1
|
Yue F, Gu L, Qiu J, Oprescu SN, Beckett LM, Ellis JM, Donkin SS, Kuang S. Mitochondrial fatty acid oxidation regulates adult muscle stem cell function through modulating metabolic flux and protein acetylation. EMBO J 2025; 44:2566-2595. [PMID: 40065099 PMCID: PMC12048568 DOI: 10.1038/s44318-025-00397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 05/04/2025] Open
Abstract
During homeostasis and regeneration, satellite cells, the resident stem cells of skeletal muscle, have distinct metabolic requirements for fate transitions between quiescence, proliferation and differentiation. However, the contribution of distinct energy sources to satellite cell metabolism and function remains largely unexplored. Here, we uncover a role of mitochondrial fatty acid oxidation (FAO) in satellite cell integrity and function. Single-cell RNA sequencing revealed progressive enrichment of mitochondrial FAO and downstream pathways during activation, proliferation and myogenic commitment of satellite cells. Deletion of Carnitine palmitoyltransferase 2 (Cpt2), the rate-limiting enzyme in FAO, hampered muscle stem cell expansion and differentiation upon acute muscle injury, markedly delaying regeneration. Cpt2 deficiency reduces acetyl-CoA levels in satellite cells, impeding the metabolic flux and acetylation of selective proteins including Pax7, the central transcriptional regulator of satellite cells. Notably, acetate supplementation restored cellular metabolic flux and partially rescued the regenerative defects of Cpt2-null satellite cells. These findings highlight an essential role of fatty acid oxidation in controlling satellite cell function and suggest an integration of lipid metabolism and protein acetylation in adult stem cells.
Collapse
Affiliation(s)
- Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Lijie Gu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Stephanie N Oprescu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Linda M Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jessica M Ellis
- East Carolina Diabetes and Obesity Institute and Department of Physiology, East Carolina University, Greenville, NC, 27858, USA
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Reza M, Qiu C, Lin X, Su K, Liu A, Zhang X, Gong Y, Luo Z, Tian Q, Nwadiugwu M, Liang S, Shen H, Deng H. An Attention-Aware Multi-Task Learning Framework Identifies Candidate Targets for Drug Repurposing in Sarcopenia. J Cachexia Sarcopenia Muscle 2025; 16:e13661. [PMID: 40045692 PMCID: PMC11883102 DOI: 10.1002/jcsm.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Sarcopenia presents a pressing public health concern due to its association with age-related muscle mass decline, strength loss and reduced physical performance, particularly in the growing older population. Given the absence of approved pharmacological therapies for sarcopenia, the need to discover effective pharmacological interventions has become critical. METHODS To address this challenge and discover new therapies, we developed a novel Multi-Task Attention-aware method for Multi-Omics data (MTA-MO) to extract complex biological insights from various biomedical data sources, including transcriptome, methylome and genome data to identify drug targets and discover new therapies. Additionally, MTA-MO integrates human protein-protein interaction (PPI) networks and drug-target networks to improve target identification. The novel method is applied to a multi-omics dataset that included 1055 participants aged 20-50 (mean (± SD) age 36.88 (± 8.64)), comprising 37.82% African-American and 62.18% Caucasian/White individuals. Physical activity levels were self-reported and categorized into three groups: ≥ 3 times/week, < 3 times/week and no regular exercise. Mean (± SD) measures for grip strength, appendicular lean mass (ALM), exercise frequency and smoking status (no/yes, n (%)) were 38.72 (± 8.93) kg, 28.65 (± 4.63) kg, 4.31 (± 1.79) and 30.81%/69.19%, respectively. Significant differences (p < 0.05) were found between groups in age, ALM, smoking, and consumption of milk, alcohol, beer and wine. RESULTS Using the MTA-MO method, we identified 639 gene targets, and by analysing PPIs and querying public databases, we narrowed this list down to seven potential hub genes associated with sarcopenia (ESR1, ATM, CDC42, EP300, PIK3CA, EGF and PTK2B). These findings were further validated through diverse levels of pathobiological evidence associated with sarcopenia. Gene Ontology and KEGG pathways analysis highlighted five key functions and signalling pathways relevant to skeletal muscle. The interaction network analysis identified three transcriptional factors (GATA2, JUN and FOXC1) as the key transcriptional regulators of the seven potential genes. In silico analysis of 1940 drug candidates identified canagliflozin as a promising candidate for repurposing in sarcopenia, demonstrating the strongest binding affinity to the PTK2B protein (inhibition constant 6.97 μM). This binding is stabilized by hydrophobic bonds, Van der Waals forces, pi-alkyl interactions and pi-anion interactions around PTK2B's active residues, suggesting its potential as a therapeutic option. CONCLUSIONS Our novel approach effectively integrates multi-omics data to identify potential treatments for sarcopenia. The findings suggest that canagliflozin could be a promising therapeutic candidate for sarcopenia.
Collapse
Affiliation(s)
- Md Selim Reza
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and GenomicsTulane UniversityNew OrleansLouisianaUSA
| | - Chuan Qiu
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and GenomicsTulane UniversityNew OrleansLouisianaUSA
| | - Xu Lin
- Shunde Hospital of Southern Medical UniversityFoshanChina
| | - Kuan‐Jui Su
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and GenomicsTulane UniversityNew OrleansLouisianaUSA
| | - Anqi Liu
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and GenomicsTulane UniversityNew OrleansLouisianaUSA
| | - Xiao Zhang
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and GenomicsTulane UniversityNew OrleansLouisianaUSA
| | - Yun Gong
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and GenomicsTulane UniversityNew OrleansLouisianaUSA
| | - Zhe Luo
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and GenomicsTulane UniversityNew OrleansLouisianaUSA
| | - Qing Tian
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and GenomicsTulane UniversityNew OrleansLouisianaUSA
| | - Martin Nwadiugwu
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and GenomicsTulane UniversityNew OrleansLouisianaUSA
| | | | - Hui Shen
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and GenomicsTulane UniversityNew OrleansLouisianaUSA
| | - Hong‐Wen Deng
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and GenomicsTulane UniversityNew OrleansLouisianaUSA
| |
Collapse
|
3
|
Wang C, Wu W, Chen J, Wang H, Zhao P. LncRNA SNHG1 regulates muscle stem cells fate through Wnt/β-catenin pathway. Dev Dyn 2025. [PMID: 40116401 DOI: 10.1002/dvdy.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/22/2025] [Accepted: 03/01/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Skeletal muscle stem cells (MuSCs) played an important role in maintaining the proper function of muscle tissues. In adults, they normally remained in a quiescent state and activated upon stimulation to undergo self-renewal or myogenic differentiation. This process was complexly regulated by cytokines, and the molecular mechanisms that promoted MuSCs activation remained largely unknown. RESULTS Here, we analyzed transcriptome data from MuSCs activated by different stimuli using weighted gene co-expression network analysis (WGCNA) and identified the key long non-coding RNA SNHG1 (lncSNHG1), which promotes the transition from the quiescent to the activated state of MuSCs. Overexpression of lncSNHG1 was able to promote the proliferation and differentiation of MuSCs, whereas knockdown resulted in the opposite results. Mechanistically, the disruption of the Wnt/β-catenin pathway blocked the quiescence exit induced by lncSNHG1. CONCLUSIONS We conclude that lncSNHG1 is a key factor that promotes the transition from the quiescent to the activated state of MuSCs and promotes cell proliferation and differentiation through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Changying Wang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, Taian, People's Republic of China
| | - Wenwen Wu
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, Taian, People's Republic of China
| | - Junyi Chen
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, Taian, People's Republic of China
| | - Heng Wang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, Taian, People's Republic of China
| | - Pengxiang Zhao
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, Taian, People's Republic of China
| |
Collapse
|
4
|
Ma C, Guo Y, Tu T, Cui S, Zhong J, Zhang Y, Song N, Liu H. ELF5 gene promotes milk lipid synthesis in goat mammary epithelial cells by transcriptomic analysis. Genomics 2025; 117:111023. [PMID: 40015575 DOI: 10.1016/j.ygeno.2025.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
E74-like factor 5 (ELF5) is an Ets transcription factor of epithelial development, while the function of ELF5 gene in goat milk fat synthesis remains to be elucidated. In goat mammary epithelial cells, we performed RNA sequencing and analyzed differentially expressed genes (DEGs) after ELF5 gene overexpression. ELF5 gene significantly up-regulated the synthesis of triglyceride, total cholesterol, free fatty acid, and lipid droplets. We obtained 929 DEGs after ELF5 gene overexpression in GMECs. Among the DEGs, SPP1, ELOVL1, PNPLA2, FOXO1, PTGS2, SEMA6A, ACSL5, and GPNMB genes that are related to lipid metabolism were identified. Enrichment analysis showed MAPK and FoxO signaling pathways were up-regulated by ELF5 gene overexpression in GMECs. These findings offer evidence that ELF5 gene could be a candidate gene for the regulation of milk lipid synthesis in goats, and provide molecular targets for the breeding of goats with high milk fat.
Collapse
Affiliation(s)
- Cunxia Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuzhu Guo
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tongtong Tu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shuangshuang Cui
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jintao Zhong
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ning Song
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Hongyu Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Moreno-Blas D, Adell T, González-Estévez C. Autophagy in Tissue Repair and Regeneration. Cells 2025; 14:282. [PMID: 39996754 PMCID: PMC11853389 DOI: 10.3390/cells14040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Autophagy is a cellular recycling system that, through the sequestration and degradation of intracellular components regulates multiple cellular functions to maintain cellular homeostasis and survival. Dysregulation of autophagy is closely associated with the development of physiological alterations and human diseases, including the loss of regenerative capacity. Tissue regeneration is a highly complex process that relies on the coordinated interplay of several cellular processes, such as injury sensing, defense responses, cell proliferation, differentiation, migration, and cellular senescence. These processes act synergistically to repair or replace damaged tissues and restore their morphology and function. In this review, we examine the evidence supporting the involvement of the autophagy pathway in the different cellular mechanisms comprising the processes of regeneration and repair across different regenerative contexts. Additionally, we explore how modulating autophagy can enhance or accelerate regeneration and repair, highlighting autophagy as a promising therapeutic target in regenerative medicine for the development of autophagy-based treatments for human diseases.
Collapse
Affiliation(s)
| | | | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; (D.M.-B.); (T.A.)
| |
Collapse
|
6
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
7
|
Chung JD, Porrello ER, Lynch GS. Muscle regeneration and muscle stem cells in metabolic disease. Free Radic Biol Med 2025; 227:52-63. [PMID: 39581389 DOI: 10.1016/j.freeradbiomed.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle has a high regenerative capacity due to its resident adult muscle stem cells (MuSCs), which can repair damaged tissue by forming myofibres de novo. Stem cell dependent regeneration is critical for maintaining skeletal muscle health, and different conditions can draw heavily on MuSC support to preserve muscle function, including metabolic diseases such as diabetes. The global incidence and burden of diabetes is increasing, and skeletal muscle is critical for maintaining systemic metabolic homeostasis and improving outcomes for diabetic patients. Thus, poor muscle health in diabetes, termed diabetic myopathy, is an important complication that must be addressed. The health of MuSCs is also affected by diabetes, responsible for the poor muscle regenerative capacity and contributing to the functional decline in diabetic patients. Here, we review the impact of diabetes and metabolic disease on MuSCs and skeletal muscle, including potential mechanisms for impaired muscle regeneration and MuSC dysfunction, and how these deficits could be addressed.
Collapse
Affiliation(s)
- Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia
| | - Enzo R Porrello
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia.
| |
Collapse
|
8
|
Shi Y, Zhou D, Wang H, Huang L, Gao X, Maitiabula G, Zhang L, Wang X. Succinate Regulates Exercise-Induced Muscle Remodelling by Boosting Satellite Cell Differentiation Through Succinate Receptor 1. J Cachexia Sarcopenia Muscle 2025; 16:e13670. [PMID: 39723719 DOI: 10.1002/jcsm.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/19/2024] [Accepted: 11/16/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Skeletal muscle remodelling can cause clinically important changes in muscle phenotypes. Satellite cells (SCs) myogenic potential underlies the maintenance of muscle plasticity. Accumulating evidence shows the importance of succinate in muscle metabolism and function. However, whether succinate can affect SC function and subsequently coordinate muscle remodelling to exercise remains unexplored. METHODS A mouse model of high-intensity interval training (HIIT) was used to investigate the effects of succinate on muscle remodelling and SC function by exercise capacity test and biochemical methods. Mice with succinate receptor 1 (SUCNR1)-specific knockout in SCs were generated as an in vivo model to explore the underlying mechanisms. RNA sequencing of isolated SCs was performed to identify molecular changes responding to succinate-SUCNR1 signalling. The effects of identified key molecules on the myogenic capacity of SCs were investigated using gain- and loss-of-function assays in vitro. To support the translational application, the clinical efficacy of succinate was explored in muscle-wasting mice. RESULTS After 21 days of HIIT, mice supplemented with 1.5% succinate exhibited striking gains in grip strength (+0.38 ± 0.04 vs. 0.26 ± 0.03 N, p < 0.001) and endurance (+276.70 ± 55.80 vs. 201.70 ± 45.31 s, p < 0.05), accompanied by enhanced muscle hypertrophy and neuromuscular junction regeneration (p < 0.001). The myogenic capacity of SCs was significantly increased in gastrocnemius muscle of mice supplemented with 1% and 1.5% succinate (+16.48% vs. control, p = 0.008; +47.25% vs. control, p < 0.001, respectively). SUCNR1-specific deletion in SCs abolished the modulatory influence of succinate on muscle adaptation in response to exercise, revealing that SCs respond to succinate-SUCNR1 signalling, thereby facilitating muscle remodelling. SUCNR1 signalling markedly upregulated genes associated with stem cell differentiation and phosphorylation pathways within SCs, of which p38α mitogen-activated protein kinase (MAPK; fold change = 6.7, p < 0.001) and protein kinase C eta (PKCη; fold change = 12.5, p < 0.001) expressions were the most enriched, respectively. Mechanistically, succinate enhanced the myogenic capacity of isolated SCs by activating the SUCNR1-PKCη-p38α MAPK pathway. Finally, succinate promoted SC differentiation (1.5-fold, p < 0.001), ameliorating dexamethasone-induced muscle atrophy in mice (p < 0.001). CONCLUSIONS Our findings reveal a novel function of succinate in enhancing SC myogenic capacity via SUCNR1, leading to enhanced muscle adaptation in response to exercise. These findings provide new insights for developing pharmacological strategies to overcome muscle atrophy-related diseases.
Collapse
Affiliation(s)
- Yifan Shi
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Da Zhou
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Haoyang Wang
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Longchang Huang
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xuejin Gao
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Gulisudumu Maitiabula
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Li Zhang
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xinying Wang
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Ko K, Bandara SR, Zhou W, Svenningsson L, Porras-Gómez M, Kambar N, Dreher-Threlkeld J, Topgaard D, Hernández-Saavedra D, Anakk S, Leal C. Diet-Induced Obesity Modulates Close-Packing of Triacylglycerols in Lipid Droplets of Adipose Tissue. J Am Chem Soc 2024; 146:34796-34810. [PMID: 39644234 DOI: 10.1021/jacs.4c13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Adipose-derived lipid droplets (LDs) are rich in triacylglycerols (TAGs), which regulate essential cellular processes, such as energy storage. Although TAG accumulation and LD expansion in adipocytes occur during obesity, how LDs dynamically package TAGs in response to excessive nutrients remains elusive. Here, we found that LD lipidomes display a remarkable increase in TAG acyl chain saturation under calorie-dense diets, turning them conducive to close-packing. Using high-resolution X-ray diffraction, solid-state NMR, and imaging, we show that beyond size expansion LDs from mice under varied obesogenic diets govern fat accumulation by packing TAGs in different crystalline polymorphs. Consistently, LDs and tissue stiffen for high-calorie-fed mice with more than a 2-fold increase in elastic moduli compared to normal diet. Our data suggest that in addition to expanding, adipocyte LDs undergo structural remodeling by close-packing rigid and highly saturated TAGs in response to caloric overload, as opposed to liquid TAGs in a low-calorie diet. This work provides insights into how lipid packing within LDs can allow for the rapid and optimal expansion of fat during the initial stages of obesity.
Collapse
Affiliation(s)
- Kyungwon Ko
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarith R Bandara
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Leo Svenningsson
- Division of Physical Chemistry, Lund University, Lund 22100, Sweden
| | - Marilyn Porras-Gómez
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nurila Kambar
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Julia Dreher-Threlkeld
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Daniel Topgaard
- Division of Physical Chemistry, Lund University, Lund 22100, Sweden
| | - Diego Hernández-Saavedra
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sayeepriyadarshini Anakk
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cecília Leal
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Chen J, Markworth JF, Ferreira C, Zhang C, Kuang S. Lipid droplets as cell fate determinants in skeletal muscle. Trends Endocrinol Metab 2024:S1043-2760(24)00274-1. [PMID: 39613547 DOI: 10.1016/j.tem.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 12/01/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.
Collapse
Affiliation(s)
- Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - James F Markworth
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christina Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
11
|
Stanworth M, Zhang SD. Elucidating the roles of SOD3 correlated genes and reactive oxygen species in rare human diseases using a bioinformatic-ontology approach. PLoS One 2024; 19:e0313139. [PMID: 39480826 PMCID: PMC11527182 DOI: 10.1371/journal.pone.0313139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Superoxide Dismutase 3 (SOD3) scavenges extracellular superoxide giving a hydrogen peroxide metabolite. Both Reactive Oxygen Species diffuse through aquaporins causing oxidative stress and biomolecular damage. SOD3 is differentially expressed in cancer and this research utilises Gene Expression Omnibus data series GSE2109 with 2,158 cancer samples. Genome-wide expression correlation analysis was conducted with SOD3 as the seed gene. Categorical SOD3 Pearson Correlation gene lists incrementing in correlation strength by 0.01 from ρ≥|0.34| to ρ≥|0.41| were extracted from the data. Positively and negatively SOD3 correlated genes were separated for each list and checked for significance against disease overlapping genes in the ClinVar and Orphanet databases via Enrichr. Disease causal genes were added to the relevant gene list and checked against Gene Ontology, Phenotype Ontology, and Elsevier Pathways via Enrichr before the significant ontologies containing causal and non-overlapping genes were reviewed with a literature search for possible disease and oxidative stress associations. 12 significant individually discriminated disorders were identified: Autosomal Dominant Cutis Laxa (p = 6.05x10-7), Renal Tubular Dysgenesis of Genetic Origin (p = 6.05x10-7), Lethal Arteriopathy Syndrome due to Fibulin-4 Deficiency (p = 6.54x10-9), EMILIN-1-related Connective Tissue Disease (p = 6.54x10-9), Holt-Oram Syndrome (p = 7.72x10-10), Multisystemic Smooth Muscle Dysfunction Syndrome (p = 9.95x10-15), Distal Hereditary Motor Neuropathy type 2 (p = 4.48x10-7), Congenital Glaucoma (p = 5.24x210-9), Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome (p = 3.77x10-16), Classical-like Ehlers-Danlos Syndrome type 1 (p = 3.77x10-16), Retinoblastoma (p = 1.9x10-8), and Lynch Syndrome (p = 5.04x10-9). 35 novel (21 unique) genes across 12 disorders were identified: ADNP, AOC3, CDC42EP2, CHTOP, CNN1, DES, FOXF1, FXR1, HLTF, KCNMB1, MTF2, MYH11, PLN, PNPLA2, REST, SGCA, SORBS1, SYNPO2, TAGLN, WAPL, and ZMYM4. These genes are proffered as potential biomarkers or therapeutic targets for the corresponding rare diseases discussed.
Collapse
Affiliation(s)
- Mark Stanworth
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Hospital, Derry, Londonderry, Northern Ireland
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Hospital, Derry, Londonderry, Northern Ireland
| |
Collapse
|
12
|
Zhou Z, Zhang Y, Liu Y, Wang Q, Jiao S, Zhang S, Li X, Sun L. Cadmium-induced fetal erythropoiesis disturbances in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117113. [PMID: 39342755 DOI: 10.1016/j.ecoenv.2024.117113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Maternal anemia has been identified as a contributing factor to adverse reproductive outcomes associated with cadmium (Cd) exposure, a common heavy metal. Our recent findings suggest that inhibited erythroid differentiation and enucleation also play significant roles in the direct embryonic toxicity resulting from maternal Cd exposure. However, the effects of Cd exposure on lipid metabolism remodeling, which is essential for physiological erythropoiesis, remain poorly understood. In the present study, pregnant mice were administered low doses of CdCl2 via oral exposure from early to late gestation to mitigate Cd-induced maternal anemia. Compared to vehicle-treated controls, embryos from Cd-treated mice exhibited a slight decrease in weight, though without signs of atrophy. Consistent with our previous observations, fetal livers from Cd-exposed embryos demonstrated a dose-dependent inhibition of erythroid differentiation, as confirmed by ex vivo analysis. Notably, an intrinsic decrease in lipid peroxidation during erythroid differentiation was observed in the bone marrow and fetal livers of vehicle-treated mice, attributed to diminished lipid content. In contrast, this decrease in lipid peroxidation was absent in fetal liver erythroblasts from Cd-treated mice, where an increase in lipid peroxidation was instead noted. These findings elucidate a potential mechanism, lipid peroxidation, underlying Cd-induced embryonic toxicity.
Collapse
Affiliation(s)
- Zijie Zhou
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yan Zhang
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Yan Liu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Quanshu Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Shouhai Jiao
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Shuping Zhang
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaolu Li
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Li Sun
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China.
| |
Collapse
|
13
|
Qiu J, Yue F, Kim KH, Chen X, Khedr MA, Chen J, Gu L, Ren J, Ferreira CR, Ellis J, Kuang S. Overexpression of CPT1A disrupts the maintenance and regenerative function of muscle stem cells. FASEB J 2024; 38:e70071. [PMID: 39382025 PMCID: PMC11486317 DOI: 10.1096/fj.202400947r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The skeletal muscle satellite cells (SCs) mediate regeneration of myofibers upon injury. As they switch from maintenance (quiescence) to regeneration, their relative reliance on glucose and fatty acid metabolism alters. To explore the contribution of mitochondrial fatty acid oxidation (FAO) pathway to SCs and myogenesis, we examined the role of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO. CPT1A is highly expressed in quiescent SCs (QSCs) compared with activated and proliferating SCs, and its expression level decreases during myogenic differentiation. Myod1Cre-driven overexpression (OE) of Cpt1a in embryonic myoblasts (Cpt1aMTG) reduces muscle weight, grip strength, and contractile force without affecting treadmill endurance of adult mice. Adult Cpt1aMTG mice have reduced number of SC, impairing muscle regeneration and promoting lipid infiltration. Similarly, Pax7CreER-driven, tamoxifen-inducible Cpt1a-OE in QSCs of adult muscles (Cpt1aPTG) leads to depletion of SCs and compromises muscle regeneration. The reduced proliferation of Cpt1a-OE SCs is associated with elevated level of acyl-carnitine, and acyl-carnitine treatment impedes proliferation of wildtype SCs. These findings indicate that aberrant level of CPT1A elevates acyl-carnitine to impair the maintenance, proliferation and regenerative function of SCs.
Collapse
Affiliation(s)
- Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- These authors contributed equally to this work
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
- These authors contributed equally to this work
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Lijie Gu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Junxiao Ren
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Christina R. Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West, Lafayette, IN 47907, USA
| | - Jessica Ellis
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University Greenville, NC 27834, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA
- Departments of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
14
|
Byun WS, Lee J, Baek JH. Beyond the bulk: overview and novel insights into the dynamics of muscle satellite cells during muscle regeneration. Inflamm Regen 2024; 44:39. [PMID: 39327631 PMCID: PMC11426090 DOI: 10.1186/s41232-024-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Skeletal muscle possesses remarkable regenerative capabilities, fully recovering within a month following severe acute damage. Central to this process are muscle satellite cells (MuSCs), a resident population of somatic stem cells capable of self-renewal and differentiation. Despite the highly predictable course of muscle regeneration, evaluating this process has been challenging due to the heterogeneous nature of myogenic precursors and the limited insight provided by traditional markers with overlapping expression patterns. Notably, recent advancements in single-cell technologies, such as single-cell (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), have revolutionized muscle research. These approaches allow for comprehensive profiling of individual cells, unveiling dynamic heterogeneity among myogenic precursors and their contributions to regeneration. Through single-cell transcriptome analyses, researchers gain valuable insights into cellular diversity and functional dynamics of MuSCs post-injury. This review aims to consolidate classical and new insights into the heterogeneity of myogenic precursors, including the latest discoveries from novel single-cell technologies.
Collapse
Affiliation(s)
- Woo Seok Byun
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jinu Lee
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
15
|
Choi J, Kang S, An HI, Kim CE, Lee S, Pack CG, Yoon YI, Jin H, Cho YP, Kim CJ, Namgoong JM, Kim JK, Tak E. Fasudil and viscosity of gelatin promote hepatic differentiation by regulating organelles in human umbilical cord matrix-mesenchymal stem cells. Stem Cell Res Ther 2024; 15:229. [PMID: 39075621 PMCID: PMC11288082 DOI: 10.1186/s13287-024-03851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Human mesenchymal stem cells originating from umbilical cord matrix are a promising therapeutic resource, and their differentiated cells are spotlighted as a tissue regeneration treatment. However, there are limitations to the medical use of differentiated cells from human umbilical cord matrix-mesenchymal stem cells (hUCM-MSCs), such as efficient differentiation methods. METHODS To effectively differentiate hUCM-MSCs into hepatocyte-like cells (HLCs), we used the ROCK inhibitor, fasudil, which is known to induce endoderm formation, and gelatin, which provides extracellular matrix to the differentiated cells. To estimate a differentiation efficiency of early stage according to combination of gelatin and fasudil, transcription analysis was conducted. Moreover, to demonstrate that organelle states affect differentiation, we performed transcription, tomographic, and mitochondrial function analysis at each stage of hepatic differentiation. Finally, we evaluated hepatocyte function based on the expression of mRNA and protein, secretion of albumin, and activity of CYP3A4 in mature HLCs. RESULTS Fasudil induced endoderm-related genes (GATA4, SOX17, and FOXA2) in hUCM-MSCs, and it also induced lipid droplets (LDs) inside the differentiated cells. However, the excessive induction of LDs caused by fasudil inhibited mitochondrial function and prevented differentiation into hepatoblasts. To prevent the excessive LDs formation, we used gelatin as a coating material. When hUCM-MSCs were induced into hepatoblasts with fasudil on high-viscosity (1%) gelatin-coated dishes, hepatoblast-related genes (AFP and HNF4A) showed significant upregulation on high-viscosity gelatin-coated dishes compared to those treated with low-viscosity (0.1%) gelatin. Moreover, other germline cell fates, such as ectoderm and mesoderm, were repressed under these conditions. In addition, LDs abundance was also reduced, whereas mitochondrial function was increased. On the other hand, unlike early stage of the differentiation, low viscosity gelatin was more effective in generating mature HLCs. In this condition, the accumulation of LDs was inhibited in the cells, and mitochondria were activated. Consequently, HLCs originated from hUCM-MSCs were genetically and functionally more matured in low-viscosity gelatin. CONCLUSIONS This study demonstrated an effective method for differentiating hUCM-MSCs into hepatic cells using fasudil and gelatin of varying viscosities. Moreover, we suggest that efficient hepatic differentiation and the function of hepatic cells differentiated from hUCM-MSCs depend not only on genetic changes but also on the regulation of organelle states.
Collapse
Affiliation(s)
- Jiwan Choi
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seoon Kang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye-In An
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chae-Eun Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sanghwa Lee
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Young-In Yoon
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hana Jin
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Pil Cho
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, Asan-Minnesota Institute for Innovating Transplantation (AMIT), University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Man Namgoong
- Department of Pediatric Surgery, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Republic of Korea.
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| | - Eunyoung Tak
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Fan H, Tan Y. Lipid Droplet-Mitochondria Contacts in Health and Disease. Int J Mol Sci 2024; 25:6878. [PMID: 38999988 PMCID: PMC11240910 DOI: 10.3390/ijms25136878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The orchestration of cellular metabolism and redox balance is a complex, multifaceted process crucial for maintaining cellular homeostasis. Lipid droplets (LDs), once considered inert storage depots for neutral lipids, are now recognized as dynamic organelles critical in lipid metabolism and energy regulation. Mitochondria, the powerhouses of the cell, play a central role in energy production, metabolic pathways, and redox signaling. The physical and functional contacts between LDs and mitochondria facilitate a direct transfer of lipids, primarily fatty acids, which are crucial for mitochondrial β-oxidation, thus influencing energy homeostasis and cellular health. This review highlights recent advances in understanding the mechanisms governing LD-mitochondria interactions and their regulation, drawing attention to proteins and pathways that mediate these contacts. We discuss the physiological relevance of these interactions, emphasizing their role in maintaining energy and redox balance within cells, and how these processes are critical in response to metabolic demands and stress conditions. Furthermore, we explore the pathological implications of dysregulated LD-mitochondria interactions, particularly in the context of metabolic diseases such as obesity, diabetes, and non-alcoholic fatty liver disease, and their potential links to cardiovascular and neurodegenerative diseases. Conclusively, this review provides a comprehensive overview of the current understanding of LD-mitochondria interactions, underscoring their significance in cellular metabolism and suggesting future research directions that could unveil novel therapeutic targets for metabolic and degenerative diseases.
Collapse
Affiliation(s)
- Hongjun Fan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
17
|
Qiu X, Zhu T, Zhao Z, Cui Z, Deng H, Tang S, Sechi LA, Caggiari G, Zhao C, Xiong Z. Muscle texture features on preoperative MRI for diagnosis and assessment of severity of congenital muscular torticollis. J Orthop Surg Res 2024; 19:367. [PMID: 38902712 PMCID: PMC11191279 DOI: 10.1186/s13018-024-04827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVES To develop an objective method based on texture analysis on MRI for diagnosis of congenital muscular torticollis (CMT). MATERIAL AND METHODS The T1- and T2-weighted imaging, Q-dixon, and T1-mapping MRI data of 38 children with CMT were retrospectively analyzed. The region of interest (ROI) was manually drawn at the level of the largest cross-sectional area of the SCM on the affected side. MaZda software was used to obtain the texture features of the T2WI sequences of the ROI in healthy and affected SCM. A radiomics diagnostic model based on muscle texture features was constructed using logistic regression analysis. Fatty infiltration grade was calculated by hematoxylin and eosin staining, and fibrosis ratio by Masson staining. Correlation between the MRI parameters and pathological indicators was analyzed. RESULTS There was positive correlation between fatty infiltration grade and mean value, standard deviation, and maximum value of the Q-dixon sequence of the affected SCM (correlation coefficients, 0.65, 0.59, and 0.58, respectively, P < 0.05).Three muscle texture features-S(2,2)SumAverg, S(3,3)SumVarnc, and T2WI extreme difference-were selected to construct the diagnostic model. The model showed significant diagnostic value for CMT (P < 0.05). The area under the curve of the multivariate conditional logistic regression model was 0.828 (95% confidence interval 0.735-0.922); the sensitivity was 0.684 and the specificity 0.868. CONCLUSION The radiomics diagnostic model constructed using T2WI muscle texture features and MRI signal values appears to have good diagnostic efficiency. Q-dixon sequence can reflect the fatty infiltration grade of CMT.
Collapse
Affiliation(s)
- Xin Qiu
- Shenzhen Children's Hospital, Shenzhen, People's Republic of China.
| | - Tianfeng Zhu
- Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Zhenhui Zhao
- Shenzhen Children's Hospital, Shenzhen, People's Republic of China
- China Medical University, Shenyang, People's Republic of China
| | - Zhiwen Cui
- Shenzhen Children's Hospital, Shenzhen, People's Republic of China
- Nanshan District Medical Group Headquarters, Shenzhen, People's Republic of China
| | - Hansheng Deng
- Shenzhen Children's Hospital, Shenzhen, People's Republic of China
- Orthopaedic Department, Sassari University Hospital, 07100, Sassari, Italy
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Shengping Tang
- Shenzhen Children's Hospital, Shenzhen, People's Republic of China.
| | | | | | - Cailei Zhao
- Shenzhen Children's Hospital, Shenzhen, People's Republic of China.
| | - Zhu Xiong
- Shenzhen Children's Hospital, Shenzhen, People's Republic of China.
| |
Collapse
|
18
|
Wang L, Valencak TG, Shan T. Fat infiltration in skeletal muscle: Influential triggers and regulatory mechanism. iScience 2024; 27:109221. [PMID: 38433917 PMCID: PMC10907799 DOI: 10.1016/j.isci.2024.109221] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Fat infiltration in skeletal muscle (also known as myosteatosis) is now recognized as a distinct disease from sarcopenia and is directly related to declining muscle capacity. Hence, understanding the origins and regulatory mechanisms of fat infiltration is vital for maintaining skeletal muscle development and improving human health. In this article, we summarized the triggering factors such as aging, metabolic diseases and metabolic syndromes, nonmetabolic diseases, and muscle injury that all induce fat infiltration in skeletal muscle. We discussed recent advances on the cellular origins of fat infiltration and found several cell types including myogenic cells and non-myogenic cells that contribute to myosteatosis. Furthermore, we reviewed the molecular regulatory mechanism, detection methods, and intervention strategies of fat infiltration in skeletal muscle. Based on the current findings, our review will provide new insight into regulating function and lipid metabolism of skeletal muscle and treating muscle-related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | | | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
19
|
Wang J, Li DL, Zheng LF, Ren S, Huang ZQ, Tao Y, Liu Z, Shang Y, Pang D, Guo H, Zeng T, Wang HR, Huang H, Du X, Ye H, Zhou HM, Li P, Zhao TJ. Dynamic palmitoylation of STX11 controls injury-induced fatty acid uptake to promote muscle regeneration. Dev Cell 2024; 59:384-399.e5. [PMID: 38198890 DOI: 10.1016/j.devcel.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Different types of cells uptake fatty acids in response to different stimuli or physiological conditions; however, little is known about context-specific regulation of fatty acid uptake. Here, we show that muscle injury induces fatty acid uptake in muscle stem cells (MuSCs) to promote their proliferation and muscle regeneration. In humans and mice, fatty acids are mobilized after muscle injury. Through CD36, fatty acids function as both fuels and growth signals to promote MuSC proliferation. Mechanistically, injury triggers the translocation of CD36 in MuSCs, which relies on dynamic palmitoylation of STX11. Palmitoylation facilitates the formation of STX11/SNAP23/VAMP4 SANRE complex, which stimulates the fusion of CD36- and STX11-containing vesicles. Restricting fatty acid supply, blocking fatty acid uptake, or inhibiting STX11 palmitoylation attenuates muscle regeneration in mice. Our studies have identified a critical role of fatty acids in muscle regeneration and shed light on context-specific regulation of fatty acid sensing and uptake.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dong-Lin Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Lang-Fan Zheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Su Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Zi-Qin Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Ying Tao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Ziyu Liu
- Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Xuzhou 220005, Jiangsu, China
| | - Yanxia Shang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Dejian Pang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Taoling Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - He Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Xingrong Du
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Haobin Ye
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Hai-Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang, China
| | - Peng Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tong-Jin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
20
|
van der Weijden VA, Stötzel M, Iyer DP, Fauler B, Gralinska E, Shahraz M, Meierhofer D, Vingron M, Rulands S, Alexandrov T, Mielke T, Bulut-Karslioglu A. FOXO1-mediated lipid metabolism maintains mammalian embryos in dormancy. Nat Cell Biol 2024; 26:181-193. [PMID: 38177284 PMCID: PMC10866708 DOI: 10.1038/s41556-023-01325-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Mammalian developmental timing is adjustable in vivo by preserving pre-implantation embryos in a dormant state called diapause. Inhibition of the growth regulator mTOR (mTORi) pauses mouse development in vitro, yet how embryonic dormancy is maintained is not known. Here we show that mouse embryos in diapause are sustained by using lipids as primary energy source. In vitro, supplementation of embryos with the metabolite L-carnitine balances lipid consumption, puts the embryos in deeper dormancy and boosts embryo longevity. We identify FOXO1 as an essential regulator of the energy balance in dormant embryos and propose, through meta-analyses of dormant cell signatures, that it may be a common regulator of dormancy across adult tissues. Our results lift a constraint on in vitro embryo survival and suggest that lipid metabolism may be a critical metabolic transition relevant for longevity and stem cell function across tissues.
Collapse
Affiliation(s)
- Vera A van der Weijden
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maximilian Stötzel
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dhanur P Iyer
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Beatrix Fauler
- Microscopy and Cryo-Electron Microscopy Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Mohammed Shahraz
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Theodore Alexandrov
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Aydan Bulut-Karslioglu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
21
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Bingi T, Cotton K, Comer C, Niklison-Chirou MV. Are lipid droplets the picnic basket of brain tumours? Cell Death Discov 2024; 10:31. [PMID: 38228582 DOI: 10.1038/s41420-024-01797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
Are lipid droplets (LDs) necessary to maintain the viability of brain tumour cells as they move to new nutrient-poor environments? In turn, could cancers be targeted by attacking what you might think of as the cancer cells' picnic basket? Lipid metabolism reprogramming, represented by increased lipid uptake, activation of de novo lipogenesis and increased lipid storage, is a newly identified hallmark of cancers. Recently, the presence of lipid droplets has been detected in several types of cancers, such as metastatic hepatocellular carcinoma, pancreatic and breast. LDs are storage organelles that provide a source of nutrients which may drive metastasis in different tumours. Currently, several roles of LDs have been posited in various tumours. This perspective aims to review and discuss the currently understood role of LDs in brain tumours.
Collapse
Affiliation(s)
- Tanmayi Bingi
- Life Sciences Department, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Kian Cotton
- Life Sciences Department, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Charley Comer
- Life Sciences Department, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | |
Collapse
|
23
|
Abreu P, Garay BI, Nemkov T, Yamashita AMS, Perlingeiro RCR. Metabolic Changes during In Vivo Maturation of PSC-Derived Skeletal Myogenic Progenitors. Cells 2023; 13:76. [PMID: 38201280 PMCID: PMC10778145 DOI: 10.3390/cells13010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In vitro-generated pluripotent stem cell (PSC)-derived Pax3-induced (iPax3) myogenic progenitors display an embryonic transcriptional signature, but upon engraftment, the profile of re-isolated iPax3 donor-derived satellite cells changes toward similarity with postnatal satellite cells, suggesting that engrafted PSC-derived myogenic cells remodel their transcriptional signature upon interaction within the adult muscle environment. Here, we show that engrafted myogenic progenitors also remodel their metabolic state. Assessment of oxygen consumption revealed that exposure to the adult muscle environment promotes overt changes in mitochondrial bioenergetics, as shown by the substantial suppression of energy requirements in re-isolated iPax3 donor-derived satellite cells compared to their in vitro-generated progenitors. Mass spectrometry-based metabolomic profiling further confirmed the relationship of engrafted iPax3 donor-derived cells to adult satellite cells. The fact that in vitro-generated myogenic progenitors remodel their bioenergetic signature upon in vivo exposure to the adult muscle environment may have important implications for therapeutic applications.
Collapse
Affiliation(s)
- Phablo Abreu
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
| | - Bayardo I. Garay
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Aline M. S. Yamashita
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
| | - Rita C. R. Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Kim KH, Oprescu SN, Snyder MM, Kim A, Jia Z, Yue F, Kuang S. PRMT5 mediates FoxO1 methylation and subcellular localization to regulate lipophagy in myogenic progenitors. Cell Rep 2023; 42:113329. [PMID: 37883229 PMCID: PMC10727913 DOI: 10.1016/j.celrep.2023.113329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Development is regulated by various factors, including protein methylation status. While PRMT5 is well known for its roles in oncogenesis by mediating symmetric di-methylation of arginine, its role in normal development remains elusive. Using Myod1Cre to drive Prmt5 knockout in embryonic myoblasts (Prmt5MKO), we dissected the role of PRMT5 in myogenesis. The Prmt5MKO mice are born normally but exhibit progressive muscle atrophy and premature death. Prmt5MKO inhibits proliferation and promotes premature differentiation of embryonic myoblasts, reducing the number and regenerative function of satellite cells in postnatal mice. Mechanistically, PRMT5 methylates and destabilizes FoxO1. Prmt5MKO increases the total FoxO1 level and promotes its cytoplasmic accumulation, leading to activation of autophagy and depletion of lipid droplets (LDs). Systemic inhibition of autophagy in Prmt5MKO mice restores LDs in myoblasts and moderately improves muscle regeneration. Together, PRMT5 is essential for muscle development and regeneration at least partially through mediating FoxO1 methylation and LD turnover.
Collapse
Affiliation(s)
- Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Stephanie N Oprescu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Madigan M Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Aran Kim
- Department of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
25
|
Cicciarello D, Scionti I. [The unexpected role of lipid droplets in the regulation of muscle stem cells fate]. Med Sci (Paris) 2023; 39 Hors série n° 1:28-31. [PMID: 37975767 DOI: 10.1051/medsci/2023144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Muscle stem cells (MuSCs) are skeletal muscle resident stem cells responsible of skeletal muscle regeneration and tissue integrity maintenance. It is now becoming prominent that the ability of MuSCs either to self-renew or differentiate is affected by cellular metabolism. Recently, a study elucidated that lipid droplets (LDs) are novel key regulators of MuSC fate. Indeed, LDs distribute differently depending on MuSC state during the regeneration process, as LDLow MuSCs are more proned to self-renew while LDHigh MuSCs commit to differentiation. Therefore, these findings highlight that the LD turnover is necessary for MuSC fate decision, opening the question of the molecular mechanism underlying lipid metabolism regulation of MuSC fate determination.
Collapse
Affiliation(s)
- Delia Cicciarello
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, Inserm U1315, Lyon, France
| | - Isabella Scionti
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, Inserm U1315, Lyon, France
| |
Collapse
|
26
|
Giedt MS, Thomalla JM, White RP, Johnson MR, Lai ZW, Tootle TL, Welte MA. Adipose triglyceride lipase promotes prostaglandin-dependent actin remodeling by regulating substrate release from lipid droplets. Development 2023; 150:dev201516. [PMID: 37306387 PMCID: PMC10281261 DOI: 10.1242/dev.201516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Lipid droplets (LDs), crucial regulators of lipid metabolism, accumulate during oocyte development. However, their roles in fertility remain largely unknown. During Drosophila oogenesis, LD accumulation coincides with the actin remodeling necessary for follicle development. Loss of the LD-associated Adipose Triglyceride Lipase (ATGL) disrupts both actin bundle formation and cortical actin integrity, an unusual phenotype also seen when the prostaglandin (PG) synthase Pxt is missing. Dominant genetic interactions and PG treatment of follicles indicate that ATGL acts upstream of Pxt to regulate actin remodeling. Our data suggest that ATGL releases arachidonic acid (AA) from LDs to serve as the substrate for PG synthesis. Lipidomic analysis detects AA-containing triglycerides in ovaries, and these are increased when ATGL is lost. High levels of exogenous AA block follicle development; this is enhanced by impairing LD formation and suppressed by reducing ATGL. Together, these data support the model that AA stored in LD triglycerides is released by ATGL to drive the production of PGs, which promote the actin remodeling necessary for follicle development. We speculate that this pathway is conserved across organisms to regulate oocyte development and promote fertility.
Collapse
Affiliation(s)
- Michelle S. Giedt
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - Roger P. White
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Matthew R. Johnson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Zon Weng Lai
- Harvard T.H. Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael A. Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
27
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
28
|
Oprescu SN, Baumann N, Chen X, Sun Q, Zhao Y, Yue F, Wang H, Kuang S. Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of the skeletal muscle. Skelet Muscle 2023; 13:15. [PMID: 37705115 PMCID: PMC10498607 DOI: 10.1186/s13395-023-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Transcription factors (TFs) play key roles in regulating differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associating domains. Unexpectedly, Myod1Cre-driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7CreER- or Rosa26CreER- driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remains to be elucidated.
Collapse
Affiliation(s)
- Stephanie N Oprescu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nick Baumann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiang Sun
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Yu Zhao
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Huating Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Shihuan Kuang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
29
|
Bouche A, Borner B, Richard C, Grand Y, Hannouche D, Laumonier T. In vitro-generated human muscle reserve cells are heterogeneous for Pax7 with distinct molecular states and metabolic profiles. Stem Cell Res Ther 2023; 14:243. [PMID: 37679820 PMCID: PMC10486062 DOI: 10.1186/s13287-023-03483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND The capacity of skeletal muscles to regenerate relies on Pax7+ muscle stem cells (MuSC). While in vitro-amplified MuSC are activated and lose part of their regenerative capacity, in vitro-generated human muscle reserve cells (MuRC) are very similar to quiescent MuSC with properties required for their use in cell-based therapies. METHODS In the present study, we investigated the heterogeneity of human MuRC and characterized their molecular signature and metabolic profile. RESULTS We observed that Notch signaling is active and essential for the generation of quiescent human Pax7+ MuRC in vitro. We also revealed, by immunofluorescence and flow cytometry, two distinct subpopulations of MuRC distinguished by their relative Pax7 expression. After 48 h in differentiation medium (DM), the Pax7High subpopulation represented 35% of the total MuRC pool and this percentage increased to 61% after 96 h in DM. Transcriptomic analysis revealed that Pax7High MuRC were less primed for myogenic differentiation as compared to Pax7Low MuRC and displayed a metabolic shift from glycolysis toward fatty acid oxidation. The bioenergetic profile of human MuRC displayed a 1.5-fold decrease in glycolysis, basal respiration and ATP-linked respiration as compared to myoblasts. We also observed that AMPKα1 expression was significantly upregulated in human MuRC that correlated with an increased phosphorylation of acetyl-CoA carboxylase (ACC). Finally, we showed that fatty acid uptake was increased in MuRC as compared to myoblasts, whereas no changes were observed for glucose uptake. CONCLUSIONS Overall, these data reveal that the quiescent MuRC pool is heterogeneous for Pax7 with a Pax7High subpopulation being in a deeper quiescent state, less committed to differentiation and displaying a reduced metabolic activity. Altogether, our data suggest that human Pax7High MuRC may constitute an appropriate stem cell source for potential therapeutic applications in skeletal muscle diseases.
Collapse
Affiliation(s)
- Axelle Bouche
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland
| | - Benoit Borner
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
| | - Chloé Richard
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland
| | - Ysaline Grand
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland
| | - Didier Hannouche
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland
| | - Thomas Laumonier
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland.
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland.
| |
Collapse
|
30
|
Kim KH, Jia Z, Snyder M, Chen J, Qiu J, Oprescu SN, Chen X, Syed SA, Yue F, Roseguini BT, Imbalzano AN, Hu C, Kuang S. PRMT5 links lipid metabolism to contractile function of skeletal muscles. EMBO Rep 2023; 24:e57306. [PMID: 37334900 PMCID: PMC10398672 DOI: 10.15252/embr.202357306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well-known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As adult muscles express high levels of Prmt5, we generated skeletal muscle-specific Prmt5 knockout (Prmt5MKO ) mice. We observe reduced muscle mass, oxidative capacity, force production, and exercise performance in Prmt5MKO mice. The motor deficiency is associated with scarce lipid droplets in myofibers due to defects in lipid biosynthesis and accelerated degradation. Specifically, PRMT5 deletion reduces dimethylation and stability of Sterol Regulatory Element-Binding Transcription Factor 1a (SREBP1a), a master regulator of de novo lipogenesis. Moreover, Prmt5MKO impairs the repressive H4R3 symmetric dimethylation at the Pnpla2 promoter, elevating the level of its encoded protein ATGL, the rate-limiting enzyme catalyzing lipolysis. Accordingly, skeletal muscle-specific double knockout of Pnpla2 and Prmt5 normalizes muscle mass and function. Together, our findings delineate a physiological function of PRMT5 in linking lipid metabolism to contractile function of myofibers.
Collapse
Affiliation(s)
- Kun Ho Kim
- Department of Animal SciencesPurdue UniversityWest LafayetteINUSA
| | - Zhihao Jia
- Department of Animal SciencesPurdue UniversityWest LafayetteINUSA
| | - Madigan Snyder
- Department of Animal SciencesPurdue UniversityWest LafayetteINUSA
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Jingjuan Chen
- Department of Animal SciencesPurdue UniversityWest LafayetteINUSA
| | - Jiamin Qiu
- Department of Animal SciencesPurdue UniversityWest LafayetteINUSA
| | - Stephanie N Oprescu
- Department of Animal SciencesPurdue UniversityWest LafayetteINUSA
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Xiyue Chen
- Department of Animal SciencesPurdue UniversityWest LafayetteINUSA
| | - Sabriya A Syed
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Feng Yue
- Department of Animal SciencesPurdue UniversityWest LafayetteINUSA
| | - Bruno T Roseguini
- Department of Health and KinesiologyPurdue UniversityWest LafayetteINUSA
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Changdeng Hu
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteINUSA
- Center for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Shihuan Kuang
- Department of Animal SciencesPurdue UniversityWest LafayetteINUSA
- Center for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
31
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
32
|
Dong G, Moparthy C, Thome T, Kim K, Yue F, Ryan TE. IGF-1 Therapy Improves Muscle Size and Function in Experimental Peripheral Arterial Disease. JACC Basic Transl Sci 2023; 8:702-719. [PMID: 37426532 PMCID: PMC10322901 DOI: 10.1016/j.jacbts.2022.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 03/11/2023]
Abstract
Lower-extremity peripheral arterial disease (PAD) has increased in prevalence, yet therapeutic development has remained stagnant. Skeletal muscle health and function has been strongly linked to quality of life and medical outcomes in patients with PAD. Using a rodent model of PAD, this study demonstrates that treatment of the ischemic limb with insulin-like growth factor (IGF)-1 significantly increases muscle size and strength without improving limb hemodynamics. Interestingly, the effect size of IGF1 therapy was larger in female mice than in male mice, highlighting the need to carefully examine sex-dependent effects in experimental PAD therapies.
Collapse
Affiliation(s)
- Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Chatick Moparthy
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Feng Yue
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Biomolecular Liquid-Liquid Phase Separation for Biotechnology. BIOTECH 2023; 12:26. [PMID: 37092470 PMCID: PMC10123627 DOI: 10.3390/biotech12020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The liquid-liquid phase separation (LLPS) of biomolecules induces condensed assemblies called liquid droplets or membrane-less organelles. In contrast to organelles with lipid membrane barriers, the liquid droplets induced by LLPS do not have distinct barriers (lipid bilayer). Biomolecular LLPS in cells has attracted considerable attention in broad research fields from cellular biology to soft matter physics. The physical and chemical properties of LLPS exert a variety of functions in living cells: activating and deactivating biomolecules involving enzymes; controlling the localization, condensation, and concentration of biomolecules; the filtration and purification of biomolecules; and sensing environmental factors for fast, adaptive, and reversible responses. The versatility of LLPS plays an essential role in various biological processes, such as controlling the central dogma and the onset mechanism of pathological diseases. Moreover, biomolecular LLPS could be critical for developing new biotechnologies such as the condensation, purification, and activation of a series of biomolecules. In this review article, we introduce some fundamental aspects and recent progress of biomolecular LLPS in living cells and test tubes. Then, we discuss applications of biomolecular LLPS toward biotechnologies.
Collapse
Affiliation(s)
| | | | | | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
34
|
Oprescu SN, Baumann N, Chen X, Sun Q, Zhao Y, Yue F, Wang H, Kuang S. Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534956. [PMID: 37034612 PMCID: PMC10081271 DOI: 10.1101/2023.03.30.534956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Transcription factors (TFs) play key roles in regulating the differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associated domains. Unexpectedly, Myod1 Cre -driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7 CreER or Rosa26 CreER driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remain to be elucidated.
Collapse
|
35
|
Grepper D, Tabasso C, Aguettaz AKF, Martinotti A, Ebrahimi A, Lagarrigue S, Amati F. Methodological advancements in organ-specific ectopic lipid quantitative characterization: Effects of high fat diet on muscle and liver intracellular lipids. Mol Metab 2023; 68:101669. [PMID: 36642092 PMCID: PMC9938329 DOI: 10.1016/j.molmet.2023.101669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Ectopic lipid accumulation is a hallmark of metabolic diseases, linking obesity to non-alcoholic fatty liver disease, insulin resistance and diabetes. The use of zebrafish as a model of obesity and diabetes is raising due to the conserved properties of fat metabolism between humans and zebrafish, the homologous genes regulating lipid uptake and transport, the implementation of the '3R's principle and their cost-effectiveness. To date, a method allowing the conservation of lipid droplets (LDs) and organs in zebrafish larvae to image ectopic lipids is not available. Our objectives were to develop a novel methodology to quantitatively evaluate organ-specific LDs, in skeletal muscle and liver, in response to a nutritional perturbation. METHODS We developed a novel embedding and cryosectioning protocol allowing the conservation of LDs and organs in zebrafish larvae. To establish the quantitative measures, we used a three-arm parallel nutritional intervention design. Zebrafish larvae were fed a control diet containing 14% of nutritional fat or two high fat diets (HFDs) containing 25 and 36% of dietary fats. In muscle and liver, LDs were characterized using immunofluorescence confocal microscopy. In liver, intrahepatocellular lipids were discriminated from intrasinusoid lipids. To complete liver characteristics, fibrosis was identified with Masson's Trichrome staining. Finally, to confirm the conservation and effect of HFD, molecular players of fat metabolism were evaluated by RT-qPCR. RESULTS The cryosections obtained after setting up the embedding and cryopreservation method were of high quality, preserving tissue morphology and allowing the visualization of ectopic lipids. Both HFDs were obesogenic, without modifying larvae survival or development. Neutral lipid content increased with time and augmented dietary fat. Intramuscular LD volume density increased and was explained by an increase in LDs size but not in numbers. Intrahepatocellular LD volume density increased and was explained by an increased number of LDs, not by their increased size. Sinusoid area and lipid content were both increased. Hepatic fibrosis appeared with both HFDs. We observed alterations in the expression of genes associated with LD coating proteins, LD dynamics, lipogenesis, lipolysis and fatty acid oxidation. CONCLUSIONS In this study, we propose a reproducible and fast method to image zebrafish larvae without losing LD quality and organ morphology. We demonstrate the impact of HFD on LD characteristics in liver and skeletal muscle accompanied by alterations of key players of fat metabolism. Our observations confirm the evolutionarily conserved mechanisms in lipid metabolism and reveal organ specific adaptations. The methodological advancements proposed in this work open the doors to study organelle adaptations in obesity and diabetes related research such as lipotoxicity, organelle contacts and specific lipid depositions.
Collapse
Affiliation(s)
- Dogan Grepper
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Cassandra Tabasso
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Axel K F Aguettaz
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adrien Martinotti
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ammar Ebrahimi
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
36
|
Chen J, Yue F, Kuang S. Labeling and analyzing lipid droplets in mouse muscle stem cells. STAR Protoc 2022; 3:101849. [PMID: 36595920 PMCID: PMC9679676 DOI: 10.1016/j.xpro.2022.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/22/2022] [Indexed: 11/21/2022] Open
Abstract
Lipid droplets are emerging as an important and dynamic organelle whose metabolism controls stem cell behavior. Here we present a comprehensive protocol to visualize and quantify these organelles in mouse muscle satellite cells (MuSCs). This protocol includes steps for BODIPY/LipidSpot610 staining of freshly isolated MuSCs, in vitro cultured myoblasts, and single myofibers to label lipid droplets and subsequent analysis and quantification of fluorescence signals. This protocol can be modified to stain lipid droplets in other cell types of interest. For complete details on the use and execution of this protocol, please refer to Yue et al. (2022).1.
Collapse
Affiliation(s)
- Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Feng Yue
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|