1
|
Yu T, Xing J, Zhuang X, Tian M. Evaluation of broad-spectrum protection by novel mRNA vaccines against SARS-CoV-2 variants (Delta, Omicron-BA.5, XBB-EG.5) in the golden hamster model. Virol J 2025; 22:159. [PMID: 40410742 PMCID: PMC12102927 DOI: 10.1186/s12985-025-02787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 05/10/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND The SARS-CoV-2 virus has continuously evolved, with new variants like Delta, Omicron-BA.5, and XBB-EG.5 posing challenges to vaccine efficacy. mRNA vaccines have emerged as a promising tool due to their rapid development and adaptability. This study evaluates the protective efficacy of six novel mRNA vaccine candidates against these variants using a golden hamster model. METHODS Six mRNA vaccines were designed, targeting the spike (S) and nucleocapsid (N) proteins of SARS-CoV-2. The vaccines were tested on golden hamsters, which were immunized and then challenged with Delta, Omicron-BA.5, and XBB-EG.5 variants. Key outcomes measured included body weight, viral RNA loads in various tissues, cytokine levels, and lung tissue pathology. RESULTS Hamsters vaccinated with the novel mRNA vaccines showed reduced weight loss, lower viral RNA loads in throat swabs and lung tissues, and reduced levels of pro-inflammatory cytokines compared to control groups. Additionally, vaccinated animals exhibited significantly less lung damage as evidenced by both histological and immunofluorescence analyses, especially in groups vaccinated with RBD-Fe, RE-N, and COVID-19 epitope formulations. CONCLUSIONS These mRNA vaccines demonstrated broad protective efficacy against multiple SARS-CoV-2 variants. They elicited immune responses, reduced viral RNA loads, and mitigated inflammatory and pathological damage, highlighting their potential in combating rapidly evolving SARS-CoV-2 variants.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19/virology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Mesocricetus
- Cricetinae
- Disease Models, Animal
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Lung/pathology
- Lung/virology
- Viral Load
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- mRNA Vaccines/immunology
- Cytokines
- Coronavirus Nucleocapsid Proteins/immunology
- Coronavirus Nucleocapsid Proteins/genetics
- Vaccines, Synthetic/immunology
- RNA, Viral
- Female
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- RNA, Messenger/immunology
Collapse
Affiliation(s)
- Tong Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China
| | - JunHong Xing
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - XinYu Zhuang
- Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - MingYao Tian
- Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
2
|
Yu W, Tao J, Cao H, Zheng W, Zhang B, Zhang Y, Xu P, Zhang Y, Liu X, Wang Y, Cai H, Liu G, Liu F, Wang H, Zhao H, Mysorekar IU, Hu X, Cao B. The HAVCR1-centric host factor network drives Zika virus vertical transmission. Cell Rep 2025; 44:115464. [PMID: 40156834 DOI: 10.1016/j.celrep.2025.115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/11/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
Zika virus (ZIKV) vertical transmission results in devastating congenital malformations and pregnancy complications; however, the specific receptor and host factors facilitating ZIKV maternal-fetal transmission remain elusive. Here, we employ a genome-wide CRISPR screening and identify multiple placenta-intrinsic factors modulating ZIKV infection. Our study unveils that hepatitis A virus cellular receptor 1 (HAVCR1) serves as a primary receptor governing ZIKV entry in placental trophoblasts. The GATA3-HAVCR1 axis regulates heterogeneous cell tropism in the placenta. Notably, placenta-specific Havcr1 deletion in mice significantly impairs ZIKV transplacental transmission and associated adverse pregnancy outcomes. Mechanistically, the immunoglobulin variable-like domain of HAVCR1 binds to ZIKV via domain III of envelope protein and virion-associated phosphatidylserine. Proteomic profiling and function analyses reveal that AP2S1 cooperates with HAVCR1 for ZIKV internalization through clathrin-mediated endocytosis. Overall, our work underscores the pivotal role of HAVCR1 in mediating ZIKV vertical transmission and highlights a therapeutic target for alleviating congenital Zika syndrome.
Collapse
Affiliation(s)
- Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Jun Tao
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Hongmin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Wanshan Zheng
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Beiang Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Yue Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Peiqun Xu
- Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Yiwei Zhang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Xuan Liu
- State Key Laboratory of Vaccine for Infectious Disease, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Gang Liu
- State Key Laboratory of Vaccine for Infectious Disease, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Fan Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Haiyan Zhao
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoqian Hu
- State Key Laboratory of Vaccine for Infectious Disease, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China; Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
3
|
Bai S, Pan X, Yang T, Gao N, Zhu C, Xia A, Feng M, Zhang M, Zhang X, Xu J. Rabies virus large protein-derived T-cell immunogen facilitates rapid viral clearance and enhances protection against lethal challenge in mice. COMMUNICATIONS MEDICINE 2025; 5:127. [PMID: 40251380 PMCID: PMC12008279 DOI: 10.1038/s43856-025-00851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/05/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Rabies remains a devastating and fatal infectious disease worldwide. To date, vaccination is the most reliable and effective strategy for controlling rabies. However, despite the effectiveness of inactivated vaccines, cumbersome vaccination procedures and the high costs of post-exposure prophylaxis impose a significant economic burden, particularly in developing countries with limited access to vaccines. Therefore, there is an urgent need to develop a novel rabies vaccine that reduces costs while enhancing safety and efficacy. METHODS We developed a novel mRNA rabies vaccine called RABV-G-LT, which incorporates two immunogens: RABV-G, a glycoprotein designed mainly to elicit neutralizing antibody responses, and RABV-LT, a T-cell immunogen derived from the large protein of the rabies virus. Additionally, we evaluated the immunogenicity of RABV-G-LT in both mice and non-human primates. RESULTS The RABV-LT mRNA vaccination alone induced potent RABV-LT-specific T-cell responses and provided modest protection against rabies virus challenge in mice. Importantly, the dual-immunogen mRNA vaccine RABV-G-LT elicited vigorous and persistent neutralization antibody and T-cell responses, resulting in significantly more efficient clearance of the rabies virus in the brain and spinal cord. This conferred enhanced protection, evidenced by lesser initial weight loss and earlier recovery of body weight compared with the RABV-G mRNA or inactivated vaccine groups. Moreover, RABV-G-LT also mounted persistent strong antigen-specific T-cell and antibody immune responses in nonhuman primates. CONCLUSIONS Our study suggested that combining the T-cell immunogen and virus-neutralizing antibody immunogen was a practical approach to strengthening the defense against the rabies virus.
Collapse
Affiliation(s)
- Shimeng Bai
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- Bio-therapeutic Center, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Hospital Affiliated with the School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xinghao Pan
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Tianhan Yang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Nan Gao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Ai Xia
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Meiqi Feng
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Miaomiao Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Xiaoyan Zhang
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
| | - Jianqing Xu
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
4
|
Tai W, Tian C, Shi H, Chai B, Yu X, Zhuang X, Dong P, Li M, Yin Q, Feng S, Wang W, Zhang O, Liang S, Liu Y, Liu J, Zhu L, Zhao G, Tian M, Yu G, Cheng G. An mRNA vaccine against monkeypox virus inhibits infection by co-activation of humoral and cellular immune responses. Nat Commun 2025; 16:2971. [PMID: 40140411 PMCID: PMC11947304 DOI: 10.1038/s41467-025-58328-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
The persistent monkeypox outbreaks intensify the demand for monkeypox vaccines. Based on the mRNA vaccine platform, we conduct a systematic screening of monkeypox virus (MPXV) surface proteins from two types of viral particles, extracellular enveloped viruses (EVs) and intracellular mature viruses (MVs). This screening unveils 12 important antigens with diverse levels of neutralizing immunogenicity. Further assessment reveals that the combinations of 4, 8, and 12 of these antigens, namely Mix-4, Mix-8, and Mix-12, induce varying degrees of immune protection, with Mix-12 being the most potent. This finding demonstrates the significance of not only the level but also the diversity of the neutralizing antibodies in providing potent immune protection. Additionally, we utilize a T cell-epitope enrichment strategy, analyzing the complete proteome sequence of the MPXV to predict antigenic epitope-rich regions. Integration of these epitope-rich regions into a cellular immune-targeting antigen, named MPX-EPs, showcases that a cellular immune-targeting mRNA vaccine can independently confer immune protection. Furthermore, co-immunization with Mix-12 and MPX-EPs achieves complete protection against MPXV challenge. Overall, these results suggest an effective approach to enhance the immune protection of mRNA vaccines through the specific coordination of humoral and cellular immune responses.
Collapse
MESH Headings
- Animals
- Immunity, Humoral/immunology
- Immunity, Cellular/immunology
- Monkeypox virus/immunology
- Monkeypox virus/genetics
- Mpox, Monkeypox/prevention & control
- Mpox, Monkeypox/immunology
- Mpox, Monkeypox/virology
- Antibodies, Neutralizing/immunology
- Mice
- Antibodies, Viral/immunology
- Viral Vaccines/immunology
- Female
- mRNA Vaccines/immunology
- Epitopes, T-Lymphocyte/immunology
- Mice, Inbred BALB C
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Vaccines, Synthetic/immunology
- Humans
Collapse
Affiliation(s)
- Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Chongyu Tian
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Huicheng Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Benjie Chai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengyuan Dong
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Weixiao Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Oujia Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Shibo Liang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianying Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Longchao Zhu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
- Southwest United Graduate School, Kunming, China.
| |
Collapse
|
5
|
Volz A, Clever S, Tscherne A, Freudenstein A, Jany S, Schwarz JH, Limpinsel L, Valiant WG, Kalodimou G, Sutter G, Mattapallil JJ. Efficacy of emergency maternal MVA-ZIKV vaccination in a rapid challenge model of lethal Zika infection. NPJ Vaccines 2025; 10:44. [PMID: 40044709 PMCID: PMC11882785 DOI: 10.1038/s41541-025-01094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Zika virus (ZIKV) outbreak of 2015 was associated with microcephaly and congenital birth defects in children born to pregnant women infected with ZIKV. Using the highly susceptible Type I Interferon Receptor-deficient mouse-model, we demonstrate that a single emergency vaccination with a non-replicating MVA-ZIKV vaccine, when administered as early as 2-days before challenge fully protected non-pregnant and pregnant mice and fetuses against lethal ZIKV-infection. Early protection was associated with the rapid emergence of ZIKV-specific CD8+ T cell responses; depletion of CD8+ T cells resulted in the loss of protection supporting a critical role for CD8+ T cells in the early protective efficacy of MVA-ZIKV. Neutralizing antibody responses were induced later than the CD8+ T cell responses, suggesting that it may play a role in later stages of infection. Our results suggest that MVA-ZIKV induces potent anamnestic cellular immunity early after infection, contributing to its protective efficacy against rapid ZIKV challenge.
Collapse
Affiliation(s)
- Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Braunschweig, Germany.
| | - Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Jan H Schwarz
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - William G Valiant
- Dept. of Microbiology & Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Joseph J Mattapallil
- Dept. of Microbiology & Immunology, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
6
|
Roth C, Pitard B, Levillayer L, Lay S, Vo HTM, Cantaert T, Sakuntabhai A. Zika virus T-cell based 704/DNA vaccine promotes protection from Zika virus infection in the absence of neutralizing antibodies. PLoS Negl Trop Dis 2024; 18:e0012601. [PMID: 39418312 PMCID: PMC11521268 DOI: 10.1371/journal.pntd.0012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/29/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are closely related flaviviruses co-circulating in the same endemic areas. Infection can raise cross-reactive antibodies that can be either protective or increase risk of severe disease, depending on the infection sequence, DENV serotype and elapsed time between infection. On the contrast, T cell-mediated immunity against DENV and ZIKV is considered protective. Therefore, we have developed a T cell vaccine enriched in immunodominant T cell epitopes derived from ZIKV and evaluated its immunogenicity and efficacy against ZIKV and DENV infection. Mice were vaccinated using DNA vaccine platform using the tetrafunctional amphiphilic block copolymer 704. We show that vaccination of 2 different HLA class I transgenic mice with the ZIKV non-structural (NS) poly-epitope elicits T cell response against numerous ZIKV epitopes. Moreover, vaccination induces a significant protection against ZIKV infection, in the absence of neutralizing or enhancing antibodies against ZIKV. However, vaccination does not induce a significant protection against DENV2. In contrast, immunization with a DENV1-NS poly-epitope induces a significant protection against both DENV1 and DENV2, in the absence of humoral immunity. Taken together, we have shown that T-cell based vaccination could protect against multiple flavivirus infections and could overcome the complexity of antibody-mediated enhancement.
Collapse
Affiliation(s)
- Claude Roth
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Bruno Pitard
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in Immunotherapy, INCIT UMR1232/EMR6001, F-44000 Nantes, France
| | - Laurine Levillayer
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- Oxford University Clinical Research Unit, Ho Chi Minh, Vietnam
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Anavaj Sakuntabhai
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| |
Collapse
|
7
|
Truex N, Mohapatra S, Melo M, Rodriguez J, Li N, Abraham W, Sementa D, Touti F, Keskin DB, Wu CJ, Irvine DJ, Gómez-Bombarelli R, Pentelute BL. Design of Cytotoxic T Cell Epitopes by Machine Learning of Human Degrons. ACS CENTRAL SCIENCE 2024; 10:793-802. [PMID: 38680558 PMCID: PMC11046456 DOI: 10.1021/acscentsci.3c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 05/01/2024]
Abstract
Antigen processing is critical for therapeutic vaccines to generate epitopes for priming cytotoxic T cell responses against cancer and pathogens, but insufficient processing often limits the quantity of epitopes released. We address this challenge using machine learning to ascribe a proteasomal degradation score to epitope sequences. Epitopes with varying scores were translocated into cells using nontoxic anthrax proteins. Epitopes with a low score show pronounced immunogenicity due to antigen processing, but epitopes with a high score show limited immunogenicity. This work sheds light on the sequence-activity relationships between proteasomal degradation and epitope immunogenicity. We anticipate that future efforts to incorporate proteasomal degradation signals into vaccine designs will lead to enhanced cytotoxic T cell priming by these vaccines in clinical settings.
Collapse
Affiliation(s)
- Nicholas
L. Truex
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Somesh Mohapatra
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Machine
Intelligence and Manufacturing Operations Group, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mariane Melo
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Ragon Institute
of Massachusetts General Hospital, Massachusetts
Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, United States
| | - Jacob Rodriguez
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Na Li
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Wuhbet Abraham
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Deborah Sementa
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Faycal Touti
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Derin B. Keskin
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Translational
Immunogenomics Laboratory (TIGL), Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Computer Science, Metropolitan College, Boston University, Boston, Massachusetts 02215, United States
- Section
for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Catherine J. Wu
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Darrell J. Irvine
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Ragon Institute
of Massachusetts General Hospital, Massachusetts
Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Rafael Gómez-Bombarelli
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Costa PAC, da Silva WN, Moura Prazeres PHD, Ferreira HAS, da Silva NJA, Figueiredo MM, da Silva Oliveira B, Scalzo Júnior SRA, Silva Santos FRD, Fernandes RA, Palanki R, Hamilton AG, Birbrair A, Santos VR, de Miranda AS, Mitchell MJ, Teixeira MM, Costa VV, Guimarães PPG. siRNA lipid nanoparticles for CXCL12 silencing modulate brain immune response during Zika infection. Biomed Pharmacother 2024; 170:115981. [PMID: 38091634 DOI: 10.1016/j.biopha.2023.115981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
CXCL12 is a key chemokine implicated in neuroinflammation, particularly during Zika virus (ZIKV) infection. Specifically, CXCL12 is upregulated in circulating cells of ZIKV infected patients. Here, we developed a lipid nanoparticle (LNP) to deliver siRNA in vivo to assess the impact of CXCL12 silencing in the context of ZIKV infection. The biodistribution of the LNP was assessed in vivo after intravenous injection using fluorescently tagged siRNA. Next, we investigated the ability of the developed LNP to silence CXCL12 in vivo and assessed the resulting effects in a murine model of ZIKV infection. The LNP encapsulating siRNA significantly inhibited CXCL12 levels in the spleen and induced microglial activation in the brain during ZIKV infection. This activation was evidenced by the enhanced expression of iNOS, TNF-α, and CD206 within microglial cells. Moreover, T cell subsets exhibited reduced secretion of IFN-ɣ and IL-17 following LNP treatment. Despite no observable alteration in viral load, CXCL12 silencing led to a significant reduction in type-I interferon production compared to both ZIKV-infected and uninfected groups. Furthermore, we found grip strength deficits in the group treated with siRNA-LNP compared to the other groups. Our data suggest a correlation between the upregulated pro-inflammatory cytokines and the observed decrease in strength. Collectively, our results provide evidence that CXCL12 silencing exerts a regulatory influence on the immune response in the brain during ZIKV infection. In addition, the modulation of T-cell activation following CXCL12 silencing provides valuable insights into potential protective mechanisms against ZIKV, offering novel perspectives for combating this infection.
Collapse
Affiliation(s)
- Pedro Augusto Carvalho Costa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Walison Nunes da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Pedro Henrique Dias Moura Prazeres
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heloísa Athaydes Seabra Ferreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Natália Jordana Alves da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Bruna da Silva Oliveira
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Sérgio Ricardo Aluotto Scalzo Júnior
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Felipe Rocha da Silva Santos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rúbia Aparecida Fernandes
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6321, United States
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6321, United States
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, WI 53706, United States
| | - Victor Rodrigues Santos
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Aline Silva de Miranda
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6321, United States
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Pedro Pires Goulart Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| |
Collapse
|
9
|
Rios LE, Lokugamage N, Choudhuri S, Chowdhury IH, Garg NJ. Subunit nanovaccine elicited T cell functional activation controls Trypanosoma cruzi mediated maternal and placental tissue damage and improves pregnancy outcomes in mice. NPJ Vaccines 2023; 8:188. [PMID: 38104118 PMCID: PMC10725459 DOI: 10.1038/s41541-023-00782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
This study investigated a candidate vaccine effect against maternal Trypanosoma cruzi (Tc) infection and improved pregnancy outcomes. For this, TcG2 and TcG4 were cloned in a nanoplasmid optimized for delivery, antigen expression, and regulatory compliance (nano2/4 vaccine). Female C57BL/6 mice were immunized with nano2/4, infected (Tc SylvioX10), and mated 7-days post-infection to enable fetal development during the maternal acute parasitemia phase. Females were euthanized at E12-E17 (gestation) days. Splenic and placental T-cell responses were monitored by flow cytometry. Maternal and placental/fetal tissues were examined for parasites by qPCR and inflammatory infiltrate by histology. Controls included age/immunization-matched non-pregnant females. Nano2/4 exhibited no toxicity and elicited protective IgG2a/IgG1 response in mice. Nano2/4 signaled a splenic expansion of functionally active CD4+ effector/effector memory (Tem) and central memory (Tcm) cells in pregnant mice. Upon challenge infection, nano2/4 increased the splenic CD4+ and CD8+T cells in all mice and increased the proliferation of CD4+Tem, CD4+Tcm, and CD8+Tcm subsets producing IFNγ and cytolytic molecules (PRF1, GZB) in pregnant mice. A balanced serum cytokines/chemokines response and placental immune characteristics indicated that pregnancy prevented the overwhelming damaging immune response in mice. Importantly, pregnancy itself resulted in a significant reduction of parasites in maternal and fetal tissues. Nano2/4 was effective in arresting the Tc-induced tissue inflammatory infiltrate, necrosis, and fibrosis in maternal and placental tissues and improving maternal fertility, placental efficiency, and fetal survival. In conclusion, we show that maternal nano2/4 vaccination is beneficial in controlling the adverse effects of Tc infection on maternal health, fetal survival, and pregnancy outcomes.
Collapse
Affiliation(s)
- Lizette Elaine Rios
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, UTMB, Galveston, TX, USA
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Imran Hussain Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA.
- Institute for Human Infections and Immunity (IHII), UTMB, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences (SIVS), UTMB, Galveston, TX, USA.
| |
Collapse
|
10
|
Wijesundara DK, Yeow A, McMillan CL, Choo JJ, Todorovic A, Mekonnen ZA, Masavuli MG, Young PR, Gowans EJ, Grubor-Bauk B, Muller DA. Superior efficacy of a skin-applied microprojection device for delivering a novel Zika DNA vaccine. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102056. [PMID: 38028199 PMCID: PMC10630652 DOI: 10.1016/j.omtn.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Zika virus (ZIKV) infections are spreading silently with limited global surveillance in at least 89 countries and territories. There is a pressing need to develop an effective vaccine suitable for equitable distribution globally. Consequently, we previously developed a proprietary DNA vaccine encoding secreted non-structural protein 1 of ZIKV (pVAX-tpaNS1) to elicit rapid protection in a T cell-dependent manner in mice. In the current study, we evaluated the stability, efficacy, and immunogenicity of delivering this DNA vaccine into the skin using a clinically effective and proprietary high-density microarray patch (HD-MAP). Dry-coating of pVAX-tpaNS1 on the HD-MAP device resulted in no loss of vaccine stability at 40°C storage over the course of 28 days. Vaccination of mice (BALB/c) with the HD-MAP-coated pVAX-tpaNS1 elicited a robust anti-NS1 IgG response in both the cervicovaginal mucosa and systemically and afforded protection against live ZIKV challenge. Furthermore, the vaccination elicited a significantly higher magnitude and broader NS1-specific T helper and cytotoxic T cell response in vivo compared with traditional needle and syringe intradermal vaccination. Overall, the study highlights distinctive immunological advantages coupled with an excellent thermostability profile of using the HD-MAP device to deliver a novel ZIKV DNA vaccine.
Collapse
Affiliation(s)
- Danushka K. Wijesundara
- Vaxxas Biomedical Facility, Hamilton, QLD 4007, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Arthur Yeow
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jovin J.Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aleksandra Todorovic
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zelalem A. Mekonnen
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Makutiro G. Masavuli
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Eric J. Gowans
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Branka Grubor-Bauk
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - David A. Muller
- Vaxxas Biomedical Facility, Hamilton, QLD 4007, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Su H, Liu J, Yu J, Qiu Z, Liang W, Wu W, Mo H, Li H, Zhao W, Gu W. EDIII-Fc induces protective immune responses against the Zika virus in mice and rhesus macaque. PLoS Negl Trop Dis 2023; 17:e0011770. [PMID: 37983259 PMCID: PMC10695381 DOI: 10.1371/journal.pntd.0011770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Zika virus can infect the fetus through the placental barrier, causing ZIKV congenital syndrome and even miscarriage, which can cause great harm to pregnant women and infants. Currently, there is no vaccine and drug available to combat the Zika virus. In this study, we designed a fusion protein named EDIII-Fc, including the EDIII region of Zika E protein and human IgG Fc fragment, and obtained 293T cells that stably secreted EDIII-Fc protein using the lentiviral expression system. Mice were immunized with the EDIII-Fc protein, and it was observed that viral replication was significantly inhibited in the immunized mice compared to non-immunized mice. In rhesus macaques, we found that EDIII-Fc effectively induce the secretion of neutralizing antibodies and T cell immunity. These experimental data provide valid data for further use of Zika virus E protein to prepare an effective, safe, affordable Zika vaccine.
Collapse
Affiliation(s)
- Hailong Su
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jun Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jianhai Yu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenzhen Qiu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenhan Liang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Wangsheng Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Haifeng Mo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weiwang Gu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Truex NL, Mohapatra S, Melo M, Rodriguez J, Li N, Abraham W, Sementa D, Touti F, Keskin DB, Wu CJ, Irvine DJ, Gómez-Bombarelli R, Pentelute BL. Design of Cytotoxic T Cell Epitopes by Machine Learning of Human Degrons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554289. [PMID: 37662211 PMCID: PMC10473641 DOI: 10.1101/2023.08.22.554289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Antigen processing is critical for producing epitope peptides that are presented by HLA molecules for T cell recognition. Therapeutic vaccines aim to harness these epitopes for priming cytotoxic T cell responses against cancer and pathogens, but insufficient processing often reduces vaccine efficacy through limiting the quantity of epitopes released. Here, we set out to improve antigen processing by harnessing protein degradation signals called degrons from the ubiquitin-proteasome system. We used machine learning to generate a computational model that ascribes a proteasomal degradation score between 0 and 100. Epitope peptides with varying degron activities were synthesized and translocated into cells using nontoxic anthrax proteins: protective antigen (PA) and the N-terminus of lethal factor (LFN). Immunogenicity studies revealed epitope sequences with a low score (<25) show pronounced T-cell activation but epitope sequences with a higher score (>75) provide limited activation. This work sheds light on the sequence-activity relationships between proteasomal degradation and epitope immunogenicity, through conserving the epitope region but varying the flanking sequence. We anticipate that future efforts to incorporate proteasomal degradation signals into vaccine designs will lead to enhanced cytotoxic T cell priming by vaccine therapeutics in clinical settings.
Collapse
Affiliation(s)
- Nicholas L. Truex
- Department of Chemistry, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Chemistry and Biochemistry, University of South Carolina; 631 Sumter St., Columbia, South Carolina, 29208, USA
| | - Somesh Mohapatra
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Machine Intelligence and Manufacturing Operations Group, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Mariane Melo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; 500 Main Street, Cambridge, Massachusetts 02142, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology; 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jacob Rodriguez
- Department of Chemistry, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Na Li
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; 500 Main Street, Cambridge, Massachusetts 02142, USA
| | - Wuhbet Abraham
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; 500 Main Street, Cambridge, Massachusetts 02142, USA
| | - Deborah Sementa
- Department of Chemistry, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Faycal Touti
- Department of Chemistry, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, 02215, USA
- Harvard Medical School; Boston, Massachusetts, 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
- Translational Immunogenomics Laboratory (TIGL), Dana-Farber Cancer Institute; Boston, Massachusetts, 02215, USA
- Department of Computer Science, Metropolitan College, Boston University; Boston, Massachusetts, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark; Lyngby, DK
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, 02215, USA
- Harvard Medical School; Boston, Massachusetts, 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
| | - Darrell J. Irvine
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; 500 Main Street, Cambridge, Massachusetts 02142, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology; 400 Technology Square, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute; 4000 Jones Bridge Rd, Chevy Chase, Maryland 20815, USA
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; 500 Main Street, Cambridge, Massachusetts 02142, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
13
|
Tai W, Feng S, Chai B, Lu S, Zhao G, Chen D, Yu W, Ren L, Shi H, Lu J, Cai Z, Pang M, Tan X, Wang P, Lin J, Sun Q, Peng X, Cheng G. An mRNA-based T-cell-inducing antigen strengthens COVID-19 vaccine against SARS-CoV-2 variants. Nat Commun 2023; 14:2962. [PMID: 37221158 PMCID: PMC10204679 DOI: 10.1038/s41467-023-38751-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
Herd immunity achieved through mass vaccination is an effective approach to prevent contagious diseases. Nonetheless, emerging SARS-CoV-2 variants with frequent mutations largely evaded humoral immunity induced by Spike-based COVID-19 vaccines. Herein, we develop a lipid nanoparticle (LNP)-formulated mRNA-based T-cell-inducing antigen, which targeted three SARS-CoV-2 proteome regions that enriched human HLA-I epitopes (HLA-EPs). Immunization of HLA-EPs induces potent cellular responses to prevent SARS-CoV-2 infection in humanized HLA-A*02:01/DR1 and HLA-A*11:01/DR1 transgenic mice. Of note, the sequences of HLA-EPs are highly conserved among SARS-CoV-2 variants of concern. In humanized HLA-transgenic mice and female rhesus macaques, dual immunization with the LNP-formulated mRNAs encoding HLA-EPs and the receptor-binding domain of the SARS-CoV-2 B.1.351 variant (RBDbeta) is more efficacious in preventing infection of SARS-CoV-2 Beta and Omicron BA.1 variants than single immunization of LNP-RBDbeta. This study demonstrates the necessity to strengthen the vaccine effectiveness by comprehensively stimulating both humoral and cellular responses, thereby offering insight for optimizing the design of COVID-19 vaccines.
Collapse
Affiliation(s)
- Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Shengyong Feng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Benjie Chai
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Dong Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Liting Ren
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Huicheng Shi
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200438, China
| | - Zhuming Cai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mujia Pang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200438, China.
| | - Qiangming Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Pattnaik A, Sahoo BR, Struble LR, Borgstahl GEO, Zhou Y, Franco R, Barletta RG, Osorio FA, Petro TM, Pattnaik AK. A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge. Vaccines (Basel) 2023; 11:821. [PMID: 37112733 PMCID: PMC10143468 DOI: 10.3390/vaccines11040821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain-Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV infection. Herein, we describe the development of a bacterial ferritin-based nanoparticle vaccine candidate for ZIKV. The viral envelope (E) protein domain III (DIII) was fused in-frame at the amino-terminus of ferritin. The resulting nanoparticle displaying the DIII was examined for its ability to induce immune responses and protect vaccinated animals upon lethal virus challenge. Our results show that immunization of mice with a single dose of the nanoparticle vaccine candidate (zDIII-F) resulted in the robust induction of neutralizing antibody responses that protected the animals from the lethal ZIKV challenge. The antibodies neutralized infectivity of other ZIKV lineages indicating that the zDIII-F can confer heterologous protection. The vaccine candidate also induced a significantly higher frequency of interferon (IFN)-γ positive CD4 T cells and CD8 T cells suggesting that both humoral and cell-mediated immune responses were induced by the vaccine candidate. Although our studies showed that a soluble DIII vaccine candidate could also induce humoral and cell-mediated immunity and protect from lethal ZIKV challenge, the immune responses and protection conferred by the nanoparticle vaccine candidate were superior. Further, passive transfer of neutralizing antibodies from the vaccinated animals to naïve animals protected against lethal ZIKV challenge. Since previous studies have shown that antibodies directed at the DIII region of the E protein do not to induce antibody-dependent enhancement (ADE) of ZIKV or other related flavivirus infections, our studies support the use of the zDIII-F nanoparticle vaccine candidate for safe and enhanced immunological responses against ZIKV.
Collapse
Affiliation(s)
- Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Lucas R. Struble
- The Eppley Institute for Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.R.S.); (G.E.O.B.)
| | - Gloria E. O. Borgstahl
- The Eppley Institute for Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.R.S.); (G.E.O.B.)
| | - You Zhou
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Raul G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fernando A. Osorio
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Thomas M. Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
15
|
Nazneen F, Thompson EA, Blackwell C, Bai JS, Huang F, Bai F. An effective live-attenuated Zika vaccine candidate with a modified 5' untranslated region. NPJ Vaccines 2023; 8:50. [PMID: 37005424 PMCID: PMC10066991 DOI: 10.1038/s41541-023-00650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that has caused devastating congenital Zika syndrome (CZS), including microcephaly, congenital malformation, and fetal demise in human newborns in recent epidemics. ZIKV infection can also cause Guillain-Barré syndrome (GBS) and meningoencephalitis in adults. Despite intensive research in recent years, there are no approved vaccines or antiviral therapeutics against CZS and adult Zika diseases. In this report, we developed a novel live-attenuated ZIKV strain (named Z7) by inserting 50 RNA nucleotides (nt) into the 5' untranslated region (UTR) of a pre-epidemic ZIKV Cambodian strain, FSS13025. We used this particular ZIKV strain as it is attenuated in neurovirulence, immune antagonism, and mosquito infectivity compared with the American epidemic isolates. Our data demonstrate that Z7 replicates efficiently and produces high titers without causing apparent cytopathic effects (CPE) in Vero cells or losing the insert sequence, even after ten passages. Significantly, Z7 induces robust humoral and cellular immune responses that completely prevent viremia after a challenge with a high dose of an American epidemic ZIKV strain PRVABC59 infection in type I interferon (IFN) receptor A deficient (Ifnar1-/-) mice. Moreover, adoptive transfer of plasma collected from Z7 immunized mice protects Ifnar1-/- mice from ZIKV (strain PRVABC59) infection. These results suggest that modifying the ZIKV 5' UTR is a novel strategy to develop live-attenuated vaccine candidates for ZIKV and potentially for other flaviviruses.
Collapse
Affiliation(s)
- Farzana Nazneen
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - E Ashley Thompson
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Claire Blackwell
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Jonathan S Bai
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Faqing Huang
- Chemistry and Biochemistry Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Fengwei Bai
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
16
|
Watanabe S, Vasudevan SG. Clinical and experimental evidence for transplacental vertical transmission of flaviviruses. Antiviral Res 2023; 210:105512. [PMID: 36572192 DOI: 10.1016/j.antiviral.2022.105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The Zika virus (ZIKV) epidemic outbreak in Americas in 2016 attracted global attention because of the association of the virus infection with severe birth defects such as microcephaly, mediated through transplacental virus transmission during pregnancy. Less well-known, but also reported is the increasing evidence that prenatal vertical transmission can be caused by other flaviviruses such as dengue virus (DENV). Currently, the mechanism(s) that cause the vertical transmission of flaviviruses is understudied. Here we review the published reports of clinical evidence of intrauterine transmission of ZIKV and other flaviviruses. We also discuss the animal models for flavivirus infection during pregnancy that have been developed to study the mechanisms underlying the transplacental transmission of flaviviruses in order to develop potential countermeasures for its prevention.
Collapse
Affiliation(s)
- Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8-College Road, 169857, Singapore.
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8-College Road, 169857, Singapore
| |
Collapse
|
17
|
Huisman BD, Dai Z, Gifford DK, Birnbaum ME. A high-throughput yeast display approach to profile pathogen proteomes for MHC-II binding. eLife 2022; 11:e78589. [PMID: 35781135 PMCID: PMC9292997 DOI: 10.7554/elife.78589] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
T cells play a critical role in the adaptive immune response, recognizing peptide antigens presented on the cell surface by major histocompatibility complex (MHC) proteins. While assessing peptides for MHC binding is an important component of probing these interactions, traditional assays for testing peptides of interest for MHC binding are limited in throughput. Here, we present a yeast display-based platform for assessing the binding of tens of thousands of user-defined peptides in a high-throughput manner. We apply this approach to assess a tiled library covering the SARS-CoV-2 proteome and four dengue virus serotypes for binding to human class II MHCs, including HLA-DR401, -DR402, and -DR404. While the peptide datasets show broad agreement with previously described MHC-binding motifs, they additionally reveal experimentally validated computational false positives and false negatives. We therefore present this approach as able to complement current experimental datasets and computational predictions. Further, our yeast display approach underlines design considerations for epitope identification experiments and serves as a framework for examining relationships between viral conservation and MHC binding, which can be used to identify potentially high-interest peptide binders from viral proteins. These results demonstrate the utility of our approach to determine peptide-MHC binding interactions in a manner that can supplement and potentially enhance current algorithm-based approaches.
Collapse
Affiliation(s)
- Brooke D Huisman
- Koch Institute for Integrative Cancer ResearchCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Zheng Dai
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyCambridgeUnited States
| | - David K Gifford
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer ResearchCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| |
Collapse
|
18
|
Tai W, Zhang X, Yang Y, Zhu J, Du L. Advances in mRNA and other vaccines against MERS-CoV. Transl Res 2022; 242:20-37. [PMID: 34801748 PMCID: PMC8603276 DOI: 10.1016/j.trsl.2021.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus (CoV). Belonging to the same beta-CoV genus as severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and SARS-CoV-2, MERS-CoV has a significantly higher fatality rate with limited human-to-human transmissibility. MERS-CoV causes sporadic outbreaks, but no vaccines have yet been approved for use in humans, thus calling for continued efforts to develop effective vaccines against this important CoV. Similar to SARS-CoV-1 and SARS-CoV-2, MERS-CoV contains 4 structural proteins, among which the surface spike (S) protein has been used as a core component in the majority of currently developed MERS-CoV vaccines. Here, we illustrate the importance of the MERS-CoV S protein as a key vaccine target and provide an update on the currently developed MERS-CoV vaccines, including those based on DNAs, proteins, virus-like particles or nanoparticles, and viral vectors. Additionally, we describe approaches for designing MERS-CoV mRNA vaccines and explore the role and importance of naturally occurring pseudo-nucleosides in the design of effective MERS-CoV mRNA vaccines. This review also provides useful insights into designing and evaluating mRNA vaccines against other viral pathogens.
Collapse
Affiliation(s)
- Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, Califonia; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
19
|
Du L, Yang Y, Zhang X, Li F. Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies. NANOSCALE 2022; 14:1054-1074. [PMID: 35018939 PMCID: PMC8863106 DOI: 10.1039/d1nr03831a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
COVID-19 has caused a global pandemic and millions of deaths. It is imperative to develop effective countermeasures against the causative viral agent, SARS-CoV-2 and its many variants. Vaccines and therapeutic antibodies are the most effective approaches for preventing and treating COVID-19, respectively. SARS-CoV-2 enters host cells through the activities of the virus-surface spike (S) protein. Accordingly, the S protein is a prime target for vaccines and therapeutic antibodies. Dealing with particles with dimensions on the scale of nanometers, nanotechnology has emerged as a critical tool for rapidly designing and developing safe, effective, and urgently needed vaccines and therapeutics to control the COVID-19 pandemic. For example, nanotechnology was key to the fast-track approval of two mRNA vaccines for their wide use in human populations. In this review article, we first explore the roles of nanotechnology in battling COVID-19, including protein nanoparticles (for presentation of protein vaccines), lipid nanoparticles (for formulation with mRNAs), and nanobodies (as unique therapeutic antibodies). We then summarize the currently available COVID-19 vaccines and therapeutics based on nanotechnology.
Collapse
Affiliation(s)
- Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, USA.
| |
Collapse
|
20
|
Cuevas-Juárez E, Pando-Robles V, Palomares LA. Flavivirus vaccines: Virus-like particles and single-round infectious particles as promising alternatives. Vaccine 2021; 39:6990-7000. [PMID: 34753613 DOI: 10.1016/j.vaccine.2021.10.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
The genus flavivirus of the Flaviridae family includes several human pathogens, like dengue, Zika, Japanese encephalitis, and yellow fever virus. These viruses continue to be a significant threat to human health. Vaccination remains the most useful approach to reduce the impact of flavivirus fever. However, currently available vaccines can induce severe side effects or have low effectiveness. An alternative is the use of recombinant vaccines, of which virus-like particles (VLP) and single-round infectious particles (SRIP) are of especial interest. VLP consist of the virus structural proteins produced in a heterologous system that self-assemble in a structure almost identical to the native virus. They are highly immunogenic and have been effective vaccines for other viruses for over 30 years. SRIP are promising vaccine candidates, as they induce both cellular and humoral responses, as viral proteins are expressed. Here, the state of the art to produce both types of particles and their use as vaccines against flaviviruses are discussed. We summarize the different approaches used for the design and production of flavivirus VLP and SRIP, the evidence for their safety and efficacy, and the main challenges for their use as commercial vaccines.
Collapse
Affiliation(s)
- Esmeralda Cuevas-Juárez
- Departamento de Medicina Molecular y Bioprocesos. Instituto de Biotecnología. Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Morelos 62210, México.
| | - Victoria Pando-Robles
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Ave. Universidad 655. Cuernavaca, Morelos 62100. México.
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos. Instituto de Biotecnología. Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
21
|
Decidual NK cells kill Zika virus-infected trophoblasts. Proc Natl Acad Sci U S A 2021; 118:2115410118. [PMID: 34785597 DOI: 10.1073/pnas.2115410118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) during pregnancy infects fetal trophoblasts and causes placental damage and birth defects including microcephaly. Little is known about the anti-ZIKV cellular immune response at the maternal-fetal interface. Decidual natural killer cells (dNK), which directly contact fetal trophoblasts, are the dominant maternal immune cells in the first-trimester placenta, when ZIKV infection is most hazardous. Although dNK express all the cytolytic molecules needed to kill, they usually do not kill infected fetal cells but promote placentation. Here, we show that dNK degranulate and kill ZIKV-infected placental trophoblasts. ZIKV infection of trophoblasts causes endoplasmic reticulum (ER) stress, which makes them dNK targets by down-regulating HLA-C/G, natural killer (NK) inhibitory receptor ligands that help maintain tolerance of the semiallogeneic fetus. ER stress also activates the NK activating receptor NKp46. ZIKV infection of Ifnar1 -/- pregnant mice results in high viral titers and severe intrauterine growth restriction, which are exacerbated by depletion of NK or CD8 T cells, indicating that killer lymphocytes, on balance, protect the fetus from ZIKV by eliminating infected cells and reducing the spread of infection.
Collapse
|
22
|
Sun J, Zheng Z, Li M, Liu Z, Su X, Jin X. Development of a novel ZIKV vaccine comprised of immunodominant CD4+ and CD8+ T cell epitopes identified through comprehensive epitope mapping in Zika virus infected mice. Vaccine 2021; 39:5173-5186. [PMID: 34353682 DOI: 10.1016/j.vaccine.2021.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022]
Abstract
Zika virus (ZIKV) caused over two million human infections in more than 80 countries around 2015-2016. Current vaccines under development are mostly focused on inducing antibodies that despite capable of inhibiting the virus, may have the potential to trigger antibody dependent enhancement (ADE). T cell vaccines that do not induce antibodies targeting viral surface will unlikely cause ADE, but be capable of potentiating the effectiveness of an antibody-inducing vaccine. To develop such a protective T cell vaccine, we first examined the repertoire of antigen-specific T cells in immunocompetent mice that have been transiently infected by ZIKV. Through epitope mapping using 427 overlapping peptides spanning the entire length of ZIKV polyprotein, we discovered 27 immunodominant epitopes scattered throughout the virus on C, E, NS1-NS5 proteins. Among them, 8 were confirmed as CD4+ T cell epitopes, and 16 as CD8+ T cell epitopes, while 3 for both T cell subsets. From these 27 newly identified epitopes, the top 10 epitopes were selected to formulate three T cell vaccines comprised of either CD4+ T cell epitopes, or CD8+ T cell epitopes, or a mixture of both. Immunization with these T cell epitopes induced T cell-mediated cytotoxicity and cytokine production, and conferred varying degrees of protection against ZIKV challenge. Moreover, these new T cell vaccines also improved the protective efficacy of a neutralizing antibody-inducing recombinant E80 protein vaccine. Together, our results provided additional evidence in support of the protective role of ZIKV-specific CD4+ and CD8+ T cells, and laid foundation for future development of T cell vaccines for ZIKV.
Collapse
Affiliation(s)
- Jin Sun
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhihang Zheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201058, China
| | - Min Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201058, China
| | - Zhihua Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201058, China
| | - Xiao Su
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201058, China.
| |
Collapse
|