1
|
Hingole P, Saha P, Das S, Gundu C, Kumar A. Exploring the role of mitochondrial dysfunction and aging in COVID-19-Related neurological complications. Mol Biol Rep 2025; 52:479. [PMID: 40397294 DOI: 10.1007/s11033-025-10586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, posed a tremendous challenge to healthcare systems globally. Severe COVID-19 infection was reported to be associated with altered immunometabolism and cytokine storms, contributing to poor clinical outcomes and in many cases resulting in mortality. Despite promising preclinical results, many drugs have failed to show efficacy in clinical trials, highlighting the need for novel approaches to combat the virus and its severe manifestations. Mitochondria, crucial for aerobic respiration, play a pivotal role in modulating immunometabolism and neuronal function, making their compromised capability as central pathological mechanism contributing to the development of neurological complications in COVID-19. Dysregulated mitochondrial dynamics can lead to uncontrolled immune responses, underscoring the importance of mitochondrial regulation in shaping clinical outcomes. Aging further accelerates mitochondrial dysfunction, compounding immune dysregulation and neurodegeneration, making older adults particularly vulnerable to severe COVID-19 and its neurological sequelae. COVID-19 infection impairs mitochondrial oxidative phosphorylation, contributing to the long-term neurological complications associated with the disease. Additionally, recent reports also suggest that up to 30% of COVID-19 patients experience lingering neurological issues, thereby highlighting the critical need for further research into mitochondrial pathways to mitigate long-tern neurological consequences of Covid-19. This review examines the role of mitochondrial dysfunction in COVID-19-induced neurological complications, its connection to aging, and potential biomarkers for clinical diagnostics. It also discusses therapeutic strategies aimed at maintaining mitochondrial integrity to improve COVID-19 outcomes.
Collapse
Affiliation(s)
- Prajakta Hingole
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, 168, Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Priya Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, 160062, Punjab, India
| | - Sourav Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, 160062, Punjab, India
| | - Chayanika Gundu
- Department of Ophthalmology, University of Wisconsin, Madison, USA
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, 168, Maniktala Main Road, Kolkata, 700054, West Bengal, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, 160062, Punjab, India.
| |
Collapse
|
2
|
Chen Y, Klute S, Sparrer KMJ, Serra-Moreno R. RAB5 is a host dependency factor for the generation of SARS-CoV-2 replication organelles. mBio 2025; 16:e0331424. [PMID: 40167317 PMCID: PMC12077180 DOI: 10.1128/mbio.03314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a threat due to the emergence of variants with increased transmissibility and enhanced escape from immune responses. Like other coronaviruses before, SARS-CoV-2 likely emerged after its transmission from bats. The successful propagation of SARS-CoV-2 in humans might have been facilitated by usurping evolutionarily conserved cellular factors to execute crucial steps in its life cycle, such as the generation of replication organelles-membrane structures where coronaviruses assemble their replication-transcription complex. In this study, we found that RAB5, which is highly conserved across mammals, is a critical host dependency factor for the replication of the SARS-CoV-2 genome. Our results also suggest that SARS-CoV-2 uses RAB5+ membranes to build replication organelles with the aid of COPB1, a component of the COP-I complex, and that the virus protein NSP6 participates in this process. Hence, targeting NSP6 represents a promising approach to interfere with SARS-CoV-2 RNA synthesis and halt its propagation.IMPORTANCEIn this study, we sought to identify the host dependency factors that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses for the generation of replication organelles: cellular membranous structures that SARS-CoV-2 builds in order to support the replication and transcription of its genome. We uncovered that RAB5 is an important dependency factor for SARS-CoV-2 replication and the generation of replication organelles, and that the viral protein NSP6 participates in this process. Hence, NSP6 represents a promising target to halt SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Yuexuan Chen
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Susanne Klute
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Konstantin Maria Johannes Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Weckler BC, Kutzinski M, Vogelmeier CF, Schmeck B. Multiorgan sequelae following non-COVID-19 respiratory infections: a review. Infection 2025:10.1007/s15010-025-02519-7. [PMID: 40183860 DOI: 10.1007/s15010-025-02519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND While numerous studies have documented severe and long-term health impacts of COVID-19 infections on various organs, the prolonged multisystemic implications of other acute respiratory infections (ARIs) are poorly understood. This review therefore analyzed currently available studies about these sequelae of ARIs excluding COVID-19. MAIN BODY Multiple pathogens causing ARIs are associated with significant long-lasting impairments across various organ systems. Cardiovascular events occur in 10-35% of patients following ARIs, with an elevated risk persisting for 10 years. The stroke incidence ratio increases significantly after ARIs up to 12.3. Pulmonary sequelae are common, including abnormal lung function in 54%, parenchymal opacification in 51%, lung fibrosis in 33-62%, asthma in 30%, and bronchiectasis in 24% of patients. The risk of developing dementia is increased 2.2-fold. Posttraumatic stress disorder, depression, anxiety, and chronic fatigue occur in 15-43%, 15-36%, 14-62%, and 27-75% of patients, respectively. 28-day mortality from CAP with (versus no) additional cardiovascular event is increased to 36% (versus 10%). Long-term mortality from CAP (versus no CAP) remains elevated for years post-infection, with a 1-year, 5-year, and 7-year mortality rate of 17% (versus 4%), 43% (versus 19%), and 53% (versus 24%), respectively. Patients´ quality of life is significantly reduced, with 17% receiving invalidity pensions and 22% retiring within 4 years of severe ARIs. CONCLUSION Non-COVID-19 ARIs are associated with clinically relevant, frequent, and long-term sequelae involving multiple organ systems. Further prospective studies are needed.
Collapse
Affiliation(s)
- Barbara Christine Weckler
- Department of Medicine, Pulmonary and Critical Care Medicine, Clinic for Airway Infections, University Medical Centre Marburg, Philipps-University Marburg, Marburg, Germany.
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-Universität Marburg, Marburg, Germany.
- Member of the CALM-QE network, Marburg, Germany.
| | - Max Kutzinski
- Department of Medicine, Pulmonary and Critical Care Medicine, Clinic for Airway Infections, University Medical Centre Marburg, Philipps-University Marburg, Marburg, Germany
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-Universität Marburg, Marburg, Germany
| | - Claus Franz Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Centre Marburg, Philipps-University Marburg, Marburg, Germany
- German Centre for Lung Research (DZL), Marburg, Germany
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, Clinic for Airway Infections, University Medical Centre Marburg, Philipps-University Marburg, Marburg, Germany
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-Universität Marburg, Marburg, Germany
- Member of the CALM-QE network, Marburg, Germany
- German Centre for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry- Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- German Centre of Infectious Disease Research, Marburg, Germany
- Centre for Synthetic Microbiology (Synmikro), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Zodda E, Pons M, DeMoya-Valenzuela N, Calvo-González C, Benítez-Rodríguez C, López-Ayllón BD, Hibot A, Zuin A, Crosas B, Cascante M, Montoya M, Pujol MD, Rubio-Martínez J, Thomson TM. Induction of the Inflammasome by the SARS-CoV-2 Accessory Protein ORF9b, Abrogated by Small-Molecule ORF9b Homodimerization Inhibitors. J Med Virol 2025; 97:e70145. [PMID: 39902616 DOI: 10.1002/jmv.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 02/05/2025]
Abstract
Viral accessory proteins play critical roles in viral escape from host innate immune responses and in viral inflammatory pathogenesis. Here we show that the SARS-CoV-2 accessory protein, ORF9b, but not other SARS-CoV-2 accessory proteins (ORF3a, ORF3b, ORF6, ORF7, ORF8, ORF9c, and ORF10), strongly activates inflammasome-dependent caspase-1 in A549 lung carcinoma cells and THP-1 monocyte-macrophage cells. Exposure to lipopolysaccharide (LPS) and ATP additively enhanced the activation of caspase-1 by ORF9b, suggesting that ORF9b and LPS follow parallel pathways in the activation of the inflammasome and caspase-1. Following rational in silico approaches, we have designed small molecules capable of inhibiting the homodimerization of ORF9b, which experimentally inhibited ORF9b-ORF9b homotypic interactions, caused mitochondrial eviction of ORF9b, inhibited ORF9b-induced activation of caspase-1 in A549 and THP-1 cells, cytokine release in THP-1 cells, and restored type I interferon (IFN-I) signaling suppressed by ORF9b in both cell models. These small molecules are first-in-class compounds targeting a viral accessory protein critical for viral-induced exacerbated inflammation and escape from innate immune responses, with the potential of mitigating the severe immunopathogenic damage induced by highly pathogenic coronaviruses and restoring antiviral innate immune responses curtailed by viral infection.
Collapse
Grants
- This work was funded by the Spanish National Research Council (CSIC, project numbers CSIC-COV19-006, CSIC-COV-19-201, CSIC-COV-19-117, SGL2103019, SGL2103015, 202020E079 and 202320E187 and LINCGLOBAL INCGL20009), the Catalan Agency for Management of University and Research Grants (AGAUR, 2020PANDE00048, 2021SGR1490, 2021SGR00350), the Spanish Ministry of Science (PID2021-123399OB-I00), the CSIC's Global Health Platform (PTI Salud Global), The Networked Center for Biomedical Research in Liver and Digestive Diseases (CIBER-EHD), the Spanish Structures and Excellence María de Maeztu program (CEX2021-001202-M), the European Commission-Next Generation EU (Regulation EU 2020/2094), and INDICASAT-AIP.
Collapse
Affiliation(s)
- Erika Zodda
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Mònica Pons
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Natàlia DeMoya-Valenzuela
- Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Theoretical and Computational Chemistry Research Institute (IQTCUB), Barcelona, Spain
| | - Cristina Calvo-González
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Cristina Benítez-Rodríguez
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Blanca D López-Ayllón
- Viral immunology Lab, Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Achraf Hibot
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Alice Zuin
- Regulation of the Proteasome Laboratory, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Bernat Crosas
- Regulation of the Proteasome Laboratory, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
| | - María Montoya
- Viral immunology Lab, Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - María D Pujol
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Jaime Rubio-Martínez
- Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Theoretical and Computational Chemistry Research Institute (IQTCUB), Barcelona, Spain
| | - Timothy M Thomson
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
- High-Altitude Research Institute (IIA), Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Investigaciones Científicas y Servicio de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| |
Collapse
|
5
|
Kawabata K, Nakamura K, Kondo K, Oka N, Ishii A, Idei M, Yamakawa K, Ie K, Yamamoto Y, Nishi K, Hirahata K, Kikuchi R, Yoshida H, Saito H, Goto T, Fujitani S. Efficacy of Donepezil for Fatigue and Psychological Symptoms in Post-COVID-19 Condition: Study Protocol for a Multicenter Randomized, Placebo-controlled, Double-blind Trial. ANNALS OF CLINICAL EPIDEMIOLOGY 2024; 6:87-96. [PMID: 39726799 PMCID: PMC11668688 DOI: 10.37737/ace.24013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/26/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Approximately 30% of coronavirus disease 2019 COVID-19 patients develop fatigue and psychological symptoms. We previously demonstrated the efficacy of donepezil, an acetylcholinesterase inhibitor that is widely used to treat dementia, in basic research. METHODS This is a multicenter, double-blind, randomized, controlled, phase II clinical trial in which 120 patients with COVID-19 will be randomized in a 1:1 ratio to a donepezil or placebo group. Inclusion criteria are as follows: (1) Adult. (2) With COVID-19 infection who had an upper respiratory tract infection, fever, or cough in the acute phase. (3) With a global binary fatigue score ≥4 on the Chalder Fatigue Scale assessment (4) Within 52 weeks of the onset of COVID-19. (5) Patients who provide consent themselves. In the donepezil group, a low dose (3 mg/day) is administered for the first week and is increased to 5 mg/day for 2 weeks. The control group receives placebo for 3 weeks. The primary endpoint is a change in and the absolute value of the Chalder Fatigue Scale score after 3 weeks of treatment. Secondary endpoints are a change in and the absolute value of the Chalder Fatigue Scale score after 8 weeks of treatment, the other mental scores after 3 and 8 weeks of treatment, a symptom survey, adverse events, and medication compliance rate. RESULTS This study protocol is ongoing and the results will be analyzed in April 2024. CONCLUSIONS The off-label use of donepezil at the default dose for dementia has potential for the treatment of post-COVID-19 condition.
Collapse
Affiliation(s)
- Keiichiro Kawabata
- Department of Critical Care Medicine, Yokohama City University Hospital, Kanagawa, Japan
| | - Kensuke Nakamura
- Department of Critical Care Medicine, Yokohama City University Hospital, Kanagawa, Japan
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Naomi Oka
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Azusa Ishii
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masafumi Idei
- Department of Critical Care Medicine, Yokohama City University Hospital, Kanagawa, Japan
| | - Kazuma Yamakawa
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kenya Ie
- Department of General Internal Medicine, Kawasaki Municipal Tama Hospital, Kanagawa, Japan
| | - Yusuke Yamamoto
- Department of Respiratory Medicine, Hitachi General Hospital, Hitachi, Ltd., Ibaraki, Japan
| | - Kazuo Nishi
- Yushoukai Medical Corporation Association, Yushoukai Home Care Clinic Shinagawa, Tokyo, Japan
| | - Koichi Hirahata
- Soyukai Medical Corporation Association, Hirahata Clinic, Tokyo, Japan
| | | | - Hideki Yoshida
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroki Saito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Shigeki Fujitani
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
6
|
Krieger MR, Abrahamian M, He KL, Atamdede S, Hakimjavadi H, Momcilovic M, Ostrow D, Maggo SD, Tsang YP, Gai X, Chanfreau GF, Shackelford DB, Teitell MA, Koehler CM. Trafficking of mitochondrial double-stranded RNA from mitochondria to the cytosol. Life Sci Alliance 2024; 7:e202302396. [PMID: 38955468 PMCID: PMC11220484 DOI: 10.26508/lsa.202302396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.
Collapse
Affiliation(s)
- Matthew R Krieger
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Kevin L He
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Sean Atamdede
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Milica Momcilovic
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Simran Ds Maggo
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yik Pui Tsang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Xiaowu Gai
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - David B Shackelford
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Michael A Teitell
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
7
|
Ward C, Schlichtholz B. Post-Acute Sequelae and Mitochondrial Aberration in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:9050. [PMID: 39201736 PMCID: PMC11354507 DOI: 10.3390/ijms25169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
This review investigates links between post-acute sequelae of SARS-CoV-2 infection (PASC), post-infection viral persistence, mitochondrial involvement and aberrant innate immune response and cellular metabolism during SARS-CoV-2 infection. Advancement of proteomic and metabolomic studies now allows deeper investigation of alterations to cellular metabolism, autophagic processes and mitochondrial dysfunction caused by SARS-CoV-2 infection, while computational biology and machine learning have advanced methodologies of predicting virus-host gene and protein interactions. Particular focus is given to the interaction between viral genes and proteins with mitochondrial function and that of the innate immune system. Finally, the authors hypothesise that viral persistence may be a function of mitochondrial involvement in the sequestration of viral genetic material. While further work is necessary to understand the mechanisms definitively, a number of studies now point to the resolution of questions regarding the pathogenesis of PASC.
Collapse
Affiliation(s)
| | - Beata Schlichtholz
- Department of Biochemistry, Gdańsk University of Medicine, 80-210 Gdańsk, Poland;
| |
Collapse
|
8
|
Abstract
Coronavirus Disease-19 (COVID-19) pandemic is caused by SARS-CoV-2 that has infected more than 600 million people and killed more than 6 million people worldwide. This infection affects mainly certain groups of people that have high susceptibility to present severe COVID-19 due to comorbidities. Moreover, the long-COVID-19 comprises a series of symptoms that may remain in some patients for months after infection that further compromises their health. Thus, since this pandemic is profoundly affecting health, economy, and social life of societies, a deeper understanding of viral replication cycle could help to envisage novel therapeutic alternatives that limit or stop COVID-19. Several findings have unexpectedly discovered that mitochondria play a critical role in SARS-CoV-2 cell infection. Indeed, it has been suggested that this organelle could be the origin of its replication niches, the double membrane vesicles (DMV). In this regard, mitochondria derived vesicles (MDV), involved in mitochondria quality control, discovered almost 15 years ago, comprise a subpopulation characterized by a double membrane. MDV shedding is induced by mitochondrial stress, and it has a fast assembly dynamic, reason that perhaps has precluded their identification in electron microscopy or tomography studies. These and other features of MDV together with recent SARS-CoV-2 protein interactome and other findings link SARS-CoV-2 to mitochondria and support that these vesicles are the precursors of SARS-CoV-2 induced DMV. In this work, the morphological, biochemical, molecular, and cellular evidence that supports this hypothesis is reviewed and integrated into the current model of SARS-CoV-2 cell infection. In this scheme, some relevant questions are raised as pending topics for research that would help in the near future to test this hypothesis. The intention of this work is to provide a novel framework that could open new possibilities to tackle SARS-CoV-2 pandemic through mitochondria and DMV targeted therapies.
Collapse
Affiliation(s)
- Pavel Montes de Oca-B
- Neurociencia Cognitiva, Instituto de Fisiologia-UNAM, CDMX, CDMX, 04510, Mexico
- Unidad de Neurobiologia Dinamica, Instituto Nacional de Neurologia y Neurocirugia, CDMX, CDMX, 14269, Mexico
| |
Collapse
|
9
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
10
|
Wang X, Chen Y, Qi C, Li F, Zhang Y, Zhou J, Wu H, Zhang T, Qi A, Ouyang H, Xie Z, Pang D. Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles. Front Immunol 2024; 15:1340332. [PMID: 38919631 PMCID: PMC11196420 DOI: 10.3389/fimmu.2024.1340332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
During infection, positive-stranded RNA causes a rearrangement of the host cell membrane, resulting in specialized membrane structure formation aiding viral genome replication. Double-membrane vesicles (DMVs), typical structures produced by virus-induced membrane rearrangements, are platforms for viral replication. Nidoviruses, one of the most complex positive-strand RNA viruses, have the ability to infect not only mammals and a few birds but also invertebrates. Nidoviruses possess a distinctive replication mechanism, wherein their nonstructural proteins (nsps) play a crucial role in DMV biogenesis. With the participation of host factors related to autophagy and lipid synthesis pathways, several viral nsps hijack the membrane rearrangement process of host endoplasmic reticulum (ER), Golgi apparatus, and other organelles to induce DMV formation. An understanding of the mechanisms of DMV formation and its structure and function in the infectious cycle of nidovirus may be essential for the development of new and effective antiviral strategies in the future.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
11
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
12
|
Zhang L, Li Y, Kuhn JH, Zhang K, Song Q, Liu F. Polyubiquitylated rice stripe virus NS3 translocates to the nucleus to promote cytosolic virus replication via miRNA-induced fibrillin 2 upregulation. PLoS Pathog 2024; 20:e1012112. [PMID: 38507423 PMCID: PMC10984529 DOI: 10.1371/journal.ppat.1012112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Viruses are encapsidated mobile genetic elements that rely on host cells for replication. Several cytoplasmic RNA viruses synthesize proteins and/or RNAs that translocate to infected cell nuclei. However, the underlying mechanisms and role(s) of cytoplasmic-nuclear trafficking are unclear. We demonstrate that infection of small brown planthoppers with rice stripe virus (RSV), a negarnaviricot RNA virus, results in K63-linked polyubiquitylation of RSV's nonstructural protein 3 (NS3) at residue K127 by the RING ubiquitin ligase (E3) LsRING. In turn, ubiquitylation leads to NS3 trafficking from the cytoplasm to the nucleus, where NS3 regulates primary miRNA pri-miR-92 processing through manipulation of the microprocessor complex, resulting in accumulation of upregulated miRNA lst-miR-92. We show that lst-miR-92 regulates the expression of fibrillin 2, an extracellular matrix protein, thereby increasing RSV loads. Our results highlight the manipulation of intranuclear, cytoplasmic, and extracellular components by an RNA virus to promote its own replication in an insect vector.
Collapse
Affiliation(s)
- Lu Zhang
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Yao Li
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick; Frederick, Maryland; United States of America
| | - Kun Zhang
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Qisheng Song
- Division of Plant Science and Technology; College of Agriculture; Food and Natural Resources; University of Missouri; Columbia, Missouri; United States of America
| | - Fang Liu
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| |
Collapse
|
13
|
Panteleev MA, Sveshnikova AN, Shakhidzhanov SS, Zamaraev AV, Ataullakhanov FI, Rumyantsev AG. The Ways of the Virus: Interactions of Platelets and Red Blood Cells with SARS-CoV-2, and Their Potential Pathophysiological Significance in COVID-19. Int J Mol Sci 2023; 24:17291. [PMID: 38139118 PMCID: PMC10743882 DOI: 10.3390/ijms242417291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The hematological effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important in COVID-19 pathophysiology. However, the interactions of SARS-CoV-2 with platelets and red blood cells are still poorly understood. There are conflicting data regarding the mechanisms and significance of these interactions. The aim of this review is to put together available data and discuss hypotheses, the known and suspected effects of the virus on these blood cells, their pathophysiological and diagnostic significance, and the potential role of platelets and red blood cells in the virus's transport, propagation, and clearance by the immune system. We pay particular attention to the mutual activation of platelets, the immune system, the endothelium, and blood coagulation and how this changes with the evolution of SARS-CoV-2. There is now convincing evidence that platelets, along with platelet and erythroid precursors (but not mature erythrocytes), are frequently infected by SARS-CoV-2 and functionally changed. The mechanisms of infection of these cells and their role are not yet entirely clear. Still, the changes in platelets and red blood cells in COVID-19 are significantly associated with disease severity and are likely to have prognostic and pathophysiological significance in the development of thrombotic and pulmonary complications.
Collapse
Affiliation(s)
- Mikhail A. Panteleev
- Department of Medical Physics, Physics Faculty, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Anastasia N. Sveshnikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Faculty of Fundamental Physics and Chemical Engineering, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Soslan S. Shakhidzhanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Alexey V. Zamaraev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Ulitsa Vavilova, 119991 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Fazoil I. Ataullakhanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Aleksandr G. Rumyantsev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
| |
Collapse
|
14
|
Pileggi CA, Parmar G, Elkhatib H, Stewart CM, Alecu I, Côté M, Bennett SA, Sandhu JK, Cuperlovic-Culf M, Harper ME. The SARS-CoV-2 spike glycoprotein interacts with MAO-B and impairs mitochondrial energetics. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100112. [PMID: 38020812 PMCID: PMC10663135 DOI: 10.1016/j.crneur.2023.100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
SARS-CoV-2 infection is associated with both acute and post-acute neurological symptoms. Emerging evidence suggests that SARS-CoV-2 can alter mitochondrial metabolism, suggesting that changes in brain metabolism may contribute to the development of acute and post-acute neurological complications. Monoamine oxidase B (MAO-B) is a flavoenzyme located on the outer mitochondrial membrane that catalyzes the oxidative deamination of monoamine neurotransmitters. Computational analyses have revealed high similarity between the SARS-CoV-2 spike glycoprotein receptor binding domain on the ACE2 receptor and MAO-B, leading to the hypothesis that SARS-CoV-2 spike glycoprotein may alter neurotransmitter metabolism by interacting with MAO-B. Our results empirically establish that the SARS-CoV-2 spike glycoprotein interacts with MAO-B, leading to increased MAO-B activity in SH-SY5Y neuron-like cells. Common to neurodegenerative disease pathophysiological mechanisms, we also demonstrate that the spike glycoprotein impairs mitochondrial bioenergetics, induces oxidative stress, and perturbs the degradation of depolarized aberrant mitochondria through mitophagy. Our findings also demonstrate that SH-SY5Y neuron-like cells expressing the SARS-CoV-2 spike protein were more susceptible to MPTP-induced necrosis, likely necroptosis. Together, these results reveal novel mechanisms that may contribute to SARS-CoV-2-induced neurodegeneration.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Hussein Elkhatib
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Current Address: Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Irina Alecu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
| | - Steffany A.L. Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jagdeep K. Sandhu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
15
|
DeFoor N, Paul S, Li S, Basso EKG, Stevenson V, Browning JL, Prater AK, Brindley S, Tao G, Pickrell AM. Remdesivir increases mtDNA copy number causing mild alterations to oxidative phosphorylation. Sci Rep 2023; 13:15339. [PMID: 37714940 PMCID: PMC10504289 DOI: 10.1038/s41598-023-42704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
SARS-CoV-2 causes the severe respiratory disease COVID-19. Remdesivir (RDV) was the first fast-tracked FDA approved treatment drug for COVID-19. RDV acts as an antiviral ribonucleoside (adenosine) analogue that becomes active once it accumulates intracellularly. It then diffuses into the host cell and terminates viral RNA transcription. Previous studies have shown that certain nucleoside analogues unintentionally inhibit mitochondrial RNA or DNA polymerases or cause mutational changes to mitochondrial DNA (mtDNA). These past findings on the mitochondrial toxicity of ribonucleoside analogues motivated us to investigate what effects RDV may have on mitochondrial function. Using in vitro and in vivo rodent models treated with RDV, we observed increases in mtDNA copy number in Mv1Lu cells (35.26% increase ± 11.33%) and liver (100.27% increase ± 32.73%) upon treatment. However, these increases only resulted in mild changes to mitochondrial function. Surprisingly, skeletal muscle and heart were extremely resistant to RDV treatment, tissues that have preferentially been affected by other nucleoside analogues. Although our data suggest that RDV does not greatly impact mitochondrial function, these data are insightful for the treatment of RDV for individuals with mitochondrial disease.
Collapse
Affiliation(s)
- Nicole DeFoor
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Swagatika Paul
- Graduate Program in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Erwin K Gudenschwager Basso
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - Valentina Stevenson
- Virginia Tech Animal Laboratory Services, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - Jack L Browning
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Anna K Prater
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Samantha Brindley
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Tech, Life Science I Room 217, 970 Washington Street SW, Blacksburg, VA, 24061, USA.
| |
Collapse
|
16
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. The Diagnostic, Prognostic, and Therapeutic Potential of Cell-Free DNA with a Special Focus on COVID-19 and Other Viral Infections. Int J Mol Sci 2023; 24:14163. [PMID: 37762464 PMCID: PMC10532175 DOI: 10.3390/ijms241814163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free DNA (cfDNA) in human blood serum, urine, and other body fluids recently became a commonly used diagnostic marker associated with various pathologies. This is because cfDNA enables a much higher sensitivity than standard biochemical parameters. The presence of and/or increased level of cfDNA has been reported for various diseases, including viral infections, including COVID-19. Here, we review cfDNA in general, how it has been identified, where it can derive from, its molecular features, and mechanisms of release and clearance. General suitability of cfDNA for diagnostic questions, possible shortcomings and future directions are discussed, with a special focus on coronavirus infection.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
17
|
Wei X, Pan C, Zhang X, Zhang W. Total network controllability analysis discovers explainable drugs for Covid-19 treatment. Biol Direct 2023; 18:55. [PMID: 37670359 PMCID: PMC10478273 DOI: 10.1186/s13062-023-00410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The active pursuit of network medicine for drug repurposing, particularly for combating Covid-19, has stimulated interest in the concept of structural controllability in cellular networks. We sought to extend this theory, focusing on the defense rather than control of the cell against viral infections. Accordingly, we extended structural controllability to total structural controllability and introduced the concept of control hubs. Perturbing any control hub may render the cell uncontrollable by exogenous stimuli like viral infections, so control hubs are ideal drug targets. RESULTS We developed an efficient algorithm to identify all control hubs, applying it to a largest homogeneous network of human protein interactions, including interactions between human and SARS-CoV-2 proteins. Our method recognized 65 druggable control hubs with enriched antiviral functions. Utilizing these hubs, we categorized potential drugs into four groups: antiviral and anti-inflammatory agents, drugs acting on the central nervous system, dietary supplements, and compounds enhancing immunity. An exemplification of our approach's effectiveness, Fostamatinib, a drug initially developed for chronic immune thrombocytopenia, is now in clinical trials for treating Covid-19. Preclinical trial data demonstrated that Fostamatinib could reduce mortality rates, ICU stay length, and disease severity in Covid-19 patients. CONCLUSIONS Our findings confirm the efficacy of our novel strategy that leverages control hubs as drug targets. This approach provides insights into the molecular mechanisms of potential therapeutics for Covid-19, making it a valuable tool for interpretable drug discovery. Our new approach is general and applicable to repurposing drugs for other diseases.
Collapse
Affiliation(s)
- Xinru Wei
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 210001, China
| | - Chunyu Pan
- School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, 110167, China
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 210001, China.
| | - Weixiong Zhang
- Department of Health Technology and Informatics, Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
18
|
Talotta R. COVID-19 mRNA vaccines as hypothetical epigenetic players: Results from an in silico analysis, considerations and perspectives. Vaccine 2023; 41:5182-5194. [PMID: 37453842 DOI: 10.1016/j.vaccine.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES To investigate in silico the occurrence of epigenetic crosstalk by nucleotide sequence complementarity between the BNT162b2 mRNA vaccine and whole human genome, including coding and noncoding (nc)RNA genes. To correlate these results with those obtained with the original spike (S) gene of Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2). METHODS The publicly available FASTA sequence of the BNT162b2 mRNA vaccine and the SARS-CoV-2 isolate Wuhan-Hu-1 S gene (NC_045512.2) were used separately as key input to the Ensembl.org library to evaluate base pair match to human GRCh38 genome. Human coding and noncoding genes harboring hits were assessed for functional activity and health effects using bioinformatics tools and GWAS databases. RESULTS The BLAT analysis against the human GRCh38 genome revealed a total of 37 hits for BNT162b2 mRNA and no hits for the SARS-CoV-2 S gene. More specifically, BNT162b2 mRNA matched 19 human genes whose protein products are variously involved in enzyme reactions, nucleotide or cation binding, signaling, and carrier functions. In BLASTN analysis of ncRNA genes, BNT162b2 mRNA and SARS-CoV-2 S gene matched 17 and 24 different human genomic regions, respectively. Overall, characterization of the matched noncoding sequences revealed stronger interference with epigenetic pathways for BNT162b2 mRNA compared with the original S gene. CONCLUSION This pivotal in silico analysis shows that SARS-CoV-2 S gene and the BNT162b2 mRNA vaccine exhibit Watson-Crick nucleotide complementarity with human coding or noncoding genes. Although they do not share the same complementarity pattern, both may disrupt epigenetic mechanisms in target cells, potentially leading to long-term complications.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, Messina, Italy.
| |
Collapse
|
19
|
Stefano GB, Büttiker P, Weissenberger S, Anders M, Raboch J, Ptacek R, Kream RM. Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior. Cell Mol Neurobiol 2023; 43:2621-2626. [PMID: 36977809 PMCID: PMC10047479 DOI: 10.1007/s10571-023-01342-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Prion' is a term used to describe a protein infectious particle responsible for several neurodegenerative diseases in mammals, e.g., Creutzfeldt-Jakob disease. The novelty is that it is protein based infectious agent not involving a nucleic acid genome as found in viruses and bacteria. Prion disorders exhibit, in part, incubation periods, neuronal loss, and induce abnormal folding of specific normal cellular proteins due to enhancing reactive oxygen species associated with mitochondria energy metabolism. These agents may also induce memory, personality and movement abnormalities as well as depression, confusion and disorientation. Interestingly, some of these behavioral changes also occur in COVID-19 and mechanistically include mitochondrial damage caused by SARS-CoV-2 and subsequenct production of reactive oxygen species. Taken together, we surmise, in part, long COVID may involve the induction of spontaneous prion emergence, especially in individuals susceptible to its origin may thus explain some of its manesfestions post-acute viral infection.
Collapse
Affiliation(s)
- George B Stefano
- First Faculty of Medicine, Department of Psychiatry of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, 120 00 Prague 2, Ke Karlovu 11, Prague, Czech Republic.
| | - Pascal Büttiker
- First Faculty of Medicine, Department of Psychiatry of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, 120 00 Prague 2, Ke Karlovu 11, Prague, Czech Republic
| | - Simon Weissenberger
- Department of Psychology, University of New York in Prague, 120 00 Prague 2, Londýnská 41, Prague, Czech Republic
| | - Martin Anders
- First Faculty of Medicine, Department of Psychiatry of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, 120 00 Prague 2, Ke Karlovu 11, Prague, Czech Republic
| | - Jiri Raboch
- First Faculty of Medicine, Department of Psychiatry of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, 120 00 Prague 2, Ke Karlovu 11, Prague, Czech Republic
| | - Radek Ptacek
- First Faculty of Medicine, Department of Psychiatry of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, 120 00 Prague 2, Ke Karlovu 11, Prague, Czech Republic
| | - Richard M Kream
- First Faculty of Medicine, Department of Psychiatry of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, 120 00 Prague 2, Ke Karlovu 11, Prague, Czech Republic
| |
Collapse
|
20
|
Abstract
The biology of a cell, whether it is a unicellular organism or part of a multicellular network, is influenced by cell type, temporal changes in cell state, and the cell's environment. Spatial cues play a critical role in the regulation of microbial pathogenesis strategies. Information about where the pathogen is-in a tissue or in proximity to a host cell-regulates gene expression and the compartmentalization of gene products in the microbe and the host. Our understanding of host and pathogen identity has bloomed with the accessibility of transcriptomics and proteomics techniques. A missing piece of the puzzle has been our ability to evaluate global transcript and protein expression in the context of the subcellular niche, primary cell, or native tissue environment during infection. This barrier is now lower with the advent of new spatial omics techniques to understand how location regulates cellular functions. This review will discuss how recent advances in spatial proteomics and transcriptomics approaches can address outstanding questions in microbial pathogenesis.
Collapse
Affiliation(s)
- Samantha Lempke
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Dana May
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
21
|
Juby AG, Cunnane SC, Mager DR. Refueling the post COVID-19 brain: potential role of ketogenic medium chain triglyceride supplementation: an hypothesis. Front Nutr 2023; 10:1126534. [PMID: 37415915 PMCID: PMC10320593 DOI: 10.3389/fnut.2023.1126534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/25/2023] [Indexed: 07/08/2023] Open
Abstract
COVID-19 infection causes cognitive changes in the acute phase, but also after apparent recovery. Over fifty post (long)-COVID symptoms are described, including cognitive dysfunction ("brain fog") precluding return to pre-COVID level of function, with rates twice as high in females. Additionally, the predominant demographic affected by these symptoms is younger and still in the workforce. Lack of ability to work, even for six months, has significant socio-economic consequences. This cognitive dysfunction is associated with impaired cerebral glucose metabolism, assessed using 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET), showing brain regions that are abnormal compared to age and sex matched controls. In other cognitive conditions such as Alzheimer's disease (AD), typical patterns of cerebral glucose hypometabolism, frontal hypometabolism and cerebellar hypermetabolism are common. Similar FDG-PET changes have also been observed in post-COVID-19, raising the possibility of a similar etiology. Ketone bodies (B-hydroxybutyrate, acetoacetate and acetone) are produced endogenously with very low carbohydrate intake or fasting. They improve brain energy metabolism in the face of cerebral glucose hypometabolism in other conditions [mild cognitive impairment (MCI) and AD]. Long-term low carbohydrate intake or prolonged fasting is not usually feasible. Medium chain triglyceride (MCT) is an exogenous route to nutritional ketosis. Research has supported their efficacy in managing intractable seizures, and cognitive impairment in MCI and AD. We hypothesize that cerebral glucose hypometabolism associated with post COVID-19 infection can be mitigated with MCT supplementation, with the prediction that cognitive function would also improve. Although there is some suggestion that post COVID-19 cognitive symptoms may diminish over time, in many individuals this may take more than six months. If MCT supplementation is able to speed the cognitive recovery, this will impact importantly on quality of life. MCT is readily available and, compared to pharmaceutical interventions, is cost-effective. Research shows general tolerability with dose titration. MCT is a component of enteral and parenteral nutrition supplements, including in pediatrics, so has a long record of safety in vulnerable populations. It is not associated with weight gain or adverse changes in lipid profiles. This hypothesis serves to encourage the development of clinical trials evaluating the impact of MCT supplementation on the duration and severity of post COVID-19 cognitive symptoms.
Collapse
Affiliation(s)
- Angela G. Juby
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Stephen C. Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Diana R. Mager
- Agriculture Food and Nutrition Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Bhowal C, Ghosh S, Ghatak D, De R. Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight. Mol Cell Biochem 2023; 478:1325-1343. [PMID: 36308668 PMCID: PMC9617539 DOI: 10.1007/s11010-022-04593-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
SARS-CoV-2 is a positive-strand RNA virus that infects humans through the nasopharyngeal and oral route causing COVID-19. Scientists left no stone unturned to explore a targetable key player in COVID-19 pathogenesis against which therapeutic interventions can be initiated. This article has attempted to review, coordinate and accumulate the most recent observations in support of the hypothesis predicting the altered state of mitochondria concerning mitochondrial redox homeostasis, inflammatory regulations, morphology, bioenergetics and antiviral signalling in SARS-CoV-2 infection. Mitochondria is extremely susceptible to physiological as well as pathological stimuli, including viral infections. Recent studies suggest that SARS-CoV-2 pathogeneses alter mitochondrial integrity, in turn mitochondria modulate cellular response against the infection. SARS-CoV-2 M protein inhibited mitochondrial antiviral signalling (MAVS) protein aggregation in turn hinders innate antiviral response. Viral open reading frames (ORFs) also play an instrumental role in altering mitochondrial regulation of immune response. Notably, ORF-9b and ORF-6 impair MAVS activation. In aged persons, the NLRP3 inflammasome is over-activated due to impaired mitochondrial function, increased mitochondrial reactive oxygen species (mtROS), and/or circulating free mitochondrial DNA, resulting in a hyper-response of classically activated macrophages. This article also tries to understand how mitochondrial fission-fusion dynamics is affected by the virus. This review comprehends the overall mitochondrial attribute in pathogenesis as well as prognosis in patients infected with COVID-19 taking into account pertinent in vitro, pre-clinical and clinical data encompassing subjects with a broad range of severity and morbidity. This endeavour may help in exploring novel non-canonical therapeutic strategies to COVID-19 disease and associated complications.
Collapse
Affiliation(s)
- Chandan Bhowal
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Sayak Ghosh
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
23
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Chen TH, Chang CJ, Hung PH. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int J Mol Sci 2023; 24:8034. [PMID: 37175745 PMCID: PMC10179190 DOI: 10.3390/ijms24098034] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge. One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms. It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Chia-Jung Chang
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Peir-Haur Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
- Department of Life and Health Science, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| |
Collapse
|
25
|
Cai S, Zhang C, Zhuang Z, Zhang S, Ma L, Yang S, Zhou T, Wang Z, Xie W, Jin S, Zhao J, Guan X, Wu J, Cui J, Wu Y. Phase-separated nucleocapsid protein of SARS-CoV-2 suppresses cGAS-DNA recognition by disrupting cGAS-G3BP1 complex. Signal Transduct Target Ther 2023; 8:170. [PMID: 37100798 PMCID: PMC10131525 DOI: 10.1038/s41392-023-01420-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
Currently, the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide. COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon (IFN-I) signal, along with limited activation of antiviral immune responses as well as enhanced viral infectivity. Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways. However, it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection. In the current study, we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA (mtDNA), which in turn triggers cGAS to activate IFN-I signaling. As countermeasures, SARS-CoV-2 nucleocapsid (N) protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling. Mechanically, N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation (LLPS), subsequently impairs the double-strand DNA (dsDNA) detection ability of cGAS. Taken together, our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.
Collapse
Affiliation(s)
- Sihui Cai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, The First Affiliated Hospital of Sun Yat-sen University, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chenqiu Zhang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, The First Affiliated Hospital of Sun Yat-sen University, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheyu Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weihong Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, The First Affiliated Hospital of Sun Yat-sen University, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yaoxing Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, The First Affiliated Hospital of Sun Yat-sen University, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Mancini M, Natoli S, Gardoni F, Di Luca M, Pisani A. Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19. Int J Mol Sci 2023; 24:ijms24065618. [PMID: 36982693 PMCID: PMC10056044 DOI: 10.3390/ijms24065618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant α-syn metabolism.
Collapse
Affiliation(s)
- Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Silvia Natoli
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- IRCCS Maugeri Pavia, 27100 Pavia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-380-247
| |
Collapse
|
27
|
Chang X, Ismail NI, Rahman A, Xu D, Chan RWY, Ong SG, Ong SB. Long COVID-19 and the Heart: Is Cardiac Mitochondria the Missing Link? Antioxid Redox Signal 2023; 38:599-618. [PMID: 36053670 PMCID: PMC10025846 DOI: 10.1089/ars.2022.0126] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/27/2022] [Indexed: 12/30/2022]
Abstract
Significance: Although corona virus disease 2019 (COVID-19) has now gradually been categorized as an endemic, the long-term effect of COVID-19 in causing multiorgan disorders, including a perturbed cardiovascular system, is beginning to gain attention. Nonetheless, the underlying mechanism triggering post-COVID-19 cardiovascular dysfunction remains enigmatic. Are cardiac mitochondria the key to mediating cardiac dysfunction post-severe acute respiratory syndrome coronavirus 2 (post-SARS-CoV-2) infection? Recent Advances: Cardiovascular complications post-SARS-CoV-2 infection include myocarditis, myocardial injury, microvascular injury, pericarditis, acute coronary syndrome, and arrhythmias (fast or slow). Different types of myocardial damage or reduced heart function can occur after a lung infection or lung injury. Myocardial/coronary injury or decreased cardiac function is directly associated with increased mortality after hospital discharge in patients with COVID-19. The incidence of adverse cardiovascular events increases even in recovered COVID-19 patients. Disrupted cardiac mitochondria postinfection have been postulated to lead to cardiovascular dysfunction in the COVID-19 patients. Further studies are crucial to unravel the association between SARS-CoV-2 infection, mitochondrial dysfunction, and ensuing cardiovascular disorders (CVD). Critical Issues: The relationship between COVID-19 and myocardial injury or cardiovascular dysfunction has not been elucidated. In particular, the role of the cardiac mitochondria in this association remains to be determined. Future Directions: Elucidating the cause of cardiac mitochondrial dysfunction post-SARS-CoV-2 infection may allow a deeper understanding of long COVID-19 and resulting CVD, thus providing a potential therapeutic target. Antioxid. Redox Signal. 38, 599-618.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nur Izzah Ismail
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Attaur Rahman
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiology, Qidong People's Hospital, Qidong, China
| | - Renee Wan Yi Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Laboratory for Paediatric Respiratory Research, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children's Hospital (HKCH), Hong Kong SAR, China
- Department of Paediatrics, Chinese University of Hong Kong-University Medical Center Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, Chicago, Illinois, USA
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Sang-Bing Ong
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children's Hospital (HKCH), Hong Kong SAR, China
- Kunming Institute of Zoology—The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
28
|
Prasada Kabekkodu S, Chakrabarty S, Jayaram P, Mallya S, Thangaraj K, Singh KK, Satyamoorthy K. Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion 2023; 69:43-56. [PMID: 36690315 PMCID: PMC9854144 DOI: 10.1016/j.mito.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca2+ signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Kumarasamy Thangaraj
- CSIR Centre for Cellular and Molecular Biology, Uppal Road, Telangana, 500 007, Hyderabad, India; Centre for DNA Fingerprinting and Diagnostics, Telangana, 500 039, Uppal, Hyderabad, India
| | - Keshav K Singh
- Department of Genetics, The University of Alabama at Birmingham, AL 35294, Birmingham, USA
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India.
| |
Collapse
|
29
|
Abstract
Respiratory diseases, including lung cancer, pulmonary fibrosis, asthma, and the recently emerging fatal coronavirus disease-19 (COVID-19), are the leading causes of illness and death worldwide. The increasing incidence and mortality rates have attracted much attention to the prevention and treatment of these conditions. Lipoic acid (LA), a naturally occurring organosulfur compound, is not only essential for mitochondrial aerobic metabolism but also shows therapeutic potential via certain pharmacological effects (e.g., antioxidative and anti-inflammatory effects). In recent years, accumulating evidence (animal experiments and in vitro studies) has suggested a role of LA in ameliorating many respiratory diseases (e.g., lung cancer, fibrosis, asthma, acute lung injury and smoking-induced lung injury). Therefore, this review will provide an overview of the present investigational evidence on the therapeutic effect of LA against respiratory diseases in vitro and in vivo. We also summarize the corresponding mechanisms of action to inspire further basic studies and clinical trials to confirm the health benefits of LA in the context of respiratory diseases.
Collapse
Key Words
- lipoic acid
- respiratory diseases
- antioxidation
- anti-inflammatory effects
- mechanism of action
- akt, protein kinase b;
- aif, apoptosis-inducing factor;
- ampk, adenosine monophosphate-activated protein kinase;
- α-sma, alpha-smooth muscle actin;
- bcl-2, b-cell lymphoma 2;
- cox-2, cyclooxygenase-2;
- dna, deoxyribonucleic acid;
- er, endoplasmic reticulum;
- erk, extracellular-regulated kinase;
- egfr, epidermal growth factor receptor;
- gr, glutathione reductase;
- gpx, glutathione peroxidase;
- grb2, growth factor receptor-bound protein 2;
- gsh, reduced glutathione;
- gssg, oxidized glutathione;
- hif, hypoxia-inducible factor;
- ho-1, heme oxygenase 1;
- keap-1, kelch-like ech-associated protein 1;
- ig-e, immunoglobulin e;
- il, interleukin
- oct-4, octamer-binding transcription factor 4;
- parp-1, poly (adp-ribose) polymerase-1;
- pdk1, phosphoinositide-dependent kinase-1;
- pdh, pyruvate dehydrogenase;
- pi3k, phosphoinositide 3-kinase;
- pge2, prostaglandin e2;
- pgc1α, peroxisome proliferator-activated receptor‑γ co-activator 1α;
- p70s6k, p70 ribosomal protein s6 kinase;
- fak, focal adhesion kinase;
- sod, superoxide dismutase;
- mapk, mitogen-activated protein kinase;
- mtor, mammalian target of rapamycin;
- nf-κb, nuclear factor-kappa b;
- no, nitric oxide;
- nox-4, nicotinamide adenine dinucleotide phosphate (nadph) oxidase-4;
- nqo1, nadph quinone oxidoreductase 1;
- tnf-α, tumor necrosis factor-α;
- tgf-β1, transforming growth factor beta-1;
- vegf, vascular endothelial growth factor;
Collapse
|
30
|
Merino VF, Yan Y, Ordonez AA, Bullen CK, Lee A, Saeki H, Ray K, Huang T, Jain SK, Pomper MG. Nucleolin mediates SARS-CoV-2 replication and viral-induced apoptosis of host cells. Antiviral Res 2023; 211:105550. [PMID: 36740097 PMCID: PMC9896859 DOI: 10.1016/j.antiviral.2023.105550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Host-oriented antiviral therapeutics are promising treatment options to combat COVID-19 and its emerging variants. However, relatively little is known about the cellular proteins hijacked by SARS-CoV-2 for its replication. Here we show that SARS-CoV-2 induces expression and cytoplasmic translocation of the nucleolar protein, nucleolin (NCL). NCL interacts with SARS-CoV-2 viral proteins and co-localizes with N-protein in the nucleolus and in stress granules. Knockdown of NCL decreases the stress granule component G3BP1, viral replication and improved survival of infected host cells. NCL mediates viral-induced apoptosis and stress response via p53. SARS-CoV-2 increases NCL expression and nucleolar size and number in lungs of infected hamsters. Inhibition of NCL with the aptamer AS-1411 decreases viral replication and apoptosis of infected cells. These results suggest nucleolin as a suitable target for anti-COVID therapies.
Collapse
Affiliation(s)
- Vanessa F Merino
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yu Yan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alvaro A Ordonez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - C Korin Bullen
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Albert Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harumi Saeki
- Department of Human Pathology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Krishanu Ray
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanjay K Jain
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Okrzeja J, Garkowski A, Kubas B, Moniuszko-Malinowska A. Imaging and neuropathological findings in patients with Post COVID-19 Neurological Syndrome-A review. Front Neurol 2023; 14:1136348. [PMID: 36846139 PMCID: PMC9947471 DOI: 10.3389/fneur.2023.1136348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Post COVID-19 syndrome is determined as signs and symptoms that appear during or after an infection consistent with SARS-CoV-2 disease, persist for more than 12 weeks and are not explained by an alternative diagnosis. This review presents the neuropathological findings and imaging findings in Post COVID-19 Neurological Syndrome: the focal point is on the manifestations of involvement evident on brain and spine imaging.
Collapse
Affiliation(s)
- Jakub Okrzeja
- Medical University of Białystok, Białystok, Poland,*Correspondence: Jakub Okrzeja ✉
| | - Adam Garkowski
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| | - Bożena Kubas
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
32
|
Kumari D, Singh Y, Singh S, Dogra V, Srivastava AK, Srivastava S, Garg I, Bargotya M, Hussain J, Ganju L, Varshney R. "Mitochondrial pathogenic mutations and metabolic alterations associated with COVID-19 disease severity". J Med Virol 2023; 95:e28553. [PMID: 36832542 DOI: 10.1002/jmv.28553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/13/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused global pandemic and drastically affected the humankind. Mitochondrial mutations have been found to be associated with several respiratory diseases. Missense mutation and pathogenic mitochondrial variants might unveil the potential involvement of the mitochondrial genome in coronavirus disease 2019 (COVID-19) pathogenesis. The present study aims to elucidate the role of mitochondrial DNA (mtDNA) mutations, mitochondrial haplogroup, and energy metabolism in disease severity. The study was performed on 58 subjects comprising COVID-19-positive (n = 42) and negative (n = 16) individuals. COVID-19-positive subjects were further categorized into severe deceased (SD), severe recovered (SR), moderate (Mo), and mild (Mi) patients, while COVID-19-negative subjects were healthy control (HC) for the study. High throughput next-generation sequencing was done to investigate mtDNA mutations and haplogroups. The computational approach was applied to study the effect of mtDNA mutations on protein secondary structure. Real time polymerase chain reaction was used for mtDNA copy number determination and mitochondrial function parameters were also analyzed. We found 15 mtDNA mutations in MT-ND5, MT-ND4, MT-ND2, and MT-COI genes uniquely associated with COVID-19 severity affecting the secondary structure of proteins in COVID-19-positive subjects. Haplogroup analysis suggests that mtDNA haplogroups M3d1a and W3a1b might be potentially associated with COVID-19 pathophysiology. The mitochondrial function parameters were significantly altered in severe patients (SD and SR; p < 0.05). No significant relationship was found between mtDNA mutations and oxidative stress markers (p > 0.05). The study highlights the importance of mitochondrial reprogramming in COVID-19 patients and may provide a feasible approach toward finding a path for therapeutic interventions to COVID-19 disease.
Collapse
Affiliation(s)
- Diksha Kumari
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Yamini Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Sayar Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Vikas Dogra
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | | | - Swati Srivastava
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Iti Garg
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Mona Bargotya
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Javid Hussain
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Lilly Ganju
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| |
Collapse
|
33
|
Wang Y, Schughart K, Pelaia TM, Chew T, Kim K, Karvunidis T, Knippenberg B, Teoh S, Phu AL, Short KR, Iredell J, Thevarajan I, Audsley J, Macdonald S, Burcham J, PREDICT-19 Consortium, Tang B, McLean A, Shojaei M. Pathway and Network Analyses Identify Growth Factor Signaling and MMP9 as Potential Mediators of Mitochondrial Dysfunction in Severe COVID-19. Int J Mol Sci 2023; 24:ijms24032524. [PMID: 36768847 PMCID: PMC9917147 DOI: 10.3390/ijms24032524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.
Collapse
Affiliation(s)
- Ya Wang
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, The University of Sydney, Kingswood, NSW 2747, Australia
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Institute of Virology Münster, University of Münster, 48149 Münster, Germany
| | - Tiana Maria Pelaia
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
| | - Tracy Chew
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney NSW 2006, Australia
| | - Karan Kim
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Thomas Karvunidis
- Medical ICU, 1st Department of Internal Medicine, Charles University and Teaching Hospital Pilsen, 323 00 Plzeň, Czech Republic
| | - Ben Knippenberg
- Department of Microbiology, St. George Hospital, Sydney, NSW 2217, Australia
| | - Sally Teoh
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
| | - Amy L. Phu
- Research and Education Network, Western Sydney Local Health District, Westmead Hospital, CNR Darcy and Hawkesbury Roads, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Sydney Medical School Westmead, Westmead Hospital, The University of Sydney, Sydney, NSW 2145, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Disease, The University of Sydney, Sydney, NSW 2145, Australia
| | - Irani Thevarajan
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3050, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen Macdonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Royal Perth Hospital, Perth, WA 6000, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Jonathon Burcham
- Centre for Clinical Research in Emergency Medicine, Royal Perth Bentley Group, Perth, WA 6000, Australia
| | | | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Anthony McLean
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, The University of Sydney, Kingswood, NSW 2747, Australia
- Correspondence: (A.M.); (M.S.)
| | - Maryam Shojaei
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, The University of Sydney, Kingswood, NSW 2747, Australia
- Correspondence: (A.M.); (M.S.)
| |
Collapse
|
34
|
Sattar S, Kabat J, Jerome K, Feldmann F, Bailey K, Mehedi M. Nuclear translocation of spike mRNA and protein is a novel feature of SARS-CoV-2. Front Microbiol 2023; 14:1073789. [PMID: 36778849 PMCID: PMC9909199 DOI: 10.3389/fmicb.2023.1073789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe pathophysiology in vulnerable older populations and appears to be highly pathogenic and more transmissible than other coronaviruses. The spike (S) protein appears to be a major pathogenic factor that contributes to the unique pathogenesis of SARS-CoV-2. Although the S protein is a surface transmembrane type 1 glycoprotein, it has been predicted to be translocated into the nucleus due to the novel nuclear localization signal (NLS) "PRRARSV," which is absent from the S protein of other coronaviruses. Indeed, S proteins translocate into the nucleus in SARS-CoV-2-infected cells. S mRNAs also translocate into the nucleus. S mRNA colocalizes with S protein, aiding the nuclear translocation of S mRNA. While nuclear translocation of nucleoprotein (N) has been shown in many coronaviruses, the nuclear translocation of both S mRNA and S protein reveals a novel feature of SARS-CoV-2.
Collapse
Affiliation(s)
- Sarah Sattar
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kailey Jerome
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Friederike Feldmann
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Kristina Bailey
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep and Allergy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
35
|
Batchu S, Diaz M, Tran J, Fadil A, Taneja K, Patel K, Lucke-Wold B. Spatial Mapping of Genes Implicated in SARS-CoV-2 Neuroinvasion to Dorsolateral Prefrontal Cortex Gray Matter. COVID 2023; 3:82-89. [PMID: 36714172 PMCID: PMC9880821 DOI: 10.3390/covid3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: SARS-CoV-2 is the newest beta coronavirus family member to demonstrate neuroinvasive capability in severe cases of infection. Despite much research activity in the SARS-CoV-2/COVID-19 space, the gene-level biology of this phenomenon remains poorly understood. In the present analysis, we leveraged spatial transcriptomics methodologies to examine relevant gene heterogeneity in tissue retrieved from the human prefrontal cortex. Methods: Expression profiles of genes with established relations to the SARS-CoV-2 neuroinvasion process were spatially resolved in dorsolateral prefrontal cortex tissue (N = 4). Spotplots were generated with mapping to six (6) previously defined gray matter layers. Results: Docking gene BSG, processing gene CTSB, and viral defense gene LY6E demonstrated similar spatial enrichment. Docking gene ACE2 and transmembrane series proteases involved in spike protein processing were lowly expressed across DLPFC samples. Numerous other findings were obtained. Conclusion: Efforts to spatially represent expression levels of key SARS-CoV-2 brain infiltration genes remain paltry to date. Understanding the sobering history of beta coronavirus neuroinvasion represents a weak point in viral research. Here we provide the first efforts to characterize a motley of such genes in the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Sai Batchu
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Michael Diaz
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jasmine Tran
- School of Medicine, University of Indiana, Indianapolis, IN 47405, USA
| | - Angela Fadil
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Kamil Taneja
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Karan Patel
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
36
|
Zekri-Nechar K, Zamorano-León JJ, Reche C, Giner M, López-de-Andrés A, Jiménez-García R, López-Farré AJ, Martínez-Martínez CH. Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa. DISEASE MARKERS 2022; 2022:1118195. [PMID: 36438904 PMCID: PMC9699787 DOI: 10.1155/2022/1118195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 09/12/2023]
Abstract
BACKGROUND Mitochondria have been involved in host defense upon viral infections. Factor Xa (FXa), a coagulating factor, may also have influence on mitochondrial functionalities. The aim was to analyze if in human pulmonary microvascular endothelial cells (HPMEC), the SARS-CoV-2 (COVID-19) spike protein subunits, S1 and S2 (S1+S2), could alter mitochondrial metabolism and what is the role of FXA. METHODS HPMEC were incubated with and without recombinants S1+S2 (10 nmol/L each). RESULTS In control conditions, S1+S2 failed to modify FXa expression. However, in LPS (1 μg/mL)-incubated HPMEC, S1+S2 significantly increased FXa production. LPS tended to reduce mitochondrial membrane potential with respect to control, but in higher and significant degree, it was reduced when S1+S2 were present. LPS did not significantly modify cytochrome c oxidase activity as compared with control. Addition of S1+S2 spike subunits to LPS-incubated HPMEC significantly increased cytochrome c oxidase activity with respect to control. Lactate dehydrogenase activity was also increased by S1+S2 with respect to control and LPS alone. Protein expression level of uncoupled protein-2 (UCP-2) was markedly expressed when S1+S2 were added together to LPS. Rivaroxaban (50 nmol/L), a specific FXa inhibitor, significantly reduced all the above-mentioned alterations induced by S1+S2 including UCP-2 expression. CONCLUSIONS In HPMEC undergoing to preinflammatory condition, COVID-19 S1+S2 spike subunits promoted alterations in mitochondria metabolism suggesting a shift from aerobic towards anaerobic metabolism that was accompanied of high FXa production. Rivaroxaban prevented all the mitochondrial metabolic changes mediated by the present COVID-19 S1 and S2 spike subunits suggesting the involvement of endogenous FXa.
Collapse
Affiliation(s)
| | - José J. Zamorano-León
- Public Health and Maternal, Child Health Department, School of Medicine, Universidad Complutense, Madrid, Spain
- IdISSC, Madrid, Spain
| | - Carmen Reche
- Gomez Ulla Central Defense Hospital, Madrid, Spain
| | - Manel Giner
- Surgical Departments, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ana López-de-Andrés
- Public Health and Maternal, Child Health Department, School of Medicine, Universidad Complutense, Madrid, Spain
- IdISSC, Madrid, Spain
| | - Rodrigo Jiménez-García
- Public Health and Maternal, Child Health Department, School of Medicine, Universidad Complutense, Madrid, Spain
- IdISSC, Madrid, Spain
| | | | | |
Collapse
|
37
|
Hsu PC, Shahed-Al-Mahmud M. SARS-CoV-2 mediated neurological disorders in COVID-19: Measuring the pathophysiology and immune response. Life Sci 2022; 308:120981. [PMID: 36150465 PMCID: PMC9490490 DOI: 10.1016/j.lfs.2022.120981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
The emergence of beta-coronavirus SARS-CoV-2 gets entry into its host cells by recognizing angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRESS2) receptors, which are responsible for coronavirus diseases-2019 (COVID-19). Global communities have been affected by COVID-19, especially caused the neurological complications and other critical medical issues. COVID-19 associated complications appear in aged people with underlying neurological states, especially in Parkinson's disease (PD) and Alzheimer's disease (AD). ACE2 receptors abundantly expressed in dopamine neurons may worsen the motor symptoms in PD and upregulates in SARS-CoV-2 infected aged patients' brain with AD. Immune-mediated cytokines released in SARS-CoV-2 infection lead to an indirect immune response that damages the central nervous system. Extreme cytokines release (cytokine storm) occurs due to aberrant immune pathways, and activation in microglial propagates CNS damage in COVID-19 patients. Here, we have explored the pathophysiology, immune responses, and long-term neurological impact on PD and AD patients with COVID-19. It is also a crucial step to understanding COVID-19 pathogenesis to reduce fatal outcomes of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pi-Ching Hsu
- Workplace Heath Promotion Center, Changhua Christian Hospital, Changhua, Taiwan
| | | |
Collapse
|
38
|
Sattar S, Kabat J, Jerome K, Feldmann F, Bailey K, Mehedi M. Nuclear translocation of spike mRNA and protein is a novel pathogenic feature of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.27.509633. [PMID: 36203551 PMCID: PMC9536038 DOI: 10.1101/2022.09.27.509633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe pathophysiology in vulnerable older populations and appears to be highly pathogenic and more transmissible than SARS-CoV or MERS-CoV [1, 2]. The spike (S) protein appears to be a major pathogenic factor that contributes to the unique pathogenesis of SARS-CoV-2. Although the S protein is a surface transmembrane type 1 glycoprotein, it has been predicted to be translocated into the nucleus due to the novel nuclear localization signal (NLS) "PRRARSV", which is absent from the S protein of other coronaviruses. Indeed, S proteins translocate into the nucleus in SARS-CoV-2-infected cells. To our surprise, S mRNAs also translocate into the nucleus. S mRNA colocalizes with S protein, aiding the nuclear translocation of S mRNA. While nuclear translocation of nucleoprotein (N) has been shown in many coronaviruses, the nuclear translocation of both S mRNA and S protein reveals a novel pathogenic feature of SARS-CoV-2. Author summary One of the novel sequence insertions resides at the S1/S2 boundary of Spike (S) protein and constitutes a functional nuclear localization signal (NLS) motif "PRRARSV", which may supersede the importance of previously proposed polybasic furin cleavage site "RRAR". Indeed, S protein's NLS-driven nuclear translocation and its possible role in S mRNA's nuclear translocation reveal a novel pathogenic feature of SARS-CoV-2.
Collapse
Affiliation(s)
- Sarah Sattar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kailey Jerome
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Friederike Feldmann
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kristina Bailey
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep and Allergy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
39
|
Çakırlar FK. Application of Biomarkers in the Diagnostic Distinction of Bacterial and Viral Infections. Biomark Med 2022. [DOI: 10.2174/9789815040463122010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infectious diseases, which pose a great threat worldwide, have a significant
impact on public health and the world economy. It contributes to increased healthcare
costs, unnecessary drug-related side effects, and increased antimicrobial resistance. It is
not always easy to distinguish the etiological differentiation of diseases that can
develop with bacteria and viruses. Therefore, one of the biggest challenges in medicine
is how to correctly distinguish between the different causes of these infections and how
to manage the patient. Because bacterial and viral infections often present similar
symptoms. The real decision is whether the infection is caused by bacteria or viruses
and whether to treat the patient with antibiotics. There are many different
methodological approaches to diagnosing infections. Biomarkers have been used in the
diagnosis of diseases and other conditions for many years. Biomarkers are molecules
found in blood and body fluids in measurable amounts, which can evaluate biological
and pathological processes. These key indicators can provide vital information in
determining disease prognosis, predicting response to treatments, adverse events and
drug interactions, and identifying key risks. An effective biomarker is extremely
important for the early diagnosis of various diseases. The explosion of interest in
biomarker research is driving the development of new predictive, diagnostic, and
prognostic products in modern medical practice. The purpose of this review is to
demonstrate the use and diagnostic potential of current and investigational biomarkers
in the distinction between bacterial and viral infections.
Collapse
Affiliation(s)
- Fatma Köksal Çakırlar
- Faculty of Cerrahpaşa Medicine, University of İstanbul- Cerrahpaşa,Department of Medical Microbiology,Department of Medical Microbiology, Faculty of Cerrahpaşa Medicine, University of İstanbul- Cerrahpaşa, Istanbul, Turkey,Istanbul,Turkey
| |
Collapse
|
40
|
Moatar AI, Chis AR, Marian C, Sirbu IO. Gene Network Analysis of the Transcriptome Impact of SARS-CoV-2 Interacting MicroRNAs in COVID-19 Disease. Int J Mol Sci 2022; 23:ijms23169239. [PMID: 36012503 PMCID: PMC9409149 DOI: 10.3390/ijms23169239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023] Open
Abstract
According to the World Health Organization (WHO), as of June 2022, over 536 million confirmed COVID-19 disease cases and over 6.3 million deaths had been globally reported. COVID-19 is a multiorgan disease involving multiple intricated pathological mechanisms translated into clinical, biochemical, and molecular changes, including microRNAs. MicroRNAs are essential post-transcriptional regulators of gene expression, being involved in the modulation of most biological processes. In this study, we characterized the biological impact of SARS-CoV-2 interacting microRNAs differentially expressed in COVID-19 disease by analyzing their impact on five distinct tissue transcriptomes. To this end, we identified the microRNAs’ predicted targets within the list of differentially expressed genes (DEGs) in tissues affected by high loads of SARS-CoV-2 virus. Next, we submitted the tissue-specific lists of the predicted microRNA-targeted DEGs to gene network functional enrichment analysis. Our data show that the upregulated microRNAs control processes such as mitochondrial respiration and cytokine and cell surface receptor signaling pathways in the heart, lymph node, and kidneys. In contrast, downregulated microRNAs are primarily involved in processes related to the mitotic cell cycle in the heart, lung, and kidneys. Our study provides the first exploratory, systematic look into the biological impact of the microRNAs associated with COVID-19, providing a new perspective for understanding its multiorgan physiopathology.
Collapse
Affiliation(s)
- Alexandra Ioana Moatar
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania
| | - Aimee Rodica Chis
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: ; Tel.: +40-756-136-272
| |
Collapse
|
41
|
Maurya SK, Baghel MS, Gaurav, Chaudhary V, Kaushik A, Gautam A. Putative role of mitochondria in SARS-CoV-2 mediated brain dysfunctions: a prospect. Biotechnol Genet Eng Rev 2022:1-26. [PMID: 35934991 DOI: 10.1080/02648725.2022.2108998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. Though the virus primarily damages the respiratory and cardiovascular systems after binding to the host angiotensin-converting enzyme 2 (ACE2) receptors, it has the potential to affect all major organ systems, including the human nervous system. There are multiple clinical reports of anosmia, dizziness, headache, nausea, ageusia, encephalitis, demyelination, neuropathy, memory loss, and neurological complications in SARS-CoV-2 infected individuals. Though the molecular mechanism of these brain dysfunctions during SARS-CoV-2 infection is elusive, the mitochondria seem to be an integral part of this pathogenesis. Emerging research findings suggest that the dysfunctional mitochondria and associated altered bioenergetics in the infected host cells lead to altered energy metabolism in the brain of Covid-19 patients. The interactome between viral proteins and mitochondrial proteins during Covid-19 pathogenesis also provides evidence for the involvement of mitochondria in SARS-CoV-2-induced brain dysfunctions. The present review discusses the possible role of mitochondria in disturbing the SARS-CoV-2 mediated brain functions, with the potential to use this information to prevent and treat these impairments.
Collapse
Affiliation(s)
| | - Meghraj S Baghel
- Department of Pathology, School of Medicine Johns Hopkins University, Baltimore, MD, USA
| | - Gaurav
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department ofEnvironmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
42
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
43
|
Roingeard P, Eymieux S, Burlaud-Gaillard J, Hourioux C, Patient R, Blanchard E. The double-membrane vesicle (DMV): a virus-induced organelle dedicated to the replication of SARS-CoV-2 and other positive-sense single-stranded RNA viruses. Cell Mol Life Sci 2022; 79:425. [PMID: 35841484 PMCID: PMC9287701 DOI: 10.1007/s00018-022-04469-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 12/18/2022]
Abstract
Positive single-strand RNA (+ RNA) viruses can remodel host cell membranes to induce a replication organelle (RO) isolating the replication of their genome from innate immunity mechanisms. Some of these viruses, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), induce double-membrane vesicles (DMVs) for this purpose. Viral non-structural proteins are essential for DMV biogenesis, but they cannot form without an original membrane from a host cell organelle and a significant supply of lipids. The endoplasmic reticulum (ER) and the initial mechanisms of autophagic processes have been shown to be essential for the biogenesis of SARS-CoV-2 DMVs. However, by analogy with other DMV-inducing viruses, it seems likely that the Golgi apparatus, mitochondria and lipid droplets are also involved. As for hepatitis C virus (HCV), pores crossing both membranes of SARS-CoV-2-induced DMVs have been identified. These pores presumably allow the supply of metabolites essential for viral replication within the DMV, together with the export of the newly synthesized viral RNA to form the genome of future virions. It remains unknown whether, as for HCV, DMVs with open pores can coexist with the fully sealed DMVs required for the storage of large amounts of viral RNA. Interestingly, recent studies have revealed many similarities in the mechanisms of DMV biogenesis and morphology between these two phylogenetically distant viruses. An understanding of the mechanisms of DMV formation and their role in the infectious cycle of SARS-CoV-2 may be essential for the development of new antiviral approaches against this pathogen or other coronaviruses that may emerge in the future.
Collapse
Affiliation(s)
- Philippe Roingeard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France. .,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France.
| | - Sébastien Eymieux
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Christophe Hourioux
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Romuald Patient
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| |
Collapse
|
44
|
Habeichi NJ, Tannous C, Yabluchanskiy A, Altara R, Mericskay M, Booz GW, Zouein FA. Insights into the modulation of the interferon response and NAD + in the context of COVID-19. Int Rev Immunol 2022; 41:464-474. [PMID: 34378474 DOI: 10.1080/08830185.2021.1961768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in dramatic worldwide mortality. Along with developing vaccines, the medical profession is exploring new strategies to curb this pandemic. A better understanding of the molecular consequences of SARS-CoV-2 cellular infection could lead to more effective and safer treatments. This review discusses the potential underlying impact of SARS-CoV-2 in modulating interferon (IFN) secretion and in causing mitochondrial NAD+ depletion that could be directly linked to COVID-19's deadly manifestations. What is known or surmised about an imbalanced innate immune response and mitochondrial dysfunction post-SARS-CoV-2 infection, and the potential benefits of well-timed IFN treatments and NAD+ boosting therapies in the context of the COVID-19 pandemic are discussed.
Collapse
Affiliation(s)
- Nada J Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.,Department of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Cynthia Tannous
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
45
|
Surendran H, Kumar S, Narasimhaiah S, Ananthamurthy A, Varghese PS, D'Souza GA, Medigeshi G, Pal R. SARS-CoV-2 infection of human-induced pluripotent stem cells-derived lung lineage cells evokes inflammatory and chemosensory responses by targeting mitochondrial pathways. J Cell Physiol 2022; 237:2913-2928. [PMID: 35460571 PMCID: PMC9088312 DOI: 10.1002/jcp.30755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
The COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily affects the lung, particularly the proximal airway and distal alveolar cells. NKX2.1+ primordial lung progenitors of the foregut (anterior) endoderm are the developmental precursors to all adult lung epithelial lineages and are postulated to play an important role in viral tropism. Here, we show that SARS-CoV-2 readily infected and replicated in human-induced pluripotent stem cell-derived proximal airway cells, distal alveolar cells, and lung progenitors. In addition to the upregulation of antiviral defense and immune responses, transcriptomics data uncovered a robust epithelial cell-specific response, including perturbation of metabolic processes and disruption in the alveolar maturation program. We also identified spatiotemporal dysregulation of mitochondrial heme oxygenase 1 (HMOX1), which is associated with defense against antioxidant-induced lung injury. Cytokines, such as TNF-α, INF-γ, IL-6, and IL-13, were upregulated in infected cells sparking mitochondrial ROS production and change in electron transport chain complexes. Increased mitochondrial ROS then activated additional proinflammatory cytokines leading to an aberrant cell cycle resulting in apoptosis. Notably, we are the first to report a chemosensory response resulting from SARS-CoV-2 infection similar to that seen in COVID-19 patients. Some of our key findings were validated using COVID-19-affected postmortem lung tissue sections. These results suggest that our in vitro system could serve as a suitable model to investigate the pathogenetic mechanisms of SARS-CoV-2 infection and to discover and test therapeutic drugs against COVID-19 or its consequences.
Collapse
Affiliation(s)
- Harshini Surendran
- Eyestem Research, Centre for Cellular and Molecular Platforms (C‐CAMP)BengaluruKarnatakaIndia
| | - Saurabh Kumar
- Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute (THSTI)FaridabadHaryanaIndia
| | - Swathi Narasimhaiah
- Eyestem Research, Centre for Cellular and Molecular Platforms (C‐CAMP)BengaluruKarnatakaIndia
| | | | - PS Varghese
- St John's Medical CollegeBengaluruKarnatakaIndia
| | | | - Guruprasad Medigeshi
- Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute (THSTI)FaridabadHaryanaIndia
| | - Rajarshi Pal
- Eyestem Research, Centre for Cellular and Molecular Platforms (C‐CAMP)BengaluruKarnatakaIndia
- The University of Trans‐disciplinary Health Sciences and Technology (TDU)BengaluruKarnatakaIndia
| |
Collapse
|
46
|
Rubio-Casillas A, Redwan EM, Uversky VN. SARS-CoV-2: A Master of Immune Evasion. Biomedicines 2022; 10:1339. [PMID: 35740361 PMCID: PMC9220273 DOI: 10.3390/biomedicines10061339] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
Viruses and their hosts have coevolved for a long time. This coevolution places both the pathogen and the human immune system under selective pressure; on the one hand, the immune system has evolved to combat viruses and virally infected cells, while viruses have developed sophisticated mechanisms to escape recognition and destruction by the immune system. SARS-CoV-2, the pathogen that is causing the current COVID-19 pandemic, has shown a remarkable ability to escape antibody neutralization, putting vaccine efficacy at risk. One of the virus's immune evasion strategies is mitochondrial sabotage: by causing reactive oxygen species (ROS) production, mitochondrial physiology is impaired, and the interferon antiviral response is suppressed. Seminal studies have identified an intra-cytoplasmatic pathway for viral infection, which occurs through the construction of tunneling nanotubes (TNTs), hence enhancing infection and avoiding immune surveillance. Another method of evading immune monitoring is the disruption of the antigen presentation. In this scenario, SARS-CoV-2 infection reduces MHC-I molecule expression: SARS-CoV-2's open reading frames (ORF 6 and ORF 8) produce viral proteins that specifically downregulate MHC-I molecules. All of these strategies are also exploited by other viruses to elude immune detection and should be studied in depth to improve the effectiveness of future antiviral treatments. Compared to the Wuhan strain or the Delta variant, Omicron has developed mutations that have impaired its ability to generate syncytia, thus reducing its pathogenicity. Conversely, other mutations have allowed it to escape antibody neutralization and preventing cellular immune recognition, making it the most contagious and evasive variant to date.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
47
|
Yang S, Tong Y, Chen L, Yu W. Human Identical Sequences, hyaluronan, and hymecromone ─ the new mechanism and management of COVID-19. MOLECULAR BIOMEDICINE 2022; 3:15. [PMID: 35593963 PMCID: PMC9120813 DOI: 10.1186/s43556-022-00077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 has created formidable damage to public health and market economy. Currently, SARS-CoV-2 variants has exacerbated the transmission from person-to-person. Even after a great deal of investigation on COVID-19, SARS-CoV-2 is still rampaging globally, emphasizing the urgent need to reformulate effective prevention and treatment strategies. Here, we review the latest research progress of COVID-19 and provide distinct perspectives on the mechanism and management of COVID-19. Specially, we highlight the significance of Human Identical Sequences (HIS), hyaluronan, and hymecromone ("Three-H") for the understanding and intervention of COVID-19. Firstly, HIS activate inflammation-related genes to influence COVID-19 progress through NamiRNA-Enhancer network. Accumulation of hyaluronan induced by HIS-mediated HAS2 upregulation is a substantial basis for clinical manifestations of COVID-19, especially in lymphocytopenia and pulmonary ground-glass opacity. Secondly, detection of plasma hyaluronan can be effective for evaluating the progression and severity of COVID-19. Thirdly, spike glycoprotein of SARS-CoV-2 may bind to hyaluronan and further serve as an allergen to stimulate allergic reaction, causing sudden adverse effects after vaccination or the aggravation of COVID-19. Finally, antisense oligonucleotides of HIS or inhibitors of hyaluronan synthesis (hymecromone) or antiallergic agents could be promising therapeutic agents for COVID-19. Collectively, Three-H could hold the key to understand the pathogenic mechanism and create effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
48
|
Zhou Y, Sotcheff SL, Routh AL. Next-generation sequencing: A new avenue to understand viral RNA-protein interactions. J Biol Chem 2022; 298:101924. [PMID: 35413291 PMCID: PMC8994257 DOI: 10.1016/j.jbc.2022.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/25/2022] Open
Abstract
The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA-protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA-protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA-protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA-protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA.
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
49
|
Yang S, Chen L, Tong Y, Yu W. Viral miRNA-mediated activation of hyaluronan production as a drug target against COVID-19. Acta Pharm Sin B 2022; 12:3195-3197. [PMID: 35433240 PMCID: PMC8989701 DOI: 10.1016/j.apsb.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
|
50
|
Premraj L, Kannapadi NV, Briggs J, Seal SM, Battaglini D, Fanning J, Suen J, Robba C, Fraser J, Cho SM. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci 2022; 434:120162. [PMID: 35121209 PMCID: PMC8798975 DOI: 10.1016/j.jns.2022.120162] [Citation(s) in RCA: 440] [Impact Index Per Article: 146.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
Abstract
IMPORTANCE Neurological and neuropsychiatric symptoms that persist or develop three months after the onset of COVID-19 pose a significant threat to the global healthcare system. These symptoms are yet to be synthesized and quantified via meta-analysis. OBJECTIVE To determine the prevalence of neurological and neuropsychiatric symptoms reported 12 weeks (3 months) or more after acute COVID-19 onset in adults. DATA SOURCES A systematic search of PubMed, EMBASE, Web of Science, Google Scholar and Scopus was conducted for studies published between January 1st, 2020 and August 1st, 2021. The systematic review was guided by Preferred Reporting Items for Systematic Review and Meta-Analyses. STUDY SELECTION Studies were included if the length of follow-up satisfied the National Institute for Healthcare Excellence (NICE) definition of post-COVID-19 syndrome (symptoms that develop or persist ≥3 months after the onset of COVID-19). Additional criteria included the reporting of neurological or neuropsychiatric symptoms in individuals with COVID-19. DATA EXTRACTION AND SYNTHESIS Two authors independently extracted data on patient characteristics, hospital and/or ICU admission, acute-phase COVID-19 symptoms, length of follow-up, and neurological and neuropsychiatric symptoms. MAIN OUTCOME(S) AND MEASURE(S) The primary outcome was the prevalence of neurological and neuropsychiatric symptoms reported ≥3 months post onset of COVID-19. We also compared post-COVID-19 syndrome in hospitalised vs. non-hospitalised patients, with vs. without ICU admission during the acute phase of infection, and with mid-term (3 to 6 months) and long-term (>6 months) follow-up. RESULTS Of 1458 articles, 19 studies, encompassing a total of 11,324 patients, were analysed. Overall prevalence for neurological post-COVID-19 symptoms were: fatigue (37%, 95% CI: 24%-50%), brain fog (32%, 9%-55%), memory issues (27%, 18%-36%), attention disorder (22%, 10%-34%), myalgia (18%, 4%-32%), anosmia (12%, 7%-17%), dysgeusia (11%, 4%-17%) and headache (10%, 1%-21%). Neuropsychiatric conditions included sleep disturbances (31%, 18%-43%), anxiety (23%, 13%-33%) and depression (12%, 7%-21%). Neuropsychiatric symptoms substantially increased in prevalence between mid- and long-term follow-up. Compared to non-hospitalised patients, patients hospitalised for acute COVID-19 had reduced frequency of anosmia, anxiety, depression, dysgeusia, fatigue, headache, myalgia, and sleep disturbance at three (or more) months post-infection. Conversely, hospital admission was associated with higher frequency of memory issues (OR: 1.9, 95% CI: 1.4-2.3). Cohorts with >20% of patients admitted to the ICU during acute COVID-19 experienced higher prevalence of fatigue, anxiety, depression, and sleep disturbances than cohorts with <20% of ICU admission. CONCLUSIONS AND RELEVANCE Fatigue, cognitive dysfunction (brain fog, memory issues, attention disorder) and sleep disturbances appear to be key features of post-COVID-19 syndrome. Psychiatric manifestations (sleep disturbances, anxiety, and depression) are common and increase significantly in prevalence over time. Randomised controlled trials are necessary to develop intervention strategy to reduce disease burden.
Collapse
Affiliation(s)
- Lavienraj Premraj
- Griffith University School of Medicine, Gold Coast, Australia; Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
| | - Nivedha V Kannapadi
- Division of Neurosciences Critical Care, Department of Neurology, Neurosurgery, Anaesthesiology and Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Jack Briggs
- Griffith University School of Medicine, Gold Coast, Australia
| | - Stella M Seal
- William H. Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Denise Battaglini
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Jonathon Fanning
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia; Faculty of Medicine University of Queensland, Brisbane, QLD, Australia; St Andrew's War Memorial Hospital, UnitingCare, Spring Hill, QLD, Australia; Nuffield Department of Population Health, University of Oxford, UK
| | - Jacky Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia; Faculty of Medicine University of Queensland, Brisbane, QLD, Australia
| | - Chiara Robba
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Science and Integrated Diagnostic, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, University of Genoa, Genoa, Italy
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia; Faculty of Medicine University of Queensland, Brisbane, QLD, Australia; St Andrew's War Memorial Hospital, UnitingCare, Spring Hill, QLD, Australia
| | - Sung-Min Cho
- Division of Neurosciences Critical Care, Department of Neurology, Neurosurgery, Anaesthesiology and Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, United States of America.
| |
Collapse
|