1
|
Akyüz BG, Akyüz M. Seasonal variations, source apportionment, and health risk assessment of nitrosamines in inhalable particulate matter (PM 10) in the atmosphere of Zonguldak, Türkiye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11083-11096. [PMID: 40195226 DOI: 10.1007/s11356-025-36280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/12/2025] [Indexed: 04/09/2025]
Abstract
The study presents seasonal changes in nitrosamine concentrations in inhalable particulate matter (PM10) collected from the atmosphere of Zonguldak, Turkey, during heating and non-heating periods, possible source apportionment, and risk assessment of human health. The daily collected PM2.5 and PM2.5-10 samples were analyzed for nitrosodimethylamine, nitrosomethylethylamine, nitrosodiethylamine, nitrosopyrrolidine, nitrosodipropylamine, nitrosomorpholine, nitrosoethylbutylamine, nitrosopiperidine, mono-nitrosopiperazine, di-nitrosopiperazine, nitrosodibutylamine, and nitrosodiphenylamine by gas chromatography-mass spectrometry (GC-MS). The mean concentrations of total nitrosamines in PM10 were found to be 19.04 ng/m3 in summer, 113.67 ng/m3 in winter, and 98.88 ng/m3 annually, with a peak of 253.56 ng/m3 occurring in winter. The source apportionment of the analyzed data was conducted using principal component analysis, resulting in two primary factors: "Coal-Fuel Oil Combustion-Cooking" and "Traffic Emissions-Secondary Atmospheric Reaction-Landfill." These two factors collectively accounted for 82.944% of the total variance. In order to evaluate the health risks associated with the inhalation of mutagenic and carcinogenic nitrosamines present in airborne PM10, cumulative lifetime cancer risks (LCR) were calculated for different age groups based on exposure time (ET) using annual mean concentrations. The average cumulative lifetime cancer risks, represented as the number of additional cancer cases per million exposed population, were in the range of 1.57-12.57 for the 0- < 1 age group, 4.18-33.52 for the 1- < 6 age group, 5.48-43.96 for the 6- < 21 age group, and 7.70-61.61 for the 21 < 70 age group. The estimated average cumulative lifetime cancer risks from inhalation exposure to nitrosamines in urban PM10 exceed the US Environmental Protection Agency's guideline for a negligible risk level of 1 excess cancer case per 1 million exposed individuals across all age groups. LCRs exceed the maximum acceptable value of 10 at different exposure times in all age groups but do not exceed the intolerable value of 100 in any age group.
Collapse
Affiliation(s)
- Berrin Gürler Akyüz
- Faculty of Pharmacy, Zonguldak Bülent Ecevit University, Esenköy/Kozlu, Zonguldak, 67600, Turkey.
| | - Mehmet Akyüz
- Faculty of Pharmacy, Zonguldak Bülent Ecevit University, Esenköy/Kozlu, Zonguldak, 67600, Turkey
| |
Collapse
|
2
|
Al-Abadleh HA. Iron content in aerosol particles and its impact on atmospheric chemistry. Chem Commun (Camb) 2024. [PMID: 38268472 DOI: 10.1039/d3cc04614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Atmospheric aerosol effects on ecological and human health remain uncertain due to their highly complex and evolving nature when suspended in air. Atmospheric chemistry, global climate/oceanic and health exposure models need to incorporate more realistic representations of aerosol particles, especially their bulk and surface chemistry, to account for the evolution in aerosol physicochemical properties with time. (Photo)chemistry driven by iron (Fe) in atmospheric aerosol particles from natural and anthropogenic sources remains limited in these models, particularly under aerosol liquid water conditions. In this feature article, recent advances from our work on Fe (photo)reactivity in multicomponent aerosol systems are highlighted. More specifically, reactions of soluble Fe with aqueous extracts of biomass burning organic aerosols and proxies of humic like substances leading to brown carbon formation are presented. Some of these reactions produced nitrogen-containing gaseous and condensed phase products. For comparison, results from these bulk aqueous phase chemical studies were compared to those from heterogeneous reactions simulating atmospheric aging of Fe-containing reference materials. These materials include Arizona test dust (AZTD) and combustion fly ash particles. Also, dissolution of Fe and other trace elements is presented from simulated human exposure experiments to highlight the impact of aerosol aging on levels of trace metals. The impacts of these chemical reactions on aerosol optical, hygroscopic and morphological properties are also emphasized in light of their importance to aerosol-radiation and aerosol-cloud interactions, in addition to biogeochemical processes at the sea/ocean surface microlayer upon deposition. Future directions for laboratory studies on Fe-driven multiphase chemistry are proposed to advance knowledge and encourage collaborations for efficient utilization of expertise and resources among climate, ocean and health scientific communities.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
3
|
Rothmann MH, Møller P, Essig YJ, Gren L, Malmborg VB, Tunér M, Pagels J, Krais AM, Roursgaard M. Genotoxicity by rapeseed methyl ester and hydrogenated vegetable oil combustion exhaust products in lung epithelial (A549) cells. Mutagenesis 2023; 38:238-249. [PMID: 37232551 DOI: 10.1093/mutage/gead016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/25/2023] [Indexed: 05/27/2023] Open
Abstract
Biofuel is an attractive substitute for petrodiesel because of its lower environmental footprint. For instance, the polycyclic aromatic hydrocarbons (PAH) emission per fuel energy content is lower for rapeseed methyl ester (RME) than for petrodiesel. This study assesses genotoxicity by extractable organic matter (EOM) of exhaust particles from the combustion of petrodiesel, RME, and hydrogenated vegetable oil (HVO) in lung epithelial (A549) cells. Genotoxicity was assessed as DNA strand breaks by the alkaline comet assay. EOM from the combustion of petrodiesel and RME generated the same level of DNA strand breaks based on the equal concentration of total PAH (i.e. net increases of 0.13 [95% confidence interval (CI): 0.002, 0.25, and 0.12 [95% CI: 0.01, 0.24] lesions per million base pairs, respectively). In comparison, the positive control (etoposide) generated a much higher level of DNA strand breaks (i.e. 0.84, 95% CI: 0.72, 0.97) lesions per million base pairs. Relatively low concentrations of EOM from RME and HVO combustion particles (<116 ng/ml total PAH) did not cause DNA strand breaks in A549 cells, whereas benzo[a]pyrene and PAH-rich EOM from petrodiesel combusted using low oxygen inlet concentration were genotoxic. The genotoxicity was attributed to high molecular weight PAH isomers with 5-6 rings. In summary, the results show that EOM from the combustion of petrodiesel and RME generate the same level of DNA strand breaks on an equal total PAH basis. However, the genotoxic hazard of engine exhaust from on-road vehicles is lower for RME than petrodiesel because of lower PAH emission per fuel energy content.
Collapse
Affiliation(s)
- Monika Hezareh Rothmann
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Yona J Essig
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden
| | - Louise Gren
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Vilhelm B Malmborg
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Martin Tunér
- Division of Combustion Engines, Lund University, SE-221 00 Lund, Sweden
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
4
|
Chen A, Yang J, He Y, Yuan Q, Li Z, Zhu L. High spatiotemporal resolution estimation of AOD from Himawari-8 using an ensemble machine learning gap-filling method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159673. [PMID: 36288751 DOI: 10.1016/j.scitotenv.2022.159673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The data incompleteness of aerosol optical depth (AOD) products and their lack of availability in highly urbanized areas limit their great potential of application in air quality research. In this study, we developed an ensemble machine-learning approach that integrated random forest-based Space Interpolation Model (SIM) and deep neural network-based Time Interpolation Model (TIM) to achieve high spatiotemporal resolution dataset of AOD. The spatial interpolation model first filled the spatial gaps in the Level-2 Himawari-8 hourly AOD product in 0.05° (∼5 km) spatial resolution, while the time interpolation model further improved the temporal resolution to 10 min on its basis. A full-coverage AOD dataset of Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) in 2020 was obtained as a practical implementation. The validation against in-situ AOD observations from AERONET and SONET indicated that this new dataset was satisfactory (R = 0.80), and especially in spring and summer. Overall, our ensemble machine-learning model provided an effective scheme for reconstruction of AOD with high spatiotemporal resolution of 0.05° and 10 min, which may further advance the near-real-time monitoring of air-quality in urban areas.
Collapse
Affiliation(s)
- Aoxuan Chen
- School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jin Yang
- School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yan He
- School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Qiangqiang Yuan
- School of Geodesy and Geomatics, Wuhan University, Wuhan, Hubei 430079, China; The Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhengqiang Li
- State Environmental Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Liye Zhu
- School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China.
| |
Collapse
|
5
|
Yin S. Decadal changes in premature mortality associated with exposure to outdoor PM 2.5 in mainland Southeast Asia and the impacts of biomass burning and anthropogenic emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158775. [PMID: 36113810 DOI: 10.1016/j.scitotenv.2022.158775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
In mainland Southeast Asia (SEA), a rapid increase of fossil fuel consumption and massive particulate matter emissions from biomass burning (BB) are severely threatening the health of local inhabitants. In this study, surface PM2.5 data, satellite fire observations and emission inventories were integrated with the Global Exposure Mortality Model (GEMM) to estimate premature mortality attributable to PM2.5 exposure from 1990 through 2019 and to explore and quantify the health burden associated with BB and anthropogenic emissions in mainland SEA. BB in mainland SEA has remained intense over the past decades. Owing to a lack of effective control measures, emission inventory and satellite-observed data both showed that BB has markedly intensified in several regions, including northern Cambodia and northern Laos. The multiannual average (1997-2015) BB PM2.5 emission was 1.6 × 106 t/yr, which is much higher than that of anthropogenic (fossil fuel combustion) PM2.5 emission. GEMM results indicated that PM2.5-related premature mortality in mainland SEA more than doubled from 100 (95 % confidence interval [CI], 88-112) thousand in 1990 to 257 (95 % CI, 228-286) thousand in 2019. Decomposition analysis revealed that variations in population size and age structure also promoted this increase of PM2.5-related deaths. Given that mainland SEA is a rapidly developing region, it is expected that local public health will face increasing challenges due to population growth, population ageing, and increased anthropogenic emissions. Therefore, it is imperative for policymakers to consider these influential factors, set practical mitigation targets, and explore how to effectively and systematically combine BB with anthropogenic emission controls to maximize the health benefits.
Collapse
Affiliation(s)
- Shuai Yin
- Earth System Division, National Institute for Environmental Studies, Tsukuba 3058506, Japan.
| |
Collapse
|
6
|
Yin S. Exploring the relationships between ground-measured particulate matter and satellite-retrieved aerosol parameters in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44348-44363. [PMID: 35129746 DOI: 10.1007/s11356-022-19049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
In this study, the PM2.5 and PM10 concentrations from 367 cities in China were integrated with MODIS-retrieved aerosol optical depth (AOD) and Angstrom exponent (AE) data to explore the relationship between ground-measured surface particle concentrations and remote-sensing aerosol parameters. The impact of meteorological and topographical factors and seasonality were also taken into consideration and the partial least squares (PLS) regression model was adopted to evaluate the effects of surface particulate matter (PM) concentration and meteorological factors on the variation of aerosol parameters. PM concentrations and aerosol parameters all presented strong spatial disparity and seasonal patterns in China. After implementation of stringent clean air actions and policies, both the ground-measured and satellite-retrieved aerosol parameters revealed that the concentrations of suspended particles in China's cities declined dramatically from 2015 to 2018. The PM/AOD ratio showed conspicuous south-north and west-east differences. The ratio was strongly correlated to meteorological and topographic factors, and it tended to be higher in arid and less polluted regions. Moreover, the dominant factors affecting seasonal PM/AOD ratios varied among China's five regions. The correlations of daily PM-AOD were always strong in southwest China and in basin terrain (e.g., Sichuan Basin and Tarim Basin). In contrast, the PM-AOD correlation was found to be negative in some cities on the Tibetan Plateau because local relative humidity makes a greater contribution to AOD variation. Since the climate is arid and the ratio of coarse particles (e.g., PM10) is much higher, PM tended to have a significantly negative correlation with AE in northwestern cities. Whereas in many southern cities, PM was positively correlated with AE because of the area's high relative humidity and aerosol hygroscopic properties.
Collapse
Affiliation(s)
- Shuai Yin
- Earth System Division, National Institute for Environmental Studies, Tsukuba, 3058506, Japan.
| |
Collapse
|
7
|
Lai A, Baumgartner J, Schauer JJ, Rudich Y, Pardo M. Cytotoxicity and chemical composition of women's personal PM 2.5 exposures from rural China. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2021; 1:359-371. [PMID: 34604754 PMCID: PMC8459644 DOI: 10.1039/d1ea00022e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Personal exposure PM samples aid in determining the sources and chemical composition of real-world exposures, particularly in settings with household air pollution. However, their use in toxicological research is limited, despite uncertainty regarding health effects in these settings and evidence of differential toxicity among PM2.5 sources and components. This study used women's PM2.5 exposure samples collected using personal exposure monitoring in rural villages in three Chinese provinces (Beijing, Shanxi, and Sichuan) during summer and winter. Water-soluble organic carbon, ions, elements, and organic tracers (e.g. levoglucosan and polycyclic aromatic hydrocarbons [PAHs]) were quantified in water and organic PM2.5 extracts. Human lung epithelial cells (A549) were exposed to the extracts. Cell death, reactive oxygen species (ROS), and gene expression were measured. Biomass burning contributions were higher in Sichuan samples than in Beijing or Shanxi. Some PM characteristics (total PAHs and coal combustion source contributions) and biological effects of organic extract exposures (cell death, ROS, and cytokine gene expression) shared a common trend of higher levels and effects in winter than in summer for Shanxi and Beijing but no seasonal differences in Sichuan. Modulation of phase I/AhR-related genes (cyp1a1 and cyp1b1) and phase II/oxidative stress-related genes (HO-1, SOD1/2, NQO-1, and catalase) was either low or insignificant, without clear trends between samples. No significant cell death or ROS production was observed for water extract treatments among all sites and seasons, even at possible higher concentrations tested. These results support organic components, particularly PAHs, as essential drivers of biological effects, which is consistent with some other evidence from ambient PM2.5. Direct measurement with personal samplers captures the chemical complexity of PM2.5 exposures better than fixed monitors. To investigate biological effects, lung cells were exposed to extracts of exposure PM2.5 samples.![]()
Collapse
Affiliation(s)
- Alexandra Lai
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| | - Jill Baumgartner
- Institute for Health and Social Policy, Department of Epidemiology, Biostatistics, and Occupational Health, McGill University Montreal Quebec Canada
| | - James J Schauer
- Environmental Chemistry & Technology Program, University of Wisconsin-Madison Madison WI USA
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
8
|
Cytogenotoxicity Evaluation of Young Adults Exposed to High Levels of Air Pollution in a Mexican Metropolitan Zone Using Buccal Micronucleus Cytome Assay. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6630861. [PMID: 33511205 PMCID: PMC7826217 DOI: 10.1155/2021/6630861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022]
Abstract
Air pollution has become a serious public health problem globally. Recent studies support the harmful effect of air pollution on human health, in addition to scientific evidence that recognizes it as a human carcinogen. The buccal micronucleus cytome (BMC) assay is employed extensively to measure cytotoxic and genotoxic damage in a population exposed to environmental contamination. The objective of this study was to evaluate the cytotoxic and genotoxic effects in healthy young adults exposed to different levels of air pollution and to identify areas with air pollution rates above the regulatory limits. This study was performed through the BMC assay in oral mucosa samples from 80 healthy young adults from the Guadalajara metropolitan zone. Three highly contaminated areas were taken into account: Tlaquepaque, Miravalle, and Las Pintas. Las Aguilas, a less contaminated area, was used as a reference. The frequencies of nuclear abnormalities in the areas with the highest and lowest levels of air pollution were compared with the Mann–Whitney U test. In addition, an analysis of the concentration of environmental pollutants, particulate matter ≤ 10 μm (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO), were carried out in the mentioned areas, in order to identify the events above the regulatory limits in a year period. The results showed that young adults exposed to a higher concentration of pollutants showed higher frequencies of nuclear abnormalities. The individuals from the areas of Tlaquepaque, Miravalle, and Las Pintas showed cytotoxic damage since statistically significant differences were found in the abnormalities of pyknotic nuclei (PNs), condensed chromatin (CC), karyorrhexis (KX), and karyolysis (KL). The individuals who showed the most cytotoxic damage were from the Las Pintas area with higher frequencies in nuclear abnormalities (PNs, CC, KX, and KL) (p < 0.0001). Genotoxic damage was found in individuals from two zones, Miravalle and Las Pintas, with statistically significant differences in the abnormality of nuclear buds (NBUDs) (p < 0.0001). Our results suggest that exposure to high levels of air pollution in healthy young adults has an effect on cellular and nuclear integrity and thus in human health, since areas with higher air pollution showed an increase in cytotoxicity, specifically in early and late markers of cell death (CC, KX, PN, and KL) and genotoxic damage (BUDs).
Collapse
|
9
|
Panico A, Grassi T, Bagordo F, Idolo A, Serio F, Tumolo MR, De Giorgi M, Guido M, Tutino M, De Donno A. Micronucleus Frequency in Exfoliated Buccal Cells of Children Living in an Industrialized Area of Apulia (Italy). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041208. [PMID: 32069990 PMCID: PMC7068596 DOI: 10.3390/ijerph17041208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Micronuclei (MN) are biomarkers of early biological effect often used for detecting DNA damage in human population exposed to genotoxic agents. The aim of this study was to evaluate the frequency of MN in exfoliated buccal cells of children living in an industrialized (impacted) area compared with that found in children living in a control area without significant anthropogenic impacts. A total of 462 6–8-year-old children (206 in the impacted area, 256 in the control area) attending primary school were enrolled. A questionnaire was administered to the parents of the recruited children to obtain information about personal data, lifestyles, and food habits of their children. Atmospheric particulate fractions were collected near the involved schools to assess the level of environmental exposure of the children. The presence of MN was highlighted in 68.4% of children living in the impacted area with a mean MN frequency of 0.66‰ ± 0.61‰. MN positivity and frequency were significantly lower in the control area (37.1% and 0.27‰ ± 0.43‰, respectively). The frequency of MN was positively associated with quasi-ultrafine particulate matter (PM0.5), traffic near the home, and consuming barbecued food; while adherence to the Mediterranean diet and practicing sport were negatively associated.
Collapse
Affiliation(s)
- Alessandra Panico
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.P.); (T.G.); (A.I.); (F.S.); (M.D.G.); (M.G.); (A.D.D.)
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.P.); (T.G.); (A.I.); (F.S.); (M.D.G.); (M.G.); (A.D.D.)
| | - Francesco Bagordo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.P.); (T.G.); (A.I.); (F.S.); (M.D.G.); (M.G.); (A.D.D.)
- Correspondence: ; Tel.: +39-832-298-951
| | - Adele Idolo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.P.); (T.G.); (A.I.); (F.S.); (M.D.G.); (M.G.); (A.D.D.)
| | - Francesca Serio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.P.); (T.G.); (A.I.); (F.S.); (M.D.G.); (M.G.); (A.D.D.)
| | - Maria Rosaria Tumolo
- Institute for Research on Population and Social Policies, National Research Council (IRPPS-CNR), 72100 Brindisi, Italy;
- Institute of Clinical Physiology (CNR-IFC), 73100 Lecce, Italy
| | - Mattia De Giorgi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.P.); (T.G.); (A.I.); (F.S.); (M.D.G.); (M.G.); (A.D.D.)
| | - Marcello Guido
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.P.); (T.G.); (A.I.); (F.S.); (M.D.G.); (M.G.); (A.D.D.)
| | - Maria Tutino
- Regional Agency for Environmental Protection (ARPA Puglia), 70126 Bari, Italy;
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.P.); (T.G.); (A.I.); (F.S.); (M.D.G.); (M.G.); (A.D.D.)
| |
Collapse
|
10
|
Naydenova S, Veli A, Mustafa Z, Gonsalvesh L. Qualitative and quantitative determination of polycyclic aromatic hydrocarbons in fine particulate matter. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:498-509. [PMID: 31847692 DOI: 10.1080/10934529.2019.1701896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
A GC-MS method in SIM mode is proposed for routine analysis of nineteen polycyclic aromatic hydrocarbons (PAHs) in particulate matter with an aerodynamic diameter of 10 µm. The latter is collected on Whatman® QM-A quartz filters via OPSIS SM200 sampler during autumn and spring periods at two different points, i.e. the one affected from communal and industry sectors and the other affected mainly from the transportation sector. In order to recover PAHs of interest ultrasonic assisted extraction is employed by utilization of various solvents. Accuracy data of the developed analytical method are within acceptable limits for the studied concentration range, i.e. trueness 60.0-120.0% and precision < 20.0%. The elaborated methodology is characterized by advantages such as short extraction time, low solvent and reagent consumption and simplified cleaning and is successfully applied to airborne PM10, collected in the urban area of Burgas, Bulgaria.
Collapse
Affiliation(s)
- St Naydenova
- Department of Ecology and Environmental Protection, Assen Zlatarov University, Burgas, Bulgaria
| | - A Veli
- Central Scientific Research Laboratory, Assen Zlatarov University, Burgas, Bulgaria
| | - Z Mustafa
- Central Scientific Research Laboratory, Assen Zlatarov University, Burgas, Bulgaria
| | - L Gonsalvesh
- Central Scientific Research Laboratory, Assen Zlatarov University, Burgas, Bulgaria
| |
Collapse
|
11
|
Zhang T, Shi XC, Xia Y, Mai L, Tremblay PL. Escherichia coli adaptation and response to exposure to heavy atmospheric pollution. Sci Rep 2019; 9:10879. [PMID: 31350435 PMCID: PMC6659633 DOI: 10.1038/s41598-019-47427-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
90% of the world population is exposed to heavy atmospheric pollution. This is a major public health issue causing 7 million death each year. Air pollution comprises an array of pollutants such as particulate matters, ozone and carbon monoxide imposing a multifactorial stress on living cells. Here, Escherichia coli was used as model cell and adapted for 390 generations to atmospheric pollution to assess its long-term effects at the genetic, transcriptomic and physiological levels. Over this period, E. coli evolved to grow faster and acquired an adaptive mutation in rpoB, which encodes the RNA polymerase β subunit. Transcriptomic and biochemical characterization showed alteration of the cell membrane composition resulting in lesser permeability after the adaptation process. A second significant change in the cell wall structure of the adapted strain was the greater accumulation of the exopolysaccharides colanic acid and cellulose in the extracellular fraction. Results also indicated that amino acids homeostasis was involved in E. coli response to atmospheric pollutants. This study demonstrates that adaptive mutation with transformative physiological impact can be fixed in genome after exposure to atmospheric pollution and also provides a comprehensive portrait of the cellular response mechanisms involved.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, P.R. China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P.R. China
| | - Xiao-Chen Shi
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, P.R. China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P.R. China
| | - Yangyang Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, P.R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, P.R. China
| | - Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, P.R. China. .,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P.R. China.
| |
Collapse
|
12
|
Luo F, Wei H, Guo H, Li Y, Feng Y, Bian Q, Wang Y. LncRNA MALAT1, an lncRNA acting via the miR-204/ZEB1 pathway, mediates the EMT induced by organic extract of PM2.5 in lung bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2019; 317:L87-L98. [DOI: 10.1152/ajplung.00073.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extensive cohort studies have explored the hazards of particulate matter with aerodynamic diameter 2.5 μm or smaller (PM2.5) to human respiratory health; however, the molecular mechanisms for PM2.5 carcinogenesis are poorly understood. Long non-coding RNAs (lncRNAs) are involved in various pathophysiological processes. In the present study, we investigated the effect of PM2.5 on the epithelial-mesenchymal transition (EMT) in lung bronchial epithelial cells and the underlying mechanisms mediated by an lncRNA. Organic extracts of PM2.5 from Shanghai were used to treat human bronchial epithelial cell lines (HBE and BEAS-2B). The PM2.5 organic extracts induced the EMT and cell transformation. High levels of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), mediated by NF-κB, were involved in the EMT process. For both cell lines, there was a similar response. In addition, MALAT1 interacted with miR-204 and reversed the inhibitory effect of its target gene, ZEB1, thereby contributing to the EMT and malignant transformation. In sum, these findings show that NF-κB transcriptionally regulates MALAT1, which, by binding with miR-204 and releasing ZEB1, promotes the EMT. These results offer an understanding of the regulatory network of the PM2.5-induced EMT that relates to the health risks associated with PM2.5.
Collapse
Affiliation(s)
- Fei Luo
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongying Wei
- The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaqi Guo
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Feng
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yan Wang
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
“Risk is in the air”: Polycyclic aromatic hydrocarbons, metals and mutagenicity of atmospheric particulate matter in a town of Northern Italy (Respira study). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:35-49. [DOI: 10.1016/j.mrgentox.2018.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
|
14
|
Besis A, Tsolakidou A, Balla D, Samara C, Voutsa D, Pantazaki A, Choli-Papadopoulou T, Lialiaris TS. Toxic organic substances and marker compounds in size-segregated urban particulate matter - Implications for involvement in the in vitro bioactivity of the extractable organic matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:758-774. [PMID: 28732338 DOI: 10.1016/j.envpol.2017.06.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/28/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
Toxic organic substances and polar organic marker compounds, i.e. polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs) and their nitro-derivatives (N-PAHs), as well as dicarboxylic acids (DCAs) and sugars/sugar anhydrites (S/SAs) were analyzed in size-segregated PM samples (<0.49, 0.49-0.97, 0.97-3 and >3 μm) collected at two urban sites (urban traffic and urban background) during the cold and the warm season. The potential associations between the organic PM determinants and the adverse cellular effects (i.e. cytotoxicity, genotoxicity, DNA damage, oxidative DNA adduct formation, and inflammatory response) induced by the extractable organic matter (EOM) of PM, previously measured in Velali et al. (2016b), were investigated by bivariate correlations and Principal Component Analysis (PCA). Partial Least Square regression analysis (PLS) was also employed in order to identify the chemical classes mainly involved in the EOM-induced toxicological endpoints in the various particle size fractions. Results indicated that particle size range <0.49 μm was the major carrier of PM mass and organic compounds at both sites. All toxic organic compounds exhibited higher concentrations at the urban traffic site, except PCBs and OCPs that did not exhibit intra-urban variations. Conversely, wintertime levels of levoglucosan were significantly higher at the urban background site as a result of residential biomass burning. The PLS regression analysis allowed quite good prediction of the EOM-induced cytotoxicity and genotoxicity based on the determined organic chemical classes, particularly for the finest size fraction of PM. Nevertheless, it is expected that other chemical constituents, not determined here, also contribute to the measured toxicological responses.
Collapse
Affiliation(s)
- Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Tsolakidou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitra Balla
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Theodore S Lialiaris
- Demokrition University of Thrace, Faculty of Medicine, Department of Genetics, Alexandroupolis 68100, Greece
| |
Collapse
|
15
|
Zhao H, Yang B, Xu J, Chen DM, Xiao CL. PM 2.5-induced alterations of cell cycle associated gene expression in lung cancer cells and rat lung tissues. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:77-82. [PMID: 28384515 DOI: 10.1016/j.etap.2017.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
The aim of the current study was to investigate the expression of cell cycle-associated genes induced by fine particulate matter (PM2.5) in lung cancer cell line and tissues. The pulmonary lymph node metastasis cells (H292) were treated with PM2.5in vitro. Wistar rats were used to perform an in vivo study. Rats were randomly assigned to experiment and control groups and those in the experiment group were exposed to PM2.5 once every 15 d, while those in the control group were exposed to normal saline. The cell cycle-associated genes expression was analyzed by real-time PCR. Trachea and lung tissues of rats were processed for scanning electron microscopic (SEM) examinations. Exposure of H292 cells to PM2.5 dramatically increased the expressions of p53 and cyclin-dependent kinase 2 (CDK2) after 24h of exposure (p<0.01) and markedly increased the expressions of the cell division cycle 2 (Cdc2) and cyclin B after 48h of exposure (p<0.01), while those genes expressions were significantly reduced after 72h of exposure, at which time the expression of p21 was predominant (p<0.01). In vivo studies further demonstrated these results. The results of SEM suggested that both of the trachea and lung tissues were damaged and the degree of damage was time-dependent. In conclusion, PM2.5 can induce significantly alterations of p53 and CDK2 in the early phase, Cdc2 and cyclin B in mid-term and p21 in long-term exposure. The degree of PM2.5-induced damage to the trachea and lung tissue was time-dependent.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jilin University, China
| | - Biao Yang
- Department of Key Laboratory of Environmental Pollution and Microecology, Shenyang Medical College, China
| | - Jia Xu
- Department of Key Laboratory of Environmental Pollution and Microecology, Shenyang Medical College, China
| | - Dong-Mei Chen
- Department of Key Laboratory of Environmental Pollution and Microecology, Shenyang Medical College, China
| | - Chun-Ling Xiao
- Department of Key Laboratory of Environmental Pollution and Microecology, Shenyang Medical College, China.
| |
Collapse
|
16
|
Aammi S, Karaca F, Petek M. A toxicological and genotoxicological indexing study of ambient aerosols (PM 2.5-10) using in vitro bioassays. CHEMOSPHERE 2017; 174:490-498. [PMID: 28189894 DOI: 10.1016/j.chemosphere.2017.01.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/22/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
This study evaluates the toxicity and genotoxicity levels of atmospheric particulate matter (PM) samples collected at several locations of a megacity (Istanbul, Turkey) with different urban and industrial characteristics. The ambient air samples, in the form of a coarse fraction of inhalable particulates, PM2.5-10, were collected on Teflon filters using a passive sampling method on a monthly basis during a one-year period. Later, they were extracted into both the lipophilic and hydrophilic phases using dimethyl sulfoxide (DMSO) and ultra-pure water, respectively. The obtained aqueous extracts were tested for acute toxicity and genotoxicity using the photo-luminescent bacterium Vibrio fischeri Microtox® and SOS Chromotest® assays, respectively. Statistically significant differences greater than background levels were obtained in both measurements, indicating the presence of toxic substances absorbed on particulate matter. The PM2.5-10 extracts identified significant seasonal and locational differences in the toxicity and genotoxicity levels. Local anthropogenic activities and factors were associated with the quantified higher levels. Finally, a qualitative inner comparison study of regional toxicity and genotoxicity indexes was suggested to provide a clearer picture of the pollution and risk levels (or occurrences) in the Istanbul urban area. In this indexing study, the threshold levels for the urban background and episodic occurrences of the toxicity and genotoxicity levels in PM2.5-10 samples were identified to be 1.11 TU (Toxicity Unit) and 8.73 TU and 0.72 IF (Induction Factor) and 1.38 IF, respectively.
Collapse
Affiliation(s)
- Saida Aammi
- Istanbul University, Biotechnology Department, Beyazit, 34452, Fatih, Istanbul, Turkey.
| | - Ferhat Karaca
- Nazarbayev University, Civil Engineering Department, 010000, Astana, Kazakhstan
| | - Mustafa Petek
- Fatih University, Department of Genetic and Biomedical Engineering, 34500, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
17
|
Velali E, Papachristou E, Pantazaki A, Choli-Papadopoulou T, Argyrou N, Tsourouktsoglou T, Lialiaris S, Constantinidis A, Lykidis D, Lialiaris TS, Besis A, Voutsa D, Samara C. Cytotoxicity and genotoxicity induced in vitro by solvent-extractable organic matter of size-segregated urban particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1350-1362. [PMID: 27613321 DOI: 10.1016/j.envpol.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/21/2016] [Accepted: 09/02/2016] [Indexed: 05/10/2023]
Abstract
Three organic fractions of different polarity, including a non polar organic fraction (NPOF), a moderately polar organic fraction (MPOF), and a polar organic fraction (POF) were obtained from size-segregated (<0.49, 0.49-0.97, 0.97-3 and >3 μm) urban particulate matter (PM) samples, and tested for cytotoxicity and genotoxicity using a battery of in vitro assays. The cytotoxicity induced by the organic PM fractions was measured by the mitochondrial dehydrogenase (MTT) cell viability assay applied on MRC-5 human lung epithelial cells. DNA damages were evaluated through the comet assay, determination of the poly(ADP-Ribose) polymerase (PARP) activity, and the oxidative DNA adduct 8-hydroxy-deoxyguanosine (8-OHdG) formation, while pro-inflammatory effects were assessed by determination of the tumor necrosis factor-alpha (TNF-α) mediator release. In addition, the Sister Chromatid Exchange (SCE) inducibility of the solvent-extractable organic matter was measured on human peripheral lymphocyte. Variations of responses were assessed in relation to the polarity (hence the expected composition) of the organic PM fractions, particle size, locality, and season. Organic PM fractions were found to induce rather comparable Cytotoxicity and genotoxicity of PM appeared to be rather independent from the polarity of the extractable organic PM matter (EOM) with POF often being relatively more toxic than NPOF or MPOF. All assays indicated stronger mass-normalized bioactivity for fine than coarse particles peaking in the 0.97-3 and/or the 0.49-0.97 μm size ranges. Nevertheless, the air volume-normalized bioactivity in all assays was highest for the <0.49 μm size range highlighting the important human health risk posed by the inhalation of these quasi-ultrafine particles.
Collapse
Affiliation(s)
- Ekaterini Velali
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Nikoleta Argyrou
- Demokrition University of Thrace, Faculty of Medicine, Department of Genetics, Alexandroupolis 68100, Greece
| | - Theodora Tsourouktsoglou
- Demokrition University of Thrace, Faculty of Medicine, Department of Genetics, Alexandroupolis 68100, Greece
| | - Stergios Lialiaris
- Demokrition University of Thrace, Faculty of Medicine, Department of Genetics, Alexandroupolis 68100, Greece
| | - Alexandros Constantinidis
- Demokrition University of Thrace, Faculty of Medicine, Department of Genetics, Alexandroupolis 68100, Greece
| | - Dimitrios Lykidis
- Demokrition University of Thrace, Faculty of Medicine, Department of Genetics, Alexandroupolis 68100, Greece
| | - Thedore S Lialiaris
- Demokrition University of Thrace, Faculty of Medicine, Department of Genetics, Alexandroupolis 68100, Greece
| | - Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
18
|
Yue H, Yun Y, Gao R, Li G, Sang N. Winter Polycyclic Aromatic Hydrocarbon-Bound Particulate Matter from Peri-urban North China Promotes Lung Cancer Cell Metastasis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14484-93. [PMID: 26008712 DOI: 10.1021/es506280c] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
On the basis of the close relationship between human exposure to high concentrations of small particulate matter (PM) and increased lung cancer mortality, PM was recently designated as a Group I carcinogen. Considering that PM is highly heterogeneous, the potential health risks of PM promoting tumor metastasis in lung cancer, as well as its chemical characteristics, remain elusive. In the present study, we collected PM2.5 and PM10 in a peri-urban residential site of Taiyuan and determined the concentration and source of polycyclic aromatic hydrocarbons (PAHs). The results indicated that 18 PAHs, ranging from 38.21 to 269.69 ng/m(3) (for PM2.5) and from 44.34 to 340.78 ng/m(3) (for PM10), exhibited seasonal variations, and the PAHs in winter PM mainly originated from coal combustion. We calculated the benzo(a)pyrene-equivalent (BaPeq) and found that the PAH-bound PM in winter exhibited higher carcinogenic risks for humans. Following this result, in vitro bioassays demonstrated that PM2.5 and PM10 induced A549 cell migration and invasion, and the mechanism involved reactive oxygen species (ROS)-mediated epithelial-to-mesenchymal transition (EMT) activation and extracellular matrix (ECM) degradation. Our data indicate the potential risk for winter PAH-bound PM from peri-urban North China promoting lung cancer cell metastasis and reveal a mechanistic basis for treating, ameliorating, or preventing outcomes in polluted environments.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
19
|
Enriched inorganic compounds in diesel exhaust particles induce mitogen-activated protein kinase activation, cytoskeleton instability, and cytotoxicity in human bronchial epithelial cells. ACTA ACUST UNITED AC 2015; 67:323-9. [PMID: 25769681 DOI: 10.1016/j.etp.2015.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/20/2015] [Indexed: 11/23/2022]
Abstract
This study assessed the effects of the diesel exhaust particles on ERK and JNK MAPKs activation, cell rheology (viscoelasticity), and cytotoxicity in bronchial epithelial airway cells (BEAS-2B). Crude DEP and DEP after extraction with hexane (DEP/HEX) were utilized. The partial reduction of some DEP/HEX organics increased the biodisponibility of many metallic elements. JNK and ERK were activated simultaneously by crude DEP with no alterations in viscoelasticity of the cells. Mitochondrial activity, however, revealed a decrease through the MTT assay. DEP/HEX treatment increased viscoelasticity and cytotoxicity (membrane damage), and also activated JNK. Our data suggest that the greater bioavailability of metals could be involved in JNK activation and, consequently, in the reduction of fiber coherence and increase in the viscoelasticity and cytotoxicity of BEAS cells. The adverse findings detected after exposure to crude DEP and to DEP/HEX reflect the toxic potential of diesel compounds. Considering the fact that the cells of the respiratory epithelium are the first line of defense between the body and the environment, our data contribute to a better understanding of the pathways leading to respiratory cell injury and provide evidence for the onset of or worsening of respiratory diseases caused by inorganic compounds present in DEP.
Collapse
|
20
|
Ceretti E, Zani C, Zerbini I, Viola G, Moretti M, Villarini M, Dominici L, Monarca S, Feretti D. Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants. CHEMOSPHERE 2015; 120:221-229. [PMID: 25084136 DOI: 10.1016/j.chemosphere.2014.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 06/03/2023]
Abstract
Urban air contains many mutagenic pollutants. This research aimed to investigate the presence of mutagens in the air by short-term mutagenicity tests using bacteria, human cells and plants. Inflorescences of Tradescantia were exposed to air in situ for 6h, once a month from January to May, to monitor volatile compounds and micronuclei frequency was computed. On the same days PM10 was collected continuously for 24h. Half of each filter was extracted with organic solvents and studied by means of the Ames test, using Salmonella typhimurium TA98 and TA100 strains, and the comet assay on human leukocytes. A quarter of each filter was extracted with distilled water in which Tradescantia was exposed. PM10 concentration was particularly high in the winter season (> 50 μg/m(3)). In situ exposure of inflorescences to urban air induced a significant increase in micronuclei frequency at all the sites considered, but only in January (p < 0.01). Aqueous extracts collected in January and February induced genotoxic effects in Tradescantia exposed in the laboratory (p < 0.01). Ames test showed that organic extracts of winter urban air were able to induce genetic mutations in S. typhimurium TA98 strain (± S9), but not in TA100 strain, with a revertants/plate number nine times higher than the negative control. Comet assay showed that winter extracts were more toxic and genotoxic than spring extracts. All the mutagenicity tests performed confirmed that urban air in North Italy in winter contains both volatile and non-volatile genotoxic substances able to induce genetic damage in bacteria, human cells and plants.
Collapse
Affiliation(s)
- E Ceretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - C Zani
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - I Zerbini
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - G Viola
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - M Moretti
- Department of Pharmaceutical Sciences, Lab. of Molecular Epidemiology and Public Health, University of Perugia, Italy
| | - M Villarini
- Department of Pharmaceutical Sciences, Lab. of Molecular Epidemiology and Public Health, University of Perugia, Italy
| | - L Dominici
- Department of Pharmaceutical Sciences, Lab. of Molecular Epidemiology and Public Health, University of Perugia, Italy
| | - S Monarca
- Department of Pharmaceutical Sciences, Lab. of Molecular Epidemiology and Public Health, University of Perugia, Italy
| | - D Feretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy.
| |
Collapse
|
21
|
Genotoxicity Study with Special Reference to Comet Test in the Blood Cells of Workers Exposed to Sewage Water. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/251812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Awareness among sewage workers to occupational exposure is growing slowly in many developing countries. Lead (Pb) and cadmium (Cd) are present in sewage water and workers are exposed to these metals as a result of unprotected handling. These heavy metals exposures are responsible for DNA damage and lowering blood total iron (Fe) concentration. Zinc (Zn) is an element for promoting metallothionine expression and binds the free Cd. The total suspended solids (TSS), total dissolved solids (TDS), Pb, and Cd were estimated in sewage water. The whole blood Zn and Fe concentration and Pd and Cd were also estimated. Genotoxicity as indicated by DNA damage was studied by comet assay. It was observed that there were significant differences (P<0.001) of Pb and Cd concentration in blood for the sewage workers when compared with control population. DNA damage was also observed to be significantly (P<0.001) higher in the exposed groups but their blood Fe concentration was significantly lower, which may be the reason for their tendency for retention of blood Cd and make them more susceptible. This study also indicated that aged workers had higher blood Zn concentrations as compared to the younger (working < 20 years) workers. This may indicate a possible adaptive response. The present study proposes that younger (working < 20 years) group is more susceptible as compared to aged group (working > 20 years).
Collapse
|
22
|
Ma J, Chen LL, Guo Y, Wu Q, Yang M, Wu MH, Kannan K. Phthalate diesters in airborne PM(2.5) and PM(10) in a suburban area of Shanghai: seasonal distribution and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:467-474. [PMID: 25150741 DOI: 10.1016/j.scitotenv.2014.08.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
Concentrations of nine phthalate diesters in 24-h airborne PM2.5 and PM10 were determined from October 2011 to August 2012 in a suburban area in Shanghai, China. Dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), di-iso-butyl phthalate (DIBP), benzyl butyl phthalate (BzBP), and di(2-ethylhexyl) phthalate (DEHP) were frequently detected in airborne particulate matter at sum concentrations of these six compounds ranging from 13.3 to 186 ng/m(3), with an average value of 59.8 ng/m(3) in PM2.5, and from 10.1 to 445 ng/m(3), with an average value of 132 ng/m(3) in PM10. DEHP, DBP, and DIBP were the major phthalate diesters found in PM samples. DEHP was found predominantly in coarse (size fraction of between PM2.5 and PM10) particles, whereas DMP, DEP, DBP, DIBP, and BzBP were found predominantly in fine (PM2.5) particles. The concentrations of phthalates in PM during warm months (207 ng/m(3) for PM10 and 71.9 ng/m(3) for PM2.5, on average) were significantly higher than those during cold months (76.9 ng/m(3) for PM10 and 50.4 ng/m(3) for PM2.5). Significant positive correlations were found between concentrations of total phthalates, DEHP, and BzBP, with the total mass and organic carbon content of PM. Based on the concentrations of DEHP, incremental lifetime cancer risks (ILCR) from inhalation exposure were estimated using a Monte Carlo simulation. Although the 95% probabilities for the ILCR values for the general population were below the U.S. Environmental Protection Agency (EPA) threshold of 10(-6), our result is an underestimate of the actual health risk because we only considered the outdoor inhalation exposure to DEHP in this study.
Collapse
Affiliation(s)
- Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liu-Lu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ying Guo
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201-0509, USA
| | - Qian Wu
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201-0509, USA
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ming-Hong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201-0509, USA; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
23
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|
24
|
Tian G, Qiao Z, Xu X. Characteristics of particulate matter (PM10) and its relationship with meteorological factors during 2001-2012 in Beijing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 192:266-74. [PMID: 24857048 DOI: 10.1016/j.envpol.2014.04.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/13/2014] [Accepted: 04/29/2014] [Indexed: 05/16/2023]
Abstract
Atmospheric pollution has become a significant challenge in Beijing metropolitan region, China. In this study, wavelet analysis and gray analysis were proposed to explore the temporal characteristics of particulate matter (PM10) and its relationships with meteorological factors during 2001-2012. The analysis indicated that air quality had got better significantly over the last decade. It was clearly interannual, seasonal, and monthly variation of atmospheric pollution, which represented that the air quality was the worst in spring, and got better in summer, subsequently tended to be more serious in autumn and winter. Generally atmospheric pressure was the most important meteorological feature influencing on PM10, followed by relative humidity and wind speed. However, the dominant meteorological factors influencing the atmospheric pollution were different in the four seasons. The results suggest that urban design and effective measures based on the relationship between meteorological factors and PM10 would be effective for improving atmospheric pollution.
Collapse
Affiliation(s)
- Guangjin Tian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinwai Street, Beijing 100875, PR China.
| | - Zhi Qiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinwai Street, Beijing 100875, PR China
| | - Xinliang Xu
- State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. A11, Datun Road, ChaoYang District, Beijing 100101, PR China
| |
Collapse
|
25
|
de Oliveira Alves N, de Souza Hacon S, de Oliveira Galvão MF, Simões Peixotoc M, Artaxo P, de Castro Vasconcellos P, de Medeiros SRB. Genetic damage of organic matter in the Brazilian Amazon: a comparative study between intense and moderate biomass burning. ENVIRONMENTAL RESEARCH 2014; 130:51-58. [PMID: 24525281 DOI: 10.1016/j.envres.2013.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/14/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND The biomass burning that occurs in the Amazon region has an adverse effect on environmental and human health. However, in this region, there are limited studies linking atmospheric pollution and genetic damage. OBJECTIVE We conducted a comparative study during intense and moderate biomass burning periods focusing on the genetic damage and physicochemical analyses of the particulate matter (PM). METHOD PM and black carbon (BC) were determined; organic compounds were identified and quantified using gas chromatography with flame ionization detection, the cyto-genotoxicity test was performed using two bioassays: cytokinesis-block micronucleus (CBMN) in A549 cells and Tradescantia pallida micronucleus (Trad-MCN) assay. RESULTS The PM10 concentrations were lower than the World Health Organization air quality standard for 24h. The n-alkanes analyses indicate anthropogenic and biogenic influences during intense and moderate biomass burning periods, respectively. Retene was identified as the most abundant polycyclic aromatic hydrocarbon during both sampling periods. Carcinogenic and mutagenic compounds were identified. The genotoxic analysis through CBMN and Trad-MCN tests showed that the frequency MCN from the intense burning period is significantly higher compared to moderate burning period. CONCLUSIONS This is the first study using human alveolar cells to show the genotoxic effects of organic PM from biomass burning samples collected in Amazon region. The genotoxicity of PM can be associated with the presence of several mutagenic and carcinogenic compounds, mainly benzo[a]pyrene. These findings have potential implications for the development of pollution abatement strategies and can minimize negative impact on health.
Collapse
Affiliation(s)
| | | | | | - Milena Simões Peixotoc
- Cellular Biology and Genetics Department, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Paulo Artaxo
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | | | - Silvia Regina Batistuzzo de Medeiros
- Biochemistry Department, Federal University of Rio Grande do Norte, Natal, Brazil; Cellular Biology and Genetics Department, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
26
|
Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M, Gualtieri M. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part Fibre Toxicol 2013; 10:63. [PMID: 24354623 PMCID: PMC3878321 DOI: 10.1186/1743-8977-10-63] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 11/25/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND This study explores and characterizes cell cycle alterations induced by urban PM2.5 in the human epithelial cell line BEAS-2B, and elucidates possible mechanisms involved. METHODS The cells were exposed to a low dose (7.5 μg/cm(2)) of Milan winter PM2.5 for different time points, and the cell cycle progression was analyzed by fluorescent microscopy and flow cytometry. Activation of proteins involved in cell cycle control was investigated by Western blotting and DNA damage by (32)P-postlabelling, immunostaining and comet assay. The formation of reactive oxygen species (ROS) was quantified by flow cytometry. The role of PM organic fraction versus washed PM on the cell cycle alterations was also examined. Finally, the molecular pathways activated were further examined using specific inhibitors. RESULTS Winter PM2.5 induced marked cell cycle alteration already after 3 h of exposure, represented by an increased number of cells (transient arrest) in G2. This effect was associated with an increased phosphorylation of Chk2, while no changes in p53 phosphorylation were observed at this time point. The increase in G2 was followed by a transient arrest in the metaphase/anaphase transition point (10 h), which was associated with the presence of severe mitotic spindle aberrations. The metaphase/anaphase delay was apparently followed by mitotic slippage at 24 h, resulting in an increased number of tetraploid G1 cells and cells with micronuclei (MN), and by apoptosis at 40 h. Winter PM2.5 increased the level of ROS at 2 h and DNA damage (8-oxodG, single- and double stand breaks) was detected after 3 h of exposure. The PM organic fraction caused a similar G2/M arrest and augmented ROS formation, while washed PM had no such effects. DNA adducts were detected after 24 h. Both PM-induced DNA damage and G2 arrest were inhibited by the addition of antioxidants and α-naphthoflavone, suggesting the involvement of ROS and reactive electrophilic metabolites formed via a P450-dependent reaction. CONCLUSIONS Milan winter PM2.5 rapidly induces severe cell cycle alterations, resulting in increased frequency of cells with double nuclei and MN. This effect is related to the metabolic activation of PM2.5 organic chemicals, which cause damages to DNA and spindle apparatus.
Collapse
Affiliation(s)
- Eleonora Longhin
- Department of Environmental Sciences, POLARIS Research Centre, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Jørn A Holme
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen N-0403 Oslo, Norway
| | - Kristine B Gutzkow
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen N-0403 Oslo, Norway
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE-Centre for Environment and Health, King’s College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Jill E Kucab
- Analytical and Environmental Sciences Division, MRC-PHE-Centre for Environment and Health, King’s College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Marina Camatini
- Department of Environmental Sciences, POLARIS Research Centre, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Maurizio Gualtieri
- Department of Environmental Sciences, POLARIS Research Centre, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
27
|
Akyüz M, Ata Ş. Seasonal variations of particle-associated nitrosamines by gas chromatography-mass spectrometry in the atmospheric environment of Zonguldak, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:7398-7412. [PMID: 23657717 DOI: 10.1007/s11356-013-1758-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
A gas chromatography-mass spectrometry method has been proposed for the determination of low-level mutagenic and carcinogenic nitrosamines in particulate matter. The method includes the collection of particulate matters (PM2.5 and PM10) using a dichotomous Partisol 2025 sampler and extraction of the compounds from aqueous solution with dichloromethane/2-propanol after sonication with a slightly basic water solution prior to their GC-MS analysis in electron impact mode. The obtained recoveries of nitrosamines ranged from 92.4 to 99.2 %, and the precision of this method, as indicated by the relative standard deviations, was within the range of 0.95-2.46 %. The detection limits obtained from calculations using the GC-MS results based on S/N=3 were found within the range from 4 to 22 pg/m(3). The predominant nitrosamines determined in particulate matter were N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosodibutylamine and N-nitrosomorpholine. Furthermore, N-mono- and dinitrosopiperazine and N-nitrosoethylbutylamine were also determined. N-dinitrosopiperazine was detected in PM2.5 samples at the highest concentrations of up to 22.85 ng/m(3) and in PM2.5-10 samples at concentrations up to 7.60 ng/m(3) in winter, whereas it was found in PM2.5 samples up to 5.15 ng/m(3) and in PM2.5-10 samples up to 3.12 ng/m(3) in summer. The total concentrations of nitrosamines were up to 161.4 ng/m(3) in fine and 53.90 ng/m(3) in coarse fractions in winter, whereas in summer were up to 35.24 and 12.60 ng/m(3), respectively. The concentration levels of nitrosamines fluctuated significantly within a year, with higher means and peak concentrations in the winter compared to that in the summertime. The seasonal variations of particle-associated nitrosamine concentrations were investigated together with their relationships with meteorological parameters using Pearson's correlation analysis in the winter and summer periods. Analysis of variance was used to determine which concentrations of nitrosamines were statistically different from one another and, together with meteorological parameters and discriminant analysis, was used to classify the particle samples by particle size according to seasons. The classification results of the particle samples in different seasons were very satisfactory, allowing 99.5 % of cases to be correctly grouped.
Collapse
Affiliation(s)
- Mehmet Akyüz
- Faculty of Arts and Sciences, Department of Chemistry, Bülent Ecevit University, 67100, Zonguldak, Turkey,
| | | |
Collapse
|
28
|
Ma J, Chen Z, Wu M, Feng J, Horii Y, Ohura T, Kannan K. Airborne PM2.5/PM10-associated chlorinated polycyclic aromatic hydrocarbons and their parent compounds in a suburban area in Shanghai, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7615-23. [PMID: 23763473 DOI: 10.1021/es400338h] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) have been reported to be formed during incineration processes. Despite dioxin-like toxicities of ClPAHs, little is known on the occurrence of these chemicals in the environment. In this study, concentrations of 24-h airborne PM10 and PM2.5-associated ClPAHs and their corresponding parent PAHs were monitored from October 2011 to March 2012 in a suburban area in Shanghai, China. In addition, daytime and nighttime particle samples were collected for 7 days in April from the same sampling site. Twelve of twenty ClPAH congeners were found in PM10 and PM2.5 at concentrations ranging from 2.45 to 47.7 pg/m(3) with an average value of 12.3 pg/m(3) for PM10, and from 1.34 to 22.3 pg/m(3) with an average value of 9.06 pg/m(3) for PM2.5. Our results indicate that ClPAHs are ubiquitous in inhalable fine particles. The concentrations of ∑ClPAHs and specific congeners such as 9-ClPhe, 3-ClFlu, 1-ClPyr, 7-ClBaA, and 6-ClBaP in particles collected during nighttime were higher than those collected during daytime, which suggests not only diffusion of ClPAHs in air by atmospheric mixing but also photochemical degradation during daylight hours. Among the individual ClPAHs determined, 6-ClBaP, 1-ClPyr, and 9-ClPhe were the dominant compounds in PM10 and PM2.5. The percent composition of 6-ClBaP, 1-ClPyr, 7-ClBaA, and 3-ClFlu between PM10 and PM2.5 was similar. Significant positive correlations were found between concentrations of ClPAHs and their corresponding parent PAHs, particle mass, and total organic carbon (organic carbon plus elemental carbon), indicating that ClPAHs are sorbed onto carbonaceous matter of PM. Concentrations of parent PAHs predicted by multiple linear regression models with PM mass, total organic carbon, temperature, and relative humidity as variables reflected the measured concentrations with a strong coefficient of determination of 0.917 and 0.946 for PM10 and PM2.5, respectively. However, the models generated to predict ClPAH concentrations in PM did not yield satisfactory results, which suggested the differences in physical-chemical properties and formation processes between ClPAHs and their corresponding parent PAHs. 7-ClBaA and 6-ClBaP collectively accounted for the preponderance of the total dioxin-like TEQ concentrations of ClPAHs (TEQClPAH) in PM samples. Exposure to toxic compounds such as ClPAHs and PAHs present in PM2.5 can be related to adverse health outcomes in people.
Collapse
Affiliation(s)
- Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Longhin E, Pezzolato E, Mantecca P, Holme JA, Franzetti A, Camatini M, Gualtieri M. Season linked responses to fine and quasi-ultrafine Milan PM in cultured cells. Toxicol In Vitro 2012; 27:551-9. [PMID: 23159502 DOI: 10.1016/j.tiv.2012.10.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 09/17/2012] [Accepted: 10/23/2012] [Indexed: 12/18/2022]
Abstract
Exposure to urbane airborne particulate matter (PM) is related to the onset and exacerbation of cardiovascular and respiratory diseases. The fine (PM1), and quasi-ultrafine (PM0.4) Milan particles collected during different seasons have been characterised and the biological effects on human epithelial lung A549, monocytes THP-1 cells and their co-culture, evaluated and compared with the results obtained on the PM10 and PM2.5 fractions. Chemical composition and transmission electron microscopy (TEM) analysis of PM0.4 showed that this fraction was very similar to PM1 for biological responses and dimension. All the winter fractions increased within 1h the level of reactive oxygen species (ROS), while only summer PM2.5 had this effect on A549 cells. The phosphorylation of H2AX (γH2AX), a marker of double strand DNA breaks (DSBs), was increased by all the winter fractions on A549 and THP-1 cells while summer PM samples did not induced this effect. PM0.4 and PM1 biological effects are partly similar and related to the season of sampling, with effects on ROS and DNA damage induced only by winter PM fractions. The winter PM damaging effect on DNA correlates with the presence of organic compounds.
Collapse
Affiliation(s)
- E Longhin
- Polaris Research Center, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Kim HR, Son BH, Lee SY, Chung KH, Oh SM. The Role of p53 in Marijuana Smoke Condensates-induced Genotoxicity and Apoptosis. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2012; 27:e2012017. [PMID: 23106039 PMCID: PMC3479268 DOI: 10.5620/eht.2012.27.e2012017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/14/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVES Marijuana is one of the most frequently abused drug in Korea and its adverse health effects are controversial. p53 is known to be crucial in regulating the DNA damage responses, and adverse effects can occur when it is regulated by marijuana smoke. We evaluated a role of p53 on genotoxic effect and apoptosis in lung cancer cells exposed to marijuana smoke condensates (MSCs). METHODS The p53-related genotoxicity and apoptosis of MSCs were evaluated using in vitro bioassay, viz., comet assay, cytokinesis-block micronucleus assay and apoptosis assay. We used two cell lines with differential p53 expression (p53-wildtype (WT) H460 and p53-null H1299). RESULTS MSCs significantly increased DNA breakages and chromosomal changes in p53-WT H460 and p53-null H1299 cells. The genotoxicity induced by MSCs in p53-null H1299 cells showed greater sensitivity than p53-WT H460 cells. Moreover, MSCs showed a significant increase in reactive oxygen species production and apoptosis. The apoptotic responses induced by MSCs were higher in p53-WT H460 cells than in p53-null H1299 cells. Significantly increased mRNA expression or apoptosis related genes, including p53, caspase-3, and Bax/Bcl-2 ratio were observed in the p53-WT H460 cells exposed to MSCs. CONCLUSIONS These results suggest that MSCs induce DNA/chromosomal damages and apoptosis in human lung cancer cells and p53 plays an important role in the cellular response to MSCs. The present study may have border implications for our understanding of pulmonary diseases.
Collapse
Affiliation(s)
- Ha Ryong Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Bo Hee Son
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Soo Yeun Lee
- College of Pharmacy, Keimyung University, Daegu, Korea
| | | | - Seung Min Oh
- Fusion Technology Laboratory, Hoseo University, Asan, Korea
| |
Collapse
|
31
|
Gualtieri M, Ovrevik J, Mollerup S, Asare N, Longhin E, Dahlman HJ, Camatini M, Holme JA. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization. Mutat Res 2011; 713:18-31. [PMID: 21645525 DOI: 10.1016/j.mrfmmm.2011.05.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 05/13/2011] [Accepted: 05/20/2011] [Indexed: 05/22/2023]
Abstract
Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in "classical" apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.
Collapse
Affiliation(s)
- Maurizio Gualtieri
- Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhao J, Xie Y, Jiang R, Kan H, Song W. Effects of atorvastatin on fine particle-induced inflammatory response, oxidative stress and endothelial function in human umbilical vein endothelial cells. Hum Exp Toxicol 2011; 30:1828-39. [DOI: 10.1177/0960327111401050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The study is to explore the toxicity of organic extracts and water-soluble fraction of fine particles on human umbilical vein endothelial cells (HUVECs). The exposure doses were 100, 200 and 400 μg/ml, respectively, for two kinds of fractions. Moreover, atorvastatin was used for intervention study. HUVECs were stimulated by 400 μg/ml organic and water soluble extracts, respectively, immediately followed by treatment with atorvastatin in concentrations of 0.1 μmol/L, 1 μmol/L and 10 μmol/L, respectively. Cell viability, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), reactive oxygen species (ROS) and the expression of interleukin-6 beta (IL-6), tumor necrosis factor-α (TNF-α), endothelin-1 and P-selectin were determined in cells. The results showed that MDA and ROS increased in HUVECs after exposed to organic extracts and water-soluble fraction, whereas cell viability, NO and SOD decreased. The mRNA expression of IL-6, TNF-α, endothelin-1 (ET-1) and P-selectin increased after exposed to different fractions. Meanwhile, at the same exposure dose, water-soluble fraction caused more significant increase of MDA, IL-6, TNF-α and P-selectin and decrease of cell viability and NO when compared to organic extracts. Compared to no atorvastatin group, the levels of MDA, ROS and the expression of IL-6, TNF-α, ET-1 and P-selectin decreased in HUVECs in adding atorvastatin group, but cell viability, NO and SOD increased, which indicated that atorvastatin attenuated fine particle-induced inflammatory response, oxidative stress and endothelial damage. The results hinted that the inflammatory response, oxidative stress and endothelial dysfunction might be the mechanisms of cardiovascular injury induced by different fractions of ambient fine particles.
Collapse
Affiliation(s)
- Jinzhuo Zhao
- Department of Environment Health, School of Public Health, Fudan University, The Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yuquan Xie
- Department of Cardiology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Rongfang Jiang
- Department of Environment Health, School of Public Health, Fudan University, The Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Haidong Kan
- Department of Environment Health, School of Public Health, Fudan University, The Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Weimin Song
- Department of Environment Health, School of Public Health, Fudan University, The Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| |
Collapse
|
33
|
Chairi H, Fernández-Diaz C, Navas JI, Manchado M, Rebordinos L, Blasco J. In vivo genotoxicity and stress defences in three flatfish species exposed to CuSO4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1279-1285. [PMID: 20678796 DOI: 10.1016/j.ecoenv.2010.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/14/2010] [Accepted: 07/17/2010] [Indexed: 05/29/2023]
Abstract
We have used the comet assay to analyse, after 3h, 24h and 6 days, the genotoxic effect in vivo of applying a single intraperitoneal injection of CuSO4, at a concentration of 2mg/kg, to adult specimens of Solea senegalensis, Dicologlossa cuneata and Scophthalmus rhombus. Metals content (Cu, Zn and Cd) in liver was also measured. The activity of key stress defences was evaluated by analysing antioxidant enzyme activity (catalase (CAT), superoxide dismutase (SOD), total glutathione peroxidase (t-GPX), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH)), metallothionein (MT) and heat shock proteins (HSP70 and HSP60). The results show that CuSO4 intake generates high and cumulative levels of genotoxicity throughout the 6 days in all 3 species. After 6 days, metals content detected in specimens showed significant differences from controls. Inter-species differences were detected in enzyme activity (P<0.05). A clear response to CuSO4 was detected only in S. rhombus, with an increase of MT and a decrease of HSPs. Variations in antioxidant defence levels and their comparative responses to the stress-inducing agent are discussed.
Collapse
Affiliation(s)
- H Chairi
- Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Polígono Río San Pedro, s/n, 11510, Puerto Real, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Akyüz M, Cabuk H. Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. JOURNAL OF HAZARDOUS MATERIALS 2009; 170:13-21. [PMID: 19523758 DOI: 10.1016/j.jhazmat.2009.05.029] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/30/2009] [Accepted: 05/02/2009] [Indexed: 05/03/2023]
Abstract
Airborne particulate matter (PM(2.5) and PM(10)) concentrations were measured in Zonguldak, Turkey from January to December 2007, using dichotomous Partisol 2025 sampler. Collected particulate matter was analyzed for 14 selected polycyclic aromatic hydrocarbons (PAHs) by high-performance liquid chromatography with fluorescence detection (HPLC-FL). The seasonal variations of PM(2.5) and PM(10) concentrations were investigated together with their relationships with meteorological parameters. The maximum daily concentrations of PM(2.5) and PM(10) reached 83.3 microg m(-3) and 116.7 microg m(-3) in winter, whereas in summer, they reached 32.4 microg m(-3) and 66.7 microg m(-3), respectively. Total concentration of PM(10)-associated PAHs reached 492.4 ng m(-3) in winter and 26.0 ng m(-3) in summer times. The multiple regression analysis was performed to predict total PM(2.5)- and PM(10)-associated PAHs and benzo(a)pyrene-equivalent (BaPE) concentrations with respect to meteorological parameters and particulate mass concentrations with the determination coefficients (R(2)) of 0.811, 0.805 and 0.778, respectively. The measured mean values of concentrations of total PM(2.5)- and PM(10)-associated PAHs were found to be 88.4 ng m(-3) and 93.7 ng m(-3) while their predicted mean values were found to be 92.5 ng m(-3) and 98.2 ng m(-3), respectively. In addition, observed and predicted mean concentration values of PM(2.5)-BaPE were found to be 14.1 ng m(-3) and 14.6 ng m(-3). The close annual mean concentrations of measured and predicted total particulate related PAHs imply that the models can be reliably used for future predictions of particulate related PAHs in urban atmospheres especially where fossil fuels are mainly used for heating.
Collapse
Affiliation(s)
- Mehmet Akyüz
- Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey.
| | | |
Collapse
|
35
|
Akyüz M, Cabuk H. Particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 405:62-70. [PMID: 18725164 DOI: 10.1016/j.scitotenv.2008.07.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 05/04/2023]
Abstract
Airborne fine (PM(2.5)) and coarse (PM(2.5-10)) particulate matter was collected from January to December in 2007 in Zonguldak, Turkey using dichotomous Partisol 2025 sampler. Fourteen selected polycyclic aromatic hydrocarbons (PAHs) in particulate matter were determined simultaneously by high-performance liquid chromatography with fluorescence detection (HPLC-FL) and seasonal distributions were examined. The source identification of PAHs in airborne particulates was performed by principal component analysis (PCA) in combination with diagnostic ratios. The predominant PAHs determined in PM(2.5) were pyrene, fluoranthene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene. The total concentrations of PAHs were up to 464.0 ng m(-3) in fine and 28.0 ng m(-3) in coarse fraction in winter, whereas in summer times were up to 22.9 and 3.0 ng m(-3) respectively. Approximately 93.3% of total PAHs concentration was determined in PM(2.5) in winter and 84.0% in summer. The concentration levels of PAHs fluctuate significantly within a year with higher means and peak concentrations in the winter compared to that of summer times. Higher benzo(a)pyrene-equivalent (BaPE) concentrations of PAHs were obtained for PM(2.5) especially in winter. The results obtained from PCA in combination with diagnostic ratios revealed that coal combustion and vehicle emissions were the major pollutant sources for both PM(2.5) and PM(2.5-10) associated PAHs in studied area. Two principal components for PM(2.5) and three for PM(2.5-10) were identified and these accounted for 89.4 and 85.2% of the total variance respectively. The emissions from coal combustion were estimated to be the main source of PAHs in the ambient air particulates with contributions of 80.8% of total variance for PM(2.5) and 53.8% for PM(2.5-10).
Collapse
Affiliation(s)
- Mehmet Akyüz
- Zonguldak Karaelmas University, Faculty of Arts and Sciences, Department of Chemistry, Zonguldak, Turkey.
| | | |
Collapse
|
36
|
Al Zabadi H, Ferrari L, Laurent AM, Tiberguent A, Paris C, Zmirou-Navier D. Biomonitoring of complex occupational exposures to carcinogens: the case of sewage workers in Paris. BMC Cancer 2008; 8:67. [PMID: 18325085 PMCID: PMC2292199 DOI: 10.1186/1471-2407-8-67] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 03/06/2008] [Indexed: 11/24/2022] Open
Abstract
Background Sewage workers provide an essential service in the protection of public and environmental health. However, they are exposed to varied mixtures of chemicals; some are known or suspected to be genotoxics or carcinogens. Thus, trying to relate adverse outcomes to single toxicant is inappropriate. We aim to investigate if sewage workers are at increased carcinogenic risk as evaluated by biomarkers of exposure and early biological effects. Methods/design This cross sectional study will compare exposed sewage workers to non-exposed office workers. Both are voluntaries from Paris municipality, males, aged (20–60) years, non-smokers since at least six months, with no history of chronic or recent illness, and have similar socioeconomic status. After at least 3 days of consecutive work, blood sample and a 24-hour urine will be collected. A caffeine test will be performed, by administering coffee and collecting urines three hours after. Subjects will fill in self-administered questionnaires; one covering the professional and lifestyle habits while the a second one is alimentary. The blood sample will be used to assess DNA adducts in peripheral lymphocytes. The 24-hour urine to assess urinary 8-oxo-7, 8-dihydro-2'-deoxy-Guanosine (8-oxo-dG), and the in vitro genotoxicity tests (comet and micronucleus) using HeLa S3 or HepG2 cells. In parallel, occupational air sampling will be conducted for some Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds. A weekly sampling chronology at the offices of occupational medicine in Paris city during the regular medical visits will be followed. This protocol has been accepted by the French Est III Ethical Comitee with the number 2007-A00685-48. Discussion Biomarkers of exposure and of early biological effects may help overcome the limitations of environmental exposure assessment in very complex occupational or environmental settings.
Collapse
Affiliation(s)
- Hamzeh Al Zabadi
- INSERM-ERI 11, Nancy University Medical School, 9 av de la Forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France.
| | | | | | | | | | | |
Collapse
|