1
|
Huang P, Cao L, Du J, Guo Y, Li Q, Sun Y, Zhu H, Xu G, Gao J. Polystyrene nanoplastics amplify the toxic effects of PFOA on the Chinese mitten crab (Eriocheir sinensis). JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137488. [PMID: 39919640 DOI: 10.1016/j.jhazmat.2025.137488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Nanoplastics (NPs), the final form of degraded microplastics in the environment, can adsorb PFOA (an emerging organic pollutant in recent years) in several ways. Current research on these has focused on bony fishes and mollusks, however, the combined toxicity of PFOA and NPs remains unknown in Eriocheir sinensis. Therefore, the effects of single or combined exposure to PFOA and NPs were investigated. The results showed that NPs aggravated PFOA exposure-induced oxidative stress, serum lipid disorders, immune responses, and morphological damage. DEGs altered by NPs-PFOA exposure were predominantly enriched in GO terms for cell lumen, and organelle structure, and KEGG terms for spliceosome and endocrine disorders-related diseases. Notably, the apoptotic pathway plays a central role enriched under different exposure modes. PFOA or NPs-PFOA exposure disrupted the levels of lipids molecules-related metabolites by mediating the glycerophospholipid pathway, and the NPs mediated the ferroptosis pathway to exacerbate PFOA-induced metabolic toxicity. In addition, NPs exacerbated the inflammatory response and metabolic imbalance by mediating Fusobacterium ulcerans in the intestinal. In conclusion, this study provides a valuable reference for the characterization of NPs-PFOA combined pollution and a scientific basis for the development of environmental protection policies and pollution management strategies.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Liping Cao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiqing Guo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Quanjie Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haojun Zhu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jiancao Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
2
|
Lee JC, Smaoui S, Duffill J, Marandi B, Varzakas T. Research Progress in Current and Emerging Issues of PFASs' Global Impact: Long-Term Health Effects and Governance of Food Systems. Foods 2025; 14:958. [PMID: 40231978 PMCID: PMC11941069 DOI: 10.3390/foods14060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are found everywhere, including food, cosmetics, and pharmaceuticals. This review introduces PFASs comprehensively, discussing their nature and identifying their interconnection with microplastics and their impacts on public health and the environment. The human cost of decades of delay, cover-ups, and mismanagement of PFASs and plastic waste is outlined and briefly explained. Following that, PFASs and long-term health effects are critically assessed. Risk assessment is then critically reviewed, mentioning different tools and models. Scientific research and health impacts in the United States of America are critically analyzed, taking into consideration the Center for Disease Control (CDC)'s PFAS Medical Studies and Guidelines. PFAS impact and activities studies around the world have focused on PFAS levels in food products and dietary intake in different countries such as China, European countries, USA and Australia. Moreover, PFASs in drinking water and food are outlined with regard to risks, mitigation, and regulatory needs, taking into account chemical contaminants in food and their impact on health and safety. Finally, PFAS impact and activities briefings specific to regions around the world are discussed, referring to Australia, Vietnam, Canada, Europe, the United States of America (USA), South America, and Africa. The PFAS crisis is a multifaceted issue, exacerbated by mismanagement, and it is discussed in the context of applying the following problem-solving analytical tools: the Domino Effect Model of accident causation, the Swiss Cheese Theory Model, and the Ishikawa Fish Bone Root Cause Analysis. Last but not least, PFASs' impacts on the Sustainable Development Goals (SDGs) of 2030 are rigorously discussed.
Collapse
Affiliation(s)
- Jocelyn C. Lee
- Independent Researcher—Food Safety Consultant, San Francisco Bay Area, San Francisco, CA 94121, USA;
| | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - John Duffill
- John Crop Development Vietnam Co., Ltd., Landmark 81, 720A Dien Bien Phu St., Binh Thanh Dist., Quận Bình Thạnh, Ho Chi Minh City 718900, Vietnam;
| | - Ben Marandi
- Food Scientist Researcher, Food Policy and Legal Advisor, 26 Lauren Beth Dr., Richmond Hill, ON L4E 4K3, Canada;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
3
|
Wang Q, Gu X, Mo L, Wan N, Wu L, Liu S, Zhang M, Li M, Liu X, Liu Y. Per- and polyfluoroalkyl substances induce lipid metabolic impairment in fish: Integration on field investigation and laboratory study. ENVIRONMENT INTERNATIONAL 2024; 187:108687. [PMID: 38677088 DOI: 10.1016/j.envint.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The biotoxicity of perfluoroalkyl and polyfluoroalkyl substances (PFASs) to aquatic organisms has been widely concerned. However, studies on toxic effects of PFASs are usually evaluated directly by using laboratory exposure rather than laboratory validation based on data obtained in the field. In this study, wild catfish (Silurus meridinalis) was explored on the relationship between PFASs bioaccumulation and lipid disorders. Nine and thirteen lipid metabolites were significantly associated with perfluorooctane sulfonate (PFOS) and 6:2/8:2Cl-PFESA (trade name F-53B) exposures, respectively; and the correlated lipid metabolites were the fatty acid (FA) and conjugates, FA esters, steroids, and glycerophosphate subclasses. The effects of PFASs on lipid metabolism of fish and its mechanism were further analyzed through exposure experiments. Zebrafish (Danio rerio) of different sexes underwent PFOS and F-53B exposures for 21 days at 100 ng/L and 100 μg/L. By determining gene expression levels, hepatic lipid contents, and histopathological change, the adverse effects order on lipid metabolism in male or female was 100 μg/L F-53B > 100 μg/L PFOS > 100 ng/L F-53B > 100 ng/L PFOS; the stress response in male was more intensive than that in female. PFOS and F-53B activated the peroxisome proliferator-activated receptor pathway, promoting the processes of FA and total cholesterol (T-CHO) transport, FA β-oxidation, FA synthesis, and finally induced FA and T-CHO transportation from blood into liver, then accelerated FA to FA ester transformation, and CHO into steroids. Laboratory experiments confirmed the field analysis. This study innovatively explored the adverse effects of PFOS and F-53B on lipid metabolism and their mechanisms at field and laboratory levels, highlighting concerns regarding PFASs health risks.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Limin Mo
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Nannan Wan
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Liu Wu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Shuai Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Miao Zhang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mingqi Li
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xi Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
4
|
Jordan-Ward R, von Hippel FA, Wilson CA, Rodriguez Maldonado Z, Dillon D, Contreras E, Gardell A, Minicozzi MR, Titus T, Ungwiluk B, Miller P, Carpenter D, Postlethwait JH, Byrne S, Buck CL. Differential gene expression and developmental pathologies associated with persistent organic pollutants in sentinel fish in Troutman Lake, Sivuqaq, Alaska. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122765. [PMID: 37913975 PMCID: PMC11793931 DOI: 10.1016/j.envpol.2023.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Persistent organic pollutants (POPs) are lipophilic compounds that bioaccumulate in animals and biomagnify within food webs. Many POPs are endocrine disrupting compounds that impact vertebrate development. POPs accumulate in the Arctic via global distillation and thereby impact high trophic level vertebrates as well as people who live a subsistence lifestyle. The Arctic also contains thousands of point sources of pollution, such as formerly used defense (FUD) sites. Sivuqaq (St. Lawrence Island), Alaska was used by the U.S. military during the Cold War and FUD sites on the island remain point sources of POP contamination. We examined the effects of POP exposure on ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in the village of Gambell as a model for human exposure and disease. During the Cold War, Troutman Lake was used as a dump site by the U.S. military. We found that PCB concentrations in stickleback exceeded the U.S. Environmental Protection Agency's guideline for unlimited consumption despite these fish being low trophic level organisms. We examined effects at three levels of biological organization: gene expression, endocrinology, and histomorphology. We found that ninespine stickleback from Troutman Lake exhibited suppressed gonadal development compared to threespine stickleback (Gasterosteus aculeatus) studied elsewhere. Troutman Lake stickleback also displayed two distinct hepatic phenotypes, one with lipid accumulation and one with glycogen-type vacuolation. We compared the transcriptomic profiles of these liver phenotypes using RNA sequencing and found significant upregulation of genes involved in ribosomal and metabolic pathways in the lipid accumulation group. Additionally, stickleback displaying liver lipid accumulation had significantly fewer thyroid follicles than the vacuolated phenotype. Our study and previous work highlight health concerns for people and wildlife due to pollution hotspots in the Arctic, and the need for health-protective remediation.
Collapse
Affiliation(s)
- Renee Jordan-Ward
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., P.O. Box 245210, Tucson, AZ 85724, USA.
| | - Catherine A Wilson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Zyled Rodriguez Maldonado
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Elise Contreras
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Alison Gardell
- School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, USA
| | - Michael R Minicozzi
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN, 56001, USA
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Bobby Ungwiluk
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Pamela Miller
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - David Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Place, Rensselaer, NY 12144, USA
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Samuel Byrne
- Middlebury College, Department of Biology and Global Health Program, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| |
Collapse
|
5
|
Giari L, Guerranti C, Perra G, Cincinelli A, Gavioli A, Lanzoni M, Castaldelli G. PFAS levels in fish species in the Po River (Italy): New generation PFAS, fish ecological traits and parasitism in the foreground. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162828. [PMID: 36924966 DOI: 10.1016/j.scitotenv.2023.162828] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are resistant to breakdown and are now considered ubiquitous and concerning contaminants. Although scientific and legislative interest in these compounds has greatly increased in recent decades, our knowledge about their environmental fate and their effects on organisms is still incomplete, especially those of the new generation PFAS. In this study, we analysed the level of PFAS contamination in the fish fauna of the Po River, the most important waterway in Italy, to evaluate the influence of different factors (such as fish ecological traits and parasitism) on the accumulation of 17 PFAS. After solvent extraction and purification, hepatic or intestinal tissues from forty specimens of bleak, channel catfish, and barbel were analysed by liquid chromatography coupled with mass spectrometry (LOQ = 2.5 ng/g w.w.). The prevalent PFAS were perfluorooctane sulfonate (PFOS), present in all samples at the highest concentration (reaching a maximum of 126.4 ng/g and 114.4 ng/g in bleak and channel catfish, respectively), and long-chain perfluoroalkyl carboxylic acids (PFDA and PFUnDA). Perfluorooctanoic acid and new generation PFAS (Gen X and C6O4) were not detected. Comparison of the hepatic contamination between the benthic channel catfish and the pelagic bleak showed similar concentrations of PFOS (p > 0.05) but significantly higher concentrations of other individual PFAS and of the sum of all measured PFAS (p < 0.05) in bleak. No correlation was found between the hepatic level of PFAS and fish size in channel catfish. For the first time, PFAS partitioning in a parasite-fish system was studied: intestinal acanthocephalans accumulated PFOS at lower levels than the intestinal tissue of their host (barbel), in contrast to what has been reported for other pollutants (e.g., metals). The infection state did not significantly alter the level of PFAS accumulation in fish, and acanthocephalans do not appear to be a good bioindicator of PFAS pollution.
Collapse
Affiliation(s)
- L Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| | - C Guerranti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - G Perra
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy.
| | - A Cincinelli
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - A Gavioli
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| | - M Lanzoni
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| | - G Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| |
Collapse
|
6
|
Banyoi SM, Porseryd T, Larsson J, Grahn M, Dinnétz P. The effects of exposure to environmentally relevant PFAS concentrations for aquatic organisms at different consumer trophic levels: Systematic review and meta-analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120422. [PMID: 36244496 DOI: 10.1016/j.envpol.2022.120422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Per-and polyfluoroalkyl substances (PFAS) is a collective name for approximately 4700 synthetic chemicals ubiquitous in the aquatic environment worldwide. They are used in a wide array of products and are found in living organisms around the world. Some PFAS have been associated with cancer, developmental toxicity, endocrine disruption, and other health effects. Only a fraction of PFAS are currently monitored and regulated and the presence and effects on aquatic organisms of many PFAS are largely unknown. The aim of this study is to investigate the health effects of environmentally relevant concentrations of PFAS on aquatic organisms at different consumer trophic levels through a systematic review and meta-analysis. The main result shows that PFAS in concentrations up to 13.5 μg/L have adverse effects on body size variables for secondary consumers. However, no significant effects on liver or gonad somatic indices and neither on fecundity were found. In addition, the results show that there are large research gaps for PFAS effects on different organisms in aquatic environments at environmentally relevant concentrations. Most studies have been performed on secondary consumers and there is a substantial lack of studies on other consumers in aquatic ecosystems.
Collapse
Affiliation(s)
- Silvia-Maria Banyoi
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Tove Porseryd
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden.
| | - Josefine Larsson
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden; Marint Centrum, Simrishamn Kommun, Simrishamn, Sweden
| | - Mats Grahn
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Patrik Dinnétz
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| |
Collapse
|
7
|
Manera M, Castaldelli G, Giari L. Perfluorooctanoic Acid Affects Thyroid Follicles in Common Carp ( Cyprinus carpio). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159049. [PMID: 35897426 PMCID: PMC9332161 DOI: 10.3390/ijerph19159049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Carp kidney is comprised of nephrons, hemopoietic tissue, and also hormonally-active thyroid follicles. Given this anatomical trait, it has been used to assess the thyroid disrupting potential of perfluorooctanoic acid (PFOA), a widespread and feared per- poly-fluoroalkyl substance and a persistent organic pollutant capable of interfering with the endocrine system in animals and humans. The occurrence and morphology of thyroid follicles in kidneys of carp experimentally exposed to 200 ng L−1 or 2 mg L−1 waterborne PFOA for 56 days were studied. The abundance of thyroid follicles was significantly higher and vesiculation increased in exposed fish as compared to controls. The number of vesiculated follicles/total number of follicles was positively correlated with PFOA blood concentration in fish exposed to the highest dose (2 mg L−1). The structure and ultrastructure of thyroid follicles were affected by PFOA also at the lower, environmentally relevant, concentration (200 ng L−1). Increased cellular projections, enhanced colloid endocytosis, rough endoplasmic reticulum enlargement and fragmentation and cytoplasm vacuolation were the main features displayed by PFOA-exposed carp. These results show that PFOA affects the occurrence and status of follicles and suggest the utility of fish kidney as a multipurpose biomarker organ in environmental pathology research, according to the One Health approach.
Collapse
Affiliation(s)
- Maurizio Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, St. R. Balzarini 1, 64100 Teramo, Italy
- Correspondence:
| | - Giuseppe Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy; (G.C.); (L.G.)
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy; (G.C.); (L.G.)
| |
Collapse
|
8
|
Manera M, Castaldelli G, Guerranti C, Giari L. Effect of waterborne exposure to perfluorooctanoic acid on nephron and renal hemopoietic tissue of common carp Cyprinus carpio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113407. [PMID: 35278987 DOI: 10.1016/j.ecoenv.2022.113407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are synthetic contaminants of global concern for environmental and public health. Perfluorooctanoic acid (PFOA) is an important PFAS, and considerable attention has been paid to its hepatotoxicity and reproductive and developmental impact, while potential nephrotoxic effects are largely ignored, especially in fish. This study documents the structural and ultrastructural effects on kidney of common carp Cyprinus carpio exposed to waterborne PFOA at an environmentally relevant concentration of 200 ng L-1 and at 2 mg L-1. Dilation of the glomeruli capillary bed, increased vesiculation in the proximal tubular segment, compromised mitochondria, apical blebbing, and sloughing of collecting duct cells occurred in exposed fish, primarily at 2 mg L-1. Perfluorooctanoic acid exposure resulted in higher numbers of rodlet cells (RC), putative immune cells exclusive to fish, mainly in the renal interstitium, than seen in controls, increased association with cells of myeloid lineage and modifications to ultrastructure. No differences in other cells of innate immunity were observed. Despite the absence of severe histological lesions, PFOA was shown to affect both nephron and hemopoietic interstitium at high concentration, raising concern of the impact on renal and immune function in fish. The response of RCs to PFOA concentration of 200 ng L-1 suggests a potential role as a biomarker of PFOA exposure.
Collapse
Affiliation(s)
- Maurizio Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, St. R. Balzarini 1, I-64100 Teramo, Italy
| | - Giuseppe Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, St. L. Borsari 46, I-44121 Ferrara, Italy
| | - Cristiana Guerranti
- Department of Life Sciences, University of Trieste, St. Licio Giorgieri 10, I-34127 Trieste, Italy
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, St. L. Borsari 46, I-44121 Ferrara, Italy.
| |
Collapse
|
9
|
Androulakakis A, Alygizakis N, Gkotsis G, Nika MC, Nikolopoulou V, Bizani E, Chadwick E, Cincinelli A, Claßen D, Danielsson S, Dekker RWRJ, Duke G, Glowacka N, Jansman HAH, Krone O, Martellini T, Movalli P, Persson S, Roos A, O'Rourke E, Siebert U, Treu G, van den Brink NW, Walker LA, Deaville R, Slobodnik J, Thomaidis NS. Determination of 56 per- and polyfluoroalkyl substances in top predators and their prey from Northern Europe by LC-MS/MS. CHEMOSPHERE 2022; 287:131775. [PMID: 34509025 DOI: 10.1016/j.chemosphere.2021.131775] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of emerging substances that have proved to be persistent and highly bioaccumulative. They are broadly used in various applications and are known for their long-distance migration and toxicity. In this study, 65 recent specimens of a terrestrial apex predator (Common buzzard), freshwater and marine apex predators (Eurasian otter, harbour porpoise, grey seal, harbour seal) and their potential prey (bream, roach, herring, eelpout) from northern Europe (United Kingdom, Germany, the Netherlands and Sweden) were analyzed for the presence of legacy and emerging PFAS, employing a highly sensitive liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method. 56 compounds from 14 classes were measured; 13 perfluoroalkyl carboxylic acids (PFCAs), 7 perfluoroalkyl sulphonic acids (PFSAs), 3 perfluorooctane sulfonamides (FOSAs), 4 perfluoroalkylphosphonic acids (PFAPAs), 3 perfluoroalkylphosphinic acids (PFPi's), 5 telomer alcohols (FTOHs), 2 mono-substituted polyfluorinated phosphate esters (PAPs), 2 di-substituted polyfluorinated phosphate esters (diPAPs), 6 saturated fluorotelomer acids (FTAS), 3 unsaturated fluorotelomer acids (FTUAs), 2 N-Alkyl perfluorooctane sulfonamidoethanols (FOSEs), 3 fluorotelomer sulphonic acids (FTSAs), 2 perfluoroether carboxylic acids (PFECAs) and 1 chlorinated perfluoroether sulphonic acid (Cl-PFESA). All samples were lyophilized before analysis, in order to enhance extraction efficiency, improve the precision and achieve lower detection limits. The analytes were extracted from the dry matrices through generic methods of extraction, using an accelerated solvent extraction (ASE), followed by clean-up through solid phase extraction (SPE). Method detection limits and method quantification limits ranged from 0.02 to 1.25 ng/g wet weight (ww) and from 0.05 to 3.79 ng/g (ww), respectively. Recovery ranged from 40 to 137%. Method precision ranged from 3 to 20 %RSD. The sum of PFAS concentration in apex predators livers ranged from 0.2 to 20.2 μg/g (ww), whereas in the fish species muscle tissues it ranged from 16 to 325 ng/g (ww). All analyzed specimens were primarily contaminated with PFOS, while the three PFPi's included in this study exhibited frequency of appearance (FoA) 100 %. C9 to C13 PFCAs were found at high concentrations in apex predator livers, while the overall PFAS levels in fish fillets also exceeded ecotoxicological thresholds. The findings of our study show a clear association between the PFAS concentrations in apex predators and the geographical origin of the specimens, with samples that were collected in urban and agricultural zones being highly contaminated compared to samples from pristine or semi-pristine areas. The high variety of PFAS and the different PFAS composition in the apex predators and their prey (AP&P) samples is alarming and strengthens the importance of PFAS monitoring across the food chain.
Collapse
Affiliation(s)
- Andreas Androulakakis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikiforos Alygizakis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece; Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - Georgios Gkotsis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Maria-Christina Nika
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Varvara Nikolopoulou
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Erasmia Bizani
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Elizabeth Chadwick
- Cardiff University, Biomedical Science Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | | | - Sara Danielsson
- Naturhistoriska riksmuseet, Box 50007, 104 05, Stockholm, Sweden
| | | | - Guy Duke
- Environmental Change Institute, University of Oxford, 3 South Parks Rd, Oxford, OX1 3QY, United Kingdom
| | - Natalia Glowacka
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - Hugh A H Jansman
- Wageningen Environmental Research, 6700 AA, Wageningen, the Netherlands
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Paola Movalli
- Naturalis Biodiversity Center, 2333 RA, Leiden, the Netherlands
| | - Sara Persson
- Naturhistoriska riksmuseet, Box 50007, 104 05, Stockholm, Sweden
| | - Anna Roos
- Naturhistoriska riksmuseet, Box 50007, 104 05, Stockholm, Sweden
| | - Emily O'Rourke
- Cardiff University, Biomedical Science Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761, Buesum, Germany
| | | | - Nico W van den Brink
- Division of Toxicology, Wageningen University, 6700EA Wageningen, The Netherlands
| | | | - Rob Deaville
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | | | - Nikolaos S Thomaidis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| |
Collapse
|
10
|
Teunen L, De Jonge M, Malarvannan G, Covaci A, Belpaire C, Focant JF, Blust R, Bervoets L. Effect of abiotic factors and environmental concentrations on the bioaccumulation of persistent organic and inorganic compounds to freshwater fish and mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149448. [PMID: 34371403 DOI: 10.1016/j.scitotenv.2021.149448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Many aquatic ecosystems are under persistent stress due to influxes of anthropogenic chemical pollutants. High concentrations can harm entire ecosystems and be toxic to humans. However, in case of highly hydrophobic compounds, their low water solubility precludes direct measurement in water, and thus alternative monitoring strategies are needed. In the present study, we investigated the extent to which bioaccumulated concentrations of persistent compounds can be predicted by concentrations in environmental compartments (water and sediment). Due to their high biomagnification potential, Hg and PFOS were included in this analysis as well. At 44 field locations in Flanders (Belgium), we monitored the concentrations of 11 priority compounds and their derivatives, included in the Water Framework Directive, in both sediment and water (where feasible) and biota (European perch, European eel and freshwater mussels). Besides, some sediment (i.e. total organic carbon (TOC) and clay content) and water characteristics were measured (i.e. pH, oxygen level, conductivity, nitrate, nitrite and dissolved organic carbon (DOC)). Measurements of HCB, HCBD, cis-heptachlorepoxide, HBCD and PFOS in sediment and ∑PCB in water showed a lower detection frequency than in fish samples. While PCB profiles were comparable between all matrices, for PBDE clear differences were detected between sediment and fish profiles, with BDE99 contributing the most for sediment (34%) and BDE47 for fish (≥44%), followed by BDE99 for perch (28%) and BDE100 for eel (25%). Water concentrations for PFOS and benzo(a)pyrene were predictive of respective bioaccumulated concentrations. HCB, ∑PCB and ∑PBDE, concentrations in fish were dependent on sediment concentrations and negatively related to organic compound levels (p < 0.05). Furthermore, pH and nitrite were negatively associated with accumulated concentrations in eel for HCB and PFOS, respectively (p < 0.05). Strong relationships between bioaccumulation and sediment and/or water concentrations strengthened the basis for surrogate monitoring methods. Finally, the extrapolation potential of Hg, ∑PBDE, PFOS, HBCD and ∑PCB between both fish species offered new opportunities in extrapolating different European monitoring frameworks.
Collapse
Affiliation(s)
- Lies Teunen
- Department of Biology, Systemic Physiological and Ecotoxicological Research Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | - Maarten De Jonge
- Flanders Environment Agency (VMM), Dokter De Moorstraat 24-26, B-9300 Aalst, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Claude Belpaire
- Research Institute for Nature and Forest (INBO), Dwersbos 28, B-1630 Linkebeek, Belgium
| | - Jean-François Focant
- CART, Organic and Biological Analytical Chemistry, Mass Spectrometry Laboratory, Chemistry Department, University of Liège, Allée de la Chimie 3, B-6c Start-Tilman, B-4000 Liège, Belgium
| | - Ronny Blust
- Department of Biology, Systemic Physiological and Ecotoxicological Research Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Lieven Bervoets
- Department of Biology, Systemic Physiological and Ecotoxicological Research Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
11
|
Manera M, Castaldelli G, Fano EA, Giari L. Perfluorooctanoic acid-induced cellular and subcellular alterations in fish hepatocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103548. [PMID: 33188888 DOI: 10.1016/j.etap.2020.103548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Liver perfluorooctanoic acid (PFOA) pathophysiology and related morphofunction disturbances were studied in common carp at the cellular and subcellular level and with box-counting fractal analysis of ultrathin sections to assess the effect of PFOA exposure on hepatocyte structure complexity and heterogeneity. Three experimental groups were investigated: unexposed; low exposure (200 ng L-1 PFOA); high exposure (2 mg L-1 PFOA). PFOA-exposed cells showed differences from controls at both tested concentrations, manifested mainly as cloudy swelling and reversible vacuolar degeneration. Subcellular modifications primarily involved mitochondria and secondarily endoplasmic reticulum, with evidence of increased subcellular turnover. The alterations were consistent with oxidative stress related pathophysiology. Fractal analysis discriminated exposed from unexposed fish and low from high PFOA exposure based on lacunarity and fractal dimension, respectively. The absence of irreversible organelle alterations and apoptosis/necrosis, along with the increase of cellular complexity, led to the conclusion that the patterns observed represented an adaptive recovery response.
Collapse
Affiliation(s)
- Maurizio Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, St. R. Balzarini 1, 64100 Teramo, Italy.
| | - Giuseppe Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Elisa A Fano
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
12
|
Impacts of Human-Induced Pollution on Wild Fish Welfare. Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Manera M, Sayyaf Dezfuli B, Castaldelli G, DePasquale JA, Fano EA, Martino C, Giari L. Perfluorooctanoic Acid Exposure Assessment on Common Carp Liver through Image and Ultrastructural Investigation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4923. [PMID: 31817419 PMCID: PMC6950721 DOI: 10.3390/ijerph16244923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Perfluorooctanoic acid (PFOA) poses particular concern as an emerging pollutant in both surface and ground waters. Fish, as a natural inhabitant of these waters and being highly representative of vertebrates, represents an ideal animal model to assess the toxic effects of PFOA. Hereby, liver microscopic texture was comparatively evaluated in individuals of common carp subchronically exposed to PFOA using grayscale differential box counting, a fractal analysis method. Furthermore, liver cytoplasmic glycogen areas and ultrastructure were also evaluated and compared to the image analysis findings. Redundancy Analysis was performed to assess, in summary, how much the variation of fractal dimension and lacunarity was explained by the concentration of PFOA in liver, the mass of liver and the number of proliferating cell nuclear antigen (PCNA)-immunoreactive nuclei. Treatment group ordination was better determined by fractal dimension than lacunarity. Interestingly, a significant complexity increase was associated with the modification of liver microscopic texture due to PFOA exposure. This complexity increase was related to "cloudy swelling", possibly representing a primarily adaptive strategy against PFOA challenge, rather than a slight, reversible form of degeneration as traditionally proposed. The occurrence of endoplasmic reticulum stress, unfolded protein reaction and hormetic response was proposed and discussed.
Collapse
Affiliation(s)
- Maurizio Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, St. R. Balzarini 1, 64100 Teramo, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy; (B.S.D.); (G.C.); (E.A.F.); (L.G.)
| | - Giuseppe Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy; (B.S.D.); (G.C.); (E.A.F.); (L.G.)
| | | | - Elisa Anna Fano
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy; (B.S.D.); (G.C.); (E.A.F.); (L.G.)
| | - Camillo Martino
- Department of Veterinary, University of Perugia, St. San Costanzo 4, 06126 Perugia, Italy;
| | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy; (B.S.D.); (G.C.); (E.A.F.); (L.G.)
| |
Collapse
|
14
|
Zafeiraki E, Gebbink WA, Hoogenboom RLAP, Kotterman M, Kwadijk C, Dassenakis E, van Leeuwen SPJ. Occurrence of perfluoroalkyl substances (PFASs) in a large number of wild and farmed aquatic animals collected in the Netherlands. CHEMOSPHERE 2019; 232:415-423. [PMID: 31158636 DOI: 10.1016/j.chemosphere.2019.05.200] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 05/25/2023]
Abstract
A range of perfluoroalkyl substances (PFASs) was analysed in marine fish, farmed fish, crustaceans, bivalves and European eel caught in (mostly) Dutch waters, or purchased at Dutch markets (approximately 250 samples, collected between 2012 and 2018). ΣPFAS levels were highest in eels collected from rivers and lakes (average 43.6 ng/g and max 172 ng/g), followed by shrimps collected near the Dutch coast (average 6.7 and max. 33 ng/g ww), and seabass (average 4.5 and max. 9.4 ng/g ww). Most of the farmed fish (e.g. trout, catfish, turbot, salmon, tilapia, pangasius) were among the lowest contaminated samples in this study (averages ranged from 0.06 to 1.5 ng/g ww). Geographically, levels in marine fish from the northern North Sea (e.g. haddock, whiting, herring) were lower than in the central and southern North Sea (e.g. cod and flatfish). Concerning eel, no substantial geographical differences were found (apart from two distinct locations). The contamination pattern was similar in all species, where PFOS mostly dominated the profile, and other long-chain PFASs being frequently detected. Short-chain PFASs were rarely found. PFOS concentrations in eel varied from 3.3 ng/g (close to the North Sea) to 67 ng/g ww in eel caught from Ghent-Terneuzen canal. The majority of detected PFOS levels in eels (93%) and 1 shrimp sample from Eems-Dollard exceeded the EU Environmental Quality Standard (EQS) for surface water of 9.1 μg/kg ww. Other samples (e.g. shrimps, bivalves, flounder), subject to the EQS, did not exceed this level.
Collapse
Affiliation(s)
- Effrosyni Zafeiraki
- Laboratory of Environmental Chemistry, Department of Chemistry, Section III, National and Kapodistrian University of Athens, Panepistimiopolis, 157 71, Athens, Greece
| | - Wouter A Gebbink
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Ron L A P Hoogenboom
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Michiel Kotterman
- Wageningen Marine Research, Wageningen University and Research, Haringkade 1, IJmuiden, the Netherlands
| | - Christiaan Kwadijk
- Wageningen Marine Research, Wageningen University and Research, Haringkade 1, IJmuiden, the Netherlands
| | - Emmanouil Dassenakis
- Laboratory of Environmental Chemistry, Department of Chemistry, Section III, National and Kapodistrian University of Athens, Panepistimiopolis, 157 71, Athens, Greece
| | - Stefan P J van Leeuwen
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands.
| |
Collapse
|
15
|
Zafeiraki E, Gebbink WA, van Leeuwen SPJ, Dassenakis E, Megalofonou P. Occurrence and tissue distribution of perfluoroalkyl substances (PFASs) in sharks and rays from the eastern Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:379-387. [PMID: 31158666 DOI: 10.1016/j.envpol.2019.05.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Persistent organic pollutants (POPs), including Perfluoroalkyl substances (PFASs), enter into the marine ecosystem, raising questions on possible adverse effects caused to the health of marine organisms and especially of top predators. Thus, there is an urge to assess the occurrence and the tissue distribution of PFASs in apex predators. To this end, the current study examines concentrations and distribution of 15 PFASs among 85 samples of different tissues from 9 shark and ray species collected in Greece. The results showed a similar PFAS pattern among the different tissues, with long carbon chain PFASs being the most frequently detected compounds. PFTrDA was the most predominant compound in terms of concentration and frequency of detection, followed by PFUnDA and PFOS. PFTrDA concentrations ranged between < LOQ and 27.1 ng/g ww, while PFUnDA and PFOS levels ranged from <LOQ to 16.0 and < LOQ to 21.6 ng/g ww, respectively. Regarding their frequency of detection, PFTrDA and PFUnDA were detected in 98% and 91% of the samples, respectively, while PFOS was detected in 79%. ΣPFAS concentrations in each analysed tissue ranged from 0.3 to 85 ng/g ww, with the latter being detected in the liver of angular roughshark (Oxynotus centrina). On average, PFASs were found to be accumulated in tissues in the following order: gonads > heart > liver ≈ gills > muscle. Relative contribution (%) of individual compounds to ΣPFAS concentration varied among the different shark tissues, and also among the different shark species. No correlation between PFASs levels in tissues and sharks' gender, length and geographical origin was observed.
Collapse
Affiliation(s)
- Effrosyni Zafeiraki
- Laboratory of Environmental Chemistry, Department of Chemistry, Section III, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece; Laboratory of Pesticides Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561, Athens, Greece.
| | | | - Stefan P J van Leeuwen
- RIKILT Wageningen University and Research, Akkermaalsbos 2, 6708, WB, Wageningen, the Netherlands
| | - Emmanouil Dassenakis
- Laboratory of Environmental Chemistry, Department of Chemistry, Section III, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Persefoni Megalofonou
- Department of Biology, Section of Zoology - Marine Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilisia, 15784, Athens, Greece
| |
Collapse
|
16
|
Guerranti C, Martellini T, Perra G, Scopetani C, Cincinelli A. Microplastics in cosmetics: Environmental issues and needs for global bans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:75-79. [PMID: 30877953 DOI: 10.1016/j.etap.2019.03.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 05/17/2023]
Abstract
Despite the microbeads from cosmetic products do not contribute with high percentages to the microplastic pollution, they can pose a threat to the environment, being discharged into the water bodies and just partially blocked by the wastewater treatment plants. As environmental associations have been fighting for the abolition of microplastics in PCCPs, in many countries measures have been taken and bans are already operational or in process. Some cosmetic companies have voluntarily renounced the use of microbeads and some voluntary certifications of PCCPs prohibit their use. PCCPs recently analysed can contain levels of microbeads reaching 50,391 per g and can contribute with every single use to the introduction of 229,000 microbeads into the domestic sewage. Given the spread and danger of these pollutants, the problem is global and unthinkable to be solved by banning microplastic-containing products only in some countries, thus a general ban would be necessary.
Collapse
Affiliation(s)
- C Guerranti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy.
| | - T Martellini
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy
| | - G Perra
- Independent Researcher, Ecotoxicologist, Italy
| | - C Scopetani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy
| | - A Cincinelli
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy
| |
Collapse
|
17
|
Dong H, Lu G, Yan Z, Liu J, Ji Y. Molecular and phenotypic responses of male crucian carp (Carassius auratus) exposed to perfluorooctanoic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1395-1406. [PMID: 30759578 DOI: 10.1016/j.scitotenv.2018.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) has long been produced and widely used due to its excellent water and oil repellent properties. However, this trend has facilitated to the ubiquitous existence of PFOA in environmental matrix, and the potential ecotoxicity on aquatic organisms has not been fully elucidated. To study the tissue-specific bioconcentration and the nervous system- and energy-related biochemical effects of PFOA, as well as the phenotypic alterations by this chemical, male crucian carp (Carassius auratus) were exposed to gradient concentrations of PFOA (nominal 0.2, 10, 500 and 25,000 μg/L) in a flow-through apparatus for 7 days. PFOA was enriched in tissues following an order of blood > kidney ≥ liver > gill > brain > muscle. The bioconcentration factors ranged from 0.1 to 60.4. Acetylcholinesterase activity in the fish brain was inhibited, while liver carboxylesterase was induced in most cases and attenuated with time. The acyl-CoA oxidase activity was dose-dependently elevated and accompanied by a decline of ATP contents. PFOA treatments also inhibited the activity of the electron transport system (ETS). At the transcriptional level, ETS component complexes II and IV were concordantly depressed, and ATP synthesis was also downregulated. The mRNA level of peroxisome proliferator activated receptor α was increasingly upregulated, with related downstream genes upregulated in varying degrees. The phenotypes showed patterns of increased liver pathology and reduced swimming activity. In summary, PFOA leads to adverse effects in Carassius auratus related to multiple aspects, which may be associated with the nervous system, fundamental energy metabolism and other unpredictable factors. The results obtained in this study are expected to help clarify the PFOA toxic mechanisms on energy relevance.
Collapse
Affiliation(s)
- Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yong Ji
- College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| |
Collapse
|
18
|
Ábalos M, Barceló D, Parera J, Farré ML, Llorca M, Eljarrat E, Giulivo M, Capri E, Paunović M, Milačič R, Abad E. Levels of regulated POPs in fish samples from the Sava River Basin. Comparison to legislated quality standard values. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:20-28. [PMID: 30077159 DOI: 10.1016/j.scitotenv.2018.07.371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Fish samples of different species (i.e. rainbow trout (Onchorhynchus mykiss), barbel (Barbus barbus) and European chub (Squalius cephalus)) were collected from the Sava River Basin for a preliminary investigation of the levels of PCDD/Fs, PCBs, PBDEs and PFAS as a whole. Concentrations of PCDD/Fs, in terms of pg WHO-TEQ/g ww, were below the maximum limit established at the Commission Regulation (EU) No 1259/2011. On the contrary, when DL-PCBs were also included, levels increase up to 11.7 pg WHO-TEQPCDD/Fs+DL-PCBs/g ww in a particular case, with two samples out of a total of ten exceeding the maximum set at this EU Regulation and the EQS established at the European Directive regarding priority substances in the field of water policy (0.0065 ng WHO-TEQPCDD/Fs+DL-PCBs/g ww). A similar trend was also observed for NDL-PCBs, whit the same two samples, from the lower stretch of the river basin, exceeding the maximum limit allowed at the EU Regulation (125 ng/g ww). For PBDEs, levels found in all the samples exceeded the EQS (0.0085 ng/g ww) up to more than a thousand times and 40% of the samples presented PFOS values above the EQS. Data from this study were compared to values reported at the literature for fish from other geographical areas.
Collapse
Affiliation(s)
- Manuela Ábalos
- Environmental Chemistry Dept., IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Damià Barceló
- Environmental Chemistry Dept., IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Jordi Parera
- Environmental Chemistry Dept., IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Marinel la Farré
- Environmental Chemistry Dept., IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Marta Llorca
- Environmental Chemistry Dept., IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Ethel Eljarrat
- Environmental Chemistry Dept., IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Monica Giulivo
- Institute of Agricultural and Environmental Chemistry, Università Cattolica del Sacro Cuore di Piacenza, Via Emilia Parmense 84, 29100 Piacenza, Italy
| | - Ettore Capri
- Institute of Agricultural and Environmental Chemistry, Università Cattolica del Sacro Cuore di Piacenza, Via Emilia Parmense 84, 29100 Piacenza, Italy
| | - Momir Paunović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Belgrade, Serbia
| | - Radmila Milačič
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Esteban Abad
- Environmental Chemistry Dept., IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
19
|
Qian L, Qi S, Cao F, Zhang J, Li C, Song M, Wang C. Effects of penthiopyrad on the development and behaviour of zebrafish in early-life stages. CHEMOSPHERE 2019; 214:184-194. [PMID: 30265925 DOI: 10.1016/j.chemosphere.2018.09.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
The agricultural use of succinate dehydrogenase inhibitor (SDHI) fungicides has increased dramatically in the US and Europe. As the SDHI fungicides, boscalid, flutolanil and thifluzamide had been reported to induce a series of toxic effects on zebrafish. However, the toxic effects of penthiopyrad on zebrafish have not been reported yet. This study aimed to assess the acute toxicity of penthiopyrad to zebrafish in early-life stages and investigate behavioural response of larvae and the effects on lipid metabolism and pigmentation under sub-lethal exposure of penthiopyrad. Based on results of the acute toxicity tests of zebrafish embryo and larvae, penthiopyrad had an acute toxicity to early-life stages of zebrafish and induced a series of deformities during development. Based on the results of sub-lethal exposure for 8 days, penthiopyrad resulted in significant decreases in swimming velocity, acceleration speed, distance moved and inactive time of larvae at 0.3, 0.6 and 1.2 mg/L. Penthiopyrad induced the disorders of lipid metabolism via affecting fatty acid synthesis and β-oxidation, in accordance with remarkable changes in the content of triglycerides and cholesterol and the expression of key genes (hmgcrα, pparα1, srebf1, cyp51 and acca1) at 1.2 mg/L. In addition, the disorder of melanin synthesis and distribution was caused by penthiopyrad in larvae in accordance with changes in body colour and related gene expression at 8 dpe.
Collapse
Affiliation(s)
- Le Qian
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Suzhen Qi
- Risk Assessment Laboratory for Bee Product Quality and Safety of Ministry of Agriculture, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China
| | - Fangjie Cao
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jie Zhang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Changping Li
- Plant Protection Station, Beijing, People's Republic of China
| | - Min Song
- Institute of Agricultural Research, Taian, Shandong, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
20
|
Groffen T, Wepener V, Malherbe W, Bervoets L. Distribution of perfluorinated compounds (PFASs) in the aquatic environment of the industrially polluted Vaal River, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1334-1344. [PMID: 30857097 DOI: 10.1016/j.scitotenv.2018.02.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 06/09/2023]
Abstract
Perfluorinated alkyl substances (PFASs) are highly persistent chemicals, which have a bioaccumulative potential and can be found in wildlife around the world. Although multiple studies have been performed on PFASs pollution of the aquatic environment, little is known on PFASs pollution on the African continent and their possible risks for human health. In the present study, we examined the distribution of 15 PFASs in fish, invertebrates, sediment and water, collected at three sites, representing a gradient of industrial and mining pollution, along the Vaal River, South Africa. Furthermore, possible risks for human health through consumption of contaminated fish were examined. Perfluorooctane sulfonate (PFOS) was the most dominant PFAS measured in biota, whereas perfluoropentanoic acid (PFPeA) was measured in higher concentrations in water. Mean PFAS concentrations in water ranged from <LOQ to 38.5ng/L. PFAS concentrations in water decreased along the gradient and were similar or lower compared to other studies in Europe, Asia and America. PFAS measurements in sediment were <LOQ, with the exception of PFOS at Thabela Thabeng (2.36ng/g dry weight (dw)). Average ∑PFAS concentrations in biota increased along the gradient and ranged from <LOQ to 34.5ng/g wet weight (ww) in invertebrates, <LOQ to 289ng/g ww in liver and <LOQ to 34.0ng/g ww in muscle tissue. Although PFOS concentrations were relatively high compared to literature, concentrations of other PFASs were rather low. A potential risk for humans through consumption of PFAS-contaminated fish was assessed. Tolerable daily intake values (grams of fish that can be eaten daily without risking health effects) were much lower than the average South African fish consumption per day, implying a potential risk for human health through consumption of PFAS contaminated fish. CAPSULE: Concentrations of perfluorinated compounds in water, sediment, fish and invertebrates from the Vaal River were low or intermediate and posed a potential risk for human health through consumption of contaminated fish.
Collapse
Affiliation(s)
- Thimo Groffen
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Victor Wepener
- Unit for Environmental Sciences and Management, North West University, 11 Hoffman Street, 2520 Potchefstroom, South Africa.
| | - Wynand Malherbe
- Unit for Environmental Sciences and Management, North West University, 11 Hoffman Street, 2520 Potchefstroom, South Africa.
| | - Lieven Bervoets
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
21
|
Wolf JC, Wheeler JR. A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:60-78. [PMID: 29448125 DOI: 10.1016/j.aquatox.2018.01.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
Although frequently examined as a target organ for non-endocrine toxicity, histopathological evaluation of the liver is becoming a routine component of endocrine disruption studies that utilize various fish species as test subjects. However, the interpretation of microscopic liver findings can be challenging, especially when attempting to distinguish adverse changes associated with endocrine disrupting substances from those caused by systemic or direct hepatic toxicity. The purpose of this project was to conduct a critical assessment of the available peer-reviewed and grey literature concerning the histopathologic effects of reproductive endocrine active substances (EAS) and non-endocrine acting substances in the livers of fish models, and to determine if liver histopathology can be used to reliably distinguish endocrine from non-endocrine etiologies. The results of this review suggest that few compound-specific histopathologic liver effects have been identified, among which are estrogen agonist-induced increases in hepatocyte basophilia and proteinaceous intravascular fluid in adult male teleosts, and potentially, decreased hepatocyte basophilia in female fish exposed to substances that possess androgenic, anti-estrogenic, or aromatase inhibitory activity. This review also used published standardized methodology to assess the credibility of the histopathology data in each of the 117 articles that reported liver effects of treatment, and consequently it was determined that in only 37% of those papers were the data considered either highly credible or credible. The outcome of this work highlights the value of histopathologic liver evaluation as an investigative tool for EAS studies, and provides information that may have implications for EAS hazard assessment.
Collapse
Affiliation(s)
- Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., 45600 Terminal Drive, Sterling, VA, 20166, USA.
| | - James R Wheeler
- Dow AgroSciences, 3 B Park Square, Milton Park, Abingdon, Oxfordshire, OK14 4RN, UK.
| |
Collapse
|
22
|
Rotondo JC, Giari L, Guerranti C, Tognon M, Castaldelli G, Fano EA, Martini F. Environmental doses of perfluorooctanoic acid change the expression of genes in target tissues of common carp. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:942-948. [PMID: 29105837 DOI: 10.1002/etc.4029] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/28/2017] [Accepted: 11/02/2017] [Indexed: 05/27/2023]
Abstract
We aimed to evaluate the effects of environmental doses of perfluorooctanoic acid (PFOA) on bioconcentration and gene expression in common carp (Cyprinus carpio). Adult male and female carp were exposed to environmental (200 ng/L) and experimental (2 mg/L) doses of PFOA for 56 d. Carp exposed to 200 ng/L had levels of PFOA below the level of detection in all tissue samples analyzed, whereas variable concentrations were measurable in various tissues from carp exposed to 2 mg/L. The expression level of the glutathione S-transferase (GST) gene, coding for a detoxifying enzyme, increased in a PFOA dose-dependent manner in liver tissues from 200 ng/L to 2 mg/L exposure (p < 0.05). The expression levels of CYP19A gene, coding for the enzyme that converts testosterone into estrogen, were altered in gonadal tissues from male and female carp exposed to either 200 ng/L or 2 mg/L; expression increased in male gonads and decreased in female gonads. Unexpectedly, the expression levels of CYP19A in male and female gonads from carp exposed to 200 ng/L or 2 mg/L were similar (p > 0.05). Therefore, even though environmental doses of PFOA did not accumulate in tissues of the common carp, they did affect the gene expression levels of GST in the liver and CYP19A in the gonads. These observations raise concerns that exposure to environmental doses of PFOA may affect gene expression in animals and possibly in humans, with important health consequences. Environ Toxicol Chem 2018;37:942-948. © 2017 SETAC.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiana Guerranti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
- BRC Bioscience Research Center, Orbetello (GR), Italy
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elisa Anna Fano
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Chiesa LM, Nobile M, Pasquale E, Balzaretti C, Cagnardi P, Tedesco D, Panseri S, Arioli F. Detection of perfluoroalkyl acids and sulphonates in Italian eel samples by HPLC-HRMS Orbitrap. CHEMOSPHERE 2018; 193:358-364. [PMID: 29149712 DOI: 10.1016/j.chemosphere.2017.10.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 05/27/2023]
Abstract
Perfluoroalkyl substances (PFASs) contain one or more carbon-bound hydrogens substituted by fluorine. Since the 1950s, these compounds have been used to manufacture fat- and water-resistant fabrics, paper and food containers, and to produce photographic films, firefighting foams, detergents and insecticides. The widespread use and global distribution of PFASs, have led to their accumulation in the environment. Food, particularly fish and other seafood, is considered the main route of human exposure to PFASs. Consequently, the European Food Safety Authority (EFSA) recommends that more data be collected, to build a database on the contamination levels of the individual PFASs in food, to evaluate a reliable chronic risk to the European consumers. This requires high-sensitivity analytical methods, to increase the number of quantifiable samples and, thereby, improve the credibility of exposure assessments. In this context, the aim of the present research is to develop and validate a sensitive and specific method based on high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) analysis, to monitor the presence of 16 PFASs in Italian eels (Anguilla anguilla) from the Italian Lake Garda. The detection limits (CCα) and detection capability (CCβ) in the order of pg g-1, the recoveries between 80 and 101% and the other validation parameters fulfilled the requirements of Commission Decision 657/2002/EC. The identification and quantification of PFASs, up to 11 in the same sample, showed a similar distribution among 90 eels. Perfluorooctane sulphonic acid (PFOS) and perfluorobutanoic acid (PFBA) were the analytes more frequently found in the eel samples (94 and 82%, respectively).
Collapse
Affiliation(s)
- Luca Maria Chiesa
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy
| | - Maria Nobile
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy
| | - Elisa Pasquale
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy
| | - Claudia Balzaretti
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy
| | - Petra Cagnardi
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy
| | - Doriana Tedesco
- Department of Environmental Sciences and Policies, University of Milan, Via Celoria 10, 20133, Milan, Italy
| | - Sara Panseri
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy.
| | - Francesco Arioli
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy
| |
Collapse
|
24
|
Wilhelm S, Henneberg A, Köhler HR, Rault M, Richter D, Scheurer M, Suchail S, Triebskorn R. Does wastewater treatment plant upgrading with activated carbon result in an improvement of fish health? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:184-197. [PMID: 28965022 DOI: 10.1016/j.aquatox.2017.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the efficiency of a wastewater treatment plant (WWTP) upgraded with a powdered activated carbon unit for the reduction of micropollutants and the related advantages for fish health have been analyzed by means of different biomarkers, i.e. histopathological investigations, analyses of glycogen content and stress proteins, as well as by chemical analyses in different matrices. Comparative analyses were conducted prior and subsequent to the installation of the additional purification unit. Chemical analyses revealed a significant reduction of several pharmaceuticals, including diclofenac, carbamazepine and metoprolol, in samples of effluent and surface water downstream of the WWTP after its upgrade. In addition, diminished concentrations of diclofenac and PFOS were detected in tissues of analyzed fish. Histopathological investigations of fish liver, gills, and kidney revealed improved tissue integrity in fish after improved wastewater treatment. In parallel, biochemical measurements of glycogen revealed increased energy resources in fish liver and, furthermore, hsp70 levels in livers of exposed rainbow trout and in kidneys of exposed brown trout were lower after than before the WWTP upgrade. In summary, additional treatment with powdered activated carbon led to a reduction of potentially hazardous chemicals in the effluent and the adjacent river and, consequently, to an improvement of fish health in the receiving water course.
Collapse
Affiliation(s)
- Sabrina Wilhelm
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany.
| | - Anja Henneberg
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany.
| | - Heinz-R Köhler
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany.
| | - Magali Rault
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, IMBE UAPV AMU IRD, Pôle Agrosciences, BP 21239, 84916 Avignon, France.
| | - Doreen Richter
- DVGW Water Technology Center, Karlsruher Straße 84, D-76139 Karlsruhe, Germany.
| | - Marco Scheurer
- DVGW Water Technology Center, Karlsruher Straße 84, D-76139 Karlsruhe, Germany.
| | - Séverine Suchail
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, IMBE UAPV AMU IRD, Pôle Agrosciences, BP 21239, 84916 Avignon, France.
| | - Rita Triebskorn
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany; Steinbeis Transfer-Center for Ecotoxicology and Ecophysiology, Blumenstrasse 13, D-72108 Rottenburg, Germany.
| |
Collapse
|
25
|
Guerranti C, Perra G, Alessi E, Baroni D, Caserta D, Caserta D, De Sanctis A, Fanello EL, La Rocca C, Mariottini M, Renzi M, Tait S, Zaghi C, Mantovani A, Focardi SE. Biomonitoring of chemicals in biota of two wetland protected areas exposed to different levels of environmental impact: results of the "PREVIENI" project. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:456. [PMID: 28822013 DOI: 10.1007/s10661-017-6165-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
The PREVIENI project (funded by the Ministry of Environment) investigated the exposure to endocrine disrupters in samples of human population and environmental biota in Italy. The environmental biomonitoring considered two Italian WWF Oasis, with the aim to compare the presence and effects of endocrine disruptors in organisms from two protected natural areas, respectively, upstream and downstream a chemical emission site. Chemical analysis of pollutants' tissue levels was made on tissues from earthworm, barbell, trout, and coot, selected as bioindicator organisms. The contaminants considered were as follows: the perfluorinated compounds perfuoroctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), polychlorinated biphenyls (PCBs 58 congeners), polybrominated diphenyl ethers (PBDEs, 13 congeners), polycyclic aromatic hydrocarbons (PAHs, 16 compounds), toxic trace elements, the phthalate di-2-ethylexyl phthalate (DEHP) and its primary metabolite, bisphenol A, synthetic musk compounds (musk xylene, musk ketone, tonalide, and galaxolide), and p-nonylphenol. The analyses showed low concentrations of most pollutants in all species from both areas, compared to available literature; noticeable exceptions were the increases of DEHP's primary metabolite, PBDE, PAHs, Hg, and Pb in barbells, and of PCB and Cd in earthworms from the downstream area. The results showed the presence of endocrine disruptors, including those considered as "non-persistent," in bioindicators from protected areas, albeit at low levels. The results provide a contribution to the evaluation of reference values in biota from Mediterranean Europe and support the relevance of monitoring exposure to pollutants, in particular for freshwater environment, also in protected areas.
Collapse
Affiliation(s)
- Cristiana Guerranti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy.
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015, Orbetello, GR, Italy.
| | - Guido Perra
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Eva Alessi
- WWF Italy NGO-Onlus, Via Po 25/c 00198, Rome, Italy
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | | | - Donatella Caserta
- Department of Medical and Surgical Sciences and Translational Medicine, University of Rome Sapienza, S. Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Augusto De Sanctis
- (at the time of the study) Abruzzo Institute of WWF Protected Areas, Nature Reserve "Sagittario Gorges", Via D'Annunzio 68, 65100, Pescara, Italy
| | - Emiliano Leonida Fanello
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Cinzia La Rocca
- Centre of Reference for Gender Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Michela Mariottini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Monia Renzi
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015, Orbetello, GR, Italy
| | - Sabrina Tait
- Centre of Reference for Gender Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Carlo Zaghi
- Italian Environment Ministry, Via Cristoforo Colombo 44, 00147, Rome, Italy
| | - Alberto Mantovani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Silvano Ettore Focardi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
26
|
Olivares-Rubio HF, Vega-López A. Fatty acid metabolism in fish species as a biomarker for environmental monitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:297-312. [PMID: 27453357 DOI: 10.1016/j.envpol.2016.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Pollution by Organic Contaminants (OC) in aquatic environments is a relevant issue at the global scale. Lipids comprised of Fatty Acids (FA) play many important roles in the physiology and life history of fishes. Toxic effects of OC are partly dependent on its bioaccumulation in the lipids of aquatic organisms due its physicochemical properties. Therefore, there is an increasing interest to investigate the gene expression as well as the presence and activity of proteins involved in FA metabolism. The attention on Peroxisome Proliferation Activate Receptors (PPARs) also prevails in fish species exposed to OC and in the transport, biosynthesis and β-oxidation of FA. Several studies have been conducted under controlled conditions to evaluate these biological aspects of fish species exposed to OC, as fibrates, endocrine disrupting compounds, perfluoroalkyl acids, flame retardants, metals and mixtures of organic compounds associated with a polluted area. However, only fibrates, which are agonists of PPARs, induce biological responses suitable to be considered as biomarkers of exposure to these pollutants. According to the documented findings on this topic, it is unlikely that these physiological aspects are suitable to be employed as biomarkers with some noticeable exceptions, which depend on experimental design. This emphasises the need to investigate the responses in fish treated with mixtures of OC and in wild fish species from polluted areas to validate or refute the suitability of these biomarkers for environmental or fish health monitoring.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, C. P. 07738, Mexico.
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, C. P. 07738, Mexico.
| |
Collapse
|
27
|
Guerranti C, Cau A, Renzi M, Badini S, Grazioli E, Perra G, Focardi SE. Phthalates and perfluorinated alkylated substances in Atlantic bluefin tuna (Thunnus thynnus) specimens from Mediterranean Sea (Sardinia, Italy): Levels and risks for human consumption. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:661-667. [PMID: 27323803 DOI: 10.1080/03601234.2016.1191886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Atlantic blue fin tuna (Thunnus thynnus) is a species of great importance for Mediterranean Sea area, from both ecological and commercial points of view. The scientific literature reports few data on the contamination of this fish by emerging organic compounds such as perfluorinated alkylated substances(PFASs) and phthalates, being the latter never been studied in tuna. This study therefore investigated the presence of the PFASs perfluorooctane sulphonate (PFOS) and perfluoroctanoic acid (PFOA) and the phthalate di-2-ethylhexyl phthalate (DEHP), also monitored by its metabolite mono-2-ethylhexyl phthalate(MEHP), to assess both the state of contamination of Atlantic bluefin tuna specimen and the risk due to the toxicity of these compounds for human consumption. While PFOA was never found, detectable levels of PFOS (0.4-1.88 ng/g), DEHP (9-14.62 ng/g) and MEHP (1.5-6.30 ng/g) were found. The results were elaborated relating the accumulation to the size and age of the individuals and showed a correlation between the levels of different pollutants investigated.
Collapse
Affiliation(s)
| | - Alessandro Cau
- b Department of Life Science and Environment , University of Cagliari , Cagliari , Italy
| | - Monia Renzi
- a BsRC Bioscience Research Center , Orbetello ( GR ), Italy
| | - Simone Badini
- c Department of Physical , Earth and Environmental Sciences, University of Siena , Siena , Italy
| | | | - Guido Perra
- c Department of Physical , Earth and Environmental Sciences, University of Siena , Siena , Italy
| | - Silvano Ettore Focardi
- c Department of Physical , Earth and Environmental Sciences, University of Siena , Siena , Italy
| |
Collapse
|
28
|
Giari L, Vincenzi F, Badini S, Guerranti C, Dezfuli BS, Fano EA, Castaldelli G. Common carp Cyprinus carpio responses to sub-chronic exposure to perfluorooctanoic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15321-15330. [PMID: 27107988 DOI: 10.1007/s11356-016-6706-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an important and diffuse perfluorinated alkylated substance, but knowledge of the toxicological effects of this endocrine disrupter in fish is limited. Adult common carp Cyprinus carpio, L. were exposed to 200 ng/l (a concentration reported in impacted aquatic ecosystems) and 2 mg/l PFOA solutions in a flow-through system for 56 days to determine tissue accumulation and histological alterations of the primary target organs. PFOA was extracted from blood, gill, liver, muscle, kidney, gonad, and brain by an ion-pairing liquid extraction procedure and quantified using high performance liquid chromatography with electrospray ionization tandem mass spectrometry. The limit of detection (LOD) was 0.4 ng/g wet weight (ww). PFOA was not detectable in unexposed fish or in fish exposed to 200 ng/l, but was >LOD in most samples of carp exposed to 2 mg/l. Mean PFOA concentration ranged from 0.5 to 65 ng/g ww, depending on the tissue, with highest levels in the blood and liver. There were no significant differences in condition factor, hepato-somatic index, or gonado-somatic index among the fish of the three groups. Histological, histochemical, and immunohistochemical staining was performed on sections of liver and gonad. Occurrence of atretic oocytes and a paucity of spermatozoa were documented in carp treated with 2 mg/l PFOA. Exposed fish did not show gross hepatic anomalies, but there was enhancement of hepatocytes in proliferation (positive to anti-PCNA antibody) compared to controls.
Collapse
Affiliation(s)
- Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, St. L. Borsari 46, 44121, Ferrara, Italy.
| | - Fabio Vincenzi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. L. Borsari 46, 44121, Ferrara, Italy
| | - Simone Badini
- Department of Physical, Earth and Environmental Sciences, University of Siena, St. P.A. Mattioli 4, 53100, Siena, Italy
| | - Cristiana Guerranti
- Department of Physical, Earth and Environmental Sciences, University of Siena, St. P.A. Mattioli 4, 53100, Siena, Italy
- BRC Bioscience Research Center, St. Aurelia Vecchia, 32, 58015, Orbetello, GR, Italy
| | - Bahram S Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. L. Borsari 46, 44121, Ferrara, Italy
| | - Elisa A Fano
- Department of Life Sciences and Biotechnology, University of Ferrara, St. L. Borsari 46, 44121, Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
29
|
Squadrone S, Ciccotelli V, Prearo M, Favaro L, Scanzio T, Foglini C, Abete MC. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA): emerging contaminants of increasing concern in fish from Lake Varese, Italy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:438. [PMID: 26085281 DOI: 10.1007/s10661-015-4686-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Perfluoroalkylated substances (PFASs) are highly fluorinated aliphatic compounds with high thermal and chemical stability, used in a range of industrial applications. Extensive screening analyses in biota samples from all over the world have shown the bioaccumulation of PFAS into higher trophic levels in the food chain. Perfluorooctane sulfonic acid (PFOS) and perfluoroctanoic acid (PFOA) are potential reproductive and developmental toxicants and are considered to be emerging endocrine disrupters. Ingestion of fish and other seafood is considered the main source of exposure of these contaminants. Here, we quantified PFOS and PFOA by LC-MS/MS in muscle samples of European perch from Lake Varese, Italy. PFOS was detected in all samples with concentrations of up to 17.2 ng g(-1). Although the reported values were lower than the recommended total daily intake (TDI) proposed by the European Food Safety Authority (EFSA), fish from Lake Varese may be a significant source of dietary PFOS exposure.
Collapse
Affiliation(s)
- S Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, via Bologna 148, 10154, Torino, Italy,
| | | | | | | | | | | | | |
Collapse
|