1
|
Geraldo PA, Nascimento MPD, Berlande BM, de Souza JCQ, Adriano LHC, de Oliveira MAL. Investigation of Fatty Acids in Biological Fluid Samples and Analysis by Capillary Electrophoresis: State of the Art and Applications. Electrophoresis 2025. [PMID: 40099753 DOI: 10.1002/elps.8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 02/02/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
Fatty acids are vital to various physiological processes, making their analysis crucial for understanding metabolic, nutritional, and pathological conditions. Traditional methods for its analysis in biological samples, such as gas chromatography and high-performance liquid chromatography, often require complex sample preparation, including derivatization and extraction steps. Capillary electrophoresis has emerged as a promising alternative, offering simpler sample preparation, fast analysis times, and reduced consumption of solvents and reagents, which is in line with the principles of green chemistry. Despite its potential, capillary electrophoresis remains underutilized in fatty acid analysis in biological samples. In this regard, this review discusses the state of the art in capillary electrophoresis application for fatty acid analysis in biological samples, highlighting the simplified sample preparation protocols and the technique's advantages over others.
Collapse
Affiliation(s)
- Patrícia Abranches Geraldo
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Maria Patrícia do Nascimento
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Bruna Marchiori Berlande
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Jéssica Cordeiro Queiroz de Souza
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Luiz Henrique Cantarino Adriano
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Marcone Augusto Leal de Oliveira
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
- National Institute of Science and Technology for Bioanalytics-INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Fabyan WB, Fortin CL, Kenerson HL, Simmonds SP, Liu JTC, Yeh MM, Carr RM, Yeung RSW, Stevens KR. LiverMap pipeline for 3D imaging of human liver reveals volumetric spatial dysregulation of cirrhotic vasculobiliary architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613049. [PMID: 39345589 PMCID: PMC11430080 DOI: 10.1101/2024.09.14.613049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The liver contains an intricate microstructure that is critical for liver function. Architectural disruption of this spatial structure is pathologic. Unfortunately, 2D histopathology - the gold standard for pathological understanding of many liver diseases - can misrepresent or leave gaps in our understanding of complex 3D structural features. Here, we utilized immunostaining, tissue clearing, microscopy, and computational software to create 3D multilobular reconstructions of both non-fibrotic and cirrhotic human liver tissue. We found that spatial architecture in human cirrhotic liver samples with varying etiologies had sinusoid zonation dysregulation, reduction in glutamine synthetase-expressing pericentral hepatocytes, regression of central vein networks, disruption of hepatic arterial networks, and fragmentation of biliary networks, which together suggest a pro-portalization/decentralization phenotype in cirrhotic tissue. Further implementation of 3D pathological analyses may provide a deeper understanding of cirrhotic pathobiology and inspire novel treatments for liver disease.
Collapse
|
3
|
Li K, Wang Y, Li X, Wang H. Comparative analysis of bile acid composition and metabolism in the liver of Bufo gargarizans aquatic larvae and terrestrial adults. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101322. [PMID: 39260083 DOI: 10.1016/j.cbd.2024.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Bile acids are crucial for lipid metabolism and their composition and metabolism differ among species. However, there have been no data on the differences in the composition and metabolism of bile acids between aquatic larvae and terrestrial adults of amphibians. This study explored the differences in composition and metabolism of bile acid between Bufo gargarizans larvae and adults. The results demonstrated that adult liver had a lower total bile acid level and a higher conjugated/total bile acid ratio than larval liver. Meanwhile, histological analysis revealed that the larvae showed a larger cross-sectional area of bile canaliculi lumen compared with the adults. The transcriptomic analysis showed that B. gargarizans larvae synthesized bile acids through both the alternative and the 24-hydroxylase pathway, while adults only synthesized bile acids through the 24-hydroxylase pathway. Moreover, bile acid regulator-related genes FXR and RXRα were highly expressed in adult, whereas genes involved in bile acid synthesis (CYP27A1 and CYP46A1) were highly expressed in larvae. The present study will provide valuable insights into understanding metabolic disorders and exploring novel bile acid-based therapeutics.
Collapse
Affiliation(s)
- Kaiyue Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yufei Wang
- School of Biological Sciences, College of Science and Engineering, The University of Edinburgh, United Kingdom
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Cacho-Navas C, López-Pujante C, Reglero-Real N, Colás-Algora N, Cuervo A, Conesa JJ, Barroso S, de Rivas G, Ciordia S, Paradela A, D'Agostino G, Manzo C, Feito J, Andrés G, Molina-Jiménez F, Majano P, Correas I, Carazo JM, Nourshargh S, Huch M, Millán J. ICAM-1 nanoclusters regulate hepatic epithelial cell polarity by leukocyte adhesion-independent control of apical actomyosin. eLife 2024; 12:RP89261. [PMID: 38597186 PMCID: PMC11006420 DOI: 10.7554/elife.89261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.
Collapse
Affiliation(s)
| | | | - Natalia Reglero-Real
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | | | - Ana Cuervo
- Centro Nacional de Biotecnologia (CSIC)MadridSpain
| | | | - Susana Barroso
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | - Gema de Rivas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | | | | | | | - Carlo Manzo
- Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic – Universitat Central de Catalunya (UVic-UCC)VicSpain
| | - Jorge Feito
- Servicio de Anatomía Patológica, Hospital Universitario de SalamancaSalamancaSpain
| | - Germán Andrés
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | - Francisca Molina-Jiménez
- Molecular Biology Unit, Hospital Universitario de la PrincesaMadridSpain
- Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa)MadridSpain
| | - Pedro Majano
- Molecular Biology Unit, Hospital Universitario de la PrincesaMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
- Department of Cellular Biology, Universidad Complutense de MadridMadridSpain
| | - Isabel Correas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | | | - Sussan Nourshargh
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jaime Millán
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| |
Collapse
|
5
|
Martínez-Torres D, Maldonado V, Pérez-Gallardo C, Yañez R, Candia V, Kalaidzidis Y, Zerial M, Morales-Navarrete H, Segovia-Miranda F. Phenotypic characterization of liver tissue heterogeneity through a next-generation 3D single-cell atlas. Sci Rep 2024; 14:2823. [PMID: 38307948 PMCID: PMC10837128 DOI: 10.1038/s41598-024-53309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Three-dimensional (3D) geometrical models are potent tools for quantifying complex tissue features and exploring structure-function relationships. However, these models are generally incomplete due to experimental limitations in acquiring multiple (> 4) fluorescent channels in thick tissue sections simultaneously. Indeed, predictive geometrical and functional models of the liver have been restricted to few tissue and cellular components, excluding important cellular populations such as hepatic stellate cells (HSCs) and Kupffer cells (KCs). Here, we combined deep-tissue immunostaining, multiphoton microscopy, deep-learning techniques, and 3D image processing to computationally expand the number of simultaneously reconstructed tissue structures. We then generated a spatial single-cell atlas of hepatic architecture (Hep3D), including all main tissue and cellular components at different stages of post-natal development in mice. We used Hep3D to quantitatively study 1) hepatic morphodynamics from early post-natal development to adulthood, and 2) the effect on the liver's overall structure when changing the hepatic environment after removing KCs. In addition to a complete description of bile canaliculi and sinusoidal network remodeling, our analysis uncovered unexpected spatiotemporal patterns of non-parenchymal cells and hepatocytes differing in size, number of nuclei, and DNA content. Surprisingly, we found that the specific depletion of KCs results in morphological changes in hepatocytes and HSCs. These findings reveal novel characteristics of liver heterogeneity and have important implications for both the structural organization of liver tissue and its function. Our next-gen 3D single-cell atlas is a powerful tool to understand liver tissue architecture, opening up avenues for in-depth investigations into tissue structure across both normal and pathological conditions.
Collapse
Affiliation(s)
- Dilan Martínez-Torres
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Valentina Maldonado
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Cristian Pérez-Gallardo
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Yañez
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Valeria Candia
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hernán Morales-Navarrete
- Department of Systems Biology of Development, University of Konstanz, Konstanz, Germany.
- Facultad de Ciencias Técnicas, Universidad Internacional Del Ecuador UIDE, Quito, Ecuador.
| | - Fabián Segovia-Miranda
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
6
|
Peng T, Zhong Y, Lin X, Jiang B, Wang P, Jia Y. Analysis and numerical investigation of bile flow dynamics within the strictured biliary duct. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3790. [PMID: 37997039 DOI: 10.1002/cnm.3790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023]
Abstract
The mechanics of bile flow in the biliary system plays an important role in studying bile stasis and gallstone formation. Bile duct stricture is an abnormal phenomenon that refers to the bile duct getting smaller or narrower. The main objective of this study is to study the influence of stricture on bile flow dynamics using numerical methods. We employed a numerical Computational Fluid Dynamics model of the bile flow within a strictured hepatic duct. We studied and compared the influence of stricture severity, stricture length, eccentricity, and bile flow property on the bile flow dynamics. The bile flow velocity, pressure distribution, pressure drop, and wall shear stress are provided in detail. The stricture alters the normal bile flow pattern and increases flow resistance. At the location upstream and downstream of the stricture, bile flow slows down. In the area of the stricture throat, bile flow is accelerated, and recirculation forms behind the stricture. The maximum pressure drop of the biliary system increases with the stricture length. The eccentricity makes the flow deflect away from the duct's centerline. The behavior of the deflected flow is significantly altered downstream of the stricture. Such bile flow behavior as deceleration and recirculation may lead to cholestasis. Stricture alters bile flow in the biliary tract, causing changes in biliary hydrodynamic indexes, which could potentially serve as an omen for gallstone formation and other related diseases. The consideration of the bile duct stricture could lead to better patient stratification.
Collapse
Affiliation(s)
- Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Yunlong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Bingyan Jiang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Hunan, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Jia
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao, China
- Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
7
|
Peng T, Zhou C, Zhang Z, Liu Y, Lin X, Ye Y, Zhong Y, Wang P, Jia Y. Review on bile dynamics and microfluidic-based component detection: Advancing the understanding of bilestone pathogenesis in the biliary tract. BIOMICROFLUIDICS 2024; 18:014105. [PMID: 38370511 PMCID: PMC10869170 DOI: 10.1063/5.0186602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Bilestones are solid masses found in the gallbladder or biliary tract, which block the normal bile flow and eventually result in severe life-threatening complications. Studies have shown that bilestone formation may be related to bile flow dynamics and the concentration level of bile components. The bile flow dynamics in the biliary tract play a critical role in disclosing the mechanism of bile stasis and transportation. The concentration of bile composition is closely associated with processes such as nucleation and crystallization. Recently, microfluidic-based biosensors have been favored for multiple advantages over traditional benchtop detection assays for their less sample consumption, portability, low cost, and high sensitivity for real-time detection. Here, we reviewed the developments in bile dynamics study and microfluidics-based bile component detection methods. These studies may provide valuable insights into the bilestone formation mechanisms and better treatment, alongside our opinions on the future development of in vitro lithotriptic drug screening of bilestones and bile characterization tests.
Collapse
Affiliation(s)
- Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Chenxiao Zhou
- Li Po Chun United World College of Hong Kong, Hong Kong, China
| | | | | | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Yongqing Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunlong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Jia
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
8
|
Olivença DV, Davis JD, Kumbale CM, Zhao CY, Brown SP, McCarty NA, Voit EO. Mathematical models of cystic fibrosis as a systemic disease. WIREs Mech Dis 2023; 15:e1625. [PMID: 37544654 PMCID: PMC10843793 DOI: 10.1002/wsbm.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Cystic fibrosis (CF) is widely known as a disease of the lung, even though it is in truth a systemic disease, whose symptoms typically manifest in gastrointestinal dysfunction first. CF ultimately impairs not only the pancreas and intestine but also the lungs, gonads, liver, kidneys, bones, and the cardiovascular system. It is caused by one of several mutations in the gene of the epithelial ion channel protein CFTR. Intense research and improved antimicrobial treatments during the past eight decades have steadily increased the predicted life expectancy of a person with CF (pwCF) from a few weeks to over 50 years. Moreover, several drugs ameliorating the sequelae of the disease have become available in recent years, and notable treatments of the root cause of the disease have recently generated substantial improvements in health for some but not all pwCF. Yet, numerous fundamental questions remain unanswered. Complicating CF, for instance in the lung, is the fact that the associated insufficient chloride secretion typically perturbs the electrochemical balance across epithelia and, in the airways, leads to the accumulation of thick, viscous mucus and mucus plaques that cannot be cleared effectively and provide a rich breeding ground for a spectrum of bacterial and fungal communities. The subsequent infections often become chronic and respond poorly to antibiotic treatments, with outcomes sometimes only weakly correlated with the drug susceptibility of the target pathogen. Furthermore, in contrast to rapidly resolved acute infections with a single target pathogen, chronic infections commonly involve multi-species bacterial communities, called "infection microbiomes," that develop their own ecological and evolutionary dynamics. It is presently impossible to devise mathematical models of CF in its entirety, but it is feasible to design models for many of the distinct drivers of the disease. Building upon these growing yet isolated modeling efforts, we discuss in the following the feasibility of a multi-scale modeling framework, known as template-and-anchor modeling, that allows the gradual integration of refined sub-models with different granularity. The article first reviews the most important biomedical aspects of CF and subsequently describes mathematical modeling approaches that already exist or have the potential to deepen our understanding of the multitude aspects of the disease and their interrelationships. The conceptual ideas behind the approaches proposed here do not only pertain to CF but are translatable to other systemic diseases. This article is categorized under: Congenital Diseases > Computational Models.
Collapse
Affiliation(s)
- Daniel V. Olivença
- Center for Engineering Innovation, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, USA
| | - Jacob D. Davis
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Carla M. Kumbale
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Conan Y. Zhao
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Samuel P. Brown
- Department of Biological Sciences, Georgia Tech and Emory University, Atlanta, Georgia
| | - Nael A. McCarty
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| |
Collapse
|
9
|
Malečková A, Mik P, Liška V, Pálek R, Rosendorf J, Witter K, Grajciarová M, Tonar Z. Periphery of porcine hepatic lobes has the smallest length density of hepatic sinusoids and bile canaliculi: A stereological histological study with implications for liver biopsies. Ann Anat 2023; 250:152157. [PMID: 37666463 DOI: 10.1016/j.aanat.2023.152157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/12/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Porcine liver is widely used in hepatologic research as a large animal model with many anatomical and physiological similarities with humans. However, only limited information on porcine liver spatial microstructure has been published, especially regarding the hepatic sinusoids and bile canaliculi. The aim of our study was to quantify the sinusoidal and bile canalicular network in healthy male and female porcine livers and to map the variability of these structures with heterogenous distribution to improve the evaluability of liver biopsy samples. METHODS Livers from 12 healthy piglets (6 females and 6 neutered males) were sampled into 36 tissue samples per organ, representing six hepatic lobes and three different regions related to the hepatic vasculature (peripheral, paracaval and paraportal region). Histological sections were processed with a random orientation of the cutting plane. The endothelium and the bile canaliculi were stained using Ricinus communis agglutinin I lectin histochemistry. The length densities of hepatic sinusoids LV(sinusoids,liver), of bile canaliculi LV(bile canaliculi,liver) and volume fraction VV(sinusoids,liver) and surface density SV(sinusoids,liver) of sinusoids were estimated using stereological methods. The newly acquired morphometric data were compared with previously published data on density of porcine hepatocytes and fractions of connective tissue. RESULTS The peripheral region had smallest LV(sinusoids,liver), smallest LV(bile canaliculi,liver) and greatest VV(sinusoids,liver). The six hepatic lobes had statistically comparable length densities of both sinusoids and bile canaliculi, but the left lateral lobe had smallest VV(sinusoids,liver). Regions with greater LV(sinusoids,liver) had also greater LV(bile canaliculi,liver) and SV(sinusoids,liver) and were accompanied by greater density of smaller hepatocytes. Regions with smaller LV(sinusoids,liver) and LV(bile canaliculi,liver) contained a greater fraction of interlobular connective tissue. CONCLUSIONS The length density of hepatic sinusoids is smaller in the peripheral regions of the porcine liver than in other regions related to the hepatic vasculature - paracaval and paraportal regions, and smaller in castrated males than in females. Greater length density of liver sinusoids was linked with greater local density of bile canaliculi, with local increase in the density of smaller hepatocytes and, simultaneously, with smaller fractions of hepatic connective tissue. The intrahepatic and inter-sexual variability of the porcine liver morphology needs to be taken into account when designing and interpreting experiments involving the histological quantification of the microvascular network. The complete primary morphometric data describing the distribution of morphometric parameters within porcine liver were made available in a form facilitating the power analysis to justify the minimal number of tissue samples or animals required when designing further histological evaluation studies. The macroscopic map of microvessels and bile canaliculi variability facilitates their assessment in liver biopsies in the pig.
Collapse
Affiliation(s)
- Anna Malečková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic.
| | - Patrik Mik
- Department of Anatomy and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Václav Liška
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Richard Pálek
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jáchym Rosendorf
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Kirsti Witter
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria
| | - Martina Grajciarová
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
10
|
Mayer C, Nehring S, Kücken M, Repnik U, Seifert S, Sljukic A, Delpierre J, Morales‐Navarrete H, Hinz S, Brosch M, Chung B, Karlsen T, Huch M, Kalaidzidis Y, Brusch L, Hampe J, Schafmayer C, Zerial M. Apical bulkheads accumulate as adaptive response to impaired bile flow in liver disease. EMBO Rep 2023; 24:e57181. [PMID: 37522754 PMCID: PMC10481669 DOI: 10.15252/embr.202357181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Hepatocytes form bile canaliculi that dynamically respond to the signalling activity of bile acids and bile flow. Little is known about their responses to intraluminal pressure. During embryonic development, hepatocytes assemble apical bulkheads that increase the canalicular resistance to intraluminal pressure. Here, we investigate whether they also protect bile canaliculi against elevated pressure upon impaired bile flow in adult liver. Apical bulkheads accumulate upon bile flow obstruction in mouse models and patients with primary sclerosing cholangitis (PSC). Their loss under these conditions leads to abnormally dilated canaliculi, resembling liver cell rosettes described in other hepatic diseases. 3D reconstruction reveals that these structures are sections of cysts and tubes formed by hepatocytes. Mathematical modelling establishes that they positively correlate with canalicular pressure and occur in early PSC stages. Using primary hepatocytes and 3D organoids, we demonstrate that excessive canalicular pressure causes the loss of apical bulkheads and formation of rosettes. Our results suggest that apical bulkheads are a protective mechanism of hepatocytes against impaired bile flow, highlighting the role of canalicular pressure in liver diseases.
Collapse
Affiliation(s)
- Carlotta Mayer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Sophie Nehring
- Department of Medicine I, Gastroenterology and HepatologyUniversity Hospital Carl‐Gustav‐Carus, Technische Universität Dresden (TU Dresden)DresdenGermany
| | - Michael Kücken
- Center for Information Services and High‐Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Urska Repnik
- Central Microscopy, Department of BiologyChristian‐Albrechts‐Universtät zu Kiel (CAU)KielGermany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Aleksandra Sljukic
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Julien Delpierre
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Sebastian Hinz
- Department of General SurgeryUniversity Hospital RostockRostockGermany
| | - Mario Brosch
- Department of Medicine I, Gastroenterology and HepatologyUniversity Hospital Carl‐Gustav‐Carus, Technische Universität Dresden (TU Dresden)DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Technische Universität Dresden (TU Dresden)DresdenGermany
| | - Brian Chung
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research CenterOslo University Hospital RikshospitaletOsloNorway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and TransplantationOslo University Hospital and University of OsloOsloNorway
| | - Tom Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research CenterOslo University Hospital RikshospitaletOsloNorway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and TransplantationOslo University Hospital and University of OsloOsloNorway
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Lutz Brusch
- Center for Information Services and High‐Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Jochen Hampe
- Department of Medicine I, Gastroenterology and HepatologyUniversity Hospital Carl‐Gustav‐Carus, Technische Universität Dresden (TU Dresden)DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Technische Universität Dresden (TU Dresden)DresdenGermany
| | | | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
11
|
Javitt NB. Hepatic Bile Formation: Developing a New Paradigm. Pharmacol Rev 2023; 75:1036-1042. [PMID: 37532432 DOI: 10.1124/pharmrev.122.000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 08/04/2023] Open
Abstract
In 1959, Ivar Sperber contrasted bile formation with that of urine and proposed that water flow into the canalicular conduit is in response to an osmotic, not a hydrostatic, gradient. Early attempts to support the hypothesis using a bile acid, sodium taurocholate, and the hormone secretin to stimulate bile flow led to conflicting data and a moratorium on attempts to further develop the initial proposal. However, current data amplify the initial proposal and indicate both paracellular and transcellular water flow into hepatic ductules and the canalicular conduit in response to an osmotic gradient. Also, the need to further modify the initial proposal became apparent with the recognition that bile acid aggregates (micelles), which form in the canalicular conduit, generate lecithin-cholesterol vesicles that contain water unrelated to an osmotic gradient. As part of this development is the recent introduction of the fluorescent localization after photobleaching technique for direct determination of hepatic duct flow and clarification of the role of biomarkers such as mannitol and polyethylene glycol 900. With the new paradigm, these biomarkers may prove useful for quantifying paracellular and transcellular water flow, respectively. SIGNIFICANCE STATEMENT: It is essential to identify and characterize all the sites for water flow during hepatic bile formation to obtain more precision in evaluating the causes and possible therapeutic approaches to cholestatic syndromes. Updating the Sperber proposal provides a new paradigm that addresses the advances in knowledge that have occurred.
Collapse
Affiliation(s)
- Norman B Javitt
- NYU Grossman School of Medicine, Division of Gastroenterology and Hepatology, New York, New York
| |
Collapse
|
12
|
Yarin Y, Kalaitzidou A, Bodrova K, Mösges R, Kalaidzidis Y. Validation of AI-based software for objectification of conjunctival provocation test. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100121. [PMID: 37779521 PMCID: PMC10509841 DOI: 10.1016/j.jacig.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/19/2023] [Accepted: 04/07/2023] [Indexed: 10/03/2023]
Abstract
Background Provocation tests are widely used in allergology to objectively reveal patients' sensitivity to specific allergens. The objective quantification of an allergic reaction is a crucial characteristic of these tests. Because of the absence of objective quantitative measurements, the conjunctival provocation test (CPT) is a less frequently used method despite its sensitivity and simplicity. Objective We developed a new artificial intelligence (AI)-based method, called AllergoEye, for quantitative evaluation of conjunctival allergic reactions and validated it in a clinical study. Methods AllergoEye was implemented as a 2-component system. The first component is based on an Android smartphone camera for screening and imaging the patient's eye, and the second is personal computer-based for image analysis and quantification. For the validation of AllergoEye, an open-label, prospective, monocentric study was carried out on 41 patients. Standardized CPT was performed with sequential titration of grass allergens in 4 dilutions, with the reaction evaluated by subjective/qualitative symptom scores and by quantitative AllergoEye scores. Results AllergoEye demonstrated high sensitivity (98%) and specificity (90%) as compared with human estimation of allergic reaction. Tuning cutoff thresholds allowed us to increase the specificity of AllergoEye to 97%, at which point the correlation between detected sensitivity to allergen and specific IgE carrier-polymer system class becomes obvious. Strikingly, such correlation was not found with sensitivity to allergen detected on the basis of subjective and qualitative symptom scores. Conclusion The clinical validation demonstrated that AllergoEye is a sensitive and efficient instrument for objective measurement of allergic reactions in CPT for clinical studies as well as for routine therapy control.
Collapse
Affiliation(s)
- Yury Yarin
- Practice for ENT und Allergology, Dresden, Germany
| | | | - Kira Bodrova
- Practice for ENT und Allergology, Dresden, Germany
| | | | - Yannis Kalaidzidis
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
13
|
Gupta K. A modular analysis of bile canalicular function and its implications for cholestasis. Am J Physiol Gastrointest Liver Physiol 2023; 325:G14-G22. [PMID: 37192193 PMCID: PMC10259850 DOI: 10.1152/ajpgi.00165.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
Hepatocytes produce bile components and secrete them into a lumen, known as a bile canaliculus, that is formed by the apical membranes of adjoining hepatocytes. Bile canaliculi merge to form tubular structures that subsequently connect to the canal of Hering and larger intra- and extrahepatic bile ducts formed by cholangiocytes, which modify bile and enable flow through the small intestine. The major functional requirements for bile canaliculi are the maintenance of canalicular shape to preserve the blood-bile barrier and regulation of bile flow. These functional requirements are mediated by functional modules, primarily transporters, the cytoskeleton, cell-cell junctions, and mechanosensing proteins. I propose here that bile canaliculi behave as robust machines whereby the functional modules act in a coordinated manner to perform the multistep task of maintaining canalicular shape and bile flow. Cholestasis, the general term for aberrant bile flow, stems from drug/toxin-induced or genetic dysregulation of one or more of the protein components in the functional modules. Here, I discuss the interactions between components of the various functional modules in bile canaliculi and describe how these functional modules regulate canalicular morphology and function. I use this framework to provide a perspective on recent studies of bile canalicular dynamics.
Collapse
Affiliation(s)
- Kapish Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Center for Engineering MechanoBiology, The University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
14
|
Ho H, Means S, Safaei S, Hunter PJ. In silico modeling for the hepatic circulation and transport: From the liver organ to lobules. WIREs Mech Dis 2023; 15:e1586. [PMID: 36131627 DOI: 10.1002/wsbm.1586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022]
Abstract
The function of the liver depends critically on its blood supply. Numerous in silico models have been developed to study various aspects of the hepatic circulation, including not only the macro-hemodynamics at the organ level, but also the microcirculation at the lobular level. In addition, computational models of blood flow and bile flow have been used to study the transport, metabolism, and clearance of drugs in pharmacokinetic studies. These in silico models aim to provide insights into the liver organ function under both healthy and diseased states, and to assist quantitative analysis for surgical planning and postsurgery treatment. The purpose of this review is to provide an update on state-of-the-art in silico models of the hepatic circulation and transport processes. We introduce the numerical methods and the physiological background of these models. We also discuss multiscale frameworks that have been proposed for the liver, and their linkage with the large context of systems biology, systems pharmacology, and the Physiome project. This article is categorized under: Metabolic Diseases > Computational Models Metabolic Diseases > Biomedical Engineering Cardiovascular Diseases > Computational Models.
Collapse
Affiliation(s)
- Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Shawn Means
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Peter John Hunter
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Carpentier N, Urbani L, Dubruel P, Van Vlierberghe S. The native liver as inspiration to create superior in vitro hepatic models. Biomater Sci 2023; 11:1091-1115. [PMID: 36594602 DOI: 10.1039/d2bm01646j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug induced liver injury (DILI) is one of the major reasons of drug withdrawal during the different phases of drug development. The later in the drug development a drug is discovered to be toxic, the higher the economical as well as the ethical impact will be. In vitro models for early detection of drug liver toxicity are under constant development, however to date a superior model of the liver is still lacking. Ideally, a highly reliable model should be established to maintain the different hepatic cell functionalities to the greatest extent possible, during a period of time long enough to allow for tracking of the toxicity of compounds. In the case of DILI, toxicity can appear even after months of exposure. To reach this goal, an in vitro model should be developed that mimics the in vivo liver environment, function and response to external stimuli. The different approaches for the development of liver models currently used in the field of tissue engineering will be described in this review. Combining different technologies, leading to optimal materials, cells and 3D-constructs will ultimately lead to an ideal superior model that fully recapitulates the liver.
Collapse
Affiliation(s)
- Nathan Carpentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| |
Collapse
|
16
|
Bebelman MP, Bovyn MJ, Mayer CM, Delpierre J, Naumann R, Martins NP, Honigmann A, Kalaidzidis Y, Haas PA, Zerial M. Hepatocyte apical bulkheads provide a mechanical means to oppose bile pressure. J Cell Biol 2023; 222:213840. [PMID: 36716168 PMCID: PMC9930133 DOI: 10.1083/jcb.202208002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Hepatocytes grow their apical surfaces anisotropically to generate a 3D network of bile canaliculi (BC). BC elongation is ensured by apical bulkheads, membrane extensions that traverse the lumen and connect juxtaposed hepatocytes. We hypothesize that apical bulkheads are mechanical elements that shape the BC lumen in liver development but also counteract elevated biliary pressure. Here, by resolving their structure using STED microscopy, we found that they are sealed by tight junction loops, connected by adherens junctions, and contain contractile actomyosin, characteristics of mechanical function. Apical bulkheads persist at high pressure upon microinjection of fluid into the BC lumen, and laser ablation demonstrated that they are under tension. A mechanical model based on ablation results revealed that apical bulkheads double the pressure BC can hold. Apical bulkhead frequency anticorrelates with BC connectivity during mouse liver development, consistent with predicted changes in biliary pressure. Our findings demonstrate that apical bulkheads are load-bearing mechanical elements that could protect the BC network against elevated pressure.
Collapse
Affiliation(s)
- Maarten P. Bebelman
- https://ror.org/05b8d3w18Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Matthew J. Bovyn
- https://ror.org/05b8d3w18Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Center for Systems Biology Dresden, Dresden, Germany,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Carlotta M. Mayer
- https://ror.org/05b8d3w18Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julien Delpierre
- https://ror.org/05b8d3w18Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ronald Naumann
- https://ror.org/05b8d3w18Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nuno P. Martins
- https://ror.org/05b8d3w18Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alf Honigmann
- https://ror.org/05b8d3w18Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Yannis Kalaidzidis
- https://ror.org/05b8d3w18Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pierre A. Haas
- https://ror.org/05b8d3w18Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Center for Systems Biology Dresden, Dresden, Germany,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany,Pierre A. Haas:
| | - Marino Zerial
- https://ror.org/05b8d3w18Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Center for Systems Biology Dresden, Dresden, Germany,Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany,Correspondence to Marino Zerial:
| |
Collapse
|
17
|
Hoehme S, Hammad S, Boettger J, Begher-Tibbe B, Bucur P, Vibert E, Gebhardt R, Hengstler JG, Drasdo D. Digital twin demonstrates significance of biomechanical growth control in liver regeneration after partial hepatectomy. iScience 2022; 26:105714. [PMID: 36691615 PMCID: PMC9860368 DOI: 10.1016/j.isci.2022.105714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Partial liver removal is an important therapy option for liver cancer. In most patients within a few weeks, the liver is able to fully regenerate. In some patients, however, regeneration fails with often severe consequences. To better understand the control mechanisms of liver regeneration, experiments in mice were performed, guiding the creation of a spatiotemporal 3D model of the regenerating liver. The model represents cells and blood vessels within an entire liver lobe, a macroscopic liver subunit. The model could reproduce the experimental data only if a biomechanical growth control (BGC)-mechanism, inhibiting cell cycle entrance at high compression, was taken into account and predicted that BGC may act as a short-range growth inhibitor minimizing the number of proliferating neighbor cells of a proliferating cell, generating a checkerboard-like proliferation pattern. Model-predicted cell proliferation patterns in pigs and mice were found experimentally. The results underpin the importance of biomechanical aspects in liver growth control.
Collapse
Affiliation(s)
- Stefan Hoehme
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany,Institute of Computer Science, University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany,Saxonian Incubator for Clinical Research (SIKT), Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | - Seddik Hammad
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Germany,Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany,Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Jan Boettger
- Faculty of Medicine, Rudolf-Schoenheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany
| | - Petru Bucur
- Unité INSERM 1193, Centre Hépato-Biliaire, Villejuif, France,Service de Chirurgie Digestive, CHU Trousseau, Tours, France
| | - Eric Vibert
- Unité INSERM 1193, Centre Hépato-Biliaire, Villejuif, France
| | - Rolf Gebhardt
- Faculty of Medicine, Rudolf-Schoenheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany
| | - Dirk Drasdo
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany,Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany,Inria Paris & Sorbonne Université LJLL, 75012 Paris, France,Correspondence:
| |
Collapse
|
18
|
Scheele CLGJ, Herrmann D, Yamashita E, Celso CL, Jenne CN, Oktay MH, Entenberg D, Friedl P, Weigert R, Meijboom FLB, Ishii M, Timpson P, van Rheenen J. Multiphoton intravital microscopy of rodents. NATURE REVIEWS. METHODS PRIMERS 2022; 2:89. [PMID: 37621948 PMCID: PMC10449057 DOI: 10.1038/s43586-022-00168-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 08/26/2023]
Abstract
Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases. This Primer introduces researchers to IVM technologies, with a focus on multiphoton microscopy of rodents, and discusses challenges, solutions and practical tips on how to perform IVM. To illustrate the unique potential of IVM, several examples of results are highlighted. Finally, we discuss data reproducibility and how to handle big imaging data sets.
Collapse
Affiliation(s)
- Colinda L. G. J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Erika Yamashita
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Cristina Lo Celso
- Department of Life Sciences and Centre for Hematology, Imperial College London, London, UK
- Sir Francis Crick Institute, London, UK
| | - Craig N. Jenne
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Maja H. Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Franck L. B. Meijboom
- Department of Population Health Sciences, Sustainable Animal Stewardship, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Faculty of Humanities, Ethics Institute, Utrecht University, Utrecht, Netherlands
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
19
|
Li N, Zhang X, Zhou J, Li W, Shu X, Wu Y, Long M. Multiscale biomechanics and mechanotransduction from liver fibrosis to cancer. Adv Drug Deliv Rev 2022; 188:114448. [PMID: 35820602 DOI: 10.1016/j.addr.2022.114448] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/08/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
A growing body of multiscale biomechanical studies has been proposed to highlight the mechanical cues in the development of hepatic fibrosis and cancer. At the cellular level, changes in mechanical microenvironment induce phenotypic and functional alterations of hepatic cells, initiating a positive feedback loop that promotes liver fibrogenesis and hepatocarcinogenesis. Tumor mechanical microenvironment of hepatocellular carcinoma facilitates tumor cell growth and metastasis, and hinders the drug delivery and immunotherapy. At the molecular level, mechanical forces are sensed and transmitted into hepatic cells via allosteric activation of mechanoreceptors on the cell membrane, leading to the activation of various mechanotransduction pathways including integrin and YAP signaling and then regulating cell function. Thus, the application of mechanomedicine concept in the treatment of liver diseases is promising for rational design and cell-specific delivery of therapeutic drugs. This review mainly discusses the correlation between biomechanical cues and liver diseases from the viewpoint of mechanobiology.
Collapse
Affiliation(s)
- Ning Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhou
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Verma A, Manchel A, Melunis J, Hengstler JG, Vadigepalli R. From Seeing to Simulating: A Survey of Imaging Techniques and Spatially-Resolved Data for Developing Multiscale Computational Models of Liver Regeneration. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:917191. [PMID: 37575468 PMCID: PMC10421626 DOI: 10.3389/fsysb.2022.917191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Liver regeneration, which leads to the re-establishment of organ mass, follows a specifically organized set of biological processes acting on various time and length scales. Computational models of liver regeneration largely focused on incorporating molecular and signaling detail have been developed by multiple research groups in the recent years. These modeling efforts have supported a synthesis of disparate experimental results at the molecular scale. Incorporation of tissue and organ scale data using noninvasive imaging methods can extend these computational models towards a comprehensive accounting of multiscale dynamics of liver regeneration. For instance, microscopy-based imaging methods provide detailed histological information at the tissue and cellular scales. Noninvasive imaging methods such as ultrasound, computed tomography and magnetic resonance imaging provide morphological and physiological features including volumetric measures over time. In this review, we discuss multiple imaging modalities capable of informing computational models of liver regeneration at the organ-, tissue- and cellular level. Additionally, we discuss available software and algorithms, which aid in the analysis and integration of imaging data into computational models. Such models can be generated or tuned for an individual patient with liver disease. Progress towards integrated multiscale models of liver regeneration can aid in prognostic tool development for treating liver disease.
Collapse
Affiliation(s)
- Aalap Verma
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexandra Manchel
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Justin Melunis
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jan G. Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
21
|
Javitt NB, Boyer JL. Letter to the Editor: On the mechanisms of biliary flux. Hepatology 2022; 75:492-493. [PMID: 34543482 DOI: 10.1002/hep.32167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/08/2022]
Affiliation(s)
- Norman B Javitt
- Medicine and PediatricsNYU Langone Medical CenterNew YorkNew YorkUSA
| | - James L Boyer
- Department of Internal MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
22
|
Vartak N, Drasdo D, Geisler F, Itoh T, P J Oude Elferink R, van de Graaf SFJ, Chiang J, Keitel V, Trauner M, Jansen P, Hengstler JG. On the Mechanisms of Biliary Flux. Hepatology 2021; 74:3497-3512. [PMID: 34164843 DOI: 10.1002/hep.32027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Since the late 1950s, transport of bile in the liver has been described by the "osmotic concept," according to which bile flows into the canaliculi toward the ducts, countercurrent to the blood flow in the sinusoids. However, because of the small size of canaliculi, it was so far impossible to observe, let alone to quantify this process. Still, "osmotic canalicular flow" was a sufficient and plausible explanation for the clearance characteristics of a wide variety of choleretic compounds excreted in bile. Imaging techniques have now been established that allow direct flux analysis in bile canaliculi of the intact liver in living organisms. In contrast to the prevailing osmotic concept these analyses strongly suggest that the transport of small molecules in canalicular bile is diffusion dominated, while canalicular flow is negligibly small. In contrast, with the same experimental approach, it could be shown that in the interlobular ducts, diffusion is augmented by flow. Thus, bile canaliculi can be compared to a standing water zone that is connected to a river. The seemingly subtle difference between diffusion and flow is of relevance for therapy of a wide range of liver diseases including cholestasis and NAFLD. Here, we incorporated the latest findings on canalicular solute transport, and align them with extant knowledge to present an integrated and explanatory framework of bile flux that will undoubtedly be refined further in the future.
Collapse
Affiliation(s)
- Nachiket Vartak
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Dirk Drasdo
- National Institute for Research in Digital Science and Technology, Paris, France
| | - Fabian Geisler
- Clinic and Polyclinic for Internal Medicine II, Kinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Tohru Itoh
- Institute for Quantitative Biosciences, the University of Tokyo, Tokyo, Japan
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - John Chiang
- North-East Ohio Medical University, Rootstown, OH, USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter Jansen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
23
|
Long Y, Niu Y, Liang K, Du Y. Mechanical communication in fibrosis progression. Trends Cell Biol 2021; 32:70-90. [PMID: 34810063 DOI: 10.1016/j.tcb.2021.10.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
Mechanical hallmarks of fibrotic microenvironments are both outcomes and causes of fibrosis progression. Understanding how cells sense and transmit mechanical cues in the interplay with extracellular matrix (ECM) and hemodynamic forces is a significant challenge. Recent advances highlight the evolvement of intracellular mechanotransduction pathways responding to ECM remodeling and abnormal hemodynamics (i.e., low and disturbed shear stress, pathological stretch, and increased pressure), which are prevalent biomechanical characteristics of fibrosis in multiple organs (e.g., liver, lung, and heart). Here, we envisage the mechanical communication in cell-ECM, cell-hemodynamics and cell-ECM-cell crosstalk (namely paratensile signaling) during fibrosis expansion. We also provide a comprehensive overview of in vitro and in silico engineering systems for disease modeling that will aid the identification and prediction of mechano-based therapeutic targets to ameliorate fibrosis progression.
Collapse
Affiliation(s)
- Yi Long
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, 100084, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
Gondal MN, Chaudhary SU. Navigating Multi-Scale Cancer Systems Biology Towards Model-Driven Clinical Oncology and Its Applications in Personalized Therapeutics. Front Oncol 2021; 11:712505. [PMID: 34900668 PMCID: PMC8652070 DOI: 10.3389/fonc.2021.712505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Rapid advancements in high-throughput omics technologies and experimental protocols have led to the generation of vast amounts of scale-specific biomolecular data on cancer that now populates several online databases and resources. Cancer systems biology models built using this data have the potential to provide specific insights into complex multifactorial aberrations underpinning tumor initiation, development, and metastasis. Furthermore, the annotation of these single- and multi-scale models with patient data can additionally assist in designing personalized therapeutic interventions as well as aid in clinical decision-making. Here, we have systematically reviewed the emergence and evolution of (i) repositories with scale-specific and multi-scale biomolecular cancer data, (ii) systems biology models developed using this data, (iii) associated simulation software for the development of personalized cancer therapeutics, and (iv) translational attempts to pipeline multi-scale panomics data for data-driven in silico clinical oncology. The review concludes that the absence of a generic, zero-code, panomics-based multi-scale modeling pipeline and associated software framework, impedes the development and seamless deployment of personalized in silico multi-scale models in clinical settings.
Collapse
Affiliation(s)
- Mahnoor Naseer Gondal
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
25
|
Cunningham RP, Porat-Shliom N. Liver Zonation - Revisiting Old Questions With New Technologies. Front Physiol 2021; 12:732929. [PMID: 34566696 PMCID: PMC8458816 DOI: 10.3389/fphys.2021.732929] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the ever-increasing prevalence of non-alcoholic fatty liver disease (NAFLD), the etiology and pathogenesis remain poorly understood. This is due, in part, to the liver's complex physiology and architecture. The liver maintains glucose and lipid homeostasis by coordinating numerous metabolic processes with great efficiency. This is made possible by the spatial compartmentalization of metabolic pathways a phenomenon known as liver zonation. Despite the importance of zonation to normal liver function, it is unresolved if and how perturbations to liver zonation can drive hepatic pathophysiology and NAFLD development. While hepatocyte heterogeneity has been identified over a century ago, its examination had been severely hindered due to technological limitations. Recent advances in single cell analysis and imaging technologies now permit further characterization of cells across the liver lobule. This review summarizes the advances in examining liver zonation and elucidating its regulatory role in liver physiology and pathology. Understanding the spatial organization of metabolism is vital to further our knowledge of liver disease and to provide targeted therapeutic avenues.
Collapse
Affiliation(s)
- Rory P Cunningham
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Natalie Porat-Shliom
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
26
|
Azmaiparashvili E, Patarashvili L, Bebiashvili I, Tsomaia K, Gvidiani S, Tananashvili D, Kakabadze M, Gusev S, Kordzaia D. Spatial architecture of biliary tree in mammals: Fractal and Euclidean geometric features. J Anat 2021; 239:682-692. [PMID: 33817796 PMCID: PMC8349449 DOI: 10.1111/joa.13441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
The study of the fractal architecture of various organs and structures expanded the possibilities for determining the ranges of their functioning and structural arrangement, which, as a result, was reflected in the development of new approaches to diagnostics and therapeutic impacts. The architecture of the excretory duct systems, similar to the hemo- and lymph- circulatory beds and the bronchial tree, is considered fractal. At the same time, information about hitherto unknown structures of the biliary tree continues to appear in the literature. We aimed to study the features of the spatial geometry of the biliary tree and assess the significance of both its fractal and Euclidean characteristics for the development of approaches that facilitate comprehensive description of intrahepatic biliary tract architecture. We investigated the architecture of the biliary trees of six men, seven male canines, and seven male Wistar rats using the corrosion casting method. Corrosion casts were prepared by injecting solidifying latexes into the bile ducts. The preparations were studied using a light stereomicroscope and a scanning electron microscope. Biliary tree branching is of various types. In addition, the correlation between variations in the caliber and length of the bile ducts and their order is not significant. Therefore, the biliary tree should not be considered as a classical fractal and it consists of the main modules, represented by the network of the bile canaliculi (first nonfractal module) and a biliary tree with a fractal branching (second module) that drains the bile canaliculi mesh and the additional modules represented by the mucosal biliary glands (in mammals with the gallbladder) or the periportal biliary plexus (in mammals without a gallbladder) and the aberrant biliary ducts. Such a configuration of the biliary bed should optimally ensure the smooth implementation of the physiological function of the liver, as well as its adaptation to different pathologies accompanied by biliary hypertension. It also might be considered in the diagnosis and assessment of ductular reaction, biliary regeneration, and/or carcinogenesis.
Collapse
Affiliation(s)
- Elza Azmaiparashvili
- Department of Clinical Anatomy, Faculty of MedicineIvane Javakhishvili Tbilisi State University (TSUTbilisiGAUSA
| | - Leila Patarashvili
- Department of Clinical Anatomy, Faculty of MedicineIvane Javakhishvili Tbilisi State University (TSUTbilisiGAUSA
| | - Irakli Bebiashvili
- Department of Clinical Anatomy, Faculty of MedicineIvane Javakhishvili Tbilisi State University (TSUTbilisiGAUSA
| | - Keti Tsomaia
- Department of Clinical Anatomy, Faculty of MedicineIvane Javakhishvili Tbilisi State University (TSUTbilisiGAUSA
- Department of Clinical Anatomy and Experimental ModelingTSU Alexander Natishvili Institute of MorphologyTbilisiGAUSA
| | - Salome Gvidiani
- Department of Clinical Anatomy, Faculty of MedicineIvane Javakhishvili Tbilisi State University (TSUTbilisiGAUSA
| | | | - Manana Kakabadze
- Department of Clinical Anatomy, Faculty of MedicineIvane Javakhishvili Tbilisi State University (TSUTbilisiGAUSA
- Department of Clinical Anatomy and Experimental ModelingTSU Alexander Natishvili Institute of MorphologyTbilisiGAUSA
| | - Sergey Gusev
- Federal Research & Clinical Center of Physical‐Chemical MedicineFederal Medical Biological AgencyMoscowRussia
| | - Dimitri Kordzaia
- Department of Clinical Anatomy, Faculty of MedicineIvane Javakhishvili Tbilisi State University (TSUTbilisiGAUSA
- Department of Clinical Anatomy and Experimental ModelingTSU Alexander Natishvili Institute of MorphologyTbilisiGAUSA
| |
Collapse
|
27
|
Belicova L, Repnik U, Delpierre J, Gralinska E, Seifert S, Valenzuela JI, Morales-Navarrete HA, Franke C, Räägel H, Shcherbinina E, Prikazchikova T, Koteliansky V, Vingron M, Kalaidzidis YL, Zatsepin T, Zerial M. Anisotropic expansion of hepatocyte lumina enforced by apical bulkheads. J Cell Biol 2021; 220:212522. [PMID: 34328499 PMCID: PMC8329733 DOI: 10.1083/jcb.202103003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Lumen morphogenesis results from the interplay between molecular pathways and mechanical forces. In several organs, epithelial cells share their apical surfaces to form a tubular lumen. In the liver, however, hepatocytes share the apical surface only between adjacent cells and form narrow lumina that grow anisotropically, generating a 3D network of bile canaliculi (BC). Here, by studying lumenogenesis in differentiating mouse hepatoblasts in vitro, we discovered that adjacent hepatocytes assemble a pattern of specific extensions of the apical membrane traversing the lumen and ensuring its anisotropic expansion. These previously unrecognized structures form a pattern, reminiscent of the bulkheads of boats, also present in the developing and adult liver. Silencing of Rab35 resulted in loss of apical bulkheads and lumen anisotropy, leading to cyst formation. Strikingly, we could reengineer hepatocyte polarity in embryonic liver tissue, converting BC into epithelial tubes. Our results suggest that apical bulkheads are cell-intrinsic anisotropic mechanical elements that determine the elongation of BC during liver tissue morphogenesis.
Collapse
Affiliation(s)
- Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Urska Repnik
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julien Delpierre
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Christian Franke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Helin Räägel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Nelson Laboratories LLC, Salt Lake City, UT
| | | | | | | | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
28
|
Nawroth JC, Petropolis DB, Manatakis DV, Maulana TI, Burchett G, Schlünder K, Witt A, Shukla A, Kodella K, Ronxhi J, Kulkarni G, Hamilton G, Seki E, Lu S, Karalis KC. Modeling alcohol-associated liver disease in a human Liver-Chip. Cell Rep 2021; 36:109393. [PMID: 34289365 PMCID: PMC8342038 DOI: 10.1016/j.celrep.2021.109393] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/03/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-associated liver disease (ALD) is a global health issue and leads to progressive liver injury, comorbidities, and increased mortality. Human-relevant preclinical models of ALD are urgently needed. Here, we leverage a triculture human Liver-Chip with biomimetic hepatic sinusoids and bile canaliculi to model ALD employing human-relevant blood alcohol concentrations (BACs) and multimodal profiling of clinically relevant endpoints. Our Liver-Chip recapitulates established ALD markers in response to 48 h of exposure to ethanol, including lipid accumulation and oxidative stress, in a concentration-dependent manner and supports the study of secondary insults, such as high blood endotoxin levels. We show that remodeling of the bile canalicular network can provide an in vitro quantitative readout of alcoholic liver toxicity. In summary, we report the development of a human ALD Liver-Chip as a powerful platform for modeling alcohol-induced liver injury with the potential for direct translation to clinical research and evaluation of patient-specific responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anke Witt
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | | | | | - Janey Ronxhi
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | | | | | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
29
|
Boyer JL, Soroka CJ. Bile formation and secretion: An update. J Hepatol 2021; 75:190-201. [PMID: 33617926 DOI: 10.1016/j.jhep.2021.02.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
Bile formation is a fundamental physiological process that is vital to the survival of all vertebrates. However, little was known about the mechanisms of this secretion until after World War II. Initial studies involved classic physiologic studies in animal models and humans, which progressed to include studies in isolated cells and membrane vesicles. The advent of molecular biology then led to the identification of specific transport systems that are the determinants of this secretion. Progress in this field was reviewed in the American Physiologic Society's series on "Comprehensive Physiology" in 2013. Herein, we provide an in-depth update of progress since that time.
Collapse
Affiliation(s)
- James Lorenzen Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Carol Jean Soroka
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
30
|
Stefkovich ML, Kang SWS, Porat-Shliom N. Intravital Microscopy for the Study of Hepatic Glucose Uptake. Curr Protoc 2021; 1:e139. [PMID: 34033261 PMCID: PMC8175020 DOI: 10.1002/cpz1.139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The liver is central in maintaining glucose homeostasis. Indeed, impaired hepatic glucose uptake has been implicated in the development of hyperglycemia in type II diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). However, current approaches to evaluate glucose mobilization rely on indirect measurements that do not provide spatial and temporal information. Here, we describe confocal-based intravital microscopy (IVM) of the liver that allows the identification of hepatocyte spatial organization and glucose transport. Specifically, we describe a method to fluorescently label hepatic landmarks to identify different compartments within the liver. In addition, we outline an in vivo fluorescent glucose uptake assay to quantitatively measure glucose mobilization in space and time. These protocols allow direct investigation of hepatic glycemic control and can be further applied to murine models of liver disease. © Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Mouse surgical procedure and positioning for liver intravital imaging Basic Protocol 2: Fluorescent labeling and intravital imaging of mouse hepatic compartments Basic Protocol 3: Mouse hepatic glucose uptake assay and intravital imaging analysis.
Collapse
Affiliation(s)
- Megan L Stefkovich
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sun Woo Sophie Kang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalie Porat-Shliom
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Liu JY, Lv WJ, Jian JB, Xin XH, Zhao XY, Hu CH. High-resolution three-dimensional visualization of hepatic sinusoids in cirrhotic rats via serial histological sections. Histol Histopathol 2021; 36:577-586. [PMID: 33851410 DOI: 10.14670/hh-18-339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM As a specialized intraparenchymal vascular conduit, hepatic sinusoids play a key role in liver microcirculation. This study aimed to explore the three-dimensional (3D) morphological changes of cirrhotic sinusoids by serial histological sections. METHODS Cirrhosis was induced by tail vein injection of albumin in Wistar rats with a positive antibody. A total of 356 serial histological sections were prepared from liver tissue blocks of normal and cirrhotic rats. The optical microscope images were registered and reconstructed, and 3D reconstructions of the fine structures of fibrous tissues and sinusoids were subsequently visualized. RESULTS The fibrosis area of the cirrhotic sample was 6-16 times that of the normal sample (P<0.001). Cirrhosis led to obvious changes in the distribution and morphology of sinusoids, which were mainly manifested as dilation, increased quantity and disordered distribution. Compared with normal liver, cirrhotic liver has a significantly increased volume ratio, number and volume of sinusoids (1.63-, 0.53-, and 1.75-fold, respectively, P<0.001). Furthermore, the samples were further divided into three zones according to the oxygen supply, and there were significant differences in the morphology of the sinusoids in the normal and cirrhotic samples (P<0.05). In particular, morphological parameters of the cirrhotic sinusoids near the portal area were obviously greater than those in the normal liver (P<0.05). CONCLUSION 3D morphological structures of hepatic sinusoids were reconstructed, and the adaptive microstructure changes of cirrhotic sinusoids were accurately measured, which has an important implications for the study of hepatic microcirculation and pathological changes of cirrhosis.
Collapse
Affiliation(s)
- Jing-Yi Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Wen-Juan Lv
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Jian-Bo Jian
- Department of Radiation Oncology, Tianjin Medical University General Hospital, Tianjin, China, China
| | - Xiao-Hong Xin
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xin-Yan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China. .,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Chun-Hong Hu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
32
|
Vartak N, Guenther G, Joly F, Damle-Vartak A, Wibbelt G, Fickel J, Jörs S, Begher-Tibbe B, Friebel A, Wansing K, Ghallab A, Rosselin M, Boissier N, Vignon-Clementel I, Hedberg C, Geisler F, Hofer H, Jansen P, Hoehme S, Drasdo D, Hengstler JG. Intravital Dynamic and Correlative Imaging of Mouse Livers Reveals Diffusion-Dominated Canalicular and Flow-Augmented Ductular Bile Flux. Hepatology 2021; 73:1531-1550. [PMID: 32558958 DOI: 10.1002/hep.31422] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Small-molecule flux in tissue microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods. We developed two independent techniques that allow the quantification of advection (flow) and diffusion in individual bile canaliculi and in interlobular bile ducts of intact livers in living mice, namely fluorescence loss after photoactivation and intravital arbitrary region image correlation spectroscopy. APPROACH AND RESULTS The results challenge the prevailing "mechano-osmotic" theory of canalicular bile flow. After active transport across hepatocyte membranes, bile acids are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts is diffusion augmented by regulatable advection. Photoactivation of fluorescein bis-(5-carboxymethoxy-2-nitrobenzyl)-ether in entire lobules demonstrated the establishment of diffusive gradients in the bile canalicular network and the sink function of interlobular ducts. In contrast to the bile canalicular network, vectorial transport was detected and quantified in the mesh of interlobular bile ducts. CONCLUSIONS The liver consists of a diffusion-dominated canalicular domain, where hepatocytes secrete small molecules and generate a concentration gradient and a flow-augmented ductular domain, where regulated water influx creates unidirectional advection that augments the diffusive flux.
Collapse
Affiliation(s)
- Nachiket Vartak
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Georgia Guenther
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | - Amruta Damle-Vartak
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,University of Potsdam, Potsdam-Golm, Germany
| | - Simone Jörs
- Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | | | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | | | | | | | | | - Fabian Geisler
- Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| | - Peter Jansen
- Universiteit van Amsterdam, Amsterdam, the Netherlands
| | | | - Dirk Drasdo
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Inria, Paris, France
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
33
|
Vaghela R, Arkudas A, Horch RE, Hessenauer M. Actually Seeing What Is Going on - Intravital Microscopy in Tissue Engineering. Front Bioeng Biotechnol 2021; 9:627462. [PMID: 33681162 PMCID: PMC7925911 DOI: 10.3389/fbioe.2021.627462] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Intravital microscopy (IVM) study approach offers several advantages over in vitro, ex vivo, and 3D models. IVM provides real-time imaging of cellular events, which provides us a comprehensive picture of dynamic processes. Rapid improvement in microscopy techniques has permitted deep tissue imaging at a higher resolution. Advances in fluorescence tagging methods enable tracking of specific cell types. Moreover, IVM can serve as an important tool to study different stages of tissue regeneration processes. Furthermore, the compatibility of different tissue engineered constructs can be analyzed. IVM is also a promising approach to investigate host reactions on implanted biomaterials. IVM can provide instant feedback for improvising tissue engineering strategies. In this review, we aim to provide an overview of the requirements and applications of different IVM approaches. First, we will discuss the history of IVM development, and then we will provide an overview of available optical modalities including the pros and cons. Later, we will summarize different fluorescence labeling methods. In the final section, we will discuss well-established chronic and acute IVM models for different organs.
Collapse
Affiliation(s)
- Ravikumar Vaghela
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Hessenauer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
34
|
Wang Y, Brodin E, Nishii K, Frieboes HB, Mumenthaler SM, Sparks JL, Macklin P. Impact of tumor-parenchyma biomechanics on liver metastatic progression: a multi-model approach. Sci Rep 2021; 11:1710. [PMID: 33462259 PMCID: PMC7813881 DOI: 10.1038/s41598-020-78780-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer and other cancers often metastasize to the liver in later stages of the disease, contributing significantly to patient death. While the biomechanical properties of the liver parenchyma (normal liver tissue) are known to affect tumor cell behavior in primary and metastatic tumors, the role of these properties in driving or inhibiting metastatic inception remains poorly understood, as are the longer-term multicellular dynamics. This study adopts a multi-model approach to study the dynamics of tumor-parenchyma biomechanical interactions during metastatic seeding and growth. We employ a detailed poroviscoelastic model of a liver lobule to study how micrometastases disrupt flow and pressure on short time scales. Results from short-time simulations in detailed single hepatic lobules motivate constitutive relations and biological hypotheses for a minimal agent-based model of metastatic growth in centimeter-scale tissue over months-long time scales. After a parameter space investigation, we find that the balance of basic tumor-parenchyma biomechanical interactions on shorter time scales (adhesion, repulsion, and elastic tissue deformation over minutes) and longer time scales (plastic tissue relaxation over hours) can explain a broad range of behaviors of micrometastases, without the need for complex molecular-scale signaling. These interactions may arrest the growth of micrometastases in a dormant state and prevent newly arriving cancer cells from establishing successful metastatic foci. Moreover, the simulations indicate ways in which dormant tumors could "reawaken" after changes in parenchymal tissue mechanical properties, as may arise during aging or following acute liver illness or injury. We conclude that the proposed modeling approach yields insight into the role of tumor-parenchyma biomechanics in promoting liver metastatic growth, and advances the longer term goal of identifying conditions to clinically arrest and reverse the course of late-stage cancer.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Erik Brodin
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Kenichiro Nishii
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica L Sparks
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA.
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
35
|
Scholich A, Syga S, Morales-Navarrete H, Segovia-Miranda F, Nonaka H, Meyer K, de Back W, Brusch L, Kalaidzidis Y, Zerial M, Jülicher F, Friedrich BM. Quantification of nematic cell polarity in three-dimensional tissues. PLoS Comput Biol 2020; 16:e1008412. [PMID: 33301446 PMCID: PMC7755288 DOI: 10.1371/journal.pcbi.1008412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/22/2020] [Accepted: 10/01/2020] [Indexed: 01/12/2023] Open
Abstract
How epithelial cells coordinate their polarity to form functional tissues is an open question in cell biology. Here, we characterize a unique type of polarity found in liver tissue, nematic cell polarity, which is different from vectorial cell polarity in simple, sheet-like epithelia. We propose a conceptual and algorithmic framework to characterize complex patterns of polarity proteins on the surface of a cell in terms of a multipole expansion. To rigorously quantify previously observed tissue-level patterns of nematic cell polarity (Morales-Navarrete et al., eLife 2019), we introduce the concept of co-orientational order parameters, which generalize the known biaxial order parameters of the theory of liquid crystals. Applying these concepts to three-dimensional reconstructions of single cells from high-resolution imaging data of mouse liver tissue, we show that the axes of nematic cell polarity of hepatocytes exhibit local coordination and are aligned with the biaxially anisotropic sinusoidal network for blood transport. Our study characterizes liver tissue as a biological example of a biaxial liquid crystal. The general methodology developed here could be applied to other tissues and in-vitro organoids.
Collapse
Affiliation(s)
- André Scholich
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Simon Syga
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Centre for Information Services and High Performance Computing, TU Dresden, Dresden, Germany
| | | | | | - Hidenori Nonaka
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kirstin Meyer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Walter de Back
- Centre for Information Services and High Performance Computing, TU Dresden, Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Lutz Brusch
- Centre for Information Services and High Performance Computing, TU Dresden, Dresden, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Advancing Electronics Dresden, TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Advancing Electronics Dresden, TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| | - Benjamin M. Friedrich
- Center for Advancing Electronics Dresden, TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
- Institute for Theoretical Physics, TU Dresden, Germany
| |
Collapse
|
36
|
Javitt NB. Hepatic bile formation: bile acid transport and water flow into the canalicular conduit. Am J Physiol Gastrointest Liver Physiol 2020; 319:G609-G618. [PMID: 32935994 DOI: 10.1152/ajpgi.00078.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advances in molecular biology identifying the many carrier-mediated organic anion transporters and advances in microscopy that have provided a more detailed anatomy of the canalicular conduit make updating the concept of osmotically determined canalicular flow possible. For the most part water flow is not transmembrane but via specific pore proteins in both the hepatocyte and the tight junction. These pores independently regulate the rate at which water flows in response to an osmotic gradient and therefore are determinants of canalicular bile acid concentration. Review of the literature indicates that the initial effect on hepatic bile flow of cholestatic agents such as Thorazine and estradiol 17β-glucuronide are on water flow and not bile salt export pump-mediated bile acid transport and thus provides new approaches to the pathogenesis of drug-induced liver injury. Attaining a micellar concentration of bile acids in the canaliculus is essential to the formation of cholesterol-lecithin vesicles, which mostly occur in the periportal region of the canalicular conduit. The other regions, midcentral and pericentral, may transport lesser amounts of bile acid but augment water flow. Broadening the concept of how hepatic bile flow is initiated, provides new insights into the pathogenesis of canalicular cholestasis.
Collapse
Affiliation(s)
- Norman B Javitt
- Division of Gastroenterology and Hepatology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
37
|
Ho H, Zhang E. Virtual Lobule Models Are the Key for Multiscale Biomechanical and Pharmacological Modeling for the Liver. Front Physiol 2020; 11:1061. [PMID: 32982791 PMCID: PMC7492636 DOI: 10.3389/fphys.2020.01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Harvey Ho
- Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - En Zhang
- Chongqing Institute for Food and Drug Control, Chongqing City, China
| |
Collapse
|
38
|
Frieboes HB, Raghavan S, Godin B. Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis. Front Bioeng Biotechnol 2020; 8:1011. [PMID: 32974325 PMCID: PMC7466654 DOI: 10.3389/fbioe.2020.01011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) presents a challenging barrier for effective nanotherapy-mediated drug delivery to solid tumors. In particular for tumors less vascularized than the surrounding normal tissue, as in liver metastases, the structure of the organ itself conjures with cancer-specific behavior to impair drug transport and uptake by cancer cells. Cells and elements in the TME of hypovascularized tumors play a key role in the process of delivery and retention of anti-cancer therapeutics by nanocarriers. This brief review describes the drug transport challenges and how they are being addressed with advanced in vitro 3D tissue models as well as with in silico mathematical modeling. This modeling complements network-oriented techniques, which seek to interpret intra-cellular relevant pathways and signal transduction within cells and with their surrounding microenvironment. With a concerted effort integrating experimental observations with computational analyses spanning from the molecular- to the tissue-scale, the goal of effective nanotherapy customized to patient tumor-specific conditions may be finally realized.
Collapse
Affiliation(s)
- Hermann B. Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, United States
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Center for Predictive Medicine, University of Louisville, Louisville, KY, United States
| | - Shreya Raghavan
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, TX, United States
- Developmental Therapeutics Program, Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
39
|
Ahmadi-Badejani R, Mosharaf-Dehkordi M, Ahmadikia H. An image-based geometric model for numerical simulation of blood perfusion within the liver lobules. Comput Methods Biomech Biomed Engin 2020; 23:987-1004. [PMID: 32594768 DOI: 10.1080/10255842.2020.1782389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An image-based numerical algorithm is presented for simulating blood flow through the liver tissue. First, a geometric model is constructed by applying image processing techniques on a real microscopic image of a liver tissue. Then, incompressible blood flow through liver lobules is simulated. Effects of tissue heterogeneity and deformity, presence/absence of the second central vein in a particular lobule, and apparent sinusoids density in the liver cross section on the blood flow are investigated. Numerical results indicate that the existence of thick low permeability vascular septum, high permeability sinusoids, and lobule tissue heterogeneity can considerably affect interlobular and intralobular blood flow.
Collapse
Affiliation(s)
- R Ahmadi-Badejani
- Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - M Mosharaf-Dehkordi
- Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - H Ahmadikia
- Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
40
|
Karschau J, Scholich A, Wise J, Morales-Navarrete H, Kalaidzidis Y, Zerial M, Friedrich BM. Resilience of three-dimensional sinusoidal networks in liver tissue. PLoS Comput Biol 2020; 16:e1007965. [PMID: 32598356 PMCID: PMC7351228 DOI: 10.1371/journal.pcbi.1007965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/10/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Can three-dimensional, microvasculature networks still ensure blood supply if individual links fail? We address this question in the sinusoidal network, a plexus-like microvasculature network, which transports nutrient-rich blood to every hepatocyte in liver tissue, by building on recent advances in high-resolution imaging and digital reconstruction of adult mice liver tissue. We find that the topology of the three-dimensional sinusoidal network reflects its two design requirements of a space-filling network that connects all hepatocytes, while using shortest transport routes: sinusoidal networks are sub-graphs of the Delaunay graph of their set of branching points, and also contain the corresponding minimum spanning tree, both to good approximation. To overcome the spatial limitations of experimental samples and generate arbitrarily-sized networks, we developed a network generation algorithm that reproduces the statistical features of 0.3-mm-sized samples of sinusoidal networks, using multi-objective optimization for node degree and edge length distribution. Nematic order in these simulated networks implies anisotropic transport properties, characterized by an empirical linear relation between a nematic order parameter and the anisotropy of the permeability tensor. Under the assumption that all sinusoid tubes have a constant and equal flow resistance, we predict that the distribution of currents in the network is very inhomogeneous, with a small number of edges carrying a substantial part of the flow-a feature known for hierarchical networks, but unexpected for plexus-like networks. We quantify network resilience in terms of a permeability-at-risk, i.e., permeability as function of the fraction of removed edges. We find that sinusoidal networks are resilient to random removal of edges, but vulnerable to the removal of high-current edges. Our findings suggest the existence of a mechanism counteracting flow inhomogeneity to balance metabolic load on the liver.
Collapse
Affiliation(s)
| | - André Scholich
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Jonathan Wise
- cfaed, TU Dresden, Dresden, Germany
- Univ. Grenoble Alpes, CNRS, LPMMC, Grenoble, France
| | | | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence ‘Physics of Life’, TU Dresden, Dresden, Germany
| | - Benjamin M. Friedrich
- cfaed, TU Dresden, Dresden, Germany
- Cluster of Excellence ‘Physics of Life’, TU Dresden, Dresden, Germany
| |
Collapse
|
41
|
Ho H, Dahmen U, Hunter P. An in silico rat liver atlas. Comput Methods Biomech Biomed Engin 2020; 23:597-600. [PMID: 32310673 DOI: 10.1080/10255842.2020.1754404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Numerous hepatic function, disease and pharmacological experiments are performed on rat livers. Many of these experiments rely on an accurate understanding of the rat liver anatomy. In this short paper, we present an in silico rat liver atlas which is constructed from the micro-CT images of explanted rat livers. The atlas consists of the parametric mesh for four liver lobes and a paracaval portion. 1D and 3D cubic Hermite mesh are used to represent the rat liver vessels and lobes, respectively. We discuss potential applications that can be performed from the in silico atlas.
Collapse
Affiliation(s)
- Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University, Germany
| | - Peter Hunter
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| |
Collapse
|
42
|
Sharma VR, Shrivastava A, Gallet B, Karepina E, Charbonnier P, Chevallet M, Jouneau PH, Deniaud A. Canalicular domain structure and function in matrix-free hepatic spheroids. Biomater Sci 2020; 8:485-496. [PMID: 31755497 DOI: 10.1039/c9bm01143a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver is pivotal in organism metabolism. This organ is receiving nutriments from the portal vein and then storing, metabolizing, distributing in the circulation or excreting excess and xenobiotics in bile. Liver architecture and hepatocyte polarization are crucial to achieve these functions. To study these mechanisms in details, relevant cell culture systems are required, which is not the case with standard 2D cell culture. Besides, primary hepatocytes rapidly de-differenciate making them inefficient in forming physiological system. Herein, we used an hepatoma-derived cell line to produce matrix-free hepatic spheroids and developed an integrated structural cell biology methodology by combining light sheet fluorescence microscopy and 3D electron microscopy to study their function and structure. Within these spheroids, hepatocytes polarize and organize to form bile canaliculi active for both organics and inorganics excretion. Besides, live imaging revealed the high dynamic of actin networks in basal membranes compared to their high stability in the apical pole that constitutes bile canaliculi. Finally, the first structure of active bile canaliculi was solved at nm resolution and showed the very high density of microvilli coming from all cells constituting the canaliculus. Therefore, this study is the first comprehensive and in-depth functional and structural study of bile canaliculi in a physiological-relevant context.
Collapse
Affiliation(s)
- Vikas Raj Sharma
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Burton L, Scaife P, Paine SW, Mellor HR, Abernethy L, Littlewood P, Rauch C. Hydrostatic pressure regulates CYP1A2 expression in human hepatocytes via a mechanosensitive aryl hydrocarbon receptor-dependent pathway. Am J Physiol Cell Physiol 2020; 318:C889-C902. [PMID: 32159360 PMCID: PMC7294326 DOI: 10.1152/ajpcell.00472.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Approximately 75% of xenobiotics are primarily eliminated through metabolism; thus the accurate scaling of metabolic clearance is vital to successful drug development. Yet, when data is scaled from in vitro to in vivo, hepatic metabolic clearance, the primary source of metabolism, is still commonly underpredicted. Over the past decades, with biophysics used as a key component to restore aspects of the in vivo environment, several new cell culture settings have been investigated to improve hepatocyte functionalities. Most of these studies have focused on shear stress, i.e., flow mediated by a pressure gradient. One potential conclusion of these studies is that hepatocytes are naturally "mechanosensitive," i.e., they respond to a change in their biophysical environment. We demonstrate that hepatocytes also respond to an increase in hydrostatic pressure that, we suggest, is directly linked to the lobule geometry and vessel density. Furthermore, we demonstrate that hydrostatic pressure improves albumin production and increases cytochrome P-450 (CYP) 1A2 expression levels in an aryl hydrocarbon-dependent manner in human hepatocytes. Increased albumin production and CYP function are commonly attributed to the impacts of shear stress in microfluidic experiments. Therefore, our results highlight evidence of a novel link between hydrostatic pressure and CYP metabolism and demonstrate that the spectrum of hepatocyte mechanosensitivity might be larger than previously thought.
Collapse
Affiliation(s)
- Lewis Burton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Paula Scaife
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - Stuart W Paine
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Howard R Mellor
- Vertex Pharmaceuticals Europe Ltd., Abingdon Oxfordshire, United Kingdom
| | - Lynn Abernethy
- Vertex Pharmaceuticals Europe Ltd., Abingdon Oxfordshire, United Kingdom
| | - Peter Littlewood
- Vertex Pharmaceuticals Europe Ltd., Abingdon Oxfordshire, United Kingdom
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
44
|
Meyer K, Morales‐Navarrete H, Seifert S, Wilsch‐Braeuninger M, Dahmen U, Tanaka EM, Brusch L, Kalaidzidis Y, Zerial M. Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration. Mol Syst Biol 2020; 16:e8985. [PMID: 32090478 PMCID: PMC7036714 DOI: 10.15252/msb.20198985] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase in F-actin and phospho-myosin, to compensate an overload of bile acids. These changes are sensed by the Hippo transcriptional co-activator YAP, which localizes to apical F-actin-rich regions and translocates to the nucleus in dependence of the integrity of the actin cytoskeleton. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical-biochemical model of bile pressure and Hippo signaling, we explained this behavior by the existence of a mechano-sensory mechanism that activates YAP in a switch-like manner. We propose that the apical surface of hepatocytes acts as a self-regulatory mechano-sensory system that responds to critical levels of bile acids as readout of tissue status.
Collapse
Affiliation(s)
- Kirstin Meyer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Uta Dahmen
- Experimental Transplantation SurgeryDepartment of General, Visceral and Vascular SurgeryJena University HospitalJenaGermany
| | - Elly M Tanaka
- Research Institute of Molecular PathologyVienna BioCenterViennaAustria
| | - Lutz Brusch
- Center for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Faculty of Bioengineering and BioinformaticsMoscow State UniversityMoscowRussia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
45
|
Baudy AR, Otieno MA, Hewitt P, Gan J, Roth A, Keller D, Sura R, Van Vleet TR, Proctor WR. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. LAB ON A CHIP 2020; 20:215-225. [PMID: 31799979 DOI: 10.1039/c9lc00768g] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.
Collapse
Affiliation(s)
| | - Monicah A Otieno
- Janssen Pharmaceutical Research and Development, Spring House, PA, USA
| | | | - Jinping Gan
- Bristol-Myers Squibb, New York City, NY, USA
| | | | | | | | | | | |
Collapse
|
46
|
Balasubramanian L, Zuzarte-Luís V, Syed T, Mullick D, Deb S, Ranga-Prasad H, Meissner J, Almeida A, Furstenhaupt T, Siddiqi K, Prudêncio M, Rodrigues CMP, Mota M, Sundaramurthy V. Association of Plasmodium berghei With the Apical Domain of Hepatocytes Is Necessary for the Parasite's Liver Stage Development. Front Cell Infect Microbiol 2020; 9:451. [PMID: 32010639 PMCID: PMC6978659 DOI: 10.3389/fcimb.2019.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/12/2019] [Indexed: 01/11/2023] Open
Abstract
Plasmodium parasites undergo a dramatic transformation during the liver stage of their life cycle, amplifying over 10,000-fold inside infected hepatocytes within a few days. Such a rapid growth requires large-scale interactions with, and manipulations of, host cell functions. Whereas hepatocyte polarity is well-known to be critical for liver function, little is presently known about its involvement during the liver stage of Plasmodium development. Apical domains of hepatocytes are critical components of their polarity machinery and constitute the bile canalicular network, which is central to liver function. Here, we employed high resolution 3-D imaging and advanced image analysis of Plasmodium-infected liver tissues to show that the parasite associates preferentially with the apical domain of hepatocytes and induces alterations in the organization of these regions, resulting in localized changes in the bile canalicular architecture in the liver tissue. Pharmacological perturbation of the bile canalicular network by modulation of AMPK activity reduces the parasite's association with bile canaliculi and arrests the parasite development. Our findings using Plasmodium-infected liver tissues reveal a host-Plasmodium interaction at the level of liver tissue organization. We demonstrate for the first time a role for bile canaliculi, a central component of the hepatocyte polarity machinery, during the liver stage of Plasmodium development.
Collapse
Affiliation(s)
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tabish Syed
- School of Computer Science and Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | | | - Saptarathi Deb
- National Center for Biological Sciences, Bangalore, India
| | | | - Jana Meissner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ana Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tobias Furstenhaupt
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kaleem Siddiqi
- School of Computer Science and Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Maria Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
47
|
Jansen PLM, Breuhahn K, Teufel A, Dooley S. Editorial: Systems Biology and Bioinformatics in Gastroenterology and Hepatology. Front Physiol 2019; 10:1438. [PMID: 31824341 PMCID: PMC6883288 DOI: 10.3389/fphys.2019.01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peter L M Jansen
- Emeritus Professor of Hepatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Teufel
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Steven Dooley
- Division of Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
48
|
Elsayed HRH, El Nashar EM, Abd-Elmonem MM. Is the hepatocyte ultrastructural zonal heterogeneity changed by overnight (16 h) fasting? Morphometric study. Ultrastruct Pathol 2019; 43:290-300. [PMID: 31791174 DOI: 10.1080/01913123.2019.1696906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background and objectives: Hepatocyte ultra-structure is influenced by feeding status, circadian rhythm, and zone location. The goal of the present study was to study the effect of overnight fasting on the hepatocyte ultrastructure and the zonal heterogeneity and to discuss the functional correlation.Methods: A total of 14 male albino rats were divided into two groups: negative control group fed ad libitum and overnight fasting rats for 16 hours. The different subcellular structures of both centrilobular and periportal hepatocytes in both control and fasted groups were compared by transmission electron microscopy. Morphometric analysis of the electron micrographs was also done using imageJ software.Results: The lysosomes surface density, mitochondrial volume and surface densities were significantly higher in periportal hepatocytes however surface density of smooth endoplasmic reticulum (SER) and peroxisomes were significantly higher in centrilobular hepatocytes of the control group. Fasting caused a significant decrease in the surface density of rough endoplasmic reticulum and glycogen volume density but with significant increase in SER surface density with more mitochondrial fusion and stronger mitochondrial ER contacts, isolation membranes, and autophagosomes. The zonal differences were maintained after fasting. The organelles appeared normal with no signs of degeneration.Conclusion: The organelles appeared normal with no signs of degeneration and the zonal differences were maintained after fasting. The change in hepatocyte ultrastructure after fasting may be related to autophagy.
Collapse
Affiliation(s)
| | - Eman Mohammad El Nashar
- College of Medicine, Anatomy, King Khalid University, Abha, Saudi Arabia.,Faculty of Medicine, Histology and cell biology, Benha University, Benha, Egypt
| | | |
Collapse
|
49
|
Segovia-Miranda F, Morales-Navarrete H, Kücken M, Moser V, Seifert S, Repnik U, Rost F, Brosch M, Hendricks A, Hinz S, Röcken C, Lütjohann D, Kalaidzidis Y, Schafmayer C, Brusch L, Hampe J, Zerial M. Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression. Nat Med 2019; 25:1885-1893. [PMID: 31792455 PMCID: PMC6899159 DOI: 10.1038/s41591-019-0660-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Early disease diagnosis is key to the effective treatment of diseases. Histopathological analysis of human biopsies is the gold standard to diagnose tissue alterations. However, this approach has low resolution and overlooks 3D (three-dimensional) structural changes resulting from functional alterations. Here, we applied multiphoton imaging, 3D digital reconstructions and computational simulations to generate spatially resolved geometrical and functional models of human liver tissue at different stages of non-alcoholic fatty liver disease (NAFLD). We identified a set of morphometric cellular and tissue parameters correlated with disease progression, and discover profound topological defects in the 3D bile canalicular (BC) network. Personalized biliary fluid dynamic simulations predicted an increased pericentral biliary pressure and micro-cholestasis, consistent with elevated cholestatic biomarkers in patients' sera. Our spatially resolved models of human liver tissue can contribute to high-definition medicine by identifying quantitative multiparametric cellular and tissue signatures to define disease progression and provide new insights into NAFLD pathophysiology.
Collapse
Affiliation(s)
| | | | - Michael Kücken
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Vincent Moser
- Department of Medicine I, Gastroenterology and Hepatology, University Hospital Carl-Gustav-Carus, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Urska Repnik
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Fabian Rost
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Mario Brosch
- Department of Medicine I, Gastroenterology and Hepatology, University Hospital Carl-Gustav-Carus, Technische Universität Dresden (TU Dresden), Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Alexander Hendricks
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Sebastian Hinz
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | | | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Lutz Brusch
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Jochen Hampe
- Department of Medicine I, Gastroenterology and Hepatology, University Hospital Carl-Gustav-Carus, Technische Universität Dresden (TU Dresden), Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany.
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
50
|
Deng J, Wei W, Chen Z, Lin B, Zhao W, Luo Y, Zhang X. Engineered Liver-on-a-Chip Platform to Mimic Liver Functions and Its Biomedical Applications: A Review. MICROMACHINES 2019; 10:E676. [PMID: 31591365 PMCID: PMC6843249 DOI: 10.3390/mi10100676] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Hepatology and drug development for liver diseases require in vitro liver models. Typical models include 2D planar primary hepatocytes, hepatocyte spheroids, hepatocyte organoids, and liver-on-a-chip. Liver-on-a-chip has emerged as the mainstream model for drug development because it recapitulates the liver microenvironment and has good assay robustness such as reproducibility. Liver-on-a-chip with human primary cells can potentially correlate clinical testing. Liver-on-a-chip can not only predict drug hepatotoxicity and drug metabolism, but also connect other artificial organs on the chip for a human-on-a-chip, which can reflect the overall effect of a drug. Engineering an effective liver-on-a-chip device requires knowledge of multiple disciplines including chemistry, fluidic mechanics, cell biology, electrics, and optics. This review first introduces the physiological microenvironments in the liver, especially the cell composition and its specialized roles, and then summarizes the strategies to build a liver-on-a-chip via microfluidic technologies and its biomedical applications. In addition, the latest advancements of liver-on-a-chip technologies are discussed, which serve as a basis for further liver-on-a-chip research.
Collapse
Affiliation(s)
- Jiu Deng
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (J.D.); (W.W.); (W.Z.); (Y.L.)
| | - Wenbo Wei
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (J.D.); (W.W.); (W.Z.); (Y.L.)
| | - Zongzheng Chen
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou 510632, China;
| | - Bingcheng Lin
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (J.D.); (W.W.); (W.Z.); (Y.L.)
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (J.D.); (W.W.); (W.Z.); (Y.L.)
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (J.D.); (W.W.); (W.Z.); (Y.L.)
| | - Xiuli Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| |
Collapse
|