1
|
Kotia N, Sinha R, Aliko V, Faggio C. Benzophenone-3: A systematic review on aquatic toxicity, pollution status, environmental risk assessment, and treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 985:179740. [PMID: 40435725 DOI: 10.1016/j.scitotenv.2025.179740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/27/2025] [Accepted: 05/21/2025] [Indexed: 06/19/2025]
Abstract
Benzophenone-3 (BP-3) is a widely employed UV filter and forms the composition of sunscreens and various personal care products. It enters the water through human recreational activities and through ineffective degradation in conventional wastewater treatment plants. Due to its global detection, low water solubility, diminished biodegradability, elevated sorption potential, potential bioaccumulation, and endocrine-disrupting effects, it has been categorized as an emerging pollutant. The detection of BP-3 and its metabolites in various aquatic organisms globally has raised concerns about potential repercussions in the food chain. Environmental risk assessments revealed hazard quotient (HQ) values between 0.04 and 12.0 for freshwater habitats, indicating significant risks. The predicted no-effect concentrations (PNECs) ranged from 0.0139 to 19.1 μg/L, indicating varied risk levels and necessitating further refinement. Monitoring sewage plants using different treatment methods concluded the addition of metabolites and degradation by-products with added negative impact and other limitations. Assessment of advanced oxidation process of BP-3 removal strategies displayed reduced by-product toxicity and better removal rates using sonochemical decomposition (98 %), potassium permanganate treatment (91.3 %), and cobalt ferrite-activated persulfate oxidation technology (91 %). Despite this, these showed implementation hindrances, large-scalability issues, and lower degradation efficiencies at real matrices. Recent developments highlight feasible techniques such as phytoremediation, microalgae-assisted mitigation, and microbial degradation with improved removal rates and minimized by-product toxicity. Present review systematically examines the contamination level of BP-3 and its ecotoxicological impact on aquatic ecosystems, elucidating the intrinsic mechanism of action and identifying current knowledge deficiencies.
Collapse
Affiliation(s)
- Naveeta Kotia
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, India, 176206, India
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, India, 176206, India.
| | - Valbona Aliko
- Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
2
|
Wu X, Zhou C, Wang J, Cao M, Wang L, Liang Y. Reproductive toxicity and parental transmission effects of 4-methylbenzylidene camphor (4-MBC) exposure in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107334. [PMID: 40157257 DOI: 10.1016/j.aquatox.2025.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/02/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
4-methylbenzylidene camphor (4-MBC), a commonly used UV absorber, is frequently detected in aquatic environment. So far the reproductive toxicity of parental 4-MBC exposure and its effects on gonadal development in offsprings are not clear. In the present study, male and female adult F0 zebrafish were exposed to 100 nM 4-MBC for 14 consecutive days. Our data showed that 4-MBC exposure resulted in gonadal damage in the parental gonads and decreased egg production in females and sperm viability in males. In addition, exposure to 4-MBC resulted in increased levels of estradiol (E2), follicle stimulating hormone (FSH), and luteinizing hormone (LH) in females and decreased testosterone (T) in males, suggesting the estrogenic and antiandrogenic effects of 4-MBC. Parental 4-MBC exposure did not change the hatchability and mortality of the F1 generation, but caused significantly decreased heart rate and gonadal developmental retardation in 60 dpf fish by interfering with the HPG axis. Therefore, 4-MBC exposure to adult zebrafish caused gonadal damage and reduced reproductive performance in the parental generation, which was sex-dependent and caused intergenerational toxicity to the F1 generation. The present study provides new insights into the ecological risks of 4-MBC and its potential contribution to adverse reproductive outcomes in humans.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chenyu Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jing Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
3
|
Hodge AA, Hopkins FE, Saha M, Jha AN. Ecotoxicological effects of sunscreen derived organic and inorganic UV filters on marine organisms: A critical review. MARINE POLLUTION BULLETIN 2025; 213:117627. [PMID: 39938199 DOI: 10.1016/j.marpolbul.2025.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
Sunscreens are topical personal care products that provide protection against the sun's ultraviolet A (UVA) and ultraviolet B (UVB) radiation. Ultraviolet (UV) filters are compounds added to sunscreens to block, absorb, or reflect the sun's UV rays, but are of major emerging concern due to their widespread use and global distribution. They pose a significant risk to marine organisms owing to their chemical properties, including high lipophilicity which increases their bioavailability. The present review identifies and summarises the factors that contribute to UV filter pollution, their sources, pathways, and effects on marine organisms. We identify and evaluate the current knowledge base and gaps pertaining to their effects. Here, we retrieved 111 peer-reviewed articles from four academic search engines between January and October 2024 with the topic search relating to UV filters, sunscreen and ecotoxicology. Most publications (60 %) focused on the biological effects of organic UV filters, with oxybenzone (benzophenone-3) being the most studied (57 %). Fewer publications assessed the biological effects of inorganic UV filters (40 %). Throughout all search results, the most commonly tested species were in the class of bivalvia (24 %) and oxidative stress based assays were the most popular (organic studies 40 %, inorganic studies, 39 %). To enhance understanding, future research should explore a broader range of organisms and life stages, considering dietary uptake and realistic environmental conditions, including the use of UV lighting in laboratory settings.
Collapse
Affiliation(s)
- Anneliese A Hodge
- University of Plymouth, School of Biological & Marine Sciences, Drake Circus, Plymouth, Devon, United Kingdom, PL4 8AA; Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, United Kingdom, PL1 3DH.
| | - Frances E Hopkins
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, United Kingdom, PL1 3DH.
| | - Mahasweta Saha
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, United Kingdom, PL1 3DH.
| | - Awadhesh N Jha
- University of Plymouth, School of Biological & Marine Sciences, Drake Circus, Plymouth, Devon, United Kingdom, PL4 8AA.
| |
Collapse
|
4
|
Sun Y, Lu G, Zhang P, Zhang J, Yu Y, Li F, Liu J. Effects of colloids with different compositions on benzophenone-3 biotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125670. [PMID: 39798796 DOI: 10.1016/j.envpol.2025.125670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The fate of the pollutants in aquatic environment is closely related to colloids, and the carrier effect of colloids on pollutants not only affects their bioaccumulation, but may also affect their toxicity. In this study, the effects of natural colloid with different components on the biological toxicity of benzophenone-3 (BP3) to zebrafish larvae (Diano rerio) were studied. BP3 caused oxidative stress damage, thyroid system disorders and neurotoxicity in zebrafish larvae. And in the co-exposure groups, the organic and black carbon mineral (BCM) colloids enhanced the organism's antioxidant system by regulating the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), reducing the lipid peroxidation damage in larvae. BCM colloids caused the thyroid system disorders in organisms, while organic colloids exacerbated the thyroid toxicity by transporting more BP3 into organisms, inducing severe abnormal heartbeats. The BCM and organic colloids regulated the acetylcholinesterase (AChE) activity and/or 5-hydroxytryptamine (5-ht) contents by affecting the neuroactive ligand receptor interaction pathway in zebrafish larvae, significantly increasing their swimming speed in co-exposure groups under the light condition. In addition, the effects of colloid-bound and freely dissolved BP3 absorbed by organisms on their physiological and biochemical activities were different. By analyzing the relative expression of the significant differential metabolites affected by BP3 in all experimental groups, it was found that colloid-bound and freely dissolved BP3 had a synergistic effect on most of these metabolites and pathways. However, the freely dissolved BP3 interfered with the purine metabolic pathway by mediating 2-(amidino)-n1-(5-phospho-d-ribosyl)acetamidine, and the tyrosine metabolic pathway by mediating choline and uranylacetic acid, while the colloid-bound BP3 has no or inverse regulatory effects on these three metabolites. This study provided a new perspective for the biotoxicity study of the pollutants in aquatic environment, necessitating a reconsideration of the real ecological risks of emerging pollutants in the presence of natural colloids.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yeting Yu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Fulin Li
- Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| | - Jian Liu
- Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| |
Collapse
|
5
|
Li HM, Gao YR, Chang Q, Pei XY, Sun JH, Lin YJ, Tian YN, Qiang-Wang, Zhao B, Xie HQ, Ma HM, Xu HM. BP-3 exposure at environmentally relevant concentrations induced male developmental reproductive toxicity via ER/CCL27/ROS pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117556. [PMID: 39689453 DOI: 10.1016/j.ecoenv.2024.117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
BP-3 is the most widely used ultraviolet absorber, but its toxic effects and mechanisms far from being elucidated. This study evaluated the male developmental reproductive toxicities and mechanism of low-doses of BP-3. The results indicated that BP-3 (2.28 and 228 μg/L) led to a decrease in sperm quantity, quality and testosterone level, impaired blood-testis barrier (BTB) integrity and cytoskeleton, accompanied by aggravated oxidative stress in testes of mice on postnatal day 56 (PND 56). Notably, chemokine CCL27, a driver of oxidative stress, was significantly upregulated induced by BP-3. Similar disrupted effects were detected in testes of mice on PND14, which could be antagonized by ICI 182780 (estrogen receptor antagonist). Mechanistically, BP-3 directly interacted with ER, which boosted CCL27 expression, reactive oxygen species (ROS) accumulation, and BTB and cytoskeleton impairment. In vitro, si-CCL27 and/or ROS scavenger treatment significantly antagonized BP-3-induced oxidative stress and the decrease of BTB and cytoskeleton related genes in TM4 cells. These findings demonstrate that prolonged exposure to low-doses of BP-3 resulted in detrimental effects on testicular development through activation of the ER/CCL27/ROS axis. This study provides a novel perspective understanding the male reproductive toxicity risk caused by BPs exposure at low-doses.
Collapse
Affiliation(s)
- Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yan-Rong Gao
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qing Chang
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xiu-Ying Pei
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jia-He Sun
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yu-Jia Lin
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ya-Nan Tian
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qiang-Wang
- Medical Science and Technology Research Center, Yinchuan, Ningxia 750004, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hui-Ming Ma
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hai-Ming Xu
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
6
|
Jin X, Yao R, Yao S, Yu X, Tang J, Huang J, Yao R, Jin L, Liang Q, Sun J. Metabolic perturbation and oxidative damage induced by tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-ethylhexyl) phosphate (TEHP) on Escherichia coli through integrative analyses of metabolome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116797. [PMID: 39067080 DOI: 10.1016/j.ecoenv.2024.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Organophosphate esters (OPEs) are one of the emerging environmental threats, causing the hazard to ecosystem safety and human health. Yet, the toxic effects and metabolic response mechanism after Escherichia coli (E.coli) exposed to TDCIPP and TEHP is inconclusive. Herein, the levels of SOD and CAT were elevated in a concentration-dependent manner, accompanied with the increase of MDA contents, signifying the activation of antioxidant response and occurrence of lipid peroxidation. Oxidative damage mediated by excessive accumulation of ROS decreased membrane potential and inhibited membrane protein synthesis, causing membrane protein dysfunction. Integrative analyses of GC-MS and LC-MS based metabolomics evinced that significant perturbation to the carbohydrate metabolism, nucleotide metabolism, lipids metabolism, amino acid metabolism, organic acids metabolism were induced following exposure to TDCIPP and TEHP in E.coli, resulting in metabolic reprogramming. Additionally, metabolites including PE(16:1(5Z)/15:0), PA(17:0/15:1(9Z)), PC(20:2(11Z,14Z)/12:0), LysoPC(18:3(6Z,9Z,12Z)/0:0) were significantly upregulated, manifesting that cell membrane protective molecule was afforded by these differential metabolites to improve permeability and fluidity. Overall, current findings generate new insights into the molecular toxicity mechanism by which E.coli respond to TDCIPP and TEHP stress and supply valuable information for potential ecological risks of OPEs on aquatic ecosystems.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Runlin Yao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Siyu Yao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China.
| | - Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Jiaxing Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Ruipu Yao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Qianwei Liang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China.
| |
Collapse
|
7
|
Tian L, Wu Y, Hou Y, Dong Y, Ni K, Guo M. Environmentally Friendly UV Absorbers: Synthetic Characterization and Biosecurity Studies of the Host-Guest Supramolecular Complex. Int J Mol Sci 2024; 25:8476. [PMID: 39126045 PMCID: PMC11312980 DOI: 10.3390/ijms25158476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Isoamyl 4-methoxycinnamate (IMC) is widely used in various fields because of its exceptional UV-filter properties. However, due to its cytotoxicity and anti-microbial degradability, the potential eco-environmental toxicity of IMC has become a focus of attention. In this study, we propose a host-guest supramolecule approach to enhance the functionality of IMC, resulting in a more environmentally friendly and high-performance materials. Sulfobutyl-β-cyclodextrin sodium salt (SBE-β-CD) was used as the host molecule. IMC-SBE-β-CD supramolecular substances were prepared through the "saturated solution method", and their properties and biosecurity were evaluated. Meanwhile, we conducted the AOS tree evaluation system that surpasses existing evaluation approaches based on apoptosis, oxidative stress system, and signaling pathways to investigate the toxicological mechanisms of IMC-SBE-β-CD within human hepatoma SMMC-7721 cells as model organisms. The AOS tree evaluation system aims to offer the comprehensive analysis of the cytotoxic effects of IMC-SBE-β-CD. Our findings showed that IMC-SBE-β-CD had an encapsulation rate of 84.45% and optimal stability at 30 °C. Further, IMC-SBE-β-CD promoted cell growth and reproduction without compromising the integrity of mitochondria and nucleus or disrupting oxidative stress and apoptosis-related pathways. Compared to IMC, IMC-SBE-β-CD is biologically safe and has improved water solubility with the UV absorption property maintained. Our study provides the foundation for the encapsulation of hydrophobic, low-toxicity organic compounds using cyclodextrins and offers valuable insights for future research in this field.
Collapse
Affiliation(s)
| | | | | | | | - Kaijie Ni
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (L.T.); (Y.W.); (Y.H.); (Y.D.)
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (L.T.); (Y.W.); (Y.H.); (Y.D.)
| |
Collapse
|
8
|
Lin YJ, Li HM, Gao YR, Wu PF, Cheng B, Yu CL, Sheng YX, Xu HM. Environmentally relevant concentrations of benzophenones exposure disrupt intestinal homeostasis, impair the intestinal barrier, and induce inflammation in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123948. [PMID: 38614423 DOI: 10.1016/j.envpol.2024.123948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The aim of this study is to investigate the adverse effects of benzophenones (BPs) on the intestinal tract of mice and the potential mechanism. F1-generation ICR mice were exposed to BPs (benzophenone-1, benzophenone-2, and benzophenone-3) by breastfeeding from birth until weaning, and by drinking water after weaning until maturity. The offspring mice were executed on postnatal day 56, then their distal colons were sampled. AB-PAS staining, HE staining, immunofluorescence, Transmission Electron Microscope, immunohistochemistry, Western Blot and RT-qPCR were used to study the effects of BPs exposure on the colonic tissues of offspring mice. The results showed that colonic microvilli appeared significantly deficient in the high-dose group, and the expression of tight junction markers Zo-1 and Occludin was significantly down-regulated and the number of goblet cells and secretions were reduced in all dose groups, and the expression of secretory cell markers MUC2 and KI67 were decreased, as well as the expression of intestinal stem cell markers Lgr5 and Bmi1, suggesting that BPs exposure caused disruption of intestinal barrier and imbalance in the composition of the intestinal stem cell pool. Besides, the expression of cellular inflammatory factors such as macrophage marker F4/80 and tumor necrosis factor TNF-α was elevated in the colonic tissues of all dose groups, and the inflammatory infiltration was observed, which means the exposure of BPs caused inflammatory effects in the intestinal tract of F1-generation mice. In addition, the contents of Notch/Wnt signaling pathway-related genes, such as Dll-4, Notch1, Hes1, Ctnnb1and Sfrp2 were significantly decreased in each high-dose group (P < 0.05), suggesting that BPs may inhibit the regulation of Notch/Wnt signaling pathway. In conclusion, exposure to BPs was able to imbalance colonic homeostasis, disrupt the intestinal barrier, and trigger inflammation in the offspring mice, which might be realized through interfering with the Notch/Wnt signaling pathway.
Collapse
Affiliation(s)
- Yu-Jia Lin
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Rong Gao
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ping-Fan Wu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Bin Cheng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chen-Long Yu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yu-Xin Sheng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
9
|
García-Márquez MG, Rodríguez-Castañeda JC, Agawin NSR. Effects of the sunscreen ultraviolet filter oxybenzone (benzophenone-3) on the seagrass Posidonia oceanica (L.) Delile and its associated N 2 fixers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170751. [PMID: 38336058 DOI: 10.1016/j.scitotenv.2024.170751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Oxybenzone/benzophenone-3 (BP-3) is one of the most detrimental organic ultraviolet filters for marine biota, leading to legislative measures banning its presence in commercial sunscreen formulations of several countries. It remains poorly explored how this contaminant is currently threatening the persistence of critical ecosystems for conservation in the Mediterranean, such as Posidonia oceanica meadows, but it is essential for promoting sustainable coastal tourism. Our investigation aimed to determine the effects of BP-3 on P. oceanica under a short-term laboratory setup, recreating summer conditions while testing three environmentally relevant concentrations for Mallorca, Spain (minimum: 53.6 ng L-1, maximum: 557.5 ng L-1 and increased: 1115 ng L-1) and a control (0 ng L-1). Primary productivity was unaffected by the treatments, however, a reduction in leaf chlorophyll content and nitrogen fixation activity associated with rhizomes was evidenced under BP-3 addition. This may be related with oxidative damage, as reactive oxygen species production and catalase activity in P. oceanica leaves were the highest even at minimum BP-3 concentrations. Alkaline phosphatase rates showed inverted trends between old leaves and rhizomes, being enhanced in the former under BP-3 addition and reduced in the latter. These results are of great relevance for the future management of P. oceanica meadows, elucidating that even minimum concentrations of BP-3 reported in coastal waters of Mallorca can induce elevated levels of oxidative stress in the seagrass, that lead to impairments in its photosynthetic pigments production and supply of essential nutrients through belowground tissues.
Collapse
Affiliation(s)
| | | | - Nona S R Agawin
- Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| |
Collapse
|
10
|
Wang B, Jin Y, Li J, Yang F, Lu H, Zhou J, Liu S, Shen Z, Yu X, Yuan T. Exploring environmental obesogenous effects of organic ultraviolet filters on children from a case-control study. CHEMOSPHERE 2023; 341:139883. [PMID: 37672813 DOI: 10.1016/j.chemosphere.2023.139883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
It has been globally recognized that obesity has become a major public health concern, especially childhood obesity. There is limited information, however, regarding the exposure risk of organic ultraviolet (UV) filters, a kind of emerging contaminant, on childhood obesity. This study would be made on 284 obese and 220 non-obese Chinese children with eight organic UV filters at urinary levels. The eight organic UV filters, including 2-Ethylhexyl 4-aminobenzoate (PABA-E), octisalate (EHS), homosalate (HMS), 2-Ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP-3), amiloxate (IAMC), octocrylene (OC) and 4-Methylbenzylidene camphor (4-MBC) were identified in urine samples with detection rates ranged from 35.32% to 100%, among which PABA-E, HMS, IAMC and OC were firstly detected in children' s urine. And the urinary UV filters concentration was associated with genders, living sites, guardian education levels, household income, and dietary factors. Urinary EHMC concentrations and childhood obesity were positively associated for girls [Adjusted OR = 2.642 (95% CI: 1.019, 6.853)], while OC concentrations and childhood obesity were negatively associated for girls [Adjusted OR = 0.022 (95% CI: 0.001, 0.817)]. The results suggest that EHMC exposure may be an environmental obesogen for girls. Moreover, two statistical models were used separately to evaluate the impact of UV filter mixtures on childhood obesity, including the Bayesian kernel machine regression (BKMR) model and the quantile g-computation (qgcomp) model. The negative association between UV filter mixtures and childhood obesity was proposed from both BKMR and qgcomp models. Further experimental and epidemiological studies are called upon to discern the individual and mixture impacts of organic UV filters on childhood obesity.
Collapse
Affiliation(s)
- Beili Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yihui Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fan Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Lu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinyang Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhemin Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
da Cunha Barros DG, Dos Santos Gonçalves do Nascimento GC, Okon C, Rocha MB, Santo DE, de Lima Feitoza L, Junior OV, da Silva Gonzalez R, de Souza DC, Peron AP. Benzophenone-3 sunscreen causes phytotoxicity and cytogenotoxicity in higher plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112788-112798. [PMID: 37840079 DOI: 10.1007/s11356-023-30365-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
The benzophenone-3 (BP-3) sunscreen is recurrently released into the environment from different sources, however, evaluations of its adverse effects on plants do not exist in the literature. In this study, BP-3 was evaluated, at concentrations 2; 20, and 200 µg/L, regarding phytotoxicity, based on germination and root elongation in seeds, in Lactuca sativa L., Cucumis sativus L. and Allium cepa L., and phytotoxicity, cytogenotoxicity and oxidative stress in A. cepa bulb roots. The BP-3 concentrations, except for the 200 µg/L concentration in L. sativa, caused no significant reduction in seed germination. All concentrations tested significantly reduced the elongation of roots from seeds and roots from bulbs. The 20 and 200 µg/L concentrations caused oxidation in cells, disturbances in the cell cycle, and alterations in prophase and metaphase, as well as the induction of micronuclei, in A. cepa root meristems. Furthermore, the three concentrations induced a high number of prophases in root tips. Such disorders were caused by excess H2O2 and superoxide produced in cells due to exposure to BP-3, which triggered significant phytotoxicity, cytotoxicity, and genotoxicity in root meristems. Thus, the recurrent contamination of agricultural and non-agricultural soils with BP-3, even at a concentration of 2 µg/L, represents an environmental risk for plants. These results point to the impending need to set limits for the disposal of this sunscreen into the environment since BP-3 has been used in industry for several decades.
Collapse
Affiliation(s)
| | | | - Caio Okon
- Chemical Engineering Course, Federal Technological University of Paraná, Campo Mourão, Curitiba, Paraná, Brazil
| | - Mylena Bathke Rocha
- Chemical Engineering Course, Federal Technological University of Paraná, Campo Mourão, Curitiba, Paraná, Brazil
| | - Diego Espirito Santo
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Curitiba, Paraná, Brazil
| | | | - Osvaldo Valarini Junior
- Academic Department of Food and Chemical Engineering, Federal Technological University of Paraná, Campo Mourão, Curitiba, Paraná, Brazil
| | - Regiane da Silva Gonzalez
- Academic Department of Chemistry, Federal Technological University of Paraná, Campo Mourão, Curitiba, Paraná, Brazil
| | - Débora Cristina de Souza
- Graduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ana Paula Peron
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Curitiba, Paraná, Brazil.
- Graduate Program in Technological Innovations, Federal Technological University of Paraná, Via Rosalina Maria Dos Santos, 1233. Campo Mourão, Curitiba, Paraná, Zip Code 87.301-899, Brazil.
| |
Collapse
|
12
|
Zhou YL, Dong WR, Shu MA. Toxic effects and molecular mechanisms of estuarian crustaceans (Scylla paramamosain) exposed to five commonly used benzophenones. MARINE POLLUTION BULLETIN 2023; 196:115672. [PMID: 37857059 DOI: 10.1016/j.marpolbul.2023.115672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Benzophenones (BPs) are commonly used in personal care products like sunscreens and are increasingly being released into the environment, raising concerns about their potential ecotoxic effects. BPs as emerging environmental contaminants, little is known about their toxic effects on estuarine organisms. This study firstly investigated the toxic effects of five commonly used BPs on mud crabs (Scylla paramamosain). The crabs were exposed to varying concentrations of BPs for 14 days. The results showed that BPs caused damage to antioxidant systems in crabs. Transcriptome sequencing revealed that BP-3 and BP-1 had a greater impact on the crabs compared to the other BPs. Specifically, BP-1 and BP-3 caused severe damage to organelles and ribosomes. BP affected catalytic activity and hydrolase activity, BP-2 affected phosphoenolpyruate carboxykinase activity, and BP-4 affected tRNA aminoacylation and hydrolase activity. These findings can enhance our understanding of the ecotoxicity of BPs and may help to protect estuarine ecosystems.
Collapse
Affiliation(s)
- Yi-Lian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Grimmelpont M, Lefrançois C, Panisset Y, Jourdon G, Receveur J, Le Floch S, Boudenne JL, Labille J, Milinkovitch T. Avoidance behaviour and toxicological impact of sunscreens in the teleost Chelon auratus. MARINE POLLUTION BULLETIN 2023; 194:115245. [PMID: 37517278 DOI: 10.1016/j.marpolbul.2023.115245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
There is increasing evidence that sunscreen, more specifically the organic ultra-violet filters (O-UVFs), are toxic for aquatic organisms. In the present study, we simulated an environmental sunscreen exposure on the teleost fish, Chelon auratus. The first objective was to assess their spatial avoidance of environmental concentrations of sunscreen products (i.e. a few μg.L-1 of O-UVFs). Our results showed that the fish did not avoid the contaminated area. Therefore, the second objective was to evaluate the toxicological impacts of such pollutants after 35 days exposure to concentrations of a few μg.L-1 of O-UVFs. At the individual level, O-UVFs increased the hepatosomatic index which could suggest pathological alterations of the liver or the initiation of the detoxification processes. At the cellular level, a significant increase of malondialdehyde was measured in the muscle of fish exposed to O-UVFs which suggests a failure of antioxidant defences and/or an excess of reactive oxygen species.
Collapse
Affiliation(s)
- Margot Grimmelpont
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Christel Lefrançois
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Yannis Panisset
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Guilhem Jourdon
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Justine Receveur
- Centre de Documentation de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, CS41836-F-29218 Brest Cedex 2, France.
| | - Stéphane Le Floch
- Centre de Documentation de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, CS41836-F-29218 Brest Cedex 2, France.
| | | | - Jérôme Labille
- Aix Marseille Univ, CNRS, IRD, INRAe, Coll France, CEREGE, Aix-en-Provence, France.
| | - Thomas Milinkovitch
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| |
Collapse
|
14
|
Ren S, Jin X, Bekele TG, Lv M, Ding J, Tan F, Chen L. Development and application of diffusive gradients in thin films for in situ sampling of the organic UV filter 4-methylbenzylidene camphor (4-MBC) in waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92651-92661. [PMID: 37493909 DOI: 10.1007/s11356-023-28844-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
4-Methylbenzylidene camphor (4-MBC), a typical organic UV filter (OUVF) in personal care products, is considered to be a potential endocrine disruptor due to its estrogenic activity and bioaccumulation. Although 4-MBC residues have been extensively identified in aquatic waters, little is known about their occurrence, levels, and potential risk in coastal waters. This study developed a reliable sampling approach, based on diffusive gradients in thin films (DGT) with XAD-2 as the binding agent, for monitoring 4-MBC in coastal waters. The diffusion coefficients of 4-MBC in freshwater and artificial seawater were 3.65 × 10-6 cm2/s and 3.83 × 10-6 cm2/s, respectively. XAD-2 binding gel showed rapid adsorption to 4-MBC. The accumulated masses of 4-MBC in XAD-2 DGT increased linearly with deployed time for 7 days in freshwater and seawater, which agreed well with theoretical predictions. The sampling performance was independent of ionic strength (0.0001-0.5 M), pH (4.0-8.5), and dissolved organic matter (0-20 mg/L). Field deployment in the river estuary and bathing beach showed that DGT-measured 4-MBC concentrations were consistent in comparison with grab sampling. Environmental risk assessment showed that 4-MBC may pose a medium risk to aquatic organisms based on computed risk quotient (RQ) values. Sewage discharge is the main source of 4-MBC risk, while the residue in recreation beaches contributes more significantly in summer. The established DGT sampling is suitable for seasonal monitoring, source identification, and risk assessment of 4-MBC in coastal waters.
Collapse
Affiliation(s)
- Suyu Ren
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Xiaojie Jin
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| |
Collapse
|
15
|
He T, Tsui MMP, Mayfield AB, Liu PJ, Chen TH, Wang LH, Fan TY, Lam PKS, Murphy MB. Organic ultraviolet filter mixture promotes bleaching of reef corals upon the threat of elevated seawater temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162744. [PMID: 36907390 DOI: 10.1016/j.scitotenv.2023.162744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Global reef degradation is a critical environmental health issue that has triggered intensive research on ocean warming, but the implications of emerging contaminants in coral habitats are largely overlooked. Laboratory experiments assessing organic ultraviolet (UV) filter exposure have shown that these chemicals negatively affect coral health; their ubiquitous occurrence in association with ocean warming may pose great challenges to coral health. We investigated both short- (10-day) and long-term (60-day) single and co-exposures of coral nubbins to environmentally relevant organic UV filter mixtures (200 ng/L of 12 compounds) and elevated water temperatures (30 °C) to investigate their effects and potential mechanisms of action. The initial 10-day exposure of Seriatopora caliendrum resulted in bleaching only under co-exposure conditions (compounds + temperature). The 60-day mesocosm study entailed the same exposure settings with nubbins of three species (S. caliendrum, Pocillopora acuta and Montipora aequituberculata). Bleaching (37.5 %) and mortality (12.5 %) of S. caliendrum were observed under UV filter mixture exposure. In the co-exposure treatment, 100 % S. caliendrum and P. acuta bleached associating with 100 % and 50 % mortality, respectively, and significant increase of catalase activities in P. acuta and M. aequituberculata nubbins were found. Biochemical and molecular analyses indicated significant alteration of oxidative stress and metabolic enzymes. The results suggest that upon the adverse effects of thermal stress, organic UV filter mixture at environmental concentrations can cause bleaching in corals by inducing a significant oxidative stress and detoxification burden, suggesting that emerging contaminants may play a unique role in global reef degradation.
Collapse
Affiliation(s)
- Tangtian He
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Mirabelle M P Tsui
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Anderson B Mayfield
- Khaled bin Sultan Living Oceans Foundation, 130 Severn Ave., Annapolis, MD 21403, USA
| | - Pi-Jen Liu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan, ROC
| | - Te-Hao Chen
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan, ROC
| | - Li-Hsueh Wang
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan, ROC
| | - Tung-Yung Fan
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan, ROC
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Margaret B Murphy
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
16
|
Pei J, Hu J, Zhang R, Liu N, Yu W, Yan A, Han M, Liu H, Huang X, Yu K. Occurrence, bioaccumulation and ecological risk of organic ultraviolet absorbers in multiple coastal and offshore coral communities of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161611. [PMID: 36646224 DOI: 10.1016/j.scitotenv.2023.161611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The occurrence of organic ultraviolet absorbers (OUVAs) in coral reef regions has aroused widespread concern. This study focused on the occurrence, distribution, bioaccumulation and ecological risk of ten OUVAs in both coastal and offshore coral reef regions in the South China Sea. While the Σ10OUVAs was 85 % lower in the offshore seawater (15.1 ng/L) than in the coastal seawater (102.1 ng/L), the Σ10OUVAs was 21 % lower in the offshore corals (1.82 μg/g dry weight (dw)) than in the coastal corals (2.31 μg/g dw). This difference was speculated to relate to the high intensity of human activities in the coastal regions. Moreover, the offshore corals showed higher bioaccumulative capability toward OUVAs (log bioaccumulation factors (BAFs): 1.22-5.07) than the coastal corals (log BAFs: 0.17-4.38), which was presumably the influence of varied physiological status under different environmental conditions. The results of the ecological risk assessment showed that BP-3 resulted in 73 % of coastal corals and 20 % of offshore corals at a risk of bleaching. Therefore, the usage and discharge of BP-3 should be managed and controlled by the countries adjacent to the South China Sea for the protection of coral reefs.
Collapse
Affiliation(s)
- Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Junjie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Nai Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wenfeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Annan Yan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Huanxin Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
17
|
Zhang J, Chen H, Tong T, Liu R, Yan S, Liang X, Martyniuk CJ, Zha J. Comparative toxicogenomics of benzotriazole ultraviolet stabilizers at environmental concentrations in Asian clam (Corbicula fluminea): Insight into molecular networks and behavior. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130811. [PMID: 36669413 DOI: 10.1016/j.jhazmat.2023.130811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are widespread emerging pollutants, which can pose exposure risks to benthic organisms. However, the toxicity and mechanisms of BUVSs congeners in benthic clams are far from elucidated. In this study, Asian clams (Corbicula fluminea) were exposed to one of UV-234, UV-326, UV-329, or UV-P at environmentally relevant levels (0.1, 1, and 10 μg/L) for 21 days. Filtration rate (FR) was increased in clams exposed to all BUVSs and there were notable histopathologic changes, including irregular digestive lumen, lipid droplet vacuolation, and degraded epithelial cells. To determine the molecular underpinnings following BUVSs exposure, the transcriptome responses in digestive glands were compared. Differentially expressed genes shared among BUVSs treatments were associated with focal adhesion, TNF-α/NF-κB proinflammatory pathways, and apoptosis. Following this, biochemical analysis of biomarkers related to apoptosis were conducted to further validate response. Exposure to BUVSs inhibited anti-oxidant enzyme activity and induced oxidative stress. Heat shock proteins were also triggered with exposure, and there was an induction of caspase-3 and caspase-9 activity. Molecular responses were not identical in the digestive gland of C. fluminea when comparing responses to BUVSs; nevertheless conserved mechanism (impairment of the oxidative defense system, immune system disruption, and induction of apoptosis) among BUVSs congeners was noted. This study provides novel insight into the toxicity and hazards of BUVSs in benthic organisms.
Collapse
Affiliation(s)
- Jiye Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianheng Tong
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruimin Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Saihong Yan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jinmiao Zha
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
18
|
Tian L, Guo M, Chen H, Wu Y. Human health risk assessment of cinnamate UV absorbers: In vitro and in silico investigations. ENVIRONMENT INTERNATIONAL 2023; 171:107658. [PMID: 36459820 DOI: 10.1016/j.envint.2022.107658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Organic UV absorbers (UVAs) are contaminants of emerging concern. Environmental persistence and potential toxicological enrichment studies of UVAs have attracted international concern. It is important to study the toxicity mechanism of UVAs. This study is the first to report the toxicological mechanism of two cinnamate UV absorbers (CUVAs), 2-ethyl 4-methoxycinnamate (OMC) and isoamyl 4-methoxycinnamate (IMC) based on cellular models and molecular models. Cellular models demonstrated that the CUVAs-induced apoptosis might be associated with cellular mitochondrial damage pathways. The results of molecular models showed that OMC and IMC could affect the binding between major proteins and enzymes in the mitochondrial damage pathway and contaminants, ultimately leading to apoptosis. The cellular-molecular models showed that IMC and OMC have dose-effect relationships on cytotoxicity. The composite model is more informative than a single model. This study further indicate that UVAs causes toxicology effects that have implications for the environment and human health.
Collapse
Affiliation(s)
- Luwei Tian
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China.
| | - Haili Chen
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| | - Yanan Wu
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
19
|
de Paula VDCS, Gomes MF, Martins LRR, Yamamoto FY, de Freitas AM. Acute toxicity characterization of organic UV-filters and chronic exposure revealing multigenerational effects in DAPHNIA MAGNA. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1413-1425. [PMID: 36264527 DOI: 10.1007/s10646-022-02598-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Organic ultraviolet (UV) filters have often been detected in aquatic ecosystems in concentrations ranging from ng/L to μg/L. However, both their acute and chronic effects on aquatic organisms have been insufficiently explored. This study aimed to evaluate acute toxicity of some of the main UV filters used worldwide (2-ethylhexyl,4-methoxycinnamate/EHMC, avobenzone/AVO, benzophenone-3/BP-3, and octocrylene/OC), in three aquatic organisms (Artemia salina, Desmodesmus subspicatus, and Daphnia magna), and to further investigate multigenerational effects in D. magna. After acute toxicity was confirmed, daphnids were chronically exposed to environmentally relevant concentrations of UV filters for two consecutive generations (F0 and F1), and reproductive endpoints, as well as catalase (CAT) and glutathione-S-transferase (GST) activities, were assessed. EHMC showed the most toxic potential, with the lowest EC50 values for the three organisms. On the other hand, reproductive delays and a decrease in the reproduction rate were observed in the F1 generation exposed to AVO (4.4 µg/L), BP-3 (0.17 µg/L), EHMC (0.2 µg/L), and MIX. An increase of the CAT activity in organisms exposed to BP-3 and EHMC suggested induction of the antioxidant system. Although no reproductive effect was observed in the first generation, toxic effects obtained in the F1 revealed the importance of multigenerational studies and the potential harm of UV filters to the life cycle of D. magna, even at environmentally relevant concentrations. This emphasizes the need for further studies considering these levels of exposure and more realistic experimental designs to better understand their potential risks. Environmentally relevant concentrations of Organic UV filters are not lethal to aquatic organisms, however may affect reproductive parameters in Daphnia magna though multigenerational exposures.
Collapse
Affiliation(s)
- Vinícius de C S de Paula
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná, Curitiba, Paraná, Brazil
| | - Monike F Gomes
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná, Curitiba, Paraná, Brazil
| | - Lucia Regina R Martins
- Multiuser Laboratory of Environmental Analysis, Federal University of Technology-Paraná, Curitiba, Paraná, Brazil
| | - Flávia Y Yamamoto
- Institute of Biosciences, São Paulo State University, São Vicente, Brazil
| | - Adriane Martins de Freitas
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná, Curitiba, Paraná, Brazil.
- Multiuser Laboratory of Environmental Analysis, Federal University of Technology-Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
20
|
Cuccaro A, De Marchi L, Oliva M, Monni G, Miragliotta V, Fumagalli G, Freitas R, Pretti C. The influence of salinity on the toxicity of chemical UV-filters to sperms of the free-spawning mussel Mytilus galloprovincialis (Lamark, 1819). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106263. [PMID: 35939883 DOI: 10.1016/j.aquatox.2022.106263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Marine-coastal systems have been increasingly exposed to multiple stressors, including anthropogenic pollution and variations of Climate Change (CC) related factors, whose coexistence could create associated environmental and ecotoxicological risks. Among emergent stressors, 4-methylbenzylidenecamphor (4-MBC) and benzophenone-3 (BP-3) UV-filters are compounds widely used in increasing consumer products, resulting in their ubiquity in aquatic environments and possible pressing challenges on gamete susceptibility. Since most marine invertebrates reproduce by external fertilization, after spawning, gametes may be exposed to several pressures, affecting reproductive success and outcome. The present study focuses on the spermiotoxicity of the environmentally relevant UV-filters 4-MBC and BP-3 combined with salinity shifts, as potential modulators of their harmful effects. For this, Mytilus galloprovincialis male gametes were exposed in vitro to environmentally relevant and slightly higher concentrations (1, 10 and 100 µg/L) of 4-MBC or BP-3 under three different salinities (S 20, 30 and 40). Sperm quality endpoints associated with oxidative status, viability, motility, kinetics, and genotoxicity were evaluated. Similarities and differences in sperm responses among all conditions were highlighted by principal coordinates analysis (PCO). Results showed that salinity acting alone posed greater sperms impairments at the lowest (20) and highest (40) tested levels. When salinity acts as a co-varying stressor, salinity-dominant interactive effects resulted evident, especially for 4-MBC at S 40 and BP-3 at S 20. These findings were pointed out as the worst exposure conditions for M. galloprovincialis sperms, since caused major toxicological effects in terms of: (I) oxidative stress, sperm structural impairments, motility and kinetic alterations in 4-MBC-exposed sperms; (II) DNA damage, compromised mitochondrial activity and hyperactivation in BP-3-exposed ones. Overall, it stands out that salinity influences UV-filter toxicological pathways and, thereby, the potential environmental risk of these contaminants on M. galloprovincialis male gametes, especially in an expected salinity stress scenario.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, PI 56122, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, PI 56122, Italy
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy
| | - Rosa Freitas
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", Livorno 57128, Italy; Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, San Piero a Grado, PI 56122, Italy.
| |
Collapse
|
21
|
Song J, Kim C, Na J, Sivri N, Samanta P, Jung J. Transgenerational effects of polyethylene microplastic fragments containing benzophenone-3 additive in Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129225. [PMID: 35739745 DOI: 10.1016/j.jhazmat.2022.129225] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Maternal exposure to microplastics (MPs) plays an important role in the fitness of unexposed progeny. In this study, the transgenerational effects of polyethylene MP fragments (17.35 ± 5.50 µm) containing benzophenone-3 (BP-3; 2.85 ± 0.16% w/w) on chronic toxicity (21 d) in Daphnia magna were investigated across four generations. Only D. magna in the F0 generation was exposed to MP fragments, MP/BP-3 fragments, and BP-3 leachate to identify the transgenerational effect in the F3 generation. The mortality of D. magna induced by MP and MP/BP-3 fragments was recovered in the F3 generation, but somatic growth and reproduction significantly decreased compared to the control. Additionally, reproduction of D. magna exposed to BP-3 leachate significantly decreased in the F3 generation. These findings confirmed the transgenerational effects of MP fragment and BP-3 additive on D. magna. Particularly, the adverse effect on D. magna reproduction seemed to be cumulative across four generations for MP/BP-3 fragments, while it was an acclimation trend for BP-3 leachate. However, there was no significant difference in global DNA methylation in D. magna across four generations, thus requiring a gene-specific DNA methylation study to identify different epigenetic transgenerational inheritance.
Collapse
Affiliation(s)
- Jinyoung Song
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Nüket Sivri
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, West Bengal, India
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
22
|
Suryanto ME, Vasquez RD, Roldan MJM, Chen KHC, Huang JC, Hsiao CD, Tsao CC. Establishing a High-Throughput Locomotion Tracking Method for Multiple Biological Assessments in Tetrahymena. Cells 2022; 11:2326. [PMID: 35954170 PMCID: PMC9367449 DOI: 10.3390/cells11152326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Protozoa are eukaryotic, unicellular microorganisms that have an important ecological role, are easy to handle, and grow rapidly, which makes them suitable for ecotoxicity assessment. Previous methods for locomotion tracking in protozoa are largely based on software with the drawback of high cost and/or low operation throughput. This study aimed to develop an automated pipeline to measure the locomotion activity of the ciliated protozoan Tetrahymena thermophila using a machine learning-based software, TRex, to conduct tracking. Behavioral endpoints, including the total distance, velocity, burst movement, angular velocity, meandering, and rotation movement, were derived from the coordinates of individual cells. To validate the utility, we measured the locomotor activity in either the knockout mutant of the dynein subunit DYH7 or under starvation. Significant reduction of locomotion and alteration of behavior was detected in either the dynein mutant or in the starvation condition. We also analyzed how Tetrahymena locomotion was affected by the exposure to copper sulfate and showed that our method indeed can be used to conduct a toxicity assessment in a high-throughput manner. Finally, we performed a principal component analysis and hierarchy clustering to demonstrate that our analysis could potentially differentiate altered behaviors affected by different factors. Taken together, this study offers a robust methodology for Tetrahymena locomotion tracking in a high-throughput manner for the first time.
Collapse
Affiliation(s)
- Michael Edbert Suryanto
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Ross D. Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines;
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines
- The Graduate School, University of Santo Tomas, Manila 1015, Philippines
| | | | - Kelvin H. -C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (K.H.-C.C.); (J.-C.H.)
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (K.H.-C.C.); (J.-C.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center of Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Che-Chia Tsao
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan
| |
Collapse
|
23
|
Jin Y, Yuan T, Li J, Shen Z, Tian Y. Occurrence, health risk assessment and water quality criteria derivation of six personal care products (PCPs) in Huangpu River, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:577. [PMID: 35819530 DOI: 10.1007/s10661-022-10271-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Personal care products (PCPs) have shown adverse health effects on humans. However, their health risk associated with fish consumption and relevant water quality criteria are still not well documented. This study investigated the occurrence and health risk of six PCPs (triclosan, bisphenol-A, and four commonly used organic ultraviolet (UV) filters, i.e., homosalate (HMS), 4-methylbenzylidene camphor (4-MBC), oxybenzone (BP-3), and octocrylene (OC)). River water and three trophic levels of fish species were collected from Huangpu River in Shanghai. The concentration range of the six PCPs were 1.48-89.76 ng/L in water and 0.40-10.75 ng/g dry weight in fish. Estimated daily intake (EDI) and target hazard quotient (THQ) of the PCPs indicated that consuming these fish would not pose non-carcinogenic risks. The maximum allowable fish consumption rates ranged from 85 to 1760 and 155 to 3230 meals per month for children and adults, respectively. As to the four organic UV filters, it is the first time to report the fish consumption advisories. Finally, the human health ambient water quality criteria (AWQC) values of HMS, 4-MBC, BP-3, OC, TCS, and BPA (i.e., 0.1218, 0.7311, 0.3494, 0.0477, 235.8, and 154.7 μg/L, respectively) were proposed, and they can serve as a valuable technical reference for global development and revision of aquatic environmental quality standards for these emerging contaminants.
Collapse
Affiliation(s)
- Yihui Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jiafan Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhemin Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
24
|
Huang CW, Kung ZY, Wei CC. UV-filter octyl methoxycinnamate causes reproductive toxicity associated with germline apoptosis and vitellogenin decrease in Caenorhabditis elegans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106149. [PMID: 35397382 DOI: 10.1016/j.aquatox.2022.106149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Octyl methoxycinnamate (OMC) is a common UV filter found in personal care products such as sunscreen and cosmetics. However, OMC's presence in wastewater has raised concerns that it could potentially pollute aquatic ecosystems because of its limited biodegradability and its estrogenic disrupting properties. In this study, we investigated the environmental toxicity of OMC and its potential biomarkers using the nematode Caenorhabditis elegans. Our results showed that body length, eggs in utero, and total brood size decreased with increasing dose (experimental concentrations = 0, 1, 5, 10, 100, 500 μM for body length and eggs in utero, and 0, 5, 10 μM for total brood size) in C. elegans after L1 larval stage (the first larval stage for 0 - 12 hours post-hatching) larval stage exposure to OMC. The minimum effective concentrations were 1, 5, and 10 μM, respectively. Modeling results demonstrated that the threshold concentration of OMC inducing 10% inhibited eggs in utero was 0.33 μM (95.11 μg/L). Furthermore, germline apoptosis was induced in 10 μM OMC-treated worms (experimental concentrations = 0, 5, 10 μM). Decreased mRNA levels of vitellogenin-related genes (vit-2 and vit-6) and increased mRNA levels of apoptosis-related genes (egl-1 and ced-3) were observed in 10 μM OMC-treated C. elegans (experimental concentrations = 0, 10 μM), suggesting that reproductive toxicity was associated with decreased vitellogenin levels and germline apoptosis. In summary, our study shows that OMC is reproductively toxic and leads to reduced egg formation and decreased brood size in C. elegans by reducing vitellogenin levels and promoting germline apoptosis.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Zhi-Ying Kung
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan.
| |
Collapse
|
25
|
Enhanced Toxicity of Bisphenols Together with UV Filters in Water: Identification of Synergy and Antagonism in Three-Component Mixtures. Molecules 2022; 27:molecules27103260. [PMID: 35630736 PMCID: PMC9143986 DOI: 10.3390/molecules27103260] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Contaminants of emerging concern (CEC) localize in the biome in variable combinations of complex mixtures that are often environmentally persistent, bioaccumulate and biomagnify, prompting a need for extensive monitoring. Many cosmetics include UV filters that are listed as CECs, such as benzophenone derivatives (oxybenzone, OXYB), cinnamates (2-ethylhexyl 4-methoxycinnamate, EMC) and camphor derivatives (4-methylbenzylidene-camphor, 4MBC). Furthermore, in numerous water sources, these UV filters have been detected together with Bisphenols (BPs), which are commonly used in plastics and can be physiologically detrimental. We utilized bioluminescent bacteria (Microtox assay) to monitor these CEC mixtures at environmentally relevant doses, and performed the first systematic study involving three sunscreen components (OXYB, 4MBC and EMC) and three BPs (BPA, BPS or BPF). Moreover, a breast cell line and cell viability assay were employed to determine the possible effect of these mixtures on human cells. Toxicity modeling, with concentration addition (CA) and independent action (IA) approaches, was performed, followed by data interpretation using Model Deviation Ratio (MDR) evaluation. The results show that UV filter sunscreen constituents and BPs interact at environmentally relevant concentrations. Of notable interest, mixtures containing any pair of three BPs (e.g., BPA + BPS, BPA + BPF and BPS + BPF), together with one sunscreen component (OXYB, 4MBC or EMC), showed strong synergy or overadditive effects. On the other hand, mixtures containing two UV filters (any pair of OXYB, 4MBC and EMC) and one BP (BPA, BPS or BPF) had a strong propensity towards concentration dependent underestimation. The three-component mixtures of UV filters (4MBC, EMC and OXYB) acted in an antagonistic manner toward each other, which was confirmed using a human cell line model. This study is one of the most comprehensive involving sunscreen constituents and BPs in complex mixtures, and provides new insights into potentially important interactions between these compounds.
Collapse
|
26
|
Ruan S, Erwin N, He M. Light-induced high-efficient cellular production of immune functional extracellular vesicles. J Extracell Vesicles 2022; 11:e12194. [PMID: 35230743 PMCID: PMC8886920 DOI: 10.1002/jev2.12194] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicle (EV)-based therapies and vaccines are emerging. However, employment at the scale for population-based dose development is always a huge bottleneck. In order to overcome such a roadblock, we introduce a simple and straightforward approach for promoting cellular production of dendritic cell derived EVs (DEVs) by leveraging phototherapy based light induction. Under the optimization of light wavelengths, intensities, and exposure times, we achieved more than 13-fold enhancement in DEV production rate, while maintaining good integral quality and immune function from produced EVs. The LED light at 365 nm is optimal to reliably trigger enhanced cellular production of EVs no matter cell line types. Our observation and other reported studies support longer near UV wavelength does not impair cell growth. We conducted a series of investigations in terms of size, zeta potential, morphology, immune surface markers and cytokines, biocompatibility, cellular uptake behaviour, and immune-modulation ability on eliciting cellular responses in vitro. We also validated the biodistribution, immunogenicity, and administration safety using light-promoted DEVs in mice models from both male and female genders. Overall data supports that light promoted DEVs are highly immune functional with great biocompatibility for serving as good therapeutic platforms. The in vivo animal study also demonstrated light-promoted DEVs are as well tolerated as native DEVs, with no safety concerns. Taken together, the data supports that light promoted DEVs are in excellent quality, high biocompatibility, in vivo tolerant, and viable for serving as an ideal therapeutic platform in scalable production.
Collapse
Affiliation(s)
- Shaobo Ruan
- Department of PharmaceuticsCollege of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Nina Erwin
- Department of PharmaceuticsCollege of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Mei He
- Department of PharmaceuticsCollege of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
27
|
Organic UV Filters Induce Toll-like-Receptors and Related Signaling Pathways in Peripheral Blood Mononuclear Cells of Juvenile Loggerhead Sea Turtles (Caretta caretta). Animals (Basel) 2022; 12:ani12050594. [PMID: 35268162 PMCID: PMC8909695 DOI: 10.3390/ani12050594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Emerging environmental contaminants, such as sunscreen agents, have been broadly identified in marine ecosystems. Thus, the present work aims to investigate whether organic UV filters cause immunotoxic effects in juvenile loggerhead sea turtles (Caretta caretta). We found that loggerhead sea turtles showing high circulating levels of organic UV filters manifested increased expression of genes involved in inflammatory responses, probably due to contaminant-induced oxidative damage. Abstract Recent evidence suggests that exposure to organic ultraviolet filters (UV filters) is associated with dysregulated neuroendocrine-immune homeostasis. Marine species are likely to be among the most vulnerable to UV filters due to widespread diffusion of these chemicals in the aquatic environment. In the present study, the effects of UV filter bioaccumulation on toll-like-receptors (TLRs) and related signaling pathways were investigated in peripheral blood mononuclear cells (PBMCs) of juvenile loggerhead sea turtles (Caretta caretta). We found that the expression of both TLR1 and TLR2 was significantly increased in UV-filter exposed turtles compared to control animals. Similarly, the signaling pathway downstream of activated TLRs (i.e., Ras-related C3 botulinum toxin substrate 1 (RAC1), Phosphoinositide 3-kinase (PI3K), serine/threonine-protein kinase (AKT3), and nuclear factor κB (NF-κB)) was significantly up-regulated, leading to an enhanced transcription of pro-inflammatory cytokines. In addition, we demonstrated that high levels of plasma UV filters increased lipid peroxidation in sea turtles’ PBMCs. Our results indicated that UV filters affected the inflammatory responses of PBMCs via modulation of the TLR/NF-κB signaling pathway and provided a new insight into the link between exposure to sunscreen agents and sea turtle health.
Collapse
|
28
|
Prakash V, Jain V, Chauhan SS, Parthasarathi R, Roy SK, Anbumani S. Developmental toxicity assessment of 4-MBC in Danio rerio embryo-larval stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149920. [PMID: 34509837 DOI: 10.1016/j.scitotenv.2021.149920] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Enormous production of cosmetic products and its indiscriminate use tends to discharge into the aquatic environment and might threaten non-target organisms inhabiting aquatic ecosystems. In the present study, developmental toxicity of 4-methylbenzylidene camphor (4-MBC), a widely used organic UV filter in personal care products has been evaluated using zebrafish embryo-larval stages. Waterborne exposure induced developmental toxicity and deduced 2.71 mg/L as 96 h LC50 whereas embryos exposed to sub-lethal concentrations (50 and 500 μg/L) caused a significant delay in hatching rate, heart rate, reduced larval length, and restricted hatchlings motility besides the axial curvature. Chronic exposure to 10 dpf resulted in significant decrease in SOD activity at 500 μg/L with no changes in CAT level besides a significant increase in GST enzyme at 5 μg/L concentration in 5 dpf sampled larvae. However, all the three enzymes were significantly elevated in 10 dpf larvae indicating differential oxidative stress during the stages of development. Similar trend is noticed for acetylcholine esterase enzyme activity. A concentration dependent increase in malondialdehyde content was noted in larvae sampled at 5 and 10 dpf. In addition, multixenobiotic resistance (MXR) activity inhibition, and elevated oxidative tissue damage were noticed at 5 dpf with no significant changes in 10 dpf larvae. Furthermore, immunoblot analysis confirms 4-MBC induced apoptosis in zebrafish larvae with promoted cleaved Caspase-3, Bax and inhibited Bcl-2 proteins expression. Subsequently, docking studies revealed the binding potential of 4-MBC to zebrafish Abcb4 and CYP450 8A1 proteins with the binding energy of -8.1 and -8.5 kcal/mol representing target proteins interaction and toxicity potentiation. Our results showed that 4-MBC exposure triggers oxidative stress at sub-lethal concentrations leading to apoptosis, deformities and locomotion perturbations in developing zebrafish.This is first of its kind in systematically demonstrating developmental toxicity of 4-MBC and the information shall be used for aquatic toxicity risk assessment.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shweta Singh Chauhan
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Somendu K Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
29
|
Im H, Achar JC, Shim T, Jung J. Elevated temperature alleviates benzophenone-3 toxicity in Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106047. [PMID: 34864523 DOI: 10.1016/j.aquatox.2021.106047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Water temperature rises due to thermal discharge and global warming and the potential resulting impacts on the ecotoxicity of emerging chemicals are a growing concern. Benzophenone-3 (BP-3) is an ultraviolet filter added to personal care and plastic products, which is detected at highest concentrations during the hot summer season. This study aimed to investigate the effect of elevated temperature on acute (48 h) and chronic (21 d) BP-3 toxicity in Daphnia magna. Neonates (<24 h) acclimated at 28 °C showed much lower acute toxicity (EC50 = 3.91 and 2.69 mg L-1 at 20 and 28 °C, respectively) than those acclimated at 20 °C (EC50 = 2.96 and 2.04 mg L-1 at 20 and 28 °C, respectively). The body length, embryonic development, and the number of offspring in D. magna offspring exposed to BP-3 for 21 d were significantly decreased after exposure to 0.8 mg L-1 BP-3 at 20 °C. However, these adverse effects of BP-3 in D. magna were significantly ameliorated at 28 °C. Under these conditions, stress response genes such as Hb (hemoglobin), Hsp70 (heat shock protein), Cyp4 (cytochrome P450), and GST (glutathione-S-transferase) were significantly upregulated. These findings suggest that elevated temperature activated stress responses in D. magna, leading to enhanced protection against BP-3 toxicity. This study will contribute to a better understanding of the ecotoxicological impacts of toxic chemicals on aquatic organisms at elevated temperature.
Collapse
Affiliation(s)
- Hyungjoon Im
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jerry Collince Achar
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
| | - Taeyong Shim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
30
|
Yu H, Di S, Su X, Wang J, Ning T, Yang H, Zhu S. Preparation of beta-cyclodextrin based nanocomposite for magnetic solid-phase extraction of organic ultraviolet filters. J Chromatogr A 2021; 1663:462765. [PMID: 34963090 DOI: 10.1016/j.chroma.2021.462765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
A simple and efficient analytical method for organic UV filters (UV-Fs) in environmental samples has been established in this study. Taking advantage of the hydrophobicity on the inner cavity, hydrophilicity on the outer wall, and host-guest interaction provided by beta-cyclodextrin, a core-shell magnetic extraction material was firstly synthesized by using a facile method. The extractant was utilized in magnetic solid-phase extraction of UV-Fs in complex environmental samples, including beach sand, sediment and river water samples, followed by the quantitation using high-performance liquid chromatography. A series of factors affecting extraction efficiencies of seven UV-Fs were profoundly optimized. Under the optimal conditions, the linear ranges were at 5.0-5.0 × 102 ng mL-1 for the UV-Fs with regression coefficients (r) at 0.9984-0.9998. The limits of detection were from 0.12 to 1.4 ng mL-1. The recoveries were in the range of 84.2-109%. Furthermore, the molecular dynamics simulations and independent gradient model analysis were applied to reveal the adsorption configuration and interaction mechanisms between target analytes and the sorbent.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xueli Su
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen 448000, China
| | - Jiahao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
31
|
Achar JC, Na J, Im H, Jung J. Role of extracellular polymeric substances in leaching and bioconcentration of benzophenone-3 from microplastic fragments. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125832. [PMID: 33887569 DOI: 10.1016/j.jhazmat.2021.125832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Adverse effects of microplastics (MPs) are exacerbated by plastic additives such as benzophenone-3 (BP-3). The aim of the present study was to evaluate the role of extracellular polymeric substances (EPS) of Chlorella vulgaris in leaching BP-3 additive (3.0 ± 0.2% wt/wt) from polyethylene MP fragments (99.8 ± 4.1 µm) and subsequent bioconcentration in Daphnia magna. BP-3 leaching in M4 medium was higher at pH 8 than at pH 6, because of the higher solubility of BP-3 (pKa=7.07) at pH 8. However, EPS reduced BP-3 leaching in M4 medium, possibly because of repulsive interactions between the negatively charged EPS and anionic BP-3. Thus, BP-3 leaching was greater at lower pH (6 >8) and EPS concentration (20 >50 mg L-1 as total organic carbon), which was well related to BP-3 sorption capacity of EPS. Although BP-3 uptake in D. magna was decreased at pH 8 by increasing EPS concentration, the bioconcentration of BP-3 in D. magna was increased, possibly because of reduced BP-3 elimination. These findings suggest the important role of EPS in the bioconcentration of anionic plastic additives, which should be further evaluated to understand the underlying toxicokinetic mechanisms.
Collapse
Affiliation(s)
- Jerry Collince Achar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyungjoon Im
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
32
|
Meng Q, Yeung K, Chan KM. Toxic effects of octocrylene on zebrafish larvae and liver cell line (ZFL). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105843. [PMID: 34010734 DOI: 10.1016/j.aquatox.2021.105843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Octocrylene (OC) is a broad-spectrum ultraviolet-absorbing chemical used in sunscreen and other personal care products. Its health effects are a concern because it has been detected in water, fish, humans, and food chains. In vivo and in vitro investigations were performed in zebrafish (Danio rerio) larvae and a zebrafish liver cell line (ZFL), respectively, to understand the potential risks and molecular mechanisms of OC toxicity. The 96-h median lethal concentration (LC50) of OC was determined to be 251.8 μM in larvae and 5.5 μM in ZFL cells. Quantitative real-time PCR (qRT-PCR) showed that OC induced the expression of genes for CYPs (CYP1A, CYP3A65), estrogen receptors (ERα, ERβ1, GPER), vitellogenin (VTG1), and sex determination (BRCA2, CYP19A, DMRT1, SOX9A), both in vitro and in vivo. A whole-transcriptome sequencing method was used to evaluate the gene expression profile of larvae exposed to OC. OC was found to mediate the biosynthesis of estrogens (such as estriol) and affect the antioxidant pathway (glutathione transferases and peroxisome). These findings clarify the toxic effects and molecular mechanisms of OC and support banning its use in cosmetics.
Collapse
Affiliation(s)
- Qi Meng
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - Karen Yeung
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong.
| |
Collapse
|
33
|
Lucas J, Logeux V, Rodrigues AMS, Stien D, Lebaron P. Exposure to four chemical UV filters through contaminated sediment: impact on survival, hatching success, cardiac frequency, and aerobic metabolic scope in embryo-larval stage of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29412-29420. [PMID: 33555472 DOI: 10.1007/s11356-021-12582-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
UV filters are widely used in many pharmaceutical and personal care products such as sunscreen and cosmetics to protect from UV irradiation. Due to their hydrophobic properties and relative stability, they have a high capacity to accumulate in sediment. Little information is available on their ecotoxicity on fish. In aquatic ecosystems, fish eggs could be directly affected by UV filters through contact with contaminated sediment. The aim of this study was to investigate the individual toxicity of four UV filters: benzophenone-3 (BP3), butyl methoxydibenzoylmethane (BM), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), in embryo-larval stages of zebrafish Danio rerio. Fish eggs were exposed to single UV filters by contact with spiked sediment during 96 h at a concentration of 10 μg g-1. Among the four UV filters tested, BP3 was the more toxic, reducing cardiac frequency and increasing standard metabolic rate of larvae.
Collapse
Affiliation(s)
- Julie Lucas
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.
| | - Valentin Logeux
- Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| |
Collapse
|
34
|
Updated Distribution of the Mysid Antromysis cenotensis (Crustacea: Peracarida), a Protected Key Species in Yucatan Peninsula Cenotes. DIVERSITY 2021. [DOI: 10.3390/d13040154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present 52 new geographic location records for the peracarid crustacean Antromysis cenotensis Creaser, 1936, endemic in cenotes of the Yucatan Peninsula, Mexico. This species is currently considered threatened and, therefore, is protected by Mexican law. These results arise from several expeditions carried out between 2017 and 2020 in 75 locations within the cenote-ring, the interior, and coastal plains of the peninsula. A comprehensive literature review provided 84 geographic location records since the species was described in 1936. A map with 136 geographic location records that better describe the current species distribution is also included. With this information, plus some notes on the ecology of the species, a comprehensive literature and data review, and a brief analysis regarding the possible factors associated with the confirmed absence of the species in some locations in the state of Yucatan, we provide a brief and condensed summary of the actual knowledge on this particular species. The data in Darwin Core format can be retrieved in Zenodo.
Collapse
|
35
|
Zheng M, Han H, Xu C, Zhang Z, Ma W. A novel study for joint toxicity of typical aromatic compounds in coal pyrolysis wastewater by Tetrahymena thermophile. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111880. [PMID: 33421721 DOI: 10.1016/j.ecoenv.2020.111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The coal pyrolysis wastewater (CPW) contributed to aquatic environment contamination with amount of aromatic pollutants, and the research on joint toxicity of the mixture of aromatic compounds was vital for environmental protection. By using Tetrahymena thermophile as non-target organism, the joint toxicity of typical nonpolar narcotics and polar narcotics in CPW was investigated. The results demonstrated that the nonpolar narcotics exerted chronic and reversible toxicity by hydrophobicity-based membrane perturbation, while polar narcotics performed acute toxicity by irreversible damage of cells. As the most hydrophobic nonpolar narcotics, indole and naphthalene caused the highest joint toxicity in 24 h with the lowest EC50mix (24.93 mg/L). For phenolic compounds, the combination of p-cresol and p-nitrophenol also showed the top toxicity (EC50mix = 10.9 mg/L) with relation to high hydrophobicity, and the joint toxicity was obviously stronger and more acute than that of nonpolar narcotics. Furthermore, by studying the joint toxicity of nonpolar narcotics and polar narcotics, the hydrophobicity-based membrane perturbation was the first step of toxicity effects, and afterwards the acute toxicity induced by electrophilic polar substituents of phenols dominated joint toxicity afterwards. This toxicity investigation was critical for understanding universal and specific effects of CPW to aquatic organisms.
Collapse
Affiliation(s)
- Mengqi Zheng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chunyan Xu
- Harbin Gongchuang Environmental Protection Technology Company, Harbin, Heilongjiang 150090, China
| | - Zhengwen Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wencheng Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
36
|
Seoane M, Cid Á, Herrero C, Esperanza M. Comparative acute toxicity of benzophenone derivatives and bisphenol analogues in the Asian clam Corbicula fluminea. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:142-153. [PMID: 33159647 DOI: 10.1007/s10646-020-02299-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Among UV-filters, benzophenones are one of the most abundantly used and detected groups in the environment. Bisphenols are also one of the most widely used chemicals in plastics, but their demonstrated deleterious effects on several organisms and humans have led to the production of alternative analogues. However, few comparative studies on the ecotoxicological effects of these derivatives or analogues have been carried out. The present study aimed to investigate the effects of two benzophenones (BP-3 and BP-4) and two bisphenols (BPA and BPS) in a short-term exposure of the freshwater endobenthic bivalve Corbicula fluminea. Clams were exposed for 96 h to several concentrations of the four pollutants: BP-3 (0.63; 1.25; 2.5; 5 mg l-1), BP-4 (4.75; 9.5; 19; 38 mg l-1), BPA (3.75; 7.5; 15; 30 mg l-1), and BPS (2.5; 5; 10; 20 mg l-1). The comparative acute toxicity of these pollutants was evaluated by the analysis of the post-exposure filtering capacity of clams, lipid peroxidation (LP) levels and the activity of the antioxidant enzymes catalase (CAT) and glutathione reductase (GR). After the exposure period, except for BP-4, the chemicals tested seemed to be detected by clams and provoked valve closure, decreasing filter-feeding in a concentration-dependent manner. Furthermore, C. fluminea exposed to the highest concentrations of BP-3, BP-4 and BPA showed a significant increase in LP, CAT and GR activities with respect to their controls. BP-3 and BPA were the most toxic compounds showing significant differences in all the parameters analysed at the highest concentrations assayed. However, clams exposed to BPS showed only significant alterations in filtration parameters and in GR activity, in the two highest concentrations tested, indicating that this compound was the least toxic to clams. Obtained results highlight the importance of investigating the effects that emerging pollutants have on aquatic organisms.
Collapse
Affiliation(s)
- Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A, Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A, Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A, Coruña, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A, Coruña, Spain.
| |
Collapse
|
37
|
Boyd A, Stewart CB, Philibert DA, How ZT, El-Din MG, Tierney KB, Blewett TA. A burning issue: The effect of organic ultraviolet filter exposure on the behaviour and physiology of Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141707. [PMID: 33182172 DOI: 10.1016/j.scitotenv.2020.141707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Ultraviolet (UV) filters are compounds utilized in many manufacturing processes and personal care products such as sunscreen to protect against UV-radiation. These highly lipophilic compounds are emerging contaminants of concern in aquatic environments due to their previously observed potential to bioaccumulate and exert toxic effects in marine ecosystems. Currently, research into the toxic effects of UV filter contamination of freshwater ecosystems is lacking, thus the present study sought to model the effects of acute and chronic developmental exposures to UV filters avobenzone, oxybenzone and octocrylene as well as a mixture of these substances in the freshwater invertebrate, Daphnia magna, at environmentally realistic concentrations. Median 48-hour effect and lethal concentrations were determined to be in the low mg/L range, with the exception of octocrylene causing 50% immobilization near environmental concentrations. 48-hour acute developmental exposures proved to behaviourally impair daphnid phototactic response; however, recovery was observed following a 19-day post-exposure period. Although no physiological disruptions were detected in acutely exposed daphnids, delayed mortality was observed up to seven days post-exposure at 200 μg/L of avobenzone and octocrylene. 21-day chronic exposure to 7.5 μg/L octocrylene yielded complete mortality within 7 days, while sublethal chronic exposure to avobenzone increased Daphnia reproductive output and decreased metabolic rate. 2 μg/L oxybenzone induced a 25% increase in metabolic rate of adult daphnids, and otherwise caused no toxic effects at this dose. These data indicate that UV filters can exert toxic effects in freshwater invertebrates, therefore further study is required. It is clear that the most well-studied UV filter, oxybenzone, may not be the most toxic to Daphnia, as both avobenzone and octocrylene induced behavioural and physiological disruption at environmentally realistic concentrations.
Collapse
Affiliation(s)
- Aaron Boyd
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada.
| | - Connor B Stewart
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Danielle A Philibert
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada; Huntsman Marine Science Centre, St. Andrews E5B 2L7, Canada
| | - Zuo Tong How
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H, Canada
| | - Mohamed Gamal El-Din
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H, Canada
| | - Keith B Tierney
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| |
Collapse
|
38
|
Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int J Womens Dermatol 2021; 7:45-69. [PMID: 33537395 PMCID: PMC7838327 DOI: 10.1016/j.ijwd.2020.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Sunscreens are topical preparations containing one or more compounds that filter, block, reflect, scatter, or absorb ultraviolet (UV) light. Part 2 of this review focuses on the environmental, ecological effects and human toxicities that have been attributed to UV filters. METHODS Literature review using NIH databases (eg, PubMed and Medline), FDA and EPA databases, Google Scholar, the Federal Register, and the Code of Federal Regulations (CFR). LIMITATIONS This was a retrospective literature review that involved many different types of studies across a variety of species. Comparison between reports is limited by variations in methodology and criteria for toxicity. CONCLUSIONS In vivo and in vitro studies on the environmental and biological effects of UV filters show a wide array of unanticipated adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention from the lay press, but the scientific literature identifies potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. These effects harm a vast array of aquatic and marine biota, while almost no data supports human toxicity at currently used quantities (with the exception of contact allergy). Much of these data are from experimental studies or field observations; more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and FDA-approved alternatives.
Collapse
Key Words
- 4-MBC, 4-methylbenzylidene camphor
- AAD, American Academy of Dermatology
- Aquatic organism toxicity of UV filters
- BP-3, Benzophenone-3 or Oxybenzone
- Bioaccumulation
- CDER, Center for Drug Evaluation and Research (part of FDA)
- Coral bleaching
- EPA, Environmental Protection Agency
- Europa, European Union Commission for Public Health
- FDA, Food and Drug Administration
- GBRMPA, Great Barrier Reef Marine Park Authority
- GRASE, Generally Recognized As Safe and Effective
- Human toxicity of UV filters
- NDA, New drug application
- NHANES, National Health and Nutrition Examination Survey
- NanoTiO2, Nanoparticle titanium dioxide
- Nanoparticle toxicity
- OC, Octocrylene
- OMC, Octyl methoxycinnamate or octinoxate
- OTC, Over-the-counter
- PABA, Para-aminobenzoic acid
- PCPC, Personal care products and cosmetics
- PPCP, Pharmaceuticals and personal care products
- Sunscreen side effects
- TiO2, Titanium dioxide
- UV filter
- UV, Ultraviolet
- UVF, Ultraviolet filter
- WWTP, Wastewater treatment plant
Collapse
Affiliation(s)
- David Fivenson
- Fivenson Dermatology, 3200 W. Liberty Rd., Suite C5, Ann Arbor, MI 48103, United States
- St. Joseph Mercy Health System Ann Arbor-Dermatology Residency Program, United States
| | - Nina Sabzevari
- St. Joseph Mercy Hospital, Dermatology Resident, 5333 McAuley Drive, Suite 5003, Ypsilanti, MI 48197, United States
| | - Sultan Qiblawi
- Michigan State University College of Human Medicine, 965 Fee Rd A110, East Lansing, MI 48824, United States
| | - Jason Blitz
- Navy Region Hawaii Public Health Emergency Officer (PHEO) NMRTC, 480 Central Avenue, Code DPH, Pearl Harbor Hawaii JBPHH, HI 96860-4908, United States
| | - Benjamin B. Norton
- Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Scott A. Norton
- Dermatology Division, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, United States
- Dermatology and Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|
39
|
Zhang P, Lu G, Liu J, Yan Z, Wang Y. Toxicological responses of Carassius auratus induced by benzophenone-3 exposure and the association with alteration of gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141255. [PMID: 32771788 DOI: 10.1016/j.scitotenv.2020.141255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Gut microbiota plays a fundamental role in host's physiology. However, the effect of organic UV filters, an emerging contaminant on gut microbiota is poorly understood. Here, fish (Carassius auratus) were exposed to 2, 20 and 200 μg/L of benzophenone-3 (BP3) for 28 days to explore the toxicological effects and its association with the changes in the gut microbiota. The BP3 accumulation is time and dose dependent in the liver and intestine. Under BP3 subchronic exposure, fish's body and intestinal weights, reactive oxygen species (ROS), immunoglobulin M (IgM) and vitellogenin (VTG) levels, as well as 7-benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylase (BFCOD) activities, were decreased. BP3 exposure has increased the abundance of Bacteroidetes phylum and Mycobacterium genus. Bioinformatic analysis revealed that the levels of ROS, IgM, estrogen receptor and VTG, activities of lysozyme, BFCOD and 7-ethoxyresorufin-O-deethylase were significantly correlated with the relative abundance of intestinal microbial genus (p < 0.05). These results highlight for the first time the association between the effects of organic UV filters on the antioxidant, immune, endocrine, and metabolic systems of the fish and changes in the gut microbiota, which extend knowledge of the role of gut microbiota in ecotoxicology.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
40
|
Farzana S, Ruan Y, Wang Q, Wu R, Kai Z, Meng Y, Leung KMY, Lam PKS. Developing interim water quality criteria for emerging chemicals of concern for protecting marine life in the Greater Bay Area of South China. MARINE POLLUTION BULLETIN 2020; 161:111792. [PMID: 33197792 DOI: 10.1016/j.marpolbul.2020.111792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to establish marine water quality criteria (MWQC) for emerging chemicals of concern (ECCs) for protecting aquatic life in the Greater Bay Area (GBA) of South China. Despite the frequent occurrence and elevated concentrations of these ECCs in the GBA, there is a lack of regional MWQC for these contaminants. We screened 21 common ECCs that were classified into the following six groups: (1) new persistent organic contaminants; (2) brominated flame retardants; (3) perfluoroalkyl and polyfluoroalkyl substances; (4) pharmaceutically active compounds (PhACs); (5) plasticizers; and (6) personal care products. Globally, MWQC for PhACs remain largely unavailable despite their increasing occurrence in marine environments. Using an integrative scientific approach, we derived interim MWQC for the GBA with specific protection goals. The approach described herein can be applied for the derivation of MWQC for ECCs and the establishment of guidelines for ecological risk assessment in the GBA and other regions.
Collapse
Affiliation(s)
- Shazia Farzana
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhang Kai
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yan Meng
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
41
|
Baldwin WS, Bain LJ, Di Giulio R, Kullman S, Rice CD, Ringwood AH, den Hurk PV. 20th Pollutant Responses in Marine Organisms (PRIMO 20): Global issues and fundamental mechanisms caused by pollutant stress in marine and freshwater organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105620. [PMID: 32932042 PMCID: PMC11106729 DOI: 10.1016/j.aquatox.2020.105620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The 20th Pollutant Responses in Marine Organisms (PRIMO 20) conference provided a forum for scientists from around the world to communicate novel toxicological research findings specifically focused on aquatic organisms, by combining applied and basic research at the intersection of environmental and mechanistic toxicology. The work highlighted in this special issue of Aquatic Toxicology, a special issue of Marine Environmental Research, and presented through posters and presentations, encompass important and emerging topics in freshwater and marine toxicology. This includes multiple types of emerging contaminants including microplastics and UV filtering chemicals. Other studies aimed to further our understanding of the effects of endocrine disrupting chemicals, pharmaceuticals, and personal care products. Further research presented in this virtual issue examined the interactive effects of chemicals and pathogens, while the final set of manuscripts demonstrates continuing efforts to combine traditional biomonitoring, data from -omic technologies, and modeling for use in risk assessment and management. An additional goal of PRIMO meetings is to address the link between environmental and human health. Several articles in this issue of Aquatic Toxicology describe the appropriateness of using aquatic organisms as models for human health, while the keynote speakers, as described in the editorial below, presented research that highlighted bioaccumulation of contaminants such as PFOS and mercury from fish to marine mammals and coastal human populations such as the Gullah/GeeChee near Charleston, South Carolina, USA.
Collapse
Affiliation(s)
- William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29631, United States.
| | - Lisa J Bain
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Richard Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
| | - Seth Kullman
- Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States.
| | - Charles D Rice
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Amy H Ringwood
- Biological Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, United States.
| | - Peter van den Hurk
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| |
Collapse
|
42
|
Chaves Lopes F, Rosa de Castro M, Caldas Barbosa S, Primel EG, de Martinez Gaspar Martins C. Effect of the UV filter, Benzophenone-3, on biomarkers of the yellow clam (Amarilladesma mactroides) under different pH conditions. MARINE POLLUTION BULLETIN 2020; 158:111401. [PMID: 32753186 DOI: 10.1016/j.marpolbul.2020.111401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 05/20/2023]
Abstract
This work aimed to investigate effects of the ocean contamination by the sunscreen Benzophenone-3 (BP3) and acidification, caused by CO2 enrichment, to the yellow clam, Amarilladesma mactroides. Biochemical biomarkers were analyzed in tissues (gills, digestive gland, and mantle) of clams exposed to the environmental concentration of 1 μg/L BP3, at seawater natural pH (pH 8.1) and at lower pH (pH 7.6). The tissues responded in different ways considering their physiological roles. In general, BP3 altered activity of the enzymes, glutathione-S-transferase (GST) and glutathione cysteine ligase (GCL); but mostly increased the level of glutathione (GSH). These effects were enhanced by acidification, without augmenting lipid peroxidation (LPO). Carbonic anhydrase activity (CA) increased after BP3 exposure in the digestive gland and decreased in the gills at pH 7.6, while Ca2+-ATPase activity was affected by acidification only. Changing levels of these enzymes can alter shell formation and affect the bivalve maintenance in impacted environments.
Collapse
Affiliation(s)
- Fernanda Chaves Lopes
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Micheli Rosa de Castro
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Sergiane Caldas Barbosa
- Universidade Federal do Rio Grande, Escola de Química e Alimentos, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| | - Ednei Gilberto Primel
- Universidade Federal do Rio Grande, Escola de Química e Alimentos, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Camila de Martinez Gaspar Martins
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
43
|
Nataraj B, Maharajan K, Hemalatha D, Rangasamy B, Arul N, Ramesh M. Comparative toxicity of UV-filter Octyl methoxycinnamate and its photoproducts on zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:134546. [PMID: 31839308 DOI: 10.1016/j.scitotenv.2019.134546] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we explored the adverse effects of Octyl methoxycinnamate (OMC), and its photoproducts, namely 2-ethylhexanol (2-EH) and 4-methoxybenzaldehyde (4-MBA) on the developmental stages of zebrafish using various biomarkers such as developmental toxicity, oxidative stress, antioxidant response, neurotoxicity and histopathological changes. The 96 h effective concentrations (EC50) of OMC, 2-EH and 4-MBA were found to be 64.0, 34.0 and 3.5 µg/mL, respectively in the embryo toxicity test. Embryos exposed to the EC50 of OMC, 2-EH and 4-MBA showed time-dependent increases in the malformation, heart rate and hatching delay. The lipid peroxidation (LPO) level was significantly (p < 0.05) increased and both induction and inhibition of SOD, CAT, GPx and GST activities were observed in the zebrafish embryos exposed to OMC, 2-EH and 4-MBA. GSH activity was significantly (p < 0.05) decreased in the highest exposure groups, when compared with the control. AChE activity was increased in lower concentrations of OMC, 2-EH and 4-MBA exposed embryos whereas, the activity was found to be decreased in highest concentration. Moreover, the histopathological studies showed severe damage to the muscle fibers and yolk sac regions of the larvae with 4-MBA treatment. The photoproduct 4-MBA has the highest toxic effect, followed by 2-EH and OMC. Our results provide useful insights into the impacts of OMC and its photoproducts on zebrafish development.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; DRDO-BU Center for Life Sciences, Bharathiar University, Coimbatore, India
| | - Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; PG and Research Department of Zoology, PSG College of Arts and Science, Coimbatore, 641014, India
| | - Basuvannan Rangasamy
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Narayanasamy Arul
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
44
|
Effect of 10 UV Filters on the Brine Shrimp Artemia salina and the Marine Microalga Tetraselmis sp. TOXICS 2020; 8:toxics8020029. [PMID: 32290111 PMCID: PMC7357026 DOI: 10.3390/toxics8020029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
The presence of pharmaceutical and personal care product (PPCP) residues in the aquatic environment is an emerging issue due to their uncontrolled release through gray water, and accumulation in the environment that may affect living organisms, ecosystems and public health. The aim of this study is to assess the toxicity of benzophenone-3 (BP-3), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), butyl methoxydibenzoylmethane (BM), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), 2-ethylhexyl salicylate (ES), diethylaminohydroxybenzoyl hexyl benzoate (DHHB), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (ET), homosalate (HS) and octocrylene (OC) on marine organisms from two major trophic levels, including autotrophs (Tetraselmis sp.) and heterotrophs (Artemia salina). In general, results showed that both HS and OC were the most toxic UV filters for our tested species, followed by a significant effect of BM on Artemia salina due to BM—but only at high concentrations (1 mg/L). ES, BP3 and DHHB affected the metabolic activity of the microalgae at 100 µg/L. BEMT, DBT, ET, MBBT had no effect on the tested organisms, even at high concentrations (2 mg/L). OC toxicity represents a risk for those species, since concentrations used in this study are 15–90 times greater than those reported in occurrence studies for aquatic environments. For the first time in the literature, we report HS toxicity on a microalgae species at concentrations complementing those found in aquatic environments. These preliminary results could represent a risk in the future if concentrations of OC and HS continue to increase.
Collapse
|
45
|
Evaluation of the Oxidative Stress Status in Zebrafish ( Danio rerio) Liver Induced by Three Typical Organic UV Filters (BP-4, PABA and PBSA). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020651. [PMID: 31963911 PMCID: PMC7027007 DOI: 10.3390/ijerph17020651] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
Abstract
Organic UV filters are a kind of emerging pollutants, which have been widely used in personal care products (PCPs). This study evaluated the effects of benzophenone-4 (BP-4), 4-aminobenzoic acid (PABA), and 2-phenylbenzimidazole-5-sulfonic acid (PBSA) on the selected indices of antioxidative responses in zebrafish (Danio rerio) liver. Zebrafish were exposed to two different doses (i.e., 0.5 and 5 mg L-1) of semi-static water with three individual compounds. Liver samples were collected on 7 and 14 days to analyze biochemical indicators, including superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH), and malondialdehyde (MDA). Oxidative stress occurred in zebrafish liver with significantly changed indicators during the whole exposure period. Different experimental groups could induce or inhibit the activity of antioxidant enzymes with varying degrees. With a prolonged exposure time and increased exposure dose, the hepatic lipid peroxidation was also obviously observed. Moreover, the toxicity order of three organic UV filters was analyzed using the integrated biomarker response (IBR) index and the results indicate that exposure to PABA for 7 days at 0.5 mg L-1 and PBSA for 7 days at 5 mg L-1 induced the most severe oxidative stress in the liver of zebrafish.
Collapse
|
46
|
Muñiz-González AB, Martínez-Guitarte JL. Combined effects of benzophenone-3 and temperature on gene expression and enzymatic activity in the aquatic larvae Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134292. [PMID: 31514035 DOI: 10.1016/j.scitotenv.2019.134292] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 06/14/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Climate change and pollution are two of the main environmental problems living organisms currently face. Temperature can modify a toxicant's effects and the organism's response to it. Global warming is expected to increase the temperature of freshwater ecosystems. In this work, we analyzed the effect of a mild temperature increase on the acute response of the aquatic larvae Chironomus riparius to the ultraviolet filter benzophenone-3 (BP3). This substance is commonly used in sunscreens and other commercial products and can reach the environment in different ways. We exposed larvae to BP3 at 18.5 or 23 °C for 8 or 24 h and analyzed the acute response at the molecular level. By quantitative real-time polymerase chain reaction (q-PCR), we studied altered messenger RNA (mRNA) levels of genes related to the endocrine system (EcR, InR and Met), detoxification mechanisms (Cyp4d2, Cyp6b7, GST d6, GST o1 and MRP-1) and stress response (Hsp22, Hsp27, Hsp70, HYOU and Gp93). Moreover, enzyme activity was evaluated, with a focus on glutathione-S-transferase (GST), phenoloxidase (PO) and acetylcholinesterase (AChE). Results showed that temperature affected the acute response of this organism by modifying the expression of EcR, Cyp6b7, GST d6, GST o1, MRP-1, Hsp22, Hsp27 and Hsp70 genes. These results suggest that even mild temperature change can affect the response of this organism to BP3 influencing short-term progress of the population. Although longer exposures are required to determine the ability of C. riparius to manage the pollutants in this novel environmental conditions, in order to know the possible mechanisms of detoxification or adaptation that may develop. This research represents a first step in the analysis of multi-stress response in this animal, and opens new possibilities in the toxicity evaluation of this organism in line with the real scenario that organisms face today.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
47
|
Pacheco-Juárez J, Montesdeoca-Esponda S, Torres-Padrón ME, Sosa-Ferrera Z, Santana-Rodríguez JJ. Analysis and occurrence of benzotriazole ultraviolet stabilisers in different species of seaweed. CHEMOSPHERE 2019; 236:124344. [PMID: 31310969 DOI: 10.1016/j.chemosphere.2019.124344] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Benzotriazole ultraviolet stabilisers (BUVSs) are emerging compounds used in personal care products and in other products, such as plastics, to absorb UV light. BUVSs have been described as bioaccumulative, persistent and toxic, so it is of great interest to understand their presence in the environment. Some marine organisms, such as seaweeds, have been used as bioindicators of contamination in the environment because they are able to accumulate metals and organic compounds. We have selected seaweeds to develop a novel method to extract, identify and determine six BUVSs (UV P, UV 326, UV 327, UV 328, UV 329, UV 360) based on microwave assisted extraction (MAE) and ultra-high-performance liquid chromatography with diode array (UHPLC-DAD) and mass spectrometry confirmation (UHPLC-MS/MS). Under optimum conditions, recoveries ranging from 49.8 to 92.3% were obtained, while intra-day and inter-day precision values were lower than 10% for most of the compounds. Limits of detection in the ranges 1.79-4.58 and 0.89-1.76 ng g-1 dry weight (dw) were obtained for UHPLC-DAD and UHPLC-MS/MS, respectively. The optimised method was applied for the analysis of twelve species of seaweed sampled during four months in 2018 from Las Canteras beach (Gran Canaria, Spain), with the results confirmed by UHPLC-MS/MS. UV 360 was found in concentrations between 42.5 and 115 ng g-1 (dw) in five of the twelve species. Although the highest concentrations were found in Asparagopsis taxiformis, the presence of UV 360 in other species could suggest that seaweeds can act as potential bioindicators of the occurrence of these compounds in the coastal environment.
Collapse
Affiliation(s)
- Javier Pacheco-Juárez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain.
| | - María Esther Torres-Padrón
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
48
|
Pérez-Coyotl I, Galar-Martínez M, García-Medina S, Gómez-Oliván LM, Gasca-Pérez E, Martínez-Galero E, Islas-Flores H, Pérez-Pastén BR, Barceló D, López de Alda M, Pérez-Solsona S, Serra-Roig MP, Montemurro N, Peña-Herrera JM, Sánchez-Aceves LM. Polluted water from an urban reservoir (Madín dam, México) induces toxicity and oxidative stress in Cyprinus carpio embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:510-521. [PMID: 31103011 DOI: 10.1016/j.envpol.2019.04.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The Madín Dam is a reservoir located in the municipalities of Naucalpan and Atizapán, in the metropolitan area adjacent to Mexico City. The reservoir supplies drinking water to nearby communities and provides an area for various recreational activities, including kayaking, sailing and carp fishing. Over time, the number of specimens of common carp has notably diminished in the reservoir, which receives direct domestic drainage from two towns as well as numerous neighborhoods along the Tlalnepantla River. Diverse studies have demonstrated that the pollutants in the water of the reservoir produce oxidative stress, genotoxicity and cytotoxicity in juvenile Cyprinus carpio, possibly explaining the reduction in the population of this species; however, it is necessary to assess whether these effects may also be occurring directly in the embryos. Hence, surface water samples were taken at five sites and pharmaceutical drugs, personal care products (especially sunscreens), organophosphate and organochlorine pesticides, and other persistent organic pollutants (e.g., polychlorinated biphenyls and polycyclic aromatic hydrocarbons) were identified. Embryos of C. carpio were exposed to the water samples to evaluate embryolethality, modifications in embryonic development, lipoperoxidation, the quantity of hydroperoxide and oxidized proteins, and antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase). It was found that the polluted water of the Madín Dam gave rise to embryolethality, embryotoxicity, congenital abnormalities, and oxidative stress on the common carp embryos.
Collapse
Affiliation(s)
- I Pérez-Coyotl
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - M Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico.
| | - S García-Medina
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico.
| | - L M Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - E Gasca-Pérez
- Cátedra CONACYT. Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - E Martínez-Galero
- Laboratory of Reproductive Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - H Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Borja R Pérez-Pastén
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - D Barceló
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M López de Alda
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Pérez-Solsona
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M P Serra-Roig
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - N Montemurro
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - J M Peña-Herrera
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - L M Sánchez-Aceves
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
49
|
Horricks RA, Tabin SK, Edwards JJ, Lumsden JS, Marancik DP. Organic ultraviolet filters in nearshore waters and in the invasive lionfish (Pterois volitans) in Grenada, West Indies. PLoS One 2019; 14:e0220280. [PMID: 31339964 PMCID: PMC6655699 DOI: 10.1371/journal.pone.0220280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/14/2019] [Indexed: 01/02/2023] Open
Abstract
Sunscreens and other personal care products use organic ultraviolet (UV) filters such as oxybenzone, 4-methylbenzylidene camphor, Padimate-O, and octyl methoxycinnamate to prevent damage to human skin. While these compounds are effective at preventing sunburn, they have a demonstrated negative effect on cells and tissues across taxonomic levels. These compounds have a relatively short half-life in seawater but are continuously re-introduced via recreational activities and wastewater discharge, making them environmentally persistent. Because of this, testing seawater samples for the presence of these compounds may not be reflective of their abundance in the environment. Bioaccumulation of organic ultraviolet filters in a high-trophic level predator may provide greater insight to the presence and persistence of these compounds. To address this, the present study collected seawater samples as well as muscle and stomach content samples from the invasive Pacific lionfish (Pterois volitans) in the nearshore waters of Grenada, West Indies to examine the use of lionfish as potential bioindicator species. Seawater and lionfish samples were collected at four sites that are near point sources of wastewater discharge and that receive a high number of visitors each year. Samples were tested for the presence and concentrations of oxybenzone, 4-methylbenzylidene camphor (4-MBC), Padimate-O, and octyl methoxycinnamate (OMC) using liquid chromatography-mass spectrometry. Oxybenzone residues were detected in 60% of seawater samples and OMC residues were detected in 20% of seawater samples. Seawater samples collected in the surface waters near Grenada's main beach had oxybenzone concentrations more than ten times higher than seawater samples collected in less frequently visited areas and the highest prevalence of UV filters in lionfish. Residues of oxybenzone were detected in 35% of lionfish muscle and 4-MBC residues were detected in 12% of lionfish muscle. Padimate-O was not detected in either seawater or lionfish samples. No organic UV filters were detected in lionfish stomach contents. Histopathologic examination of lionfish demonstrated no significant findings attributed to UV filter toxicity. These findings report UV filter residue levels for the first time in inshore waters in Grenada. Results indicate that lionfish may be bioaccumulating residues and may be a useful sentinel model for monitoring organic ultraviolet filters in the Caribbean Sea.
Collapse
Affiliation(s)
- Ryan A. Horricks
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
| | - Sarah K. Tabin
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
| | - Jonnel J. Edwards
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
| | - John S. Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
| | - David P. Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
- * E-mail:
| |
Collapse
|
50
|
Campos D, Silva ARR, Loureiro S, Grabicová K, Staňová AV, Soares AMVM, Pestana JLT. Two-generational effects of Benzophenone-3 on the aquatic midge Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:983-990. [PMID: 30970465 DOI: 10.1016/j.scitotenv.2019.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Organic UV-filters are emergent contaminants continuously released into the aquatic ecosystems. These compounds are persistent showing potential for bioaccumulation. Partial life-cycle tests may underestimate the toxicity of UV-filters especially since these compounds have shown to act as endocrine disruptors. In the present study, the benthic aquatic insect Chironomus riparius was exposed to a gradient of Benzophenone-3 (BP3) concentrations over two generations to assess effects over a full life cycle from the first-instar larvae in the parental (P) generation (emergence, fecundity and fertility) until emergence in the subsequent generation (filial - F1). Recovery from exposure was also assessed after one generational exposure. Our results showed that concentrations of up to 8mg BP3/kg, elicited no effects regarding emergence rate and development time of C. riparius in the P generation. Our results also showed that C. riparius fecundity was not affected by BP3 exposure, but a strong dose-response relationship was observed for fertility with none of the egg ropes hatching at 8mg BP3/kg. Regarding effects observed in the F1 generation, emergence and development time were impaired by continuous exposure to BP3. Moreover, reduced emergence and changes in development time were observed in the F1 generation maintained in control/clean conditions but whose parents were exposed to BP3. Results found in this two-generational study clearly show reproductive effects of BP3 on C. riparius that would not be detected using standard tests. Full life cycle and multigenerational assays are critical to properly evaluate the population level effects of endocrine disrupting compounds such as organic UV-filters.
Collapse
Affiliation(s)
- Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana Rita R Silva
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Susana Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Kateřina Grabicová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 725/II, 389 25 Vodnany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 725/II, 389 25 Vodnany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovicova 6, SK-842 15 Bratislava, Slovak Republic
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|