66.91 Mbp. We then perform bulk and single-cell RNA sequencing analysis to investigate gene expression and cellular dynamics during arm regeneration. We identify five distinct cellular clusters involved in the arm regeneration and infer the dynamic transformations from sensory stimulation to injury response, wound healing, and tissue regeneration. We find that progenitor cells derived from connective tissue cells differentiate into muscle, cartilage, endothelial, and epithelial cells. Pseudotime analysis indicates that muscle differentiation occurs early in the regeneration process. CONCLUSIONS Our genomic resource and single-cell atlas shed light on the mechanisms of organ regeneration in ophiuroids.
Collapse
Affiliation(s)
- Qin-Zeng Xu
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, PR China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, PR China.
| | - Yi-Xuan Li
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, PR China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Wen-Ge Shi
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, PR China
| | - Yue Dong
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, PR China
| | - Zhong Li
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, PR China
| | - Jack Chi-Ho Ip
- Science Unit, Lingnan University, Hong Kong SAR, PR China
| | - Matthew P Galaska
- Pacific Marine Environmental Lab, National Oceanic and Atmospheric Administration, Seattle, WA, USA
- Anchor QEA, Seattle, WA, USA
| | - Chen Han
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, PR China
| | - Qian Zhang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, PR China
| | - Yu-Yao Sun
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, PR China
| | - Lin-Lin Zhao
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, PR China
| | - Kai-Ming Sun
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, PR China
| | - Zong-Ling Wang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, PR China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Xue-Lei Zhang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, PR China
| |
Collapse
|
9
|
LaRocca TJ, Lark DS. Mapping Organism-wide Single Cell mRNA Expression Linked to Extracellular Vesicle Biogenesis, Secretion, and Cargo. FUNCTION 2025; 6:zqaf005. [PMID: 39863422 PMCID: PMC11931722 DOI: 10.1093/function/zqaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 01/27/2025] Open
Abstract
Extracellular vesicles (EVs) are functional lipid-bound nanoparticles trafficked between cells and found in every biofluid. It is widely claimed that EVs can be secreted by every cell, but the quantity and composition of these EVs can differ greatly among cell types and tissues. Defining this heterogeneity has broad implications for EV-based communication in health and disease. Recent discoveries have linked single-cell EV secretion to the expression of genes encoding EV machinery and cargo. To gain insight at single-cell resolution across an entire organism, we compared the abundance, variance, and co-expression of 67 genes involved in EV biogenesis and secretion, or carried as cargo, across >44 000 cells obtained from 117 cell populations in the Tabula Muris. Our analysis provides both novel holistic and cell population-specific insight into EV biology. The highest overall expression of EV genes occurs in secretory cells of the pancreas and perhaps more surprisingly, multiple non-neuronal cell populations of the brain. We find that the most abundant EV genes encode the most abundant EV cargo proteins (tetraspanins and syndecans), but these genes are highly differentially expressed across functionally distinct cell populations. Expression variance identifies dynamic and constitutively expressed EV genes while co-expression analysis reveals novel insights into cell population-specific coordination of expression. Results of our analysis illustrate the diverse transcriptional regulation of EV genes which could be useful for predicting how individual cell populations might communicate via EVs to influence health and disease.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Department of Health and Exercise Science, College of Health and Human Sciences, Colorado State University, Fort Collins, CO 80521, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO 80521, USA
| | - Daniel S Lark
- Department of Health and Exercise Science, College of Health and Human Sciences, Colorado State University, Fort Collins, CO 80521, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
10
|
Zhu P, Pfrender EM, Steffeck AWT, Reczek CR, Zhou Y, Thakkar AV, Gupta NR, Kupai A, Willbanks A, Lieber RL, Roy I, Chandel NS, Peek CB. Immunomodulatory role of the stem cell circadian clock in muscle repair. SCIENCE ADVANCES 2025; 11:eadq8538. [PMID: 40043110 PMCID: PMC11881903 DOI: 10.1126/sciadv.adq8538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025]
Abstract
Circadian rhythms orchestrate physiological processes such as metabolism, immune function, and tissue regeneration, aligning them with the optimal time of day (TOD). This study identifies an interplay between the circadian clock within muscle stem cells (SCs) and their capacity to modulate the immune microenvironment during muscle regeneration. We reveal that the SC clock triggers TOD-dependent inflammatory gene transcription after injury, particularly genes related to neutrophil activity and chemotaxis. These responses are driven by cytosolic regeneration of the signaling metabolite nicotinamide adenine dinucleotide (oxidized form) (NAD+), as enhancing cytosolic NAD+ regeneration in SCs is sufficient to induce inflammatory responses that influence muscle regeneration. Mononuclear single-cell sequencing of the regenerating muscle niche further implicates the cytokine CCL2 in mediating SC-neutrophil cross-talk in a TOD-dependent manner. Our findings highlight the intersection between SC metabolic shifts and immune responses within the muscle microenvironment, dictated by circadian rhythms, and underscore the potential for targeting circadian and metabolic pathways to enhance tissue regeneration.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric M. Pfrender
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam W. T. Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Colleen R. Reczek
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yalu Zhou
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Abhishek Vijay Thakkar
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Neha R. Gupta
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ariana Kupai
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amber Willbanks
- Shirley Ryan AbilityLab (formerly known as Rehabilitation Institute of Chicago), Chicago, IL, USA
| | - Richard L. Lieber
- Shirley Ryan AbilityLab (formerly known as Rehabilitation Institute of Chicago), Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Hines VA Hospital, Maywood, IL, USA
| | - Ishan Roy
- Shirley Ryan AbilityLab (formerly known as Rehabilitation Institute of Chicago), Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Navdeep S. Chandel
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Clara B. Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Sun Z, Cheng X, Wang Z, Qiao C, Qian H, Yuan T, Lv Z, Sun W, Zhang H, Liu Y, Lu Z, Lin J, Lai C, Wang Y, Yang X, Wang X, Meng J, Bao N. Single-nucleus transcriptomics reveals subsets of degenerative myonuclei after rotator cuff tear-induced muscle atrophy. Cell Prolif 2025; 58:e13763. [PMID: 39435630 PMCID: PMC11882757 DOI: 10.1111/cpr.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Rotator cuff tear (RCT) is the primary cause of shoulder pain and disability and frequently trigger muscle degeneration characterised by muscle atrophy, fatty infiltration and fibrosis. Single-nucleus RNA sequencing (snRNA-seq) was used to reveal the transcriptional changes in the supraspinatus muscle after RCT. Supraspinatus muscles were obtained from patients with habitual shoulder dislocation (n = 3) and RCT (n = 3). In response to the RCT, trajectory analysis showed progression from normal myonuclei to ANKRD1+ myonuclei, which captured atrophy-and fatty infiltration-related regulons (KLF5, KLF10, FOSL1 and BHLHE40). Transcriptomic alterations in fibro/adipogenic progenitors (FAPs) and muscle satellite cells (MuSCs) have also been studied. By predicting cell-cell interactions, we observed communication alterations between myofibers and muscle-resident cells following RCT. Our findings reveal the plasticity of muscle cells in response to RCT and offer valuable insights into the molecular mechanisms and potential therapeutic targets of RCT.
Collapse
Affiliation(s)
- Ziying Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Xi Cheng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Zheng Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Chenfeng Qiao
- Department of Orthopedics, Jinling Clinical Medical CollegeNanjing University of Chinese MedicineNanjingJiangsuPeople's Republic of China
| | - Hong Qian
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Tao Yuan
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Zhongyang Lv
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Wenshuang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Hanwen Zhang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Zhihao Lu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Jintao Lin
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Chengteng Lai
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Yang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Xiaojiang Yang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- Department of Orthopedics, Jinling Clinical Medical CollegeNanjing University of Chinese MedicineNanjingJiangsuPeople's Republic of China
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- Department of Orthopedics, Jinling Clinical Medical CollegeNanjing University of Chinese MedicineNanjingJiangsuPeople's Republic of China
| |
Collapse
|
12
|
Owen AM, Gonzalez-Velez S, Keeble AR, Thomas NT, Fry CS. Fork in the road: therapeutic and pathological actions for fibro-adipogenic progenitors following musculoskeletal injury. J Physiol 2025. [PMID: 39930980 DOI: 10.1113/jp286816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/20/2025] [Indexed: 02/19/2025] Open
Abstract
Musculoskeletal injuries are a substantial source of global disability through weakness and loss of function, which can be attributable, in part, to deficits in skeletal muscle quality. Poor muscle quality, resulting from fibrotic pathology or fatty infiltration, strongly predicts lower rates of patient recovery following injury and higher rates of re-injury. The cellular sources of fibrosis and fatty infiltration within skeletal muscle are mesenchymal fibro-adipogenic progenitors (FAPs), which are central effectors to support muscle homeostasis, regeneration and growth. However, following acute or chronic musculoskeletal injury, FAPs can promote fibro/fatty pathology within muscle that is likely to limit recovery and repair. Given their indispensable role within skeletal muscle, FAPs have emerged as a compelling cellular target to promote tissue recovery following acute and chronic injury. This review provides insight into the aetiology of FAP activity following various musculoskeletal injuries, in addition to signalling components that effect FAP differentiation. Contrasting pathology with therapeutic potential, insight into disease- and injury-specific FAP activation further cements their role as crucial effectors to improve muscle function and enhance patient outcomes.
Collapse
Affiliation(s)
- Allison M Owen
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Sara Gonzalez-Velez
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Li Y, Li C, Sun Q, Liu X, Chen F, Cheung Y, Zhao Y, Xie T, Chazaud B, Sun H, Wang H. Skeletal muscle stem cells modulate niche function in Duchenne muscular dystrophy mouse through YY1-CCL5 axis. Nat Commun 2025; 16:1324. [PMID: 39900599 PMCID: PMC11790879 DOI: 10.1038/s41467-025-56474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Adult skeletal muscle stem cells (MuSCs) are indispensable for muscle regeneration and tightly regulated by macrophages (MPs) and fibro-adipogenic progenitors (FAPs) in their niche. Deregulated MuSC/MP/FAP interactions and the ensuing inflammation and fibrosis are hallmarks of dystrophic muscle. Here we demonstrate intrinsic deletion of transcription factor Yin Yang 1 (YY1) in MuSCs exacerbates dystrophic pathologies by altering composition and heterogeneity of MPs and FAPs. Further analysis reveals YY1 loss induces expression of immune genes in MuSCs, including C-C motif chemokine ligand 5 (Ccl5). Augmented CCL5 secretion promotes MP recruitment via CCL5/C-C chemokine receptor 5 (CCR5) crosstalk, which subsequently hinders FAP clearance through elevated Transforming growth factor-β1 (TGFβ1). Maraviroc-mediated pharmacological blockade of the CCL5/CCR5 axis effectively mitigates muscle dystrophy and improves muscle performance. Lastly, we demonstrate YY1 represses Ccl5 transcription by binding to its enhancer thus facilitating promoter-enhancer looping. Altogether, our study demonstrates the critical role of MuSCs in actively shaping their niche and provides novel insight into the therapeutic intervention of muscle dystrophy.
Collapse
MESH Headings
- YY1 Transcription Factor/metabolism
- YY1 Transcription Factor/genetics
- Animals
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/cytology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Chemokine CCL5/metabolism
- Chemokine CCL5/genetics
- Mice
- Stem Cell Niche
- Receptors, CCR5/metabolism
- Receptors, CCR5/genetics
- Macrophages/metabolism
- Stem Cells/metabolism
- Mice, Inbred C57BL
- Transforming Growth Factor beta1/metabolism
- Male
- Mice, Inbred mdx
- Mice, Knockout
- Signal Transduction
Collapse
Grants
- 82172436 National Natural Science Foundation of China (National Science Foundation of China)
- 14115319, 14100620, 14106521, 14105823, 14120420, 14103522, 14105123 Research Grants Council, University Grants Committee (RGC, UGC)
- T13-602/21-N Research Grants Council, University Grants Committee (RGC, UGC)
- C6018-19GF Research Grants Council, University Grants Committee (RGC, UGC)
- 10210906, 08190626 Research Grants Council, University Grants Committee (RGC, UGC)
- AoE/M-402/20 Research Grants Council, University Grants Committee (RGC, UGC)
- STG1/E-403/24-N Research Grants Council, University Grants Committee (RGC, UGC)
- National Key R&D Program of China to H.W. (2022YFA0806003) Health and Medical Research Fund (HMRF) from Health Bureau of the Hong Kong Special Administrative Region, China to H.W. (10210906 and 08190626)
Collapse
Affiliation(s)
- Yang Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Chuhan Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiang Sun
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Xingyuan Liu
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fengyuan Chen
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yeelo Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ting Xie
- Center for Tissue Regeneration and Engineering, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bénédicte Chazaud
- Unité Physiopathologie et Génétique du Neurone et du Muscle, UMR CNRS 5261, Inserm U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Hao Sun
- Warshel Institute for Computational Biology, Faculty of Medicine, Chinese University of Hong Kong (Shenzhen), Guangdong, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
14
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Tomaz da Silva M, Joshi AS, Kumar A. Fibroblast growth factor-inducible 14 regulates satellite cell self-renewal and expansion during skeletal muscle repair. JCI Insight 2025; 10:e187825. [PMID: 39874107 PMCID: PMC11949035 DOI: 10.1172/jci.insight.187825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) were increased in satellite cells after muscle injury. Conditional ablation of Fn14 in Pax7-expressing satellite cells drastically reduced their expansion and skeletal muscle regeneration following injury. Fn14 was required for satellite cell self-renewal and proliferation as well as to prevent precocious differentiation. Targeted deletion of Fn14 inhibited Notch signaling but led to the spurious activation of STAT3 signaling in regenerating skeletal muscle and in cultured muscle progenitor cells. Silencing of STAT3 improved proliferation and inhibited premature differentiation of Fn14-deficient satellite cells. Furthermore, conditional ablation of Fn14 in satellite cells exacerbated myopathy in the mdx mouse model of Duchenne muscular dystrophy (DMD), whereas its overexpression improved the engraftment of exogenous muscle progenitor cells into the dystrophic muscle of mdx mice. Altogether, our study highlights the crucial role of Fn14 in the regulation of satellite cell fate and function and suggests that Fn14 can be a potential molecular target to improve muscle regeneration in muscular disorders.
Collapse
MESH Headings
- Animals
- Satellite Cells, Skeletal Muscle/metabolism
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/injuries
- Muscle, Skeletal/physiology
- Regeneration/physiology
- Mice, Inbred mdx
- Cell Differentiation
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- TWEAK Receptor/metabolism
- TWEAK Receptor/genetics
- Cell Proliferation
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Signal Transduction
- Cell Self Renewal
- Disease Models, Animal
- PAX7 Transcription Factor/metabolism
- Male
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Meiricris Tomaz da Silva
- Institute of Muscle Biology and Cachexia, and
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Aniket S. Joshi
- Institute of Muscle Biology and Cachexia, and
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Ashok Kumar
- Institute of Muscle Biology and Cachexia, and
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, USA
| |
Collapse
|
16
|
Tomaz da Silva M, Joshi AS, Kumar A. Fibroblast growth factor-inducible 14 regulates satellite cell self-renewal and expansion during skeletal muscle repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.06.616900. [PMID: 39803454 PMCID: PMC11722277 DOI: 10.1101/2024.10.06.616900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury. Conditional ablation of Fn14 in Pax7-expressing satellite cells drastically reduces their expansion and skeletal muscle regeneration following injury. Fn14 is required for satellite cell self-renewal and proliferation as well as to prevent precocious differentiation. Targeted deletion of Fn14 inhibits Notch signaling but leads to the spurious activation of STAT3 signaling in regenerating skeletal muscle and in cultured muscle progenitor cells. Silencing of STAT3 improves proliferation and inhibits premature differentiation of Fn14-deficient satellite cells. Furthermore, conditional ablation of Fn14 in satellite cells exacerbates myopathy in the mdx mouse model of Duchenne muscular dystrophy (DMD) whereas its overexpression improves the engraftment of exogenous muscle progenitor cells into the dystrophic muscle of mdx mice. Altogether, our study highlights the crucial role of Fn14 in the regulation of satellite cell fate and function and suggests that Fn14 can be a potential molecular target to improve muscle regeneration in muscular disorders.
Collapse
Affiliation(s)
- Meiricris Tomaz da Silva
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Aniket S. Joshi
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Ashok Kumar
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| |
Collapse
|
17
|
Hogarth MW, Kurukunda MP, Ismat K, Uapinyoying P, Jaiswal JK. Exploring the therapeutic potential of fibroadipogenic progenitors in muscle disease. J Neuromuscul Dis 2025; 12:22143602241298545. [PMID: 39973455 PMCID: PMC11949306 DOI: 10.1177/22143602241298545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Skeletal muscle relies on its inherent self-repair ability to withstand continuous mechanical damage. Myofiber-intrinsic processes facilitate the repair of damage to sarcolemma and sarcomeres, but it is the coordinated interaction between muscle-resident satellite and stromal cells that are crucial in the regeneration of muscles to replace the lost muscle fibers. Fibroadipogenic progenitors (FAPs), are muscle-resident mesenchymal cells that are notable for their role in creating the dynamic stromal niche required to support long-term muscle homeostasis and regeneration. While FAP-mediated extracellular matrix formation and the establishment of a homeostatic muscle niche are essential for maintaining muscle health, excessive accumulation of FAPs and their aberrant differentiation leads to the fibrofatty degeneration that is a hallmark of myopathies and muscular dystrophies. Recent advancements, including single-cell RNA sequencing and in vivo analysis of FAPs, are providing deeper insights into the functions and specialization of FAPs, shedding light on their roles in both health and disease. This review will explore the above insights, discussing how FAP dysregulation contributes to muscle diseases. It will offer a concise overview of potential therapeutic interventions targeting FAPs to restore disrupted interactions among FAPs and muscle-resident cells, ultimately addressing degenerative muscle loss in neuromuscular diseases.
Collapse
Affiliation(s)
- Marshall W Hogarth
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
| | - Medha P Kurukunda
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
| | - Karim Ismat
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
| | - Prech Uapinyoying
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, U.S.A
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, U.S.A
| |
Collapse
|
18
|
Li L, Jiang F, Hao W, Wang Y, Li Y, Zhang D. Single-nucleus transcriptomic profiling of the diaphragm during mechanical ventilation. Sci Rep 2024; 14:31181. [PMID: 39732791 DOI: 10.1038/s41598-024-82530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Mechanical ventilation contributes to diaphragm atrophy and muscle weakness, which is referred to as ventilator-induced diaphragmatic dysfunction (VIDD). The pathogenesis of VIDD has not been fully understood until recently. The aim of this study was to investigate the effects of 24 h of mechanical ventilation on fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT), and immune cell infiltration driving diaphragm fibrosis in a rabbit model. The rabbits were anaesthetized and randomly divided into two groups (n = 3 each group): a control group and an experimental group. Diaphragm nuclei for sequencing were prepared by dissociating and filtering muscle tissue. 10X Genomics Platform for single-nucleus RNA sequencing (snRNA-seq) was used to profile the cells. Normalization and clustering were performed by Seurat, and clusters were manually annotated as different cell types. In this study, we performed differentially expressed genes (DEGs) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, pseudotime analysis and high dimensional weighted gene coexpression network analysis (hdWGCNA) to identify the key genes and signaling pathways related to the pathogenesis of VIDD. We further performed quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting to verify the results of snRNA-seq. The snRNA-seq results showed that acute postmechanical ventilation diaphragm cell changes included an increase in the proportion of fibroblasts and a decrease in the proportion of myofibres. The DEGs, KEGG, hdWGCNA and pseudotime analyses demonstrated that fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT) and immune cell infiltration are the three main processes involved in early stage of fibrosis development, among which Pdgfd, Sema3a, Cxcr2, are the corresponding regulatory genes. Glycolysis and the gene Pfkfb3 are also important metabolic factors for fibrosis formation. Negr1 and Mef2c are involved in phrenic nerve ending loss and diaphragm fibre atrophy. The qRT-PCR data showed that the mRNA levels of the genes Pdgfd, Cxcr2, Pfkfb3 and Negr1 were significantly greater in the experimental group than in the control group (P < 0.01), and the expression levels of Sema3a and Mef2c were significantly lower (P < 0.01). Despite limitations, including the lack of functional evaluations to confirm ventilator-induced diaphragm dysfunction (VIDD) and the absence of data validating diaphragm unloading during ventilation, our findings suggest that FAP proliferation and immune cell infiltration may play a role in the early stage of driving diaphragm fibrosis during mechanical ventilation. However, future studies are needed to confirm these findings and investigate the potential mechanisms underlying them.
Collapse
Affiliation(s)
- Lei Li
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Feng Jiang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Wenyan Hao
- Department of Biomedical Engineering, Changzhi Medical College, Changzhi, 046012, China
| | - Yu Wang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Yaqian Li
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Dong Zhang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China.
| |
Collapse
|
19
|
Joshi AS, Castillo MB, Tomaz da Silva M, Vuong AT, Gunaratne PH, Darabi R, Liu Y, Kumar A. Single-nucleus transcriptomic analysis reveals the regulatory circuitry of myofiber XBP1 during regenerative myogenesis. iScience 2024; 27:111372. [PMID: 39650729 PMCID: PMC11625362 DOI: 10.1016/j.isci.2024.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024] Open
Abstract
Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) is activated in skeletal muscle under multiple conditions. However, the role of the UPR in the regulation of muscle regeneration remains less understood. We demonstrate that gene expression of various markers of the UPR is induced in both myogenic and non-myogenic cells in regenerating muscle. Genetic ablation of X-box binding protein 1 (XBP1), a downstream target of the Inositol requiring enzyme 1α (IRE1α) arm of the UPR, in myofibers attenuates muscle regeneration in adult mice. Single nucleus RNA sequencing (snRNA-seq) analysis showed that deletion of XBP1 in myofibers perturbs proteolytic systems and mitochondrial function in myogenic cells. Trajectory analysis of snRNA-seq dataset showed that XBP1 regulates the abundance of satellite cells and the formation of new myofibers in regenerating muscle. In addition, ablation of XBP1 disrupts the composition of non-myogenic cells in injured muscle microenvironment. Collectively, our study suggests that myofiber XBP1 regulates muscle regeneration through both cell-autonomous and -non-autonomous mechanisms.
Collapse
Affiliation(s)
- Aniket S. Joshi
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Micah B. Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Meiricris Tomaz da Silva
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Anh Tuan Vuong
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Radbod Darabi
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Yu Liu
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Ashok Kumar
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| |
Collapse
|
20
|
Wang Y, Dede M, Mohanty V, Dou J, Li Z, Chen K. A statistical approach for systematic identification of transition cells from scRNA-seq data. CELL REPORTS METHODS 2024; 4:100913. [PMID: 39644902 PMCID: PMC11704623 DOI: 10.1016/j.crmeth.2024.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/01/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Decoding cellular state transitions is crucial for understanding complex biological processes in development and disease. While recent advancements in single-cell RNA sequencing (scRNA-seq) offer insights into cellular trajectories, existing tools primarily study expressional rather than regulatory state shifts. We present CellTran, a statistical approach utilizing paired-gene expression correlations to detect transition cells from scRNA-seq data without explicitly resolving gene regulatory networks. Applying our approach to various contexts, including tissue regeneration, embryonic development, preinvasive lesions, and humoral responses post-vaccination, reveals transition cells and their distinct gene expression profiles. Our study sheds light on the underlying molecular mechanisms driving cellular state transitions, enhancing our ability to identify therapeutic targets for disease interventions.
Collapse
Affiliation(s)
- Yuanxin Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Egorova VV, Lavrenteva MP, Makhaeva LN, Petrova EA, Ushakova AA, Bozhokin MS, Krivoshapkina EF. Fibrillar Hydrogel Inducing Cell Mechanotransduction for Tissue Engineering. Biomacromolecules 2024; 25:7674-7684. [PMID: 39526968 DOI: 10.1021/acs.biomac.4c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
One of the key strategies for tissue engineering is to design multifunctional bioinks that balance printability with cytocompatibility. Here, we describe fibrillar hydrogels produced by Schiff base formation between B-type gelatin and oxidized sodium alginate, followed by the incorporation of type I collagen, yielding a new gel (MyoColl). The resulting hydrogel exhibits a temperature- and mass-ratio-dependent sol-gel transition, showing variability of hydrogel properties depending on the component ratio. MyoColl composition provides a convenient platform for biofabrication in terms of shear thinning, yielding, Young's modulus, and shape accuracy. Metabolic activity tests and fluorescent microscopy of 2D hydrogel-based mouse C2C12 myoblast cell culture show significant cytocompatibility of the developed carriers. In addition, primary signs of cell mechanotransduction and myofilament formation of 3D printed MyoColl-based cell cultures were detected and described. Due to these promising results, the described hydrogel composition has shown itself as a convenient platform for muscle tissue engineering.
Collapse
Affiliation(s)
- Viktoriia V Egorova
- ChemBioCluster, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Mariia P Lavrenteva
- ChemBioCluster, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Liubov N Makhaeva
- St. Petersburg Governor's Physics and Mathematics Lyceum N 30, Saint Petersburg 199004, Russian Federation
| | - Ekaterina A Petrova
- Center for Chemical Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Alina A Ushakova
- Center for Chemical Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Mikhail S Bozhokin
- Russian Scientific Research Institute of Traumatology and Orthopedics Named After R.R. Vredena, Saint Petersburg 195427, Russian Federation
- Cytology Institute of Russian Academy of Sciences, Saint Petersburg 194064, Russian Federation
| | | |
Collapse
|
22
|
Perrin S, Ethel M, Bretegnier V, Goachet C, Wotawa CA, Luka M, Coulpier F, Masson C, Ménager M, Colnot C. Single-nucleus transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. eLife 2024; 13:RP92519. [PMID: 39642053 PMCID: PMC11623931 DOI: 10.7554/elife.92519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nucleus atlas of the periosteum at steady state and of the fracture site during the early stages of bone repair (https://fracture-repair-atlas.cells.ucsc.edu). We identified periosteal SSPCs expressing stemness markers (Pi16 and Ly6a/SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt, and the circadian clock signaling, respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.
Collapse
Affiliation(s)
- Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
| | - Maria Ethel
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
| | | | | | | | - Marine Luka
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163ParisFrance
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163ParisFrance
| | | | - Cécile Masson
- Bioinformatics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163ParisFrance
- INSERM US24/CNRS UAR3633, Paris Cité UniversityParisFrance
| | - Mickael Ménager
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163ParisFrance
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163ParisFrance
| | | |
Collapse
|
23
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Li P, Wei X, Zi Q, Qu X, He C, Xiao B, Guo S. Single-nucleus RNA sequencing reveals cell types, genes, and regulatory factors influencing melanogenesis in the breast muscle of Xuefeng black-bone chicken. Poult Sci 2024; 103:104259. [PMID: 39278114 PMCID: PMC11419817 DOI: 10.1016/j.psj.2024.104259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024] Open
Abstract
The black-bone chicken, known for its high melanin content, holds significant economic value due to this unique trait. Particularly notable is the prominent melanin deposition observed in its breast muscle. However, the molecular mechanisms governing melanin synthesis and deposition in the breast muscle of black-bone chickens remain largely unknown. This study employed a single-nucleus transcriptome assay to identify genes associated with melanin deposition in the breast muscle of black-bone chickens, which are presumed to influence pigmentation levels. A comprehensive analysis of the nuclear transcriptome was conducted on the breast muscle of Xuefeng black-bone chickens, encompassing 18 distinct cell types, including melanocytes. Our findings revealed that STIMATE, LRRC7, ENSGALG00000049990, and GLDC play pivotal regulatory roles in melanin deposition within the breast muscle. Further exploration into the molecular mechanisms unveiled transcription factors and protein interactions suggesting that RARB, KLF15, and PRDM4 may be crucial regulators of melanin accumulation in the breast muscle. Additionally, HPGDS, GSTO1, and CYP1B1 may modulate melanin production and deposition in the breast muscle by influencing melanocyte metabolism. Our findings also suggest that melanocyte function in the breast muscle may be intertwined with intercellular signaling pathways such as PTPRK-WNT5A, NOTCH1-JAG1, IGF1R-IGF1, IDE-GCG, and ROR2-WNT5A. Leveraging advanced snRNA-seq technology, we generated a comprehensive single-cell nuclear transcriptome atlas of the breast muscle of Xuefeng black-bone chickens. This facilitated the identification of candidate genes, regulatory factors, and cellular signals potentially influencing melanin deposition and melanocyte function. Overall, our study provides crucial insights into the molecular basis of melanin deposition in chicken breast muscle, laying the groundwork for future breeding programs aimed at enhancing black-bone chicken cultivation.
Collapse
Affiliation(s)
- Peng Li
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Xu Wei
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Qiongtao Zi
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Bing Xiao
- Hunan Yunfeifeng Agricultural Co. Ltd, Hunan, 418200, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China.
| |
Collapse
|
25
|
Barai P, Chen J. Cytokine expression and cytokine-mediated cell-cell communication during skeletal muscle regeneration revealed by integrative analysis of single-cell RNA sequencing data. J Cell Commun Signal 2024; 18:e12055. [PMID: 39691872 PMCID: PMC11647049 DOI: 10.1002/ccs3.12055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 12/19/2024] Open
Abstract
Skeletal muscles undergo self-repair upon injury, owing to the resident muscle stem cells and their extensive communication with the microenvironment of injured muscles. Cytokines play a critical role in orchestrating intercell communication to ensure successful regeneration. Immune cells as well as other types of cells in the injury site, including muscle stem cells, are known to secret cytokines. However, the extent to which various cell types express distinct cytokines and how the secreted cytokines are involved in intercell communication during regeneration are largely unknown. Here we integrated 15 publicly available single-cell RNA-sequencing (scRNA-seq) datasets of mouse skeletal muscles at early regeneration timepoints (0, 2, 5, and 7 days after injury). The resulting dataset was analyzed for the expression of 393 annotated mouse cytokines. We found widespread and dynamic cytokine expression by all cell types in the regenerating muscle. Interrogating the integrated dataset using CellChat revealed extensive, bidirectional cell-cell communications during regeneration. Our findings provide a comprehensive view of cytokine signaling in the regenerating muscle, which can guide future studies of ligand-receptor signaling and cell-cell interaction to achieve new mechanistic insights into the regulation of muscle regeneration.
Collapse
Affiliation(s)
- Pallob Barai
- Department of Cell and Developmental BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Jie Chen
- Department of Cell and Developmental BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Biomedical and Translational SciencesCarle Illinois College of MedicineUrbanaIllinoisUSA
| |
Collapse
|
26
|
Walter LD, Orton JL, Ntekas I, Fong EHH, Maymi VI, Rudd BD, De Vlaminck I, Elisseeff JH, Cosgrove BD. Transcriptomic analysis of skeletal muscle regeneration across mouse lifespan identifies altered stem cell states. NATURE AGING 2024; 4:1862-1881. [PMID: 39578558 PMCID: PMC11645289 DOI: 10.1038/s43587-024-00756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
In aging, skeletal muscle regeneration declines due to alterations in both myogenic and non-myogenic cells and their interactions. This regenerative dysfunction is not understood comprehensively or with high spatiotemporal resolution. We collected an integrated atlas of 273,923 single-cell transcriptomes and high-resolution spatial transcriptomic maps from muscles of young, old and geriatric mice (~5, 20 and 26 months old) at multiple time points following myotoxin injury. We identified eight immune cell types that displayed accelerated or delayed dynamics by age. We observed muscle stem cell states and trajectories specific to old and geriatric muscles and evaluated their association with senescence by scoring experimentally derived and curated gene signatures in both single-cell and spatial transcriptomic data. This revealed an elevation of senescent-like muscle stem cell subsets within injury zones uniquely in aged muscles. This Resource provides a holistic portrait of the altered cellular states underlying muscle regenerative decline across mouse lifespan.
Collapse
Affiliation(s)
- Lauren D Walter
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA
| | - Jessica L Orton
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ioannis Ntekas
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Viviana I Maymi
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | - Brian D Rudd
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin D Cosgrove
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
27
|
Pryce BR, Oles A, Talbert EE, Romeo MJ, Vaena S, Sharma S, Spadafora V, Tolliver L, Mahvi DA, Morgan KA, Lancaster WP, Beal E, Koren N, Watts B, Overstreet M, Berto S, Subramanian S, Calisir K, Crawford A, Neelon B, Ostrowski MC, Zimmers TA, Tidball JG, Wang DJ, Guttridge DC. Muscle inflammation is regulated by NF-κB from multiple cells to control distinct states of wasting in cancer cachexia. Cell Rep 2024; 43:114925. [PMID: 39475511 PMCID: PMC11774514 DOI: 10.1016/j.celrep.2024.114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024] Open
Abstract
Although cancer cachexia is classically characterized as a systemic inflammatory disorder, emerging evidence indicates that weight loss also associates with local tissue inflammation. We queried the regulation of this inflammation and its causality to cachexia by exploring skeletal muscle, whose atrophy strongly associates with poor outcomes. Using multiple mouse models and patient samples, we show that cachectic muscle is marked by enhanced innate immunity. Nuclear factor κB (NF-κB) activity in multiple cells, including satellite cells, myofibers, and fibro-adipogenic progenitors, promotes macrophage expansion equally derived from infiltrating monocytes and resident cells. Moreover, NF-κB-activated cells and macrophages undergo crosstalk; NF-κB+ cells recruit macrophages to inhibit regeneration and promote atrophy but, interestingly, also protect myofibers, while macrophages stimulate NF-κB+ cells to sustain an inflammatory feedforward loop. Together, we propose that NF-κB functions in multiple cells in the muscle microenvironment to stimulate macrophages that both promote and protect against muscle wasting in cancer.
Collapse
Affiliation(s)
- Benjamin R Pryce
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Oles
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Erin E Talbert
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Health and Human Physiology, and the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Martin J Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sudarshana Sharma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Victoria Spadafora
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren Tolliver
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David A Mahvi
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Katherine A Morgan
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - William P Lancaster
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Eryn Beal
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Natlie Koren
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Bailey Watts
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Morgan Overstreet
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Suganya Subramanian
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kubra Calisir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anna Crawford
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brian Neelon
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael C Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Teresa A Zimmers
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Portland, Oregon Health Science University, Portland, OR 97239, USA
| | - James G Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David J Wang
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Denis C Guttridge
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
28
|
Ren S, Fu X, Guo W, Bai R, Li S, Zhang T, Liu J, Wang Z, Zhao H, Suo S, Zhang W, Jia M, Ji W, Hu P, Chen Y. Profound cellular defects attribute to muscular pathogenesis in the rhesus monkey model of Duchenne muscular dystrophy. Cell 2024; 187:6669-6686.e16. [PMID: 39305903 DOI: 10.1016/j.cell.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 11/17/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by mutations in the DMD gene. Muscle fibers rely on the coordination of multiple cell types for repair and regenerative capacity. To elucidate the cellular and molecular changes in these cell types under pathologic conditions, we generated a rhesus monkey model for DMD that displays progressive muscle deterioration and impaired motor function, mirroring human conditions. By leveraging these DMD monkeys, we analyzed freshly isolated muscle tissues using single-cell RNA sequencing (scRNA-seq). Our analysis revealed changes in immune cell landscape, a reversion of lineage progressing directions in fibrotic fibro-adipogenic progenitors (FAPs), and TGF-β resistance in FAPs and muscle stem cells (MuSCs). Furthermore, MuSCs displayed cell-intrinsic defects, leading to differentiation deficiencies. Our study provides important insights into the pathogenesis of DMD, offering a valuable model and dataset for further exploration of the underlying mechanisms, and serves as a suitable platform for developing and evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Shuaiwei Ren
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Xin Fu
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Wenting Guo
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Raoxian Bai
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Sheng Li
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Ting Zhang
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China; Southwest United Graduate School, 650092 Kunming, China
| | - Jie Liu
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Hui Zhao
- Guangzhou Laboratory, 510005 Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, 510005 Guangzhou, China
| | | | - Weikang Zhang
- Guangzhou Laboratory, 510005 Guangzhou, China; College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Minzhi Jia
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031 Shanghai, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China.
| | - Ping Hu
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Guangzhou Laboratory, 510005 Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, 510005 Guangzhou, China; The Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China.
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China; Southwest United Graduate School, 650092 Kunming, China.
| |
Collapse
|
29
|
Xue S, Benvie AM, Blum JE, Kolba NJ, Cosgrove BD, Thalacker-Mercer A, Berry DC. Suppressing PDGFRβ Signaling Enhances Myocyte Fusion to Promote Skeletal Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618247. [PMID: 39464006 PMCID: PMC11507758 DOI: 10.1101/2024.10.15.618247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Muscle cell fusion is critical for forming and maintaining multinucleated myotubes during skeletal muscle development and regeneration. However, the molecular mechanisms directing cell-cell fusion are not fully understood. Here, we identify platelet-derived growth factor receptor beta (PDGFRβ) signaling as a key modulator of myocyte fusion in adult muscle cells. Our findings demonstrate that genetic deletion of Pdgfrβ enhances muscle regeneration and increases myofiber size, whereas PDGFRβ activation impairs muscle repair. Inhibition of PDGFRβ activity promotes myonuclear accretion in both mouse and human myotubes, whereas PDGFRβ activation stalls myotube development by preventing cell spreading to limit fusion potential. Transcriptomics analysis show that PDGFRβ signaling cooperates with TGFβ signaling to direct myocyte size and fusion. Mechanistically, PDGFRβ signaling requires STAT1 activation, and blocking STAT1 phosphorylation enhances myofiber repair and size during regeneration. Collectively, PDGFRβ signaling acts as a regenerative checkpoint and represents a potential clinical target to rapidly boost skeletal muscle repair.
Collapse
Affiliation(s)
- Siwen Xue
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Abigail M Benvie
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Jamie E Blum
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Current address: Department of Chemical Engineering; Stanford University; Stanford, CA
| | - Nikolai J Kolba
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | | | - Anna Thalacker-Mercer
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Department of Cell, Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel C Berry
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Corresponding author
| |
Collapse
|
30
|
Martínez Mir C, Pisterzi P, De Poorter I, Rilou M, van Kranenburg M, Heijs B, Alemany A, Sage F, Geijsen N. Spatial multi-omics in whole skeletal muscle reveals complex tissue architecture. Commun Biol 2024; 7:1272. [PMID: 39369093 PMCID: PMC11455876 DOI: 10.1038/s42003-024-06949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Myofibers are large multinucleated cells that have long thought to have a rather simple organization. Single-nucleus transcriptomics, spatial transcriptomics and spatial metabolomics analysis have revealed distinct transcription profiles in myonuclei related to myofiber type. However, the use of local tissue collection or dissociation methods have obscured the spatial organization. To elucidate the full tissue architecture, we combine two spatial omics, RNA tomography and mass spectrometry imaging. This enables us to map the spatial transcriptomic, metabolomic and lipidomic organization of the whole murine tibialis anterior muscle. Our findings on heterogeneity in fiber type proportions are validated with multiplexed immunofluorescence staining in tibialis anterior, extensor digitorum longus and soleus. Our results demonstrate unexpectedly strong regionalization of gene expression, metabolic differences and variable myofiber type proportion along the proximal-distal axis. These new insights in whole-tissue level organization reconcile sometimes conflicting results coming from previous studies relying on local sampling methods.
Collapse
Affiliation(s)
- Clara Martínez Mir
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Paola Pisterzi
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Isabel De Poorter
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Maria Rilou
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Melissa van Kranenburg
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Bram Heijs
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Fanny Sage
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands.
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands.
| |
Collapse
|
31
|
Chi Z, Chen S, Yang D, Cui W, Lu Y, Wang Z, Li M, Yu W, Zhang J, Jiang Y, Sun R, Yu Q, Hu T, Lu X, Deng Q, Yang Y, Zhao T, Chang M, Li Y, Zhang X, Shang M, Xiao Q, Ding K, Wang D. Gasdermin D-mediated metabolic crosstalk promotes tissue repair. Nature 2024; 634:1168-1177. [PMID: 39260418 DOI: 10.1038/s41586-024-08022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The establishment of an early pro-regenerative niche is crucial for tissue regeneration1,2. Gasdermin D (GSDMD)-dependent pyroptosis accounts for the release of inflammatory cytokines upon various insults3-5. However, little is known about its role in tissue regeneration followed by homeostatic maintenance. Here we show that macrophage GSDMD deficiency delays tissue recovery but has little effect on the local inflammatory milieu or the lytic pyroptosis process. Profiling of the metabolite secretome of hyperactivated macrophages revealed a non-canonical metabolite-secreting function of GSDMD. We further identified 11,12-epoxyeicosatrienoic acid (11,12-EET) as a bioactive, pro-healing oxylipin that is secreted from hyperactive macrophages in a GSDMD-dependent manner. Accumulation of 11,12-EET by direct supplementation or deletion of Ephx2, which encodes a 11,12-EET-hydrolytic enzyme, accelerated muscle regeneration. We further demonstrated that EPHX2 accumulated within aged muscle, and that consecutive 11,12-EET treatment rejuvenated aged muscle. Mechanistically, 11,12-EET amplifies fibroblast growth factor signalling by modulating liquid-liquid phase separation of fibroblast growth factors, thereby boosting the activation and proliferation of muscle stem cells. These data depict a GSDMD-guided metabolite crosstalk between macrophages and muscle stem cells that governs the repair process, which offers insights with therapeutic implications for the regeneration of injured or aged tissues.
Collapse
Affiliation(s)
- Zhexu Chi
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, China.
| | - Sheng Chen
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, China
| | - Dehang Yang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Wenyu Cui
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Lu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mobai Li
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Yu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, China
| | - Jian Zhang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yu Jiang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruya Sun
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianzhou Yu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Hu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Lu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiqi Deng
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yidong Yang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianming Zhao
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengfei Chang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuying Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, China
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| |
Collapse
|
32
|
Byun WS, Lee J, Baek JH. Beyond the bulk: overview and novel insights into the dynamics of muscle satellite cells during muscle regeneration. Inflamm Regen 2024; 44:39. [PMID: 39327631 PMCID: PMC11426090 DOI: 10.1186/s41232-024-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Skeletal muscle possesses remarkable regenerative capabilities, fully recovering within a month following severe acute damage. Central to this process are muscle satellite cells (MuSCs), a resident population of somatic stem cells capable of self-renewal and differentiation. Despite the highly predictable course of muscle regeneration, evaluating this process has been challenging due to the heterogeneous nature of myogenic precursors and the limited insight provided by traditional markers with overlapping expression patterns. Notably, recent advancements in single-cell technologies, such as single-cell (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), have revolutionized muscle research. These approaches allow for comprehensive profiling of individual cells, unveiling dynamic heterogeneity among myogenic precursors and their contributions to regeneration. Through single-cell transcriptome analyses, researchers gain valuable insights into cellular diversity and functional dynamics of MuSCs post-injury. This review aims to consolidate classical and new insights into the heterogeneity of myogenic precursors, including the latest discoveries from novel single-cell technologies.
Collapse
Affiliation(s)
- Woo Seok Byun
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jinu Lee
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
33
|
Yoo K, Jo YW, Yoo T, Hann SH, Park I, Kim YE, Kim YL, Rhee J, Song IW, Kim JH, Baek D, Kong YY. Muscle-resident mesenchymal progenitors sense and repair peripheral nerve injury via the GDNF-BDNF axis. eLife 2024; 13:RP97662. [PMID: 39324575 PMCID: PMC11426970 DOI: 10.7554/elife.97662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Fibro-adipogenic progenitors (FAPs) are muscle-resident mesenchymal progenitors that can contribute to muscle tissue homeostasis and regeneration, as well as postnatal maturation and lifelong maintenance of the neuromuscular system. Recently, traumatic injury to the peripheral nerve was shown to activate FAPs, suggesting that FAPs can respond to nerve injury. However, questions of how FAPs can sense the anatomically distant peripheral nerve injury and whether FAPs can directly contribute to nerve regeneration remained unanswered. Here, utilizing single-cell transcriptomics and mouse models, we discovered that a subset of FAPs expressing GDNF receptors Ret and Gfra1 can respond to peripheral nerve injury by sensing GDNF secreted by Schwann cells. Upon GDNF sensing, this subset becomes activated and expresses Bdnf. FAP-specific inactivation of Bdnf (Prrx1Cre; Bdnffl/fl) resulted in delayed nerve regeneration owing to defective remyelination, indicating that GDNF-sensing FAPs play an important role in the remyelination process during peripheral nerve regeneration. In aged mice, significantly reduced Bdnf expression in FAPs was observed upon nerve injury, suggesting the clinical relevance of FAP-derived BDNF in the age-related delays in nerve regeneration. Collectively, our study revealed the previously unidentified role of FAPs in peripheral nerve regeneration, and the molecular mechanism behind FAPs' response to peripheral nerve injury.
Collapse
Affiliation(s)
- Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Takwon Yoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yea-Eun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - In-Wook Song
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Ugorets V, Mendez PL, Zagrebin D, Russo G, Kerkhoff Y, Kotsaris G, Jatzlau J, Stricker S, Knaus P. Dynamic remodeling of septin structures fine-tunes myogenic differentiation. iScience 2024; 27:110630. [PMID: 39246450 PMCID: PMC11380178 DOI: 10.1016/j.isci.2024.110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/02/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Controlled myogenic differentiation is integral to the development, maintenance and repair of skeletal muscle, necessitating precise regulation of myogenic progenitors and resident stem cells. The transformation of proliferative muscle progenitors into multinuclear syncytia involves intricate cellular processes driven by cytoskeletal reorganization. While actin and microtubles have been extensively studied, we illuminate the role of septins, an essential yet still often overlooked cytoskeletal component, in myoblast architecture. Notably, Septin9 emerges as a critical regulator of myoblast differentiation during the initial commitment phase. Knock-down of Septin9 in C2C12 cells and primary mouse myoblasts accelerates the transition from proliferation to committed progenitor transcriptional programs. Furthermore, we unveil significant reorganization and downregulation of Septin9 during myogenic differentiation. Collectively, we propose that filmamentous septin structures and their orchestrated reorganization in myoblasts are part of a temporal regulatory mechanism governing the differentiation of myogenic progenitors. This study sheds light on the dynamic interplay between cytoskeletal components underlying controlled myogenic differentiation.
Collapse
Affiliation(s)
- Vladimir Ugorets
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Signal Transduction Group, 14195 Berlin, Germany
| | - Paul-Lennard Mendez
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Signal Transduction Group, 14195 Berlin, Germany
- Max Planck Institute for Molecular Genetics, IMPRS-Biology and Computation, 14195 Berlin, Germany
| | - Dmitrii Zagrebin
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Signal Transduction Group, 14195 Berlin, Germany
| | - Giulia Russo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Yannic Kerkhoff
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Bionanointerfaces Group, 14195 Berlin, Germany
| | - Georgios Kotsaris
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, 14195 Berlin, Germany
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Signal Transduction Group, 14195 Berlin, Germany
| | - Sigmar Stricker
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, 14195 Berlin, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Signal Transduction Group, 14195 Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
35
|
Price FD, Matyas MN, Gehrke AR, Chen W, Wolin EA, Holton KM, Gibbs RM, Lee A, Singu PS, Sakakeeny JS, Poteracki JM, Goune K, Pfeiffer IT, Boswell SA, Sorger PK, Srivastava M, Pfaff KL, Gussoni E, Buchanan SM, Rubin LL. Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration. Nat Biotechnol 2024:10.1038/s41587-024-02344-7. [PMID: 39261590 DOI: 10.1038/s41587-024-02344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.
Collapse
Affiliation(s)
- Feodor D Price
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Mark N Matyas
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrew R Gehrke
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - William Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Erica A Wolin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca M Gibbs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Alice Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pooja S Singu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jeffrey S Sakakeeny
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - James M Poteracki
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kelsey Goune
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Isabella T Pfeiffer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sarah A Boswell
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kathleen Lindahl Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics and the Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
36
|
Zhao C, Ikeya M. Novel insights from human induced pluripotent stem cells on origins and roles of fibro/adipogenic progenitors as heterotopic ossification precursors. Front Cell Dev Biol 2024; 12:1457344. [PMID: 39286484 PMCID: PMC11402712 DOI: 10.3389/fcell.2024.1457344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Fibro/adipogenic progenitors (FAPs) that reside in muscle tissue are crucial for muscular homeostasis and regeneration as they secrete signaling molecules and components of the extracellular matrix. During injury or disease, FAPs differentiate into different cell types and significantly modulate muscular function. Recent advances in lineage tracing and single-cell transcriptomics have proven that FAPs are heterogeneous both in resting and post-injury or disease states. Their heterogeneity may be owing to the varied tissue microenvironments and their diverse developmental origins. Therefore, understanding FAPs' developmental origins can help predict their characteristics and behaviors under different conditions. FAPs are thought to be the major cell populations in the muscle connective tissue (MCT). During embryogenesis, the MCT directs muscular development throughout the body and serves as a prepattern for muscular morphogenesis. The developmental origins of FAPs as stromal cells in the MCT were studied previously. In adult tissues, FAPs are important precursors for heterotopic ossification, especially in the context of the rare genetic disorder fibrodysplasia ossificans progressiva. A new developmental origin for FAPs have been suggested that differs from conventional developmental perspectives. In this review, we summarize the developmental origins and functions of FAPs as stromal cells of the MCT and present novel insights obtained by using patient-derived induced pluripotent stem cells and mouse models of heterotopic ossification. This review broadens the current understanding of FAPs and suggests potential avenues for further investigation.
Collapse
Affiliation(s)
- Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
38
|
Patsalos A, Halasz L, Oleksak D, Wei X, Nagy G, Tzerpos P, Conrad T, Hammers DW, Sweeney HL, Nagy L. Spatiotemporal transcriptomic mapping of regenerative inflammation in skeletal muscle reveals a dynamic multilayered tissue architecture. J Clin Invest 2024; 134:e173858. [PMID: 39190487 PMCID: PMC11473166 DOI: 10.1172/jci173858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Tissue regeneration is orchestrated by macrophages that clear damaged cells and promote regenerative inflammation. How macrophages spatially adapt and diversify their functions to support the architectural requirements of actively regenerating tissue remains unknown. In this study, we reconstructed the dynamic trajectories of myeloid cells isolated from acutely injured and early stage dystrophic muscles. We identified divergent subsets of monocytes/macrophages and DCs and validated markers (e.g., glycoprotein NMB [GPNMB]) and transcriptional regulators associated with defined functional states. In dystrophic muscle, specialized repair-associated subsets exhibited distinct macrophage diversity and reduced DC heterogeneity. Integrating spatial transcriptomics analyses with immunofluorescence uncovered the ordered distribution of subpopulations and multilayered regenerative inflammation zones (RIZs) where distinct macrophage subsets are organized in functional zones around damaged myofibers supporting all phases of regeneration. Importantly, intermittent glucocorticoid treatment disrupted the RIZs. Our findings suggest that macrophage subtypes mediated the development of the highly ordered architecture of regenerative tissues, unveiling the principles of the structured yet dynamic nature of regenerative inflammation supporting effective tissue repair.
Collapse
Affiliation(s)
- Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Darby Oleksak
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Xiaoyan Wei
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas Conrad
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - David W. Hammers
- Myology Institute and Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - H. Lee Sweeney
- Myology Institute and Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
39
|
Correia JC, Jannig PR, Gosztyla ML, Cervenka I, Ducommun S, Præstholm SM, Dias JM, Dumont KD, Liu Z, Liang Q, Edsgärd D, Emanuelsson O, Gregorevic P, Westerblad H, Venckunas T, Brazaitis M, Kamandulis S, Lanner JT, Teixeira AI, Yeo GW, Ruas JL. Zfp697 is an RNA-binding protein that regulates skeletal muscle inflammation and remodeling. Proc Natl Acad Sci U S A 2024; 121:e2319724121. [PMID: 39141348 PMCID: PMC11348326 DOI: 10.1073/pnas.2319724121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
Skeletal muscle atrophy is a morbidity and mortality risk factor that happens with disuse, chronic disease, and aging. The tissue remodeling that happens during recovery from atrophy or injury involves changes in different cell types such as muscle fibers, and satellite and immune cells. Here, we show that the previously uncharacterized gene and protein Zfp697 is a damage-induced regulator of muscle remodeling. Zfp697/ZNF697 expression is transiently elevated during recovery from muscle atrophy or injury in mice and humans. Sustained Zfp697 expression in mouse muscle leads to a gene expression signature of chemokine secretion, immune cell recruitment, and extracellular matrix remodeling. Notably, although Zfp697 is expressed in several cell types in skeletal muscle, myofiber-specific Zfp697 genetic ablation in mice is sufficient to hinder the inflammatory and regenerative response to muscle injury, compromising functional recovery. We show that Zfp697 is an essential mediator of the interferon gamma response in muscle cells and that it functions primarily as an RNA-interacting protein, with a very high number of miRNA targets. This work identifies Zfp697 as an integrator of cell-cell communication necessary for tissue remodeling and regeneration.
Collapse
Affiliation(s)
- Jorge C. Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Paulo R. Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Maya L. Gosztyla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA92093
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA92093
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Serge Ducommun
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Stine M. Præstholm
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - José M. Dias
- Nanomedicine and Spatial Biology, Department of Physiology and Pharmacology, Biomedicum, Karolinska, StockholmSE-171 77, Sweden
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Kyle D. Dumont
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Zhengye Liu
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Qishan Liang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA92093
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Daniel Edsgärd
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Olof Emanuelsson
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Håkan Westerblad
- Muscle Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Tomas Venckunas
- Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas44221, Lithuania
| | - Marius Brazaitis
- Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas44221, Lithuania
| | - Sigitas Kamandulis
- Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas44221, Lithuania
| | - Johanna T. Lanner
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Ana I. Teixeira
- Nanomedicine and Spatial Biology, Department of Physiology and Pharmacology, Biomedicum, Karolinska, StockholmSE-171 77, Sweden
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA92093
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA92093
| | - Jorge L. Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
- Department of Pharmacology and Stanley & Judith Frankel Institute for Heart & Brain Health, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
40
|
Bi W, Yang M, Shi M, Hou M, Jiang C, Fan G, Guo W. A comprehensive single-cell RNA transcriptomic analysis identifies a unique SPP1+ macrophages subgroup in aging skeletal muscle. Sci Rep 2024; 14:18156. [PMID: 39103421 PMCID: PMC11300837 DOI: 10.1038/s41598-024-69284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
Senescence of skeletal muscle (SkM) has been a primary contributor to senior weakness and disability in recent years. The gradually declining SkM function associated with senescence has recently been connected to an imbalance between damage and repair. Macrophages (Mac) are involved in SkM aging, and different macrophage subgroups hold different biological functions. Through comprehensive single-cell transcriptomic analysis, we first compared the metabolic pathways and biological functions of different types of cells in young (Y) and old (O) mice SkM. Strikingly, the Mac population in mice SkM was also explored, and we identified a unique Mac subgroup in O SkM characterized by highly expressed SPP1 with strong senescence and adipogenesis features. Further work was carried out on the metabolic and biological processes for these Mac subgroups. Besides, we verified that the proportion of the SPP1+ Mac was increased significantly in the quadriceps tissues of O mice, and the senotherapeutic drug combination dasatinib + quercetin (D + Q) could dramatically reduce its proportion. Our study provides novel insight into the potential role of SPP1+ Mac in SkM, which may serve as a senotherapeutic target in SkM aging.
Collapse
Affiliation(s)
- Wen Bi
- Department of Sports Medicine, The Sixth Affiliated Hospital of Shenzhen University, Shenzhen Nanshan People's Hospital, Shenzhen, 518052, China
| | - Mengyue Yang
- Department of Cardiology, The Sixth Affiliated Hospital of Shenzhen University, Shenzhen Nanshan People's Hospital, Shenzhen, 518052, China
| | - Mengjia Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Mirong Hou
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Changqing Jiang
- Department of Sports Medicine, The Sixth Affiliated Hospital of Shenzhen University, Shenzhen Nanshan People's Hospital, Shenzhen, 518052, China
| | - Gang Fan
- Department of Urology, The Sixth Affiliated Hospital of Shenzhen University, Shenzhen Nanshan People's Hospital, Shenzhen, 518052, China.
| | - Weiming Guo
- Department of Sports Medicine, The Sixth Affiliated Hospital of Shenzhen University, Shenzhen Nanshan People's Hospital, Shenzhen, 518052, China.
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, 518052, China.
| |
Collapse
|
41
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
42
|
Ma L, Meng Y, An Y, Han P, Zhang C, Yue Y, Wen C, Shi X, Jin J, Yang G, Li X. Single-cell RNA-seq reveals novel interaction between muscle satellite cells and fibro-adipogenic progenitors mediated with FGF7 signalling. J Cachexia Sarcopenia Muscle 2024; 15:1388-1403. [PMID: 38751367 PMCID: PMC11294021 DOI: 10.1002/jcsm.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Muscle satellite cells (MuSCs) exert essential roles in skeletal muscle adaptation to growth, injury and ageing, and their functions are extensively modulated by microenvironmental factors. However, the current knowledge about the interaction of MuSCs with niche cells is quite limited. METHODS A 10× single-cell RNA sequencing (scRNA-seq) was performed on porcine longissimus dorsi and soleus (SOL) muscles to generate a single-cell transcriptomic dataset of myogenic cells and other cell types. Sophisticated bioinformatic analyses, including unsupervised clustering analysis, marker gene, gene set variation analysis (GSVA), AUCell, pseudotime analysis and RNA velocity analysis, were performed to explore the heterogeneity of myogenic cells. CellChat analysis was used to demonstrate cell-cell communications across myogenic cell subpopulations and niche cells, especially fibro-adipogenic progenitors (FAPs). Integrated analysis with human and mice datasets was performed to verify the expression of FGF7 across diverse species. The role of FGF7 on MuSC proliferation was evaluated through administering recombinant FGF7 to porcine MuSCs, C2C12, cardiotoxin (CTX)-injured muscle and d-galactose (d-gal)-induced ageing model. RESULTS ScRNA-seq totally figured out five cell types including myo-lineage cells and FAPs, and myo-lineage cells were further classified into six subpopulations, termed as RCN3+, S100A4+, ID3+, cycling (MKI67+), MYF6+ and MYMK+ satellite cells, respectively. There was a higher proportion of cycling and MYF6+ cells in the SOL population. CellChat analysis uncovered a particular impact of FAPs on myogenic cells mediated by FGF7, which was relatively highly expressed in SOL samples. Administration of FGF7 (10 ng/mL) significantly increased the proportion of EdU+ porcine MuSCs and C2C12 by 4.03 ± 0.81% (P < 0.01) and 6.87 ± 2.17% (P < 0.05), respectively, and knockdown of FGFR2 dramatically abolished the pro-proliferating effects (P < 0.05). In CTX-injured muscle, FGF7 significantly increased the ratio of EdU+/Pax7+ cells by 15.68 ± 5.45% (P < 0.05) and elevated the number of eMyHC+ regenerating myofibres by 19.7 ± 4.25% (P < 0.01). Under d-gal stimuli, FGF7 significantly reduced γH2AX+ cells by 17.19 ± 3.05% (P < 0.01) in porcine MuSCs, induced EdU+ cells by 4.34 ± 1.54% (P < 0.05) in C2C12, and restored myofibre size loss and running exhaustion in vivo (all P < 0.05). CONCLUSIONS Our scRNA-seq reveals a novel interaction between muscle FAPs and satellite cells mediated by FGF7-FGFR2. Exogenous FGF7 augments the proliferation of satellite cells and thus benefits muscle regeneration and counteracts age-related myopathy.
Collapse
Affiliation(s)
- Lu Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Yingying Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Yalong An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Peiyuan Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Chen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Yongqi Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Chenglong Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Jianjun Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| |
Collapse
|
43
|
Boss-Kennedy A, Kim D, Barai P, Maldonado C, Reyes-Ordoñez A, Chen J. Muscle cell-derived Ccl8 is a negative regulator of skeletal muscle regeneration. FASEB J 2024; 38:e23841. [PMID: 39051762 PMCID: PMC11279459 DOI: 10.1096/fj.202400184r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Skeletal muscles undergo robust regeneration upon injury, and infiltrating immune cells play a major role in not only clearing damaged tissues but also regulating the myogenic process through secreted cytokines. Chemokine C-C motif ligand 8 (Ccl8), along with Ccl2 and Ccl7, has been reported to mediate inflammatory responses to suppress muscle regeneration. Ccl8 is also expressed by muscle cells, but a role of the muscle cell-derived Ccl8 in myogenesis has not been reported. In this study, we found that knockdown of Ccl8, but not Ccl2 or Ccl7, led to increased differentiation of C2C12 myoblasts. Analysis of existing single-cell transcriptomic datasets revealed that both immune cells and muscle stem cells (MuSCs) in regenerating muscles express Ccl8, with the expression by MuSCs at a much lower level, and that the temporal patterns of Ccl8 expression were different in MuSCs and macrophages. To probe a function of muscle cell-derived Ccl8 in vivo, we utilized a mouse system in which Cas9 was expressed in Pax7+ myogenic progenitor cells (MPCs) and Ccl8 gene editing was induced by AAV9-delivered sgRNA. Depletion of Ccl8 in Pax7+ MPCs resulted in accelerated muscle regeneration after barium chloride-induced injury in both young and middle-aged mice, and intramuscular administration of a recombinant Ccl8 reversed the phenotype. Accelerated regeneration was also observed when Ccl8 was depleted in Myf5+ or MyoD+ MPCs by similar approaches. Our results suggest that muscle cell-derived Ccl8 plays a unique role in regulating the initiation of myogenic differentiation during injury-induced muscle regeneration.
Collapse
Affiliation(s)
- A Boss-Kennedy
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - D Kim
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - P Barai
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - C Maldonado
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - A Reyes-Ordoñez
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - J Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
44
|
Perrin S, Ethel M, Bretegnier V, Goachet C, Wotawa CA, Luka M, Coulpier F, Masson C, Ménager M, Colnot C. Single nuclei transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546220. [PMID: 39211065 PMCID: PMC11361009 DOI: 10.1101/2023.06.23.546220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nuclei atlas of the periosteum at steady-state and of the fracture site during early stages of bone repair ( https://fracture-repair-atlas.cells.ucsc.edu ). We identified periosteal SSPCs expressing stemness markers ( Pi16 and Ly6a /SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt and the circadian clock signaling respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.
Collapse
|
45
|
Goffette V, Sabin N, Bugeon J, Jagot S, Hue I, Gabillard JC. Mature adipocytes inhibit differentiation of myogenic cells but stimulate proliferation of fibro-adipogenic precursors derived from trout muscle in vitro. Sci Rep 2024; 14:16422. [PMID: 39013963 PMCID: PMC11252293 DOI: 10.1038/s41598-024-67152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Interactions between tissues and cell types, mediated by cytokines or direct cell-cell exchanges, regulate growth. To determine whether mature adipocytes influence the in vitro growth of trout mononucleated muscle cells, we developed an indirect coculture system, and showed that adipocytes (5 × 106 cells/well) derived from perivisceral adipose tissue increased the proliferation (BrdU-positive cells) of the mononucleated muscle cells (26% vs. 39%; p < 0.001) while inhibiting myogenic differentiation (myosin+) (25% vs. 15%; p < 0.001). Similar effects were obtained with subcutaneous adipose tissue-derived adipocytes, although requiring more adipocytes (3 × 107 cells/well vs. 5 × 106 cells/well). Conditioned media recapitulated these effects, stimulating proliferation (31% vs. 39%; p < 0.001) and inhibiting myogenic differentiation (32 vs. 23%; p < 0.001). Adipocytes began to reduce differentiation after 24 h, whereas proliferation stimulation was observed after 48 h. While adipocytes did not change pax7+ and myoD1/2+ percentages, they reduced myogenin+ cells showing inhibition from early differentiation stage. Finally, adipocytes increased BrdU+ cells in the Pdgfrα+ population but not in the myoD+ one. Collectively, our results demonstrate that trout adipocytes promote fibro-adipocyte precursor proliferation while inhibiting myogenic cells differentiation in vitro, suggesting the key role of adipose tissue in regulating fish muscle growth.
Collapse
Affiliation(s)
- Valentine Goffette
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Nathalie Sabin
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Jerôme Bugeon
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Sabrina Jagot
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Isabelle Hue
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Jean-Charles Gabillard
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Campus de Beaulieu, 35042, Rennes Cedex, France.
| |
Collapse
|
46
|
Liang W, Xu F, Li L, Peng C, Sun H, Qiu J, Sun J. Epigenetic control of skeletal muscle atrophy. Cell Mol Biol Lett 2024; 29:99. [PMID: 38978023 PMCID: PMC11229277 DOI: 10.1186/s11658-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
Collapse
Affiliation(s)
- Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, China
| | - Li Li
- Nantong Center for Disease Control and Prevention, Medical School of Nantong University, Nantong, 226001, China
| | - Chunlei Peng
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226000, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China.
| |
Collapse
|
47
|
Yi X, Feng M, Zhu J, Yu H, He Z, Zhang Z, Zhao T, Zhang Q, Pang W. Adipocyte Progenitor Pools Composition and Cellular Niches Affect Adipogenesis Divergence in Porcine Subcutaneous and Intramuscular Fat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38848240 DOI: 10.1021/acs.jafc.4c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Intramuscular fat (IMF) contributed positively to pork quality, whereas subcutaneous fat (SCF) was often considered to be a detrimental factor impacting growth and carcass traits. Reducing SCF while maintaining optimal IMF levels requires a thorough understanding of the adipogenic differences between these two adipose depots. Our study explored the differences in adipogenesis between porcine IMF and SCF, and the results showed that subcutaneous adipocytes (SCAs) demonstrate a greater potential for adipogenic differentiation, both in vivo and in vitro. Lipidomic and transcriptomic analyses suggested that intramuscular adipocytes (IMAs) are more inclined to biosynthesize unsaturated fatty acids. Furthermore, single-cell RNA sequencing (scRNA-seq) was employed to dissect the intrinsic and microenvironmental discrepancies in adipogenesis between porcine IMF and SCF. Comparative analysis indicated that SCF was enriched with preadipocytes, exhibiting an enhanced adipogenic potential, while IMF was characterized by a higher abundance of stem cells. Furthermore, coculture analyses of porcine intramuscular adipogenic cells and myogenetic cells indicated that the niche of IMAs inhibited its adipogenic differentiation. Cell communication analysis identified 160 ligand-receptor pairs and channels between adipogenic and myogenetic cells in IMF. Collectively, our study elucidated two intrinsic and microenvironmental novel mechanisms underpinning the divergence in adipogenesis between porcine SCF and IMF.
Collapse
Affiliation(s)
- Xudong Yi
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Feng
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiahua Zhu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - He Yu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaozhao He
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziyi Zhang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tiantian Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Que Zhang
- Department of Animal Science and Technology, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong 261061, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
48
|
Verma M, Asakura Y, Wang X, Zhou K, Ünverdi M, Kann AP, Krauss RS, Asakura A. Endothelial cell signature in muscle stem cells validated by VEGFA-FLT1-AKT1 axis promoting survival of muscle stem cell. eLife 2024; 13:e73592. [PMID: 38842166 PMCID: PMC11216748 DOI: 10.7554/elife.73592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.
Collapse
Affiliation(s)
- Mayank Verma
- Department of Pediatrics & Neurology, Division of Pediatric Neurology, The University of Texas Southwestern Medical CenterDallasUnited States
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Xuerui Wang
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Kasey Zhou
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Mahmut Ünverdi
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical Sciencesf, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical Sciencesf, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| |
Collapse
|
49
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
50
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|