1
|
Cai B, Gandon L, Baratange C, Eleyele O, Moncrieffe R, Montiel G, Kamari A, Bertrand S, Durand MJ, Poirier L, Deleris P, Zalouk-Vergnoux A. Assessment of the effects of cadmium, samarium and gadolinium on the blue mussel (Mytilus edulis): A biochemical, transcriptomic and metabolomic approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107217. [PMID: 39805254 DOI: 10.1016/j.aquatox.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Improving the understanding of how chemicals affect on organisms and assessing the associated environmental risks is of major interest in environmental studies. This can be achieved by using complementary approaches based on the study of the molecular responses of organisms. Because of the known chemical pressures on the environment, regulations on the content of some chemicals, such as cadmium, have been mostly completed. In contrast, the environmental toxicity of rare earth elements (REEs), which are widely used in industry, has only recently begun to receive attention. Here, we investigated the effects of cadmium, and two REEs, samarium and gadolinium, on marine mussels under laboratory exposures. We found that after an 8-day exposure at 500 µg/L, the metals were bioaccumulated by the mussels. Furthermore, samarium and gadolinium affected two oxidative stress biomarkers, GST and SOD. Lipidomic analysis showed that lipid content was modulated by the REEs, but not by cadmium. Interestingly, several compounds belonging to the phosphoinositide metabolism were more abundant, suggesting a pro-mitotic or cell survival response, while a higher abundance of cardiolipins after samarium exposure suggested an alteration of mitochondrial activity. Moreover, depending on the tissue and the metal considered, transcriptional analyses revealed an effect on metallothionein, hsp70/90, energy metabolism enzymes, as well as pro-mitotic transcript accumulation. Thus, this study sheds a new light on metal toxicity and in particularl REEs by highlighting the accumulation and toxicity of cadmium, samarium and gadolinium at 500 µg/L at different molecular levels, from gene expression to the lipidome of blue mussels.
Collapse
Affiliation(s)
- Binbin Cai
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F-44000, France
| | - Laura Gandon
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F-44000, France
| | - Clément Baratange
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F-44000, France.
| | - Oluwabunmi Eleyele
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F-44000, France
| | - Romaric Moncrieffe
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F-44000, France
| | - Grégory Montiel
- Nantes Université, Unité en Sciences Biologiques et Biotechnologiques, US2B, UMR CNRS 6286, Nantes F-44000, France
| | - Abderrahmane Kamari
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F-44000, France
| | - Samuel Bertrand
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F-44000, France
| | - Marie-José Durand
- Nantes Université, Génie des Procédés Environnement - Agroalimentaire, GEPEA, UMR CNRS 6144, Nantes F-44000, France
| | - Laurence Poirier
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F-44000, France
| | - Paul Deleris
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F-44000, France
| | - Aurore Zalouk-Vergnoux
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F-44000, France
| |
Collapse
|
2
|
Quattrocchi CC, Rovira À, van der Molen AJ, Mallio CA. ESR Essentials: gadolinium-wise MRI-practice recommendations by the European Society for Magnetic Resonance in Medicine and Biology. Eur Radiol 2024:10.1007/s00330-024-11214-4. [PMID: 39702634 DOI: 10.1007/s00330-024-11214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024]
Abstract
The Gadolinium Research and Education Committee (GREC) is a working group of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), established in 2016. The aim of the committee is to monitor scientific evidence for a continuous quality and safety improvement of enhanced MRI using gadolinium-based contrast agents (GBCAs), and also assess potential alternatives. The scope of the present article is to describe the level of evidence concerning safety beyond the single patient (access to community and environmental impact), justification and optimization of the use of GBCAs beyond dosage (appropriateness and influence on clinical decision making), dose reduction with the use of AI (benefits and pitfalls), the advent of next-generation GBCAs (based on currently available data). CLINICAL RELEVANCE: GBCAs are extensively used in MRI and influence clinical decision-making. Their use to enhance the contrast-to-noise ratio is guided by recommendations from subspecialty societies. These guidelines advocate for GBCA use as an additional tool when necessary, ensuring they are administered at the lowest reasonable dose. KEY POINTS: The choice of GBCAs used in radiology should be based on MRI cost-effectiveness, MRI access to the patient community, and impact on the environment, (evidence level: low). GBCA optimization includes reducing GBCA volume burden and increasing appropriateness by including post-contrast enhancement in MRI protocols, depending on clinical indications, (evidence level: moderate). Next-generation GBCAs show higher kinetic stability and higher T1 relaxivity when compared with standard macrocyclic GBCAs allowing comparable diagnostic accuracy at lower doses, (evidence level: moderate).
Collapse
Affiliation(s)
- Carlo C Quattrocchi
- Centre for Medical Sciences-CISMed, University of Trento, Trento, Italy.
- Azienda Provinciale per I Servizi Sanitari-APSS-Provincia Autonoma di Trento, Trento, Italy.
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Autonomous University of Barcelona and Hospital Vall d'Hebron, Barcelona, Spain
| | - Aart J van der Molen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carlo A Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| |
Collapse
|
3
|
Auclair J, André C, Roubeau-Dumont E, Gagné F. Ecotoxicity of a Representative Urban Mixture of Rare Earth Elements to Hydra vulgaris. TOXICS 2024; 12:904. [PMID: 39771119 PMCID: PMC11728654 DOI: 10.3390/toxics12120904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Rare earth elements (REEs) are considered as emerging contaminants due to their use in the fabrication process of current technologies. As such, their aquatic toxicity, especially as a mixture, is not well understood, as it has been scarcely investigated. The purpose of this study was to shed light on the sublethal and lethal toxicity of a realistic mixture of five REE in Hydra vulgaris. The REE mixture was composed of five elements (Gd, Ce, Nd, Y and Dy, with a total REE concentration of 0.137 µg/L = 1× concentration) that were found in six municipal effluents in Canada at the same concentration ratios. The organisms were exposed to increasing concentrations (0.5, 1, 5, 10, 25, 50 and 100×) of the mixture for 96 h at 20 °C. The lethal and sublethal toxicities were evaluated by morphological changes and the gene expression (mRNA) involved in oxidative stress, damaged protein salvaging (autophagy for the reabsorption of damaged proteins), regeneration, neural activity and DNA repair of oxidatively damaged DNA. The data revealed that the total REE concentration of the environmental mixture was well below the lethal concentrations of the individual REEs, which occur generally at concentrations > 200 µg/L. This study proposes a novel gene transcription set to investigate the mode of action where gene expression changes occurred at concentrations below those reported in municipal effluents, suggesting long-term toxic effects in hydras close to municipal effluent discharges. This suggests that the release of REEs by municipal/hospital (for Gd) effluents should be more closely monitored.
Collapse
Affiliation(s)
| | | | | | - François Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada; (J.A.); (C.A.); (E.R.-D.)
| |
Collapse
|
4
|
Samal RR, Subudhi U. Modulation of antioxidant enzyme by light and heavy rare earth metals: A case study with catalase. Int J Biol Macromol 2024; 283:137820. [PMID: 39566800 DOI: 10.1016/j.ijbiomac.2024.137820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
The present study highlights the hazardous effect of heavy and light rare earth elements (REEs) on bovine liver catalase (BLC) using a combination of spectroscopic and computational methods. The presence of Praseodymium chloride (PrCl3) and Gadolinium chloride (GdCl3) resulted in a substantial reduction in catalytic efficiency of BLC by approximately 1.8 and 2.6 fold, respectively. The compromised activity was further accompanied by conformational rearrangements at the secondary and tertiary levels as evidenced by circular dichroism (CD) and fluorescence spectroscopy. These analyses revealed a significant decrease in α-helical content and a simultaneous increase in random coils, disrupting intramolecular hydrogen bonding. Furthermore, the zeta potential (ζ) of BLC demonstrated a reversal from negative to positive ζ values upon the addition of PrCl3 and GdCl3, indicating BLC-lanthanide complex formation. Isothermal titration calorimetry (ITC) supports spontaneous interaction with negative free energy favouring endothermic reaction. This was further supported by docking studies which revealed the binding of PrCl3 and GdCl3 within the active site of BLC thus interfering with the catalytic ability to degrade hydrogen peroxide (H2O2). Nevertheless, a significant decline in the melting temperature (Tm) of BLC was observed in the presence of lanthanides suggesting the thermal instability of the enzyme. Thus, a similar approach could be applied to evaluate the hazardous effects of lanthanides on structural and functional changes in other proteins or similar biomolecules.
Collapse
Affiliation(s)
- Rashmi R Samal
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Umakanta Subudhi
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Secco S, Cunha M, Libralato G, Trifuoggi M, Giarra A, Soares AMVM, Freitas R, Scalici M. Evaluating the impact of gadolinium contamination on the marine bivalve Donax trunculus: Implications for environmental health. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104580. [PMID: 39490434 DOI: 10.1016/j.etap.2024.104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Gadolinium (Gd), commonly used in contrast agents for medical imaging, has been detected in hospital wastewater and aquatic environments, raising environmental concerns. This study examined the accumulation and cellular impacts of Gd in the clam species Donax trunculus, commonly used as bioindicator of contamination. Gadolinium accumulation in clams increased with exposure and over time. Biological responses varied with Gd levels: low concentrations (10 and 50 µg/L) led to low metabolic activity and glycogen content, but high antioxidant activities and lipid peroxidation levels (LPO); high concentrations (250 and 500 µg/L) resulted in increased metabolic activity, while antioxidant enzyme activity was inhibited and LPO levels were the lowest. Metabolic activity decreased after two weeks, suggesting limited long-term metabolic resilience. The study underscores D. trunculus as an effective early warning species for Gd pollution and highlights the ecological risks of rising Gd levels, emphasizing the need for environmental monitoring and regulation.
Collapse
Affiliation(s)
- Silvia Secco
- Department of Sciences, University of Roma Tre, Viale Guglielmo Marconi, 446, Rome 00146, Italy
| | - Marta Cunha
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario of Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, Napoli 80126, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, Napoli 80126, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, Napoli 80126, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale Guglielmo Marconi, 446, Rome 00146, Italy
| |
Collapse
|
6
|
Unal I, Erturk Gurkan S, Aydogdu B. Assessment of toxicity and oxidative stress induced by rare earth oxide nanoparticles in brine shrimp (Artemia salina). CHEMOSPHERE 2024; 367:143683. [PMID: 39510266 DOI: 10.1016/j.chemosphere.2024.143683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
This study meticulously explored the oxidative stress effects induced by lanthanum (III) oxide (La2O3), erbium (III) oxide (Er2O3), and yttrium (III) oxide (Y2O3) nanoparticles on Artemia salina, with the objective of evaluating the environmental toxicity of rare earth oxide nanoparticles. The characterization of the nanoparticles was conducted using a suite of advanced techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis. Artemia salina, a widely recognized model organism in ecotoxicological research, was exposed to these nanoparticles under meticulously controlled laboratory conditions. The investigation focused on quantifying oxidative stress markers, such as reduced glutathione (GSH), malondialdehyde (MDA), and antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST). The findings revealed significant alterations in these biomarkers, indicating nanoparticle-induced oxidative stress, which varied according to the type of nanoparticle and the duration of exposure.
Collapse
Affiliation(s)
- Ilkay Unal
- Munzur University, Faculty of Fine Arts, Design and Architecture Education, Department of Gastronomy and Culinary Arts, Tunceli, Turkiye
| | - Selin Erturk Gurkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Canakkale, Turkiye.
| | - Burcu Aydogdu
- Munzur University, Faculty of Faculty of Engineering, Department of Mechanical Engineering, Tunceli, Turkiye
| |
Collapse
|
7
|
Bendszus M, Laghi A, Munuera J, Tanenbaum LN, Taouli B, Thoeny HC. MRI Gadolinium-Based Contrast Media: Meeting Radiological, Clinical, and Environmental Needs. J Magn Reson Imaging 2024; 60:1774-1785. [PMID: 38226697 DOI: 10.1002/jmri.29181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) are routinely used in magnetic resonance imaging (MRI). They are essential for choosing the most appropriate medical or surgical strategy for patients with serious pathologies, particularly in oncologic, inflammatory, and cardiovascular diseases. However, GBCAs have been associated with an increased risk of nephrogenic systemic fibrosis in patients with renal failure, as well as the possibility of deposition in the brain, bones, and other organs, even in patients with normal renal function. Research is underway to reduce the quantity of gadolinium injected, without compromising image quality and diagnosis. The next generation of GBCAs will enable a reduction in the gadolinium dose administered. Gadopiclenol is the first of this new generation of GBCAs, with high relaxivity, thus having the potential to reduce the gadolinium dose while maintaining good in vivo stability due to its macrocyclic structure. High-stability and high-relaxivity GBCAs will be one of the solutions for reducing the dose of gadolinium to be administered in clinical practice, while the development of new technologies, including optimization of MRI acquisitions, new contrast mechanisms, and artificial intelligence may help reduce the need for GBCAs. Future solutions may involve a combination of next-generation GBCAs and image-processing techniques to optimize diagnosis and treatment planning while minimizing exposure to gadolinium. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Josep Munuera
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barcelona, Spain
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harriet C Thoeny
- Department of Diagnostic and Interventional Radiology, Fribourg Cantonal Hospital, Fribourg, Switzerland
- Faculty of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Zhang Z, Jiang W, Gu T, Guo N, Sun R, Zeng Y, Han Y, Yu K. Anthropogenic gadolinium contaminations in the marine environment and its ecological implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124740. [PMID: 39147221 DOI: 10.1016/j.envpol.2024.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Due to the widespread application in medicine and industry of anthropogenic gadolinium (Gdanth), the widespread of Gd anomaly in surface water has leading to disruption of the natural Gd geochemical cycle. However, challenges related to the identification and quantification of Gdanth, assessment of its impacts on marine ecosystems, and exploration of strategies for mitigating its adverse effects still exist. Meanwhile, as the major source of the Gdanth, the environmental geochemical behavior of Gd-based contrast agents (GBCAs), which are used in medical diagnostics in magnetic resonance imaging (MRI), are still poorly understood. In this review, we 1) analyzed Gd anomalies in samples from published literature worldwide, confirmed their prevalence (81.25% for sea and lake water, 72.73% for river water), 2) demonstrated that the third-order polynomial method is the preferred approach for the detection of Gdanth in surface seawater, 3) outlined the species and applications of Gdanth and its impacts on marine environment, 4) explored the process of GBCAs influx into the ocean and demonstrated the concentration of Gdanth in coral samples was mainly affected by terrestrial input GBCAs (63.75%) through Pearson correlation analysis and principle component analysis, 5) proposed effective management strategies for GBCAs at all stages from production to release into the ocean, 6) formulated an expectation for future research on marine Gdanth.
Collapse
Affiliation(s)
- Zhaolin Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Wei Jiang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Tingwu Gu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ning Guo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruipeng Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yang Zeng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yansong Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
9
|
Kraemer D, Schmidt K, Klimpel F, Rauch U, Ernst DM, Paul SAL, Haeckel M, Koschinsky A, Bau M. Tracking the distribution of persistent and mobile wastewater-derived substances in the southern and central North Sea using anthropogenic gadolinium from MRI contrast agents as a far-field tracer. MARINE POLLUTION BULLETIN 2024; 207:116794. [PMID: 39154573 DOI: 10.1016/j.marpolbul.2024.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
The use of the rare earth element gadolinium (Gd) in contrast agents for magnetic resonance imaging has led to a significant (micro-)contamination of riverine and coastal environments in many parts of the world. This study comprises a detailed investigation on the rare earth elements and yttrium inventory of the North Sea and also reports data for the major tributaries Thames, Rhine, Ems, Weser and Elbe. We show that large parts of the southern North Sea, including the Wadden Sea UNESCO Natural World Heritage site, are (micro)contaminated with Gd from Gd-based contrast agents (GBCA). Their dispersion reveals their estuarine input and allows to effectively track water masses and currents. The chemical persistence and conservative behavior of GBCA, coupled with the low detection limits of state-of-the-art analytical methods, makes the anthropogenic Gd a sensitive screening proxy for monitoring similarly stable, but potentially hazardous, persistent chemical/pharmaceutical substances in natural waters.
Collapse
Affiliation(s)
- Dennis Kraemer
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany.
| | - Katja Schmidt
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Franziska Klimpel
- School of Science, Constructor University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Uwe Rauch
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - David M Ernst
- School of Science, Constructor University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Sophie A L Paul
- School of Science, Constructor University Bremen, Campus Ring 1, 28759 Bremen, Germany; GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
| | - Matthias Haeckel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
| | - Andrea Koschinsky
- School of Science, Constructor University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Michael Bau
- School of Science, Constructor University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
10
|
Leite C, Russo T, Cuccaro A, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. Rare earth elements and warming: Implications for adult mussel health and sperm quality. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106666. [PMID: 39133969 DOI: 10.1016/j.marenvres.2024.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024]
Abstract
The present study aimed to investigate the effects of europium (Eu) exposure (10 μg/L), warming (a 4 °C increase), and their combination on Mytilus galloprovincialis. Biochemical and histopathological changes in adult mussels were evaluated after a 28-day exposure period. Additionally, biochemical and physiological alterations in sperm were measured following a 30-min exposure period. The overall responses to each treatment were assessed using the Integrated Biological Response index version 2 (IBRv2). In adult mussels, warming elevated metabolism and activated glutathione S-transferases (GSTs), leading to redox imbalance and cellular damage. Europium exposure alone slightly enhanced metabolism and GSTs activity, resulting in cellular damage and histopathological injuries in digestive tubules. The combined exposure to Eu and warming was the most detrimental treatment for adults, as indicated by the highest IBRv2 value. This treatment slightly increased metabolism and uniquely elevated the activity of antioxidant enzymes, as well as GSTs and carboxylesterases. Despite these responses, they were inadequate to prevent redox imbalance, cellular damage, and histopathological injuries in digestive tubules and gills. Regarding sperm, warming reduced reactive oxygen species (ROS) production but raised lipid peroxidation levels. Sperm exposed to this treatment also increased their oxygen consumption and exhibited reduced velocity. The IBRv2 indicated that Eu was the most harmful treatment for sperm, significantly increasing ROS production and notably decreasing sperm velocity. When combined with warming, Eu elevated superoxide anion (O2-) production, lowered sperm velocity, and increased oxygen consumption. This study underscores the importance of investigating the effects of rare earth elements and their interaction with climate change-related factors.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Napoli, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - João Pinto
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Leite C, Russo T, Cuccaro A, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. Praseodymium and warming interactions in mussels: Comparison between observed and predicted results. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172893. [PMID: 38692321 DOI: 10.1016/j.scitotenv.2024.172893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Being a crucial element for technological development, praseodymium (Pr) has been increasingly used, leading to a rise in its concentration in aquatic systems. However, its potential threats to organisms remain poorly understood. Besides contamination, organisms are also threatened by climate change-related factors, including warming. It is important to evaluate how climate change-related factors may influence the effects of contaminants. To address this, histopathological and biochemical analyses were performed in adult mussels of Mytilus galloprovincialis, following a 28-day exposure to Pr (10 μg/L) and warming (4 °C increase) separately, and in combination. Additionally, biochemical and physiological alterations were analysed in the sperm of mussels after 30-min exposure to the same treatments. Furthermore, it was used the Independent Action model to predict the interaction between Pr and warming. The results showed, in the case of adults exposed to Pr, an increase in superoxide dismutase (SOD) and glutathione S-transferases (GSTs) activities. However, it was insufficient, leading to histopathological injuries, redox imbalance, and cellular damage. In the case of sperm, Pr induced an increase of mitochondrial activity and respiration rate, in response to the increase in systemic metabolic rate and oxygen demand. Warming increased the metabolism, and induced redox imbalance and cellular damage in adults. In sperm, a rise in temperature induced lipid peroxidation and a decrease in velocity. Warming induced some alterations in how adult mussels responded to Pr, activating catalase instead of SOD, and in addition to GSTs, also activated carboxylesterases. However, it was not enough to avoid redox imbalance and cellular damage. In the case of sperm, the combination induced a decrease in H2O2 production, and higher oxygen demand, which prevented the decrease in motility and velocity. This study highlights the limitations of using models and emphasizes the importance of studying the impacts of emerging contaminants, such as rare earth elements, and their combination with climate change-related factors. Under environmental conditions, chronic exposure to the combined effect of different stressors might generate impacts at higher biological levels. This may affect organisms' respiratory and filtration capacity, nutrient absorption, defence capacity against infections or diseases, and sperm viability, ultimately resulting in reduced growth and reproduction, with consequences at the population level.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - João Pinto
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Eduarda Pereira
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Cesarini G, Spani F, Patricelli R, Quattrocchi CC, Colasanti M, Scalici M. Assessing teratogenic risks of gadolinium in freshwater environments: Implications for environmental health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116442. [PMID: 38728946 DOI: 10.1016/j.ecoenv.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Gadolinium (Gd) is among the rare earth elements extensively utilized in both industrial and medical applications. The latter application appears to contribute to the rise in Gd levels in aquatic ecosystems, as it is excreted via urine from patients undergoing MRI scans and often not captured by wastewater treatment systems. The potential environmental and biological hazards posed by gadolinium exposure are still under investigation. This study aimed to assess the teratogenic risk posed by a gadolinium chelate on the freshwater cnidarian Hydra vulgaris. The experimental design evaluated the impact of pure Gadodiamide (25 μg/l, 50 μg/l, 100 μg/l, 500 μg/l) and its commercial counterpart compound (Omniscan®; 100 μg/l, 500 μg/l, 782.7 mg/l) at varying concentrations using the Teratogenic Risk Index (TRI). Here we showed a moderate risk (Class III of TRI) following exposure to both tested formulations at concentrations ≥ 100 μg/l. Given the potential for similar concentrations in aquatic environments, particularly near wastewater discharge points, a teratogenic risk assessment using the Hydra regeneration assay was conducted on environmental samples collected from three rivers (Tiber, Almone, and Sacco) in Central Italy. Additionally, chemical analysis of field samples was performed using ICP-MS. Analysis of freshwater samples revealed low Gd concentrations (≤ 0.1 μg/l), despite localized increases near domestic and/or industrial wastewater discharge sites. Although teratogenic risk in environmental samples ranged from high (Class IV of TRI) to negligible (Class I of TRI), the low Gd concentrations, particularly when compared to higher levels of other contaminants like arsenic and heavy metals, preclude establishing a direct cause-effect relationship between Gd and observed teratogenic risks in environmental samples. Nevertheless, the teratogenic risks observed in laboratory tests warrant further investigation.
Collapse
Affiliation(s)
- Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy; National Research Council-Water Research Institute (CNR-IRSA), Corso Tonolli 50, Verbania, Pallanza 28922, Italy
| | - Federica Spani
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21 - 00128, Italy.
| | - Raoul Patricelli
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy
| | - Carlo Cosimo Quattrocchi
- Centre for Medical Sciences-CISMed, University of Trento, Via S. Maria Maddalena 1, Trento 38122, Italy
| | - Marco Colasanti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, Palermo 90133, Italy
| |
Collapse
|
13
|
Samal RR, Subudhi U. Biochemical and biophysical interaction of rare earth elements with biomacromolecules: A comprehensive review. CHEMOSPHERE 2024; 357:142090. [PMID: 38648983 DOI: 10.1016/j.chemosphere.2024.142090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The growing utilization of rare earth elements (REEs) in industrial and technological applications has captured global interest, leading to the development of high-performance technologies in medical diagnosis, agriculture, and other electronic industries. This accelerated utilization has also raised human exposure levels, resulting in both favourable and unfavourable impacts. However, the effects of REEs are dependent on their concentration and molecular species. Therefore, scientific interest has increased in investigating the molecular interactions of REEs with biomolecules. In this current review, particular attention was paid to the molecular mechanism of interactions of Lanthanum (La), Cerium (Ce), and Gadolinium (Gd) with biomolecules, and the biological consequences were broadly interpreted. The review involved gathering and evaluating a vast scientific collection which primarily focused on the impact associated with REEs, ranging from earlier reports to recent discoveries, including studies in human and animal models. Thus, understanding the molecular interactions of each element with biomolecules will be highly beneficial in elucidating the consequences of REEs accumulation in the living organisms.
Collapse
Affiliation(s)
- Rashmi R Samal
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umakanta Subudhi
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Hanana H, Auclair J, Turcotte P, Gagnon C, Gagné F. Toxicity of two heavy rare earth elements to freshwater mussels Dreissena polymorpha. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37125-37135. [PMID: 38760608 PMCID: PMC11182804 DOI: 10.1007/s11356-024-33633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Rare earth elements (REE) are essential components of many electronic devices that could end-up in solid waste disposal sites and inadvertently released in the environment. The purpose of this study was to examine the toxicity of two heavy REEs, erbium (Er) and lutetium (Lu), in freshwater mussels Dreissena polymorpha. Mussels were exposed to 14 days to increasing concentration (10, 50, 250, and 1250 µg/L) of either Er and Lu at 15 °C and analyzed for gene expression in catalase (CAT), superoxide dismutase (SOD), metallothionein (MT), cytochrome c oxidase (CO1), and cyclin D for cell cycle. In addition, lipid peroxidation (LPO), DNA damage (DNAd), and arachidonate cyclooxygenase were also determined. The data revealed that mussels accumulated Er and Lu similarly and both REEs induced changes in mitochondrial COI activity. Er increased cell division, MT, and LPO, while Lu increased DNAd and decreased cell division. Tissue levels of Er were related to changes in MT (r = 0.7), LPO (r = 0.42), CO1 (r = 0.69), and CycD (r = 0.31). Lu tissue levels were related to changes in CO1 (r = 0.73), CycD (r = - 0.61), CAT (r = 0.31), DNAd (r = 0.43), and SOD (r = 0.34). Although the lethal threshold was similar between Er and Lu, the threshold response for LPO revealed that Er produced toxicity at concentrations 25 times lower than Lu suggesting that Er was more harmful than Lu in mussels. In conclusions, the data supports that the toxicity pattern differed between Er and Lu although they are accumulated in the same fashion.
Collapse
Affiliation(s)
- Houda Hanana
- Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
| | - Joëlle Auclair
- Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
| | - Patrice Turcotte
- Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
| | - Christian Gagnon
- Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
| | - François Gagné
- Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada.
| |
Collapse
|
15
|
Pereto C, Baudrimont M, Coynel A. Global natural concentrations of Rare Earth Elements in aquatic organisms: Progress and lessons from fifty years of studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171241. [PMID: 38417499 DOI: 10.1016/j.scitotenv.2024.171241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Rare Earth Elements (REEs) consist of a coherent group of elements with similar physicochemical properties and exhibit comparable geochemical behaviors in the environment, making them excellent tracers of environmental processes. For the past 50 years, scientific communities investigated the REE concentrations in biota through various types of research (e.g. exploratory studies, environmental proxies). The extensive development of new technologies over the past two decades has led to the increased exploitation and use of REEs, resulting in their release into aquatic ecosystems. The bioaccumulation of these emerging contaminants has prompted scientific communities to explore the fate of anthropogenic REEs within aquatic ecosystems. To achieve this, it is necessary to determine the natural concentration levels of REEs in aquatic organisms and the factors controlling REE dynamics. However, knowledge gaps still exist, and no comprehensive approach currently exists to assess the REE concentrations at the ecosystem scale or the factors controlling these concentrations in aquatic organisms. Based on a database comprising 102 articles, this study aimed to: i) provide a retrospective analysis of research topics over a 50-year period; ii) establish reference REE concentrations in several representative phyla of aquatic ecosystems; and iii) examine the global-scale influences of habitat and trophic position as controlling factors of REE concentrations in organisms. This study provides reference concentrations for 16 phyla of freshwater or marine organisms. An influence of habitat REE concentrations on organisms has been observed on a global scale. A trophic dilution of REE concentrations was highlighted, indicating the absence of biomagnification. Lastly, the retrospective approach of this study revealed several research gaps and proposed corresponding perspectives to address them. Embracing these perspectives in the coming years will lead to a better understanding of the risks of anthropogenic REE exposure for aquatic organisms.
Collapse
Affiliation(s)
- Clément Pereto
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| | - Magalie Baudrimont
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| | - Alexandra Coynel
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
16
|
Lachaux N, Otero-Fariña A, Minguez L, Sohm B, Rétif J, Châtel A, Poirier L, Devin S, Pain-Devin S, Gross EM, Giamberini L. Fate, subcellular distribution and biological effects of rare earth elements in a freshwater bivalve under complex exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167302. [PMID: 37742965 DOI: 10.1016/j.scitotenv.2023.167302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Rare earth elements (REE) are emerging contaminants due to their increased use in diverse applications including cutting-edge and green-technologies. Their environmental concerns and contradicting results concerning their biological effects require an extensive understanding of REE ecotoxicology. Thus, we have studied the fate, bioaccumulation and biological effects of three representative REE, neodymium (Nd), gadolinium (Gd) and ytterbium (Yb), individually and in mixture, using the freshwater bivalve Corbicula fluminea. The organisms were exposed for 96 h at 1 mg L-1 REE in the absence and presence of dissolved organic matter (DOM) reproducing an environmental contamination. Combined analysis of the fate, distribution and effects of REE at tissue and subcellular levels allowed a comprehensive understanding of their behaviour, which would help improving their environmental risk assessment. The bivalves accumulated significant concentrations of Nd, Gd and Yb, which were decreased in the presence of DOM likely due to the formation of REE-DOM complexes that reduced REE bioavailability. The accumulation of Nd, Gd and Yb differed between tissues, with gills > digestive gland ≥ rest of soft tissues > hemolymph. In the gills and in the digestive gland, Nd, Gd and Yb were mostly (>90 %) distributed among metal sensitive organelles, cellular debris and detoxified metal-rich granules. Gadolinium, Yb and especially Nd decreased lysosome size in the digestive gland and disturbed osmo- and iono-regulation of C. fluminea by decreasing Na concentrations in the hemolymph and Ca2+ ATPase activity in the gills. Individual and mixed Nd, Gd and Yb exhibited numerous similarities and some differences in terms of fate, accumulation and biological effects, possibly because they have common abiotic and biotic ligands but different affinities for the latter. In most cases, individual and mixed effects of Nd, Gd, Yb were similar suggesting that additivity approach is suitable for the environmental risk assessment of REE mixtures.
Collapse
Affiliation(s)
- Nicolas Lachaux
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France.
| | - Alba Otero-Fariña
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; Université Catholique de l'Ouest, Laboratoire Mer, Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), F-49000 Angers Cedex 01, France
| | | | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Julie Rétif
- Université Catholique de l'Ouest, Laboratoire Mer, Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), F-49000 Angers Cedex 01, France; Nantes University, Institut des Substances et Organismes de La Mer, ISOMer, UR 2160, F-44000 Nantes, France
| | - Amélie Châtel
- Université Catholique de l'Ouest, Laboratoire Mer, Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), F-49000 Angers Cedex 01, France
| | - Laurence Poirier
- Nantes University, Institut des Substances et Organismes de La Mer, ISOMer, UR 2160, F-44000 Nantes, France
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Sandrine Pain-Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Elisabeth M Gross
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Laure Giamberini
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| |
Collapse
|
17
|
Leite C, Russo T, Cuccaro A, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. Can temperature rise change the impacts induced by e-waste on adults and sperm of Mytilus galloprovincialis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166085. [PMID: 37549702 DOI: 10.1016/j.scitotenv.2023.166085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Nowadays, it is of utmost importance to consider climate change factors, such as ocean warming, since the risk of negative impacts derived from increased surface water temperature is predicted to be high to the biodiversity. The need for renewable energy technologies, to reduce greenhouse gas emissions, has led to the increasing use of rare earth elements (REEs). Dysprosium (Dy) is widely used in magnets, motors, electrical vehicles, and nuclear reactors, being considered a critical REE to technology due to its economic importance and high supply risk. However, the increasing use of this element contributes to the enrichment of anthropogenic REEs in aquatic systems. Nevertheless, the information on the potential toxicity of Dy is limited. Moreover, the effects of pollutants can be amplified when combined with climate change factors. Thus, this study aimed to assess the effects of Dy (10 μg/L) in the species Mytilus galloprovincialis under actual (17 °C) and predicted warming conditions (21 °C). The Dy concentration in contaminated mussels was similar between temperatures, probably due to the detoxification capacity in individuals under these treatments. The combined stressors affected the redox balance, but higher impacts were caused by Dy and warming acting alone. In terms of cellular damage, although Dy acting alone was prejudicial to mussels, warming and both stressors acting together induced higher levels of LPO and PC. The histopathological effects of Dy in the digestive tubules were independent of the temperature tested. Regarding effects on sperm, only warming induced cellular damage, while both stressors, alone and together, impaired sperm movement. Overall, this study highlights that warming might influence the effects induced by Dy, but greater impacts were caused by the element. Eventually, the tested stressors may have consequences on mussels' reproduction capacity as well as their growth, abundance, and survival.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - João Pinto
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
18
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Gadolinium accumulation and its biochemical effects in Mytilus galloprovincialis under a scenario of global warming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116120-116133. [PMID: 37910362 PMCID: PMC10682062 DOI: 10.1007/s11356-023-30439-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Electrical and electronic equipment reaching the end of its useful life is currently being disposed of at such an alarmingly high pace that raises environmental concerns. Together with other potentially dangerous compounds, electronic waste contains the rare-earth element gadolinium (Gd), which has already been reported in aquatic systems. Additionally, the vulnerability of aquatic species to this element may also be modified when climate change related factors, like increase in temperature, are taken into consideration. Thus, the present study aimed to evaluate the toxicity of Gd under a scenario of increased temperature in Mytilus galloprovincialis mussels. A multi-biomarker approach and Gd bioaccumulation were assessed in mussels exposed for 28 days to 0 and 10 μg/L of Gd at two temperatures (control - 17 °C; increased - 22 °C). Results confirmed that temperature had a strong influence on the bioaccumulation of Gd. Moreover, mussels exposed to Gd alone reduced their metabolism, possibly to prevent further accumulation, and despite catalase and glutathione S-transferases were activated, cellular damage seen as increased lipid peroxidation was not avoided. Under enhanced temperature, cellular damage in Gd-exposed mussels was even greater, as defense mechanisms were not activated, possibly due to heat stress. In fact, with increased temperature alone, organisms experienced a general metabolic depression, particularly evidenced in defense enzymes, similar to the results obtained under Gd-exposure. Overall, this study underlines the importance of conducting environmental risk assessment taking into consideration anticipated climate change scenarios and exposures to emerging contaminants at relevant environmental concentrations.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
Loevner LA, Kolumban B, Hutóczki G, Dziadziuszko K, Bereczki D, Bago A, Pichiecchio A. Efficacy and Safety of Gadopiclenol for Contrast-Enhanced MRI of the Central Nervous System: The PICTURE Randomized Clinical Trial. Invest Radiol 2023; 58:307-313. [PMID: 36729404 PMCID: PMC10090311 DOI: 10.1097/rli.0000000000000944] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/23/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Developing new high relaxivity gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI) allowing dose reduction while maintaining similar diagnostic efficacy is needed, especially in the context of gadolinium retention in tissues. This study aimed to demonstrate that contrast-enhanced MRI of the central nervous system (CNS) with gadopiclenol at 0.05 mmol/kg is not inferior to gadobutrol at 0.1 mmol/kg, and superior to unenhanced MRI. MATERIALS AND METHODS PICTURE is an international, randomized, double-blinded, controlled, cross-over, phase III study, conducted between June 2019 and September 2020. Adult patients with CNS lesions were randomized to undergo 2 MRIs (interval, 2-14 days) with gadopiclenol (0.05 mmol/kg) then gadobutrol (0.1 mmol/kg) or vice versa. The primary criterion was lesion visualization based on 3 parameters (border delineation, internal morphology, and contrast enhancement), assessed by 3 off-site blinded readers. Key secondary outcomes included lesion-to-background ratio, enhancement percentage, contrast-to-noise ratio, overall diagnostic preference, and adverse events. RESULTS Of the 256 randomized patients, 250 received at least 1 GBCA administration (mean [SD] age, 57.2 [13.8] years; 53.6% women). The statistical noninferiority of gadopiclenol (0.05 mmol/kg) to gadobutrol (0.1 mmol/kg) was achieved for all parameters and all readers (n = 236, lower limit 95% confidence interval of the difference ≥-0.06, above the noninferiority margin [-0.35], P < 0.0001), as well as its statistical superiority over unenhanced images (n = 239, lower limit 95% confidence interval of the difference ≥1.29, P < 0.0001).Enhancement percentage and lesion-to-background ratio were higher with gadopiclenol for all readers ( P < 0.0001), and contrast-to-noise ratio was higher for 2 readers ( P = 0.02 and P < 0.0001). Three blinded readers preferred images with gadopiclenol for 44.8%, 54.4%, and 57.3% of evaluations, reported no preference for 40.7%, 21.6%, and 23.2%, and preferred images with gadobutrol for 14.5%, 24.1%, and 19.5% ( P < 0.001).Adverse events reported after MRI were similar for gadopiclenol (14.6% of patients) and gadobutrol (17.6%). Adverse events considered related to gadopiclenol (4.9%) and gadobutrol (6.9%) were mainly injection site reactions, and none was serious. CONCLUSIONS Gadopiclenol at 0.05 mmol/kg is not inferior to gadobutrol at 0.1 mmol/kg for MRI of the CNS, confirming that gadopiclenol can be used at half the gadolinium dose used for other GBCAs to achieve similar clinical efficacy.
Collapse
Affiliation(s)
- Laurie A. Loevner
- From the Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Katarzyna Dziadziuszko
- Department of Radiology
- Early Clinical Trials Centre, Medical University of Gdansk, Gdansk, Poland
| | | | - Attila Bago
- Department of Neuro-oncology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
20
|
Ekelund Ugge GMO, Sahlin U, Jonsson A, Berglund O. Transcriptional Responses as Biomarkers of General Toxicity: A Systematic Review and Meta-analysis on Metal-Exposed Bivalves. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:628-641. [PMID: 36200657 DOI: 10.1002/etc.5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Through a systematic review and a series of meta-analyses, we evaluated the general responsiveness of putative transcriptional biomarkers of general toxicity and chemical stress. We targeted metal exposures performed on bivalves under controlled laboratory conditions and selected six transcripts associated with general toxicity for evaluation: catalase, glutathione-S-transferase, heat shock proteins 70 and 90, metallothionein, and superoxide dismutase. Transcriptional responses (n = 396) were extracted from published scientific articles (k = 22) and converted to log response ratios (lnRRs). By estimating toxic units, we normalized different metal exposures to a common scale, as a proxy of concentration. Using Bayesian hierarchical random effect models, we then tested the effects of metal exposure on lnRR, both for metal exposure in general and in meta-regressions using toxic unit and exposure time as independent variables. Corresponding analyses were also repeated with transcript and tissue as additional moderators. Observed patterns were similar for general and for transcript- and tissue-specific responses. The expected overall response to arbitrary metal exposure was an lnRR of 0.50, corresponding to a 65% increase relative to a nonexposed control. However, when accounting for publication bias, the estimated "true" response showed no such effect. Furthermore, expected response magnitude increased slightly with exposure time, but there was little support for general monotonic concentration dependence with regard to toxic unit. Altogether, the present study reveals potential limitations that need consideration prior to applying the selected transcripts as biomarkers in environmental risk assessment. Environ Toxicol Chem 2023;42:628-641. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Gustaf M O Ekelund Ugge
- Department of Biology, Lund University, Lund, Sweden
- School of Bioscience, University of Skövde, Skövde, Sweden
| | - Ullrika Sahlin
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Annie Jonsson
- School of Bioscience, University of Skövde, Skövde, Sweden
| | - Olof Berglund
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Saad E, Hamed M, Elshahawy AM, Abd El-Aal M, Sayed AEDH. Effects of major and trace elements from the El Kahfa ring complex on fish: Geological, physicochemical, and biological approaches. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 10. [DOI: 10.3389/fenvs.2022.1013878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The alkaline rocks are known for enriching rare lithophilic elements, including lithium, uranium, and tin, which negatively impact aquatic life. This study offers an intensive investigation of the influence of alkaline rocks on Nile Tilapia (Oreochromis niloticus). The variation in blood profile, the induction of antioxidant enzymes, morphological erythrocyte, and histological structure have been conducted for the fish after 15 days of exposure to alkaline rocks powder with a dose of 100 μg/L. As a result, there was a pronounced decrease in blood profiles, such as platelets and white blood cell counts. There was a failure in the liver and kidney functions. Moreover, it shows an increase in superoxide dismutase (SOD) and catalase (CAT) activities as antioxidant biomarkers. Also, exposure to alkaline rocks induced DNA mutation and erythrocyte distortion. We concluded that the bulk alkaline rocks induced changes in the hemato-biochemical and antioxidant parameters of Nile tilapia. Additionally, exposure to bulk alkaline rock compounds also caused poikilocytosis and nuclear abnormalities of RBCs. This draws our attention to the seriousness of climatic changes, the erosion of rocks, and their access to water.
Collapse
|
22
|
Rétif J, Zalouk-Vergnoux A, Briant N, Poirier L. From geochemistry to ecotoxicology of rare earth elements in aquatic environments: Diversity and uses of normalization reference materials and anomaly calculation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158890. [PMID: 36262004 DOI: 10.1016/j.scitotenv.2022.158890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The geochemistry of rare earth elements (REEs) has been studied for a long time and has allowed us to highlight enrichments or depletions of REEs in aquatic ecosystems and to estimate anthropogenic inputs through normalization of data to different reference materials. This review of current literature on REE normalization highlighted the large number of different reference materials (a total of 12), as well as different anomaly calculation methods. This statement showed a real need for method harmonization to simplify the comparison between studies, which is currently very difficult. Normalization to Post-Archean Australian Shale (PAAS) emerged as being the most used (33 % of reported studies) regardless of the location and the nature of the studied samples and seem to be of higher quality. The interest of other reference materials was nevertheless underlined, as they could better represent the geographical situation or the nature of samples. Two main anomaly calculation methods have been highlighted: the linear interpolation/extrapolation and the geometric extrapolation using logarithmic modeling. However, due to variations in the estimation of neighbors' values, these two methods produce many different equations for the anomaly calculation of a single element. Current normalization practices based on shales and chondrites are suitable for abiotic samples but are questionable for biota. Indeed, normalization is increasingly used in studies addressing ecotoxicological issues which focus on biota and often aim to estimate the anthropogenic origin of bioaccumulated REEs. Due to the interspecific variability, as well as the complexity of mechanisms occurring in organisms when exposed to contaminants, new reference materials need to be established to consider the bioaccumulation/metabolization processes and the anthropogenic inputs of REEs based on the results of biotic samples.
Collapse
Affiliation(s)
- Julie Rétif
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| | - Aurore Zalouk-Vergnoux
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| | - Nicolas Briant
- Ifremer, Centre Atlantique, Biogéochimie et Ecotoxicologie, BE, Laboratoire de Biogéochimie des Contaminants Métalliques, LBCM, F-44000 Nantes, France.
| | - Laurence Poirier
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| |
Collapse
|
23
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Threats of Pollutants Derived from Electronic Waste to Marine Bivalves: The Case of the Rare-Earth Element Yttrium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:166-177. [PMID: 36511525 PMCID: PMC10107937 DOI: 10.1002/etc.5508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 10/24/2022] [Indexed: 06/01/2023]
Abstract
The production of electrical and electronic equipment waste (e-waste) is increasing at an alarming rate worldwide. This may eventually lead to its accumulation in aquatic environments, mainly because of the presence of nonbiodegradable components. The rare-earth element yttrium (Y) is particularly relevant because it is present in a wide variety of electro-based equipment. Within this context, the present study investigated the biological consequences of anthropogenic Y exposure in Mytilus galloprovincialis. Mussels were exposed to Y (0, 5, 10, 20, 40 μg/L) for 28 days, and their bioaccumulation and biomarkers related to metabolism, oxidative stress defenses, cellular damage, and neurotoxicity were evaluated. The results revealed that tissue Y content increased at increasing exposure concentrations (though the bioconcentration factor decreased). At the lowest Y dosage (5 µg/L), mussels lowered their electron transport system (ETS) activity, consumed more energy reserves (glycogen), and activated superoxide dismutase activity, thus preventing cellular damage. At the highest Y dosage (40 μg/L), mussels reduced their biotransformation activities with no signs of cellular damage, which may be associated with the low toxicity of Y and the lower/maintenance of ETS activity. Although only minor effects were observed, the present findings raise an environmental concern for aquatic systems where anthropogenic Y concentrations are generally low but still may compromise organisms' biochemical performance. Particularly relevant are the alterations in energy metabolism and detoxification processes for their longer-term impacts on growth and reproduction but also as defense mechanisms against other stressors. Environ Toxicol Chem 2023;42:166-177. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAMUniversidade de AveiroAveiroPortugal
| | | | - Montserrat Solé
- Departamento de Recursos Marinos RenovablesInstituto de Ciencias del Mar ICM‐CSICBarcelonaSpain
| | - Eduarda Pereira
- Departamento de Química & CESAM/LAQV‐REQUIMTEUniversidade de AveiroAveiroPortugal
| | - Rosa Freitas
- Departamento de Biologia & CESAMUniversidade de AveiroAveiroPortugal
| |
Collapse
|
24
|
Figueiredo C, Grilo TF, Oliveira R, Ferreira IJ, Gil F, Lopes C, Brito P, Ré P, Caetano M, Diniz M, Raimundo J. Gadolinium ecotoxicity is enhanced in a warmer and acidified changing ocean as shown by the surf clam Spisula solida through a multibiomarker approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106346. [PMID: 36327686 DOI: 10.1016/j.aquatox.2022.106346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Humans have exhaustively combusted fossil fuels, and released pollutants into the environment, at continuously faster rates resulting in global average temperature increase and seawater pH decrease. Climate change is forecasted to exacerbate the effects of pollutants such as the emergent rare earth elements. Therefore, the objective of this study was to assess the combined effects of rising temperature (Δ = + 4 °C) and decreasing pH (Δ = - 0.4 pH units) on the bioaccumulation and elimination of gadolinium (Gd) in the bioindicator bivalve species Spisula solida (Surf clam). We exposed surf clams to 10 µg L-1 of GdCl3 for seven days, under warming, acidification, and their combination, followed by a depuration phase lasting for another 7 days and investigated the Gd bioaccumulation and oxidative stress-related responses after 1, 3 and 7 days of exposure and the elimination phase. Gadolinium accumulated after just one day with values reaching the highest after 7 days. Gadolinium was not eliminated after 7 days, and elimination is further hampered under climate change scenarios. Warming and acidification, and their interaction did not significantly impact Gd concentration. However, there was a significant interaction on clam's biochemical response. The augmented total antioxidant capacity and lipid peroxidation values show that the significant impacts of Gd on the oxidative stress response are enhanced under warming while the increased superoxide dismutase and catalase values demonstrate the combined impact of Gd, warming & acidification. Ultimately, lipid damage was greater in clams exposed to warming & Gd, which emphasizes the enhanced toxic effects of Gd in a changing ocean.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal; Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; Department of Chemistry, Department of Life Sciences, School of Science and Technology, UCIBIO, Applied Molecular Biosciences Unit, NOVA University Lisbon, Caparica 2819-516, Portugal.
| | - Tiago F Grilo
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Rui Oliveira
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal
| | - Inês João Ferreira
- Chemistry Department, LAQV-REQUIMTE, NOVA School of Science and Technology, Caparica 2829-516, Portugal
| | - Fátima Gil
- Aquário Vasco da Gama, Rua Direita do Dafundo, Cruz Quebrada 1495-718, Portugal
| | - Clara Lopes
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Pedro Brito
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Pedro Ré
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Miguel Caetano
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Mário Diniz
- Department of Chemistry, Department of Life Sciences, School of Science and Technology, UCIBIO, Applied Molecular Biosciences Unit, NOVA University Lisbon, Caparica 2819-516, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 2819-516, Portugal
| | - Joana Raimundo
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; Aquário Vasco da Gama, Rua Direita do Dafundo, Cruz Quebrada 1495-718, Portugal
| |
Collapse
|
25
|
Zocher AL, Klimpel F, Kraemer D, Bau M. Naturally grown duckweeds as quasi-hyperaccumulators of rare earth elements and yttrium in aquatic systems and the biounavailability of gadolinium-based MRI contrast agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155909. [PMID: 35577085 DOI: 10.1016/j.scitotenv.2022.155909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The use of rare earths and yttrium (REY) in high-technology products is accompanied by their increasing release into the environment. Concerns regarding the (eco-)toxicity and bioaccumulation of these emerging contaminants highlight the need for research on REY uptake by (aquatic) plants. Duckweeds are widespread macrophytes in lentic waters and receive increasing attention as a potential protein-rich food additive. We here provide a baseline dataset for the complete set of REY in naturally grown duckweed assemblages and ambient freshwater and coastal brackish seawater. Our results show that duckweeds strongly bioaccumulate REY and incorporate them at the μg/kg level (dry matter basis). Their shale-normalised (SN) REY patterns are mildly fractionated relative to upper continental crust, regardless of sampling location and season. In contrast, the patterns of ambient waters increase from light to heavy REY (LREY and HREY, resp.) and may show prominent positive anthropogenic GdSN anomalies due to the presence of Gd-based contrast agents (Gd-CAs) applied for magnetic resonance imaging (MRI). The lack of GdSN anomalies in the duckweed assemblages reveals discrimination against the uptake of Gd-CAs by the macrophytes, providing further evidence for the conservative behaviour of these xenobiotics in the environment. High REY concentrations and apparent bulk distribution coefficients between duckweeds and ambient waters of up to 105 show that duckweeds are quasi-hyperaccumulators of REY. Uptake of LREY is up to two orders of magnitude higher than of HREY, possibly due to stronger complexation of HREY with dissolved ligands. The REY closely correlate with Mn but not with Ca, suggesting that uptake of REY and Mn occurs via the same pathway and revealing the negligible role of calcium oxalates. Our study demonstrates that while duckweeds are quasi-hyperaccumulators of REY, there is currently no risk that anthropogenic Gd from MRI contrast agents may enter the food chain via consumption of duckweeds.
Collapse
Affiliation(s)
- Anna-Lena Zocher
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Franziska Klimpel
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Dennis Kraemer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Michael Bau
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
26
|
Magnetic Resonance Neuroimaging Contrast Agents of Nanomaterials. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6790665. [PMID: 36082155 PMCID: PMC9448598 DOI: 10.1155/2022/6790665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Since the early 1980s when MRI imaging technology was put into clinical use, the number of MRI clinical tests has steadily increased by more than 10% every year. At the same time, exogenous MRI contrast agents have also been developed with the development of MRI technology. However, there are still challenges in the preparation of contrast agents for magnetic resonance imaging, such as how to prepare high-efficiency contrast agents with high stability and low biological toxicity. In order to study the contrast agent with simple preparation method, low cost, and good imaging effect, a magnetic resonance contrast agent was prepared by magnetic nanoparticles. By acting on magnetic resonance imaging detection method, and using polymer ligands to synthesize magnetic nanoparticles, experiments and tests of P(MA-alt-VAc) polymer ligand-modified magnetic nanoparticles were carried out. The experimental results showed that when nanoparticles containing different iron ion concentrations were incubated with DC 2.4 normal cells for 48 hours, the cell viability was still higher than 80% at concentrations up to 200 μm. It shows that the nanoparticle has high cell activity and good biological adaptability. The transverse relaxation (r2) value of the nanoparticles in aqueous solution at 37°C and 1.5 T magnetic field is 231.1 m−1 s−1, which is much higher than that of PTMP-PMAA (r2 = 35.1 mM−1 s−1), which is also more than five times the relaxation of SHU-555C (r2 = 44 mM−1 s−1). It shows that the nanoparticles prepared in this paper have good effect and can be used as a contrast agent in human brain for magnetic resonance imaging.
Collapse
|
27
|
Hanana H, Gagné F, Trottier S, Bouchard P, Farley G, Auclair J, Gagnon C. Assessment of the toxicity of a mixture of five rare earth elements found in aquatic ecosystems in Hydra vulgaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113793. [PMID: 35759983 DOI: 10.1016/j.ecoenv.2022.113793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Rare earth elements (REEs) are considered critical elements for technology and their extraction through mining activities is expected to increase in the future. Due to their chemical similarities, they often co-occur in minerals and thus their ecotoxicity should be assessed as a group/family. However, the available ecotoxicological studies focused mainly on the evaluation of the potential toxicological impacts of individual REEs rather than their mixtures. The aim of this study was therefore to evaluate the toxicity of a representative mixture of five REEs (La, Ce, Pr, Nd and Sm) spanning environmentally relevant concentrations ranging from 0.05X (29 µg REEs L-1) to 5X (2926 µg REEs L-1) to the test organism, Hydra vulgaris, at the morphological, reproductive and regenerative levels. The data showed that lethality occurred at concentrations near (2.5 fold) to those inducing sublethal effects after chronic exposure of 7 days. The mixture affected reproduction and head regeneration and even lethality at concentrations even below those reported at environmental concentration (0.5X = 293 µg REEs L-1) in lakes. This suggests that REEs concentrations found in lakes near mining activities could disrupt regeneration and impair embryonic development. Our data also revealed that combining the 5 REEs results in an antagonistic effect, suggesting that those elements share the same receptor and that low molecular weight and high radius elements (approaching iron) were less toxic. Taken together, hydra could be used as a sensitive model organism for the assessment of aquatic ecotoxicological risks of REE mixtures but further analyses of biochemical and gene expressions should improve our understanding of the long-term effects of REEs mixtures.
Collapse
Affiliation(s)
- Houda Hanana
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill street, 7th Floor, Montréal, QC H2Y 2E7, Canada.
| | - François Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill street, 7th Floor, Montréal, QC H2Y 2E7, Canada
| | - Sylvain Trottier
- Quebec Laboratory for Environmental Testing, Environment and Climate Change Canada, Montréal, QC, Canada
| | - Pascale Bouchard
- Quebec Laboratory for Environmental Testing, Environment and Climate Change Canada, Montréal, QC, Canada
| | - Geneviève Farley
- Quebec Laboratory for Environmental Testing, Environment and Climate Change Canada, Montréal, QC, Canada
| | - Joëlle Auclair
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill street, 7th Floor, Montréal, QC H2Y 2E7, Canada
| | - Christian Gagnon
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill street, 7th Floor, Montréal, QC H2Y 2E7, Canada
| |
Collapse
|
28
|
Blinova I, Lukjanova A, Vija H, Kahru A. Long-Term Toxicity of Gadolinium to the Freshwater Crustacean Daphnia magna. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:848-853. [PMID: 34636960 DOI: 10.1007/s00128-021-03388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The lanthanides are considered emerging contaminants but information on their long-term toxicity to aquatic species under environmentally relevant conditions is scarce. We aimed to fill this gap by evaluating the long-term adverse effects of gadolinium on the freshwater model-crustacean Daphnia magna. The exposure of D. magna for up to 39 days to 0.1 mg Gd/L (a 21-days chronic toxicity NOEC value derived by us formerly) in the lake water had no negative effect (p > 0.05) on vitality, size and reproduction of parent animals as well as their offspring. Thus, assumingly the current Gd contamination levels of surface waters pose no hazard to aquatic crustaceans that in general are very sensitive to various pollutants. Moreover, presence of 0.1 mg Gd/L in the lake water even mitigated the long-term toxic effect of 0.2 mg Ni/L (studied as a model co-contaminant) to D. magna's vitality and productivity.
Collapse
Affiliation(s)
- Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
| | - Aljona Lukjanova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
29
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Will climate changes enhance the impacts of e-waste in aquatic systems? CHEMOSPHERE 2022; 288:132264. [PMID: 34624793 DOI: 10.1016/j.chemosphere.2021.132264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The increase of the worlds' population is being accompanied by the exponential growth in waste of electrical and electronic equipment (e-waste) generation as a result of the rapid technological implementations. The inappropriate processing and disposal of this e-waste, containing rare-earth elements (REEs) such as gadolinium (Gd), may enhance its occurrence in the environment. In particular, the presence of Gd in marine systems may lead to environmental risks which are still unknown, especially considering foreseen climate modifications such as water salinity shifts due to extreme weather events. Within this context, the present study intended to assess the combined effects of Gd at variable salinities. For that, biochemical modifications were assessed in mussels, Mytilus galloprovincialis, exposed to Gd (0 and 10 μg/L) and different salinity levels (20, 30 and 40), acting individually and in combination. A decrease in salinity, induced an array of biochemical effects associated to hypotonic stress in non-contaminated and contaminated mussels, including metabolism, antioxidant and biotransformation defenses activation. Moreover, in Gd-contaminated organisms, the increase in salinity was responsible for a significant reduction of metabolic and defense mechanisms, possibly associated with a mussels' physiological response to the stress caused by the combination of both factors. In particular, Gd caused cellular damage at all salinities, but mussels adopted different strategies under each salinity to limit the extent of oxidative stress. That is, an increase in metabolism was associated to hypotonic stress and Gd exposure, an activation of defense enzymes was revealed at the control salinity (30) and a decrease in metabolism and non-activation of defenses, associated with a possible physiological defense trait, was evidenced at the highest salinity. The different strategies adopted highlight the need to investigate the risk of emerging contaminants such as REEs at present and forecasted climate change scenarios, thus providing a more realistic environmental risk assessment.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & CESAM/LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
30
|
Kartamihardja AAP, Kumasaka S, Hilfi L, Kameo S, Koyama H, Tsushima Y. Biosorption of different gadolinium (Gd) complexes from water by Eichhornia crassipes (water hyacinth). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:893-901. [PMID: 34613832 DOI: 10.1080/15226514.2021.1984388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many studies have demonstrated the Eichhornia crassipes (water hyacinth) potency in removing heavy metals, but the plant's potential for sorption of gadolinium (Gd) has not yet been investigated. In this study, water hyacinth was grown in a glass container for 30 days with either GdCl3 or Gd-based contrast agent (GBCA; gadoterate) with water obtained from the Tone River. On the day 30, the Gd concentration in both the water and the plants was measured by mass spectrometry (ICP-MS). After 30 days, 98.5% of GdCl3 in the water had been absorbed by the roots, and 3.5% of Gd was transferred to the leaves. On the other hand, the water hyacinth roots absorbed only 12% of the gadoterate. When exposed to 5 mg/L of GdCl3, the roots of water hyacinth may effectively remove Gd ions in the aquatic environment, with no visible effect on the general health of the plant. However, the water hyacinth roots did not absorb GBCA. This may result in higher accumulation of Gd in the aqueous environment. The GBCA may be broken down by environmental factors and negatively affect the marine ecosystem.
Collapse
Affiliation(s)
- Achmad A P Kartamihardja
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Nuclear Medicine and Molecular Imaging, Universitas Padjajaran, Bandung, Indonesia
| | - Soma Kumasaka
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Lukman Hilfi
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Satomi Kameo
- Department of Nutrition, College of Nutrition, Koshien University, Takarazuka, Hyogo, Japan
| | - Hiroshi Koyama
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
- Division of Integrated Oncology Research, Gunma Initiative for Advanced Research, Maebashi, Japan
| |
Collapse
|
31
|
Hanana H, Kowalczyk J, André C, Gagné F. Insights on the toxicity of selected rare earth elements in rainbow trout hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109097. [PMID: 34090975 DOI: 10.1016/j.cbpc.2021.109097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022]
Abstract
The increasing extraction of rare earth elements (REEs) for technology applications raised concerns for contamination and toxicity in the environment. The purpose of this study was to examine the toxicity of the following REEs in primary cultures of rainbow trout hepatocytes: yttrium (Y), samarium (Sm), gadolinium (Gd), terbium (Tb) and lutetium (Lu). Hepatocytes were exposed to increasing concentrations of the above elements for 24 h at 15 °C and they were analyzed for viability, metallothioneins (MT), glutathione-S-transferase (GST) and arachidonate cyclooxygenase (COX) as markers of oxidative stress and inflammation. The results revealed that the cytoxicity of REEs were as follows in decreasing order: Y > Sm > Lu > Tb > Gd in concordance with published rainbow trout mortality data. While effects on GST and COX activities were marginal, MT levels were more strongly increased with the 2 most toxic REEs (Y and Sm) and Gd, while MT levels were decreased in the least toxic ones (Tb, Lu). While cell viability followed published trout mortality data, it also followed the redox potential and the glutathione affinity constant (log k). The capacity to induce/decrease MT levels was associated with ionic radius, log k (glutathione) and electronegativity. A proposed mechanism of toxicity for REEs is presented based on the chemical properties of REEs, namely the glutathione binding constant and ionic radius, in light of the observed effects in trout hepatocytes.
Collapse
Affiliation(s)
- H Hanana
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada
| | - J Kowalczyk
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada
| | - C André
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada
| | - F Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada.
| |
Collapse
|
32
|
Sturla Lompré J, Moleiro P, De Marchi L, Soares AMVM, Pretti C, Chielini F, Pereira E, Freitas R. Bioaccumulation and ecotoxicological responses of clams exposed to terbium and carbon nanotubes: Comparison between native (Ruditapes decussatus) and invasive (Ruditapes philippinarum) species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146914. [PMID: 33901954 DOI: 10.1016/j.scitotenv.2021.146914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In the last decades the use of rare earth elements (REEs) increased exponentially, including Terbium (Tb) which has been widely used in newly developed electronic devices. Also, the production and application of nanoparticles has been growing, being Carbon Nanotubes (CNTs) among the most commonly used. Accompanying such development patterns, emissions towards the aquatic environments are highly probable, with scarce information regarding the potential toxicity of these pollutants to inhabiting species, especially considering their mixture. In the present study the effects of Tb and CNTs exposure (acting alone or as a mixture) on native and invasive clams' species (Ruditapes decussatus and Ruditapes philippinarum, respectively) were evaluated, assessing clams' accumulation and metabolic capacities, oxidative status as well neurotoxic impacts. Results obtained after a 28-days exposure period showed that the accumulation of Tb in both species was not affected by the presence of the CNTs and similar Tb concentrations were found in both species. The effects caused by Tb and CNTs, acting alone or as a mixture induced greater alterations in R. philippinarum antioxidant capacity in comparison to native R. decussatus, but no cellular damages were observed in both species. Nevertheless, although metabolic impairment was only observed in clams exposed to Tb, loss of redox balance and neurotoxicity were evidenced by both species regardless the exposure treatment. These findings highlight the potential impacts caused by CNTs and Tb, which may affect clams' normal physiological functioning, impairing their reproduction and growth capacities. The obtained results point out the need for further investigation considering the mixture of pollutants.
Collapse
Affiliation(s)
- Julieta Sturla Lompré
- Center for the Study of Marine Systems (CESIMAR-CONICET), National Patagonian Center, Bv. Almte Brown 2915, Puerto Madryn, Argentina; Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Moleiro
- Department de Chemistry, University de Aveiro, 3810-193 Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Federica Chielini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Eduarda Pereira
- Department de Chemistry and REQUIMTE, University de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
33
|
Trapasso G, Chiesa S, Freitas R, Pereira E. What do we know about the ecotoxicological implications of the rare earth element gadolinium in aquatic ecosystems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146273. [PMID: 33813143 DOI: 10.1016/j.scitotenv.2021.146273] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Gadolinium (Gd) is one of the most commercially exploited rare earth elements, commonly employed in magnetic resonance imaging as a contrast agent. The present review was performed aiming to identify the Gd concentrations in marine and freshwater environments. In addition, information on Gd speciation in the environment is discussed, in order to understand how each chemical form affects its fate in the environment. Biological responses caused by Gd exposure and its bioaccumulation in different aquatic invertebrates are also discussed. This review was devoted to aquatic invertebrates, since this group of organisms includes species widely used as bioindicators of pollution and they represent important resources for human socio-economic development, as edible seafood, fishing baits and providing food resources for other species. From the literature, most of the published data are focused on freshwater environments, revealing concentrations from 0.347 to 80 μg/L, with the highest Gd anomalies found close to highly industrialized areas. In marine environments, the published studies identified a range of concentrations between 0.36 and 26.9 ng/L (2.3 and 171.4 pmol/kg), reaching 409.4 ng/L (2605 pmol/kg) at a submarine outfall. Concerning the bioaccumulation and effects of Gd in aquatic species, most of the literature regards to freshwater species, revealing concentration ranging from 0.006 to 0.223 μg/g, with high variability in the bioaccumulation extent according to Gd complexes chemical speciation. Conversely, no field data concerning Gd bioaccumulation in tissues of marine species have been published. Finally, impacts of Gd in invertebrate aquatic species were identified at different biological levels, including alterations on gene expression, cellular homeostasis, shell formation, metabolic capacity and antioxidant mechanisms. The information here presented highlights that Gd may represent an environmental threat and a risk to human health, demonstrating the need for further research on Gd toxicity towards aquatic wildlife and the necessity for new water remediation strategies.
Collapse
Affiliation(s)
- Giacomo Trapasso
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Italy
| | - Stefania Chiesa
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Italy; ISPRA, The Italian Institute for Environmental Protection and Research, Rome, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal.
| | - Eduarda Pereira
- Departamento de Química & REQUIMTE, Universidade de Aveiro, Portugal
| |
Collapse
|
34
|
Trapasso G, Coppola F, Queirós V, Henriques B, Soares AMVM, Pereira E, Chiesa S, Freitas R. How Ulva lactuca can influence the impacts induced by the rare earth element Gadolinium in Mytilus galloprovincialis? The role of macroalgae in water safety towards marine wildlife. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112101. [PMID: 33765593 DOI: 10.1016/j.ecoenv.2021.112101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Rare earth elements (REEs) are gaining growing attention in environmental and ecotoxicological studies due to their economic relevance, wide range of applications and increasing environmental concentrations. Among REEs, special consideration should be given to Gadolinium (Gd), whose wide exploitation as a magnetic resonance imaging (MRI) contrast agent is enhancing the risk of its occurrence in aquatic environments and impacts on aquatic organisms. A promising approach for water decontamination from REEs is sorption, namely through the use of macroalgae and in particular Ulva lactuca that already proved to be an efficient biosorbent for several chemical elements. Therefore, the present study aimed to evaluate the toxicity of Gd, comparing the biochemical effects induced by this element in the presence or absence of algae. Using the bivalve species Mytilus galloprovincialis, Gd toxicity was evaluated by assessing changes on mussels' metabolic capacity and oxidative status. Results clearly showed the toxicity of Gd but further revealed the capacity of U. lactuca to prevent injuries to M. galloprovincialis, mainly reducing the levels of Gd in water and thus the bioaccumulation and toxicity of this element by the mussels. The results will advance the state of the art not only regarding the effects of REEs but also with regard to the role of algae in accumulation of metals and protection of aquatic organisms, generating new insights on water safety towards aquatic wildlife and highlighting the possibility for resources recovery.
Collapse
Affiliation(s)
- Giacomo Trapasso
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30172 Venice, Italy
| | - Francesca Coppola
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Vanessa Queirós
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; LAVQ-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; LAVQ-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Stefania Chiesa
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30172 Venice, Italy; ISPRA, The Italian Institute for Environmental Protection and Research, 00144 Rome, Italy
| | - Rosa Freitas
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
35
|
Wang J, Shan Z, Tan X, Li X, Jiang Z, Qin J. Preparation of graphene oxide (GO)/lanthanum coordination polymers for enhancement of bactericidal activity. J Mater Chem B 2021; 9:366-372. [PMID: 33283813 DOI: 10.1039/d0tb02266g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, graphene oxide/lanthanum coordination polymer (GLCP) nanocomposites are prepared and their bactericidal activities against seven typical Pathogenic bacteria are evaluated. The GLCPs are fabricated through the electrostatic self-assembly of La ions on negatively charged graphene oxide (GO), followed by the stabilization of π-π stacking to ensure the formation of lanthanum coordination polymers on the GO surface. The morphologies and structures of the synthesized GLCPs are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). Moreover, the bactericidal effects of the well-coordinated GLCPs are investigated using the zone of inhibition and flat colony counting methods, as well as by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The five GLCPs synthesized in this study exhibit broad-spectrum antibacterial activities against seven typical Pathogenic bacteria. We believe that our study could serve as a starting point to prepare bactericidal materials for further applications.
Collapse
Affiliation(s)
- Jia Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Zezhi Shan
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China. and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China. and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenqi Jiang
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China.
| | - Jieling Qin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
36
|
Lattanzio SM. Toxicity associated with gadolinium-based contrast-enhanced examinations. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
37
|
Malhotra N, Hsu HS, Liang ST, Roldan MJM, Lee JS, Ger TR, Hsiao CD. An Updated Review of Toxicity Effect of the Rare Earth Elements (REEs) on Aquatic Organisms. Animals (Basel) 2020; 10:E1663. [PMID: 32947815 PMCID: PMC7552131 DOI: 10.3390/ani10091663] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/11/2023] Open
Abstract
Rare earth elements (REEs) or "technology metals" were coined by the U.S. Department of Energy, a group of seventeen elements found in the Earth's crust. These chemical elements are vital and irreplaceable to the world of technology owing to their unique physical, chemical, and light-emitting properties, all of which are beneficial in modern healthcare, telecommunication, and defense. Rare earth elements are relatively abundant in Earth's crust, with critical qualities to the device performance. The reuse and recycling of rare earth elements through different technologies can minimize impacts on the environment; however, there is insufficient data about their biological, bioaccumulation, and health effects. The increasing usage of rare earth elements has raised concern about environmental toxicity, which may further cause harmful effects on human health. The study aims to review the toxicity analysis of these rare earth elements concerning aquatic biota, considering it to be the sensitive indicator of the environment. Based on the limited reports of REE effects, the review highlights the need for more detailed studies on the hormetic effects of REEs. Aquatic biota is a cheap, robust, and efficient platform to study REEs' toxicity, mobility of REEs, and biomagnification in water bodies. REEs' diverse effects on aquatic life forms have been observed due to the lack of safety limits and extensive use in the various sectors. In accordance with the available data, we have put in efforts to compile all the relevant research results in this paper related to the topic "toxicity effect of REEs on aquatic life".
Collapse
Affiliation(s)
- Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Hua-Shu Hsu
- Department of Applied Physics, National Pingtung University, Pingtung 900391, Taiwan;
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Marri Jmelou M. Roldan
- Faculty of Pharmacy and The Graduate School, University of Santo Tomas, Manila 1008, Philippines;
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung 900391, Taiwan;
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
38
|
Pereto C, Coynel A, Lerat-Hardy A, Gourves PY, Schäfer J, Baudrimont M. Corbicula fluminea: A sentinel species for urban Rare Earth Element origin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:138552. [PMID: 32422480 DOI: 10.1016/j.scitotenv.2020.138552] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The increase in the global population, coupled with growing consumption of Rare Earth Elements (REEs), has led to increasing transfer of these emerging contaminants into the environment, particularly through the effluents from wastewater treatment plants (WWTP). The objectives of this study were to determine the geochemical quality of a French river subject to strong urban pressure (the Jalle River in the Bordeaux area) and to examine the bioavailability of natural and anthropogenic REEs in a model species of freshwater bivalve, the Asian clam Corbicula fluminea. To this end, two fractions (dissolved and total) of the water from the Jalle River were sampled and the bivalves were exposed by in situ caging during a three-month monitoring period. The REE patterns obtained showed the presence of Gadolinium (Gd) anomalies in the dissolved and total fractions as well as in Corbicula fluminea. The apparent bioavailability of natural REEs was in the following order for the dissolved fraction: Medium REEs (MREEs) > Light REEs (LREEs) > Heavy REEs (HREEs) and for the particulate fraction: MREEs > LREEs = HREEs. These results highlight the importance of the particulate fraction in the study of the bioavailability of REEs in bivalves. An increase of anthropogenic Gd (Gdanth) was observed in the dissolved fraction between the upstream site (3.4 ng.L-1) and the WWTP Downstream site (48.4 ng.L-1). The Gd anomaly observed in the water was also observed in Corbicula fluminea with a significant increase in the bioaccumulation of Gdanth, from 1.5 ± 1 ng.gDW-1 upstream to 4.1 ± 0.7 ng.gDW-1 downstream of the WWTP effluents, thus confirming the enhanced bioavailability of medical-origin Gd to freshwater bivalves. This study strongly suggests that Corbicula fluminea can be used as a sentinel species in the monitoring of Gd contamination of medical origin. It would thus appear important to consider the potential entry of this contaminant into the human food chain via other, commercially exploited bivalve species.
Collapse
Affiliation(s)
- Clément Pereto
- Université de Bordeaux, - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Alexandra Coynel
- Université de Bordeaux, - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Antoine Lerat-Hardy
- Université de Bordeaux, - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Pierre-Yves Gourves
- Université de Bordeaux, - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Jörg Schäfer
- Université de Bordeaux, - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| | - Magalie Baudrimont
- Université de Bordeaux, - UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire Bât NB18 - CS 50023, 33615 Pessac Cedex, France.
| |
Collapse
|
39
|
Gadolinium Complexes as Contrast Agent for Cellular NMR Spectroscopy. Int J Mol Sci 2020; 21:ijms21114042. [PMID: 32516957 PMCID: PMC7312942 DOI: 10.3390/ijms21114042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Aqua Gd3+ and Gd-DOTA (gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacete) complexes were studied as a contrast agent in cellular NMR (nuclear magnetic resonance) spectroscopy for distinguishing between intracellular and extracellular spaces. The contrast agents for this purpose should provide strong paramagnetic relaxation enhancement and localize in the extracellular space without disturbing biological functions. Cell membrane permeability to Gd complexes was evaluated from the concentrations of gadolinium complexes in the inside and outside of E. coli cells measured by the 1H-NMR relaxation. The site-specific binding of the complexes to E. coli cells was also analyzed by high-resolution solid-state 13C-NMR. The aqua Gd3+ complex did not enhance T1 relaxation in proportion to the amount of added Gd3+. This Gd3+ concentration dependence and the 13C-NMR indicated that its strong cytotoxicity should be due to the binding of the paramagnetic ions to cellular components especially at the lipid membranes. In contrast, Gd-DOTA stayed in the solution states and enhanced relaxation in proportion to the added amount. This agent exhibited strong T1 contrast between the intra- and extracellular spaces by a factor of ten at high concentrations under which the cells were viable over a long experimental time of days. These properties make Gd-DOTA suitable for selectively contrasting the living cellular space in NMR spectroscopy primarily owing to its weak interaction with cellular components.
Collapse
|
40
|
Chazot A, Barrat JA, Gaha M, Jomaah R, Ognard J, Ben Salem D. Brain MRIs make up the bulk of the gadolinium footprint in medical imaging. J Neuroradiol 2020; 47:259-265. [DOI: 10.1016/j.neurad.2020.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/09/2023]
|
41
|
Freitas R, Costa S, D Cardoso CE, Morais T, Moleiro P, Matias AC, Pereira AF, Machado J, Correia B, Pinheiro D, Rodrigues A, Colónia J, Soares AMVM, Pereira E. Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis. CHEMOSPHERE 2020; 244:125457. [PMID: 32050323 DOI: 10.1016/j.chemosphere.2019.125457] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The wide range of applications of rare earth elements (REE) is leading to their occurrence in worldwide aquatic environments. Among the most popular REE is Neodymium (Nd), being widely used in permanent magnets, lasers, and glass additives. Neodymium-iron-boron (NdFeB) magnets is the main application of Nd since they are used in electric motors, hard disk drives, speakers and generators for wind turbines. Recent studies have already evaluated the toxic potential of different REE, but no information is available on the effects of Nd towards marine bivalves. Thus, the present study evaluated the biochemical alterations caused by Nd in the mussel Mytilus galloprovincialis exposed to this element for 28 days. The results obtained clearly demonstrated that Nd was accumulated by mussels, leading to mussel's metabolic capacity increase and GLY expenditure, in an attempt to fuel up defense mechanisms. Antioxidant and biotransformation defenses were insufficient in the elimination of ROS excess, resulting from the presence of Nd and increased electron transport system activity, which caused cellular damages (measured by lipid peroxidation) and loss of redox balance (assessed by the ratio between reduced and oxidized glutathione). The results obtained clearly highlight the potential toxicity of REEs and, in particular of Nd, with impacts at cellular level, which may have consequences in mussel's survival, growth and reproduction, affecting mussel's population.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Celso E D Cardoso
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Tiago Morais
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Pedro Moleiro
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Ana C Matias
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Ana F Pereira
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Machado
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Beatriz Correia
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Diana Pinheiro
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Adriana Rodrigues
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - João Colónia
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
42
|
Blinova I, Muna M, Heinlaan M, Lukjanova A, Kahru A. Potential Hazard of Lanthanides and Lanthanide-Based Nanoparticles to Aquatic Ecosystems: Data Gaps, Challenges and Future Research Needs Derived from Bibliometric Analysis. NANOMATERIALS 2020; 10:nano10020328. [PMID: 32075069 PMCID: PMC7075196 DOI: 10.3390/nano10020328] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Lanthanides (Ln), applied mostly in the form of nanoparticles (NPs), are critical to emerging high-tech and green energy industries due to their distinct physicochemical properties. The resulting anthropogenic input of Ln and Ln-based NPs into aquatic environment might create a problem of emerging contaminants. Thus, information on the biological effects of Ln and Ln-based NPs is urgently needed for relevant environmental risk assessment. In this mini-review, we made a bibliometric survey on existing scientific literature with the main aim of identifying the most important data gaps on Ln and Ln-based nanoparticles' toxicity to aquatic biota. We report that the most studied Ln for ecotoxicity are Ce and Ln, whereas practically no information was found for Nd, Tb, Tm, and Yb. We also discuss the challenges of the research on Ln ecotoxicity, such as relevance of nominal versus bioavailable concentrations of Ln, and point out future research needs (long-term toxicity to aquatic biota and toxic effects of Ln to bottom-dwelling species).
Collapse
Affiliation(s)
- Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Marge Muna
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Margit Heinlaan
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Aljona Lukjanova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
- Estonian Academy of Sciences, Tallinn 10130, Kohtu 6, Estonia
- Correspondence: ; Tel.: +372-6398373
| |
Collapse
|
43
|
Péden R, Poupin P, Sohm B, Flayac J, Giambérini L, Klopp C, Louis F, Pain-Devin S, Potet M, Serre RF, Devin S. Environmental transcriptomes of invasive dreissena, a model species in ecotoxicology and invasion biology. Sci Data 2019; 6:234. [PMID: 31653851 PMCID: PMC6814772 DOI: 10.1038/s41597-019-0252-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/11/2019] [Indexed: 11/27/2022] Open
Abstract
Dreissenids are established model species for ecological and ecotoxicological studies, since they are sessile and filter feeder organisms and reflect in situ freshwater quality. Despite this strong interest for hydrosystem biomonitoring, omics data are still scarce. In the present study, we achieved full de novo assembly transcriptomes of digestive glands to gain insight into Dreissena polymorpha and D. rostriformis bugensis molecular knowledge. Transcriptomes were obtained by Illumina RNA sequencing of seventy-nine organisms issued from fifteen populations inhabiting sites that exhibits multiple freshwater contamination levels and different hydrosystem topographies (open or closed systems). Based on a recent de novo assembly algorithm, we carried out a complete, quality-checked and annotated transcriptomes. The power of the present study lies in the completeness of transcriptomes gathering multipopulational organisms sequencing and its full availability through an open access interface that gives a friendly and ready-to-use access to data. The use of such data for proteogenomic and targeted biological pathway investigations purpose is promising as they are first full transcriptomes for this two Dreissena species.
Collapse
Affiliation(s)
- Romain Péden
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO, 51097, Reims, France
| | - Pascal Poupin
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Justine Flayac
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | | | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, 31326, Castanet-Tolosan, France
| | - Fanny Louis
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | | | - Marine Potet
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Rémy-Félix Serre
- INRA, US 1426, GeT-PlaGe, Genotoul, INRA Auzeville, Castanet Tolosan, Cedex, France
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France.
| |
Collapse
|
44
|
Multi-contrast imaging information of coronary artery wall based on magnetic resonance angiography. J Infect Public Health 2019; 13:2025-2031. [PMID: 31289006 DOI: 10.1016/j.jiph.2019.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 11/23/2022] Open
Abstract
In order to explore the most suitable image acquisition method for coronary artery wall, the display ability and image quality of segmentation breath-holding target volume acquisition method (the breath-holding method) and real-time navigation whole-hearted acquisition method (the navigation method) of coronary artery magnetic resonance angiography (CMRA) were compared. 26 healthy volunteers were selected to accept the CMRA in 1.5 tunnels magneto-resistance (TMR) equipment by the 2 acquisition methods respectively. The arteries were divided into 9 segments according to the standards of the American Heart Association (AHA). The images were evaluated by 2 magnetic resonance physicians. Satisfaction rate and success rate of each segment of the coronary artery were counted. The results showed that the signal to noise ratio (SNR) and the carrier to noise ratio (CNR) of the images obtained by the breath-holding method were higher than those obtained by the navigation method (P<0.05). Therefore, the segmentation breath-holding target volume acquisition method is proved to have a higher image quality and the simpler and more convenient operations, which is more suitable for the acquisition of positioning images of CMRA.
Collapse
|
45
|
Beydemir Ş, Türkeş C, Yalçın A. Gadolinium-based contrast agents: in vitro paraoxonase 1 inhibition, in silico studies. Drug Chem Toxicol 2019; 44:508-517. [PMID: 31179770 DOI: 10.1080/01480545.2019.1620266] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Medications show their biological effects by interaction with enzymes, which have been known to play an essential role in the pathogenesis of many diseases. Inhibition or induction of drug metabolizing enzymes has an essential place in the drug design for many kinds of diseases including cardiovascular, neurological, metabolic, and cancer. The main goal of the current study is to contribute to this growing drug design field by observing PON1-drug interactions. In recent years, the safety of gadolinium-based contrast agents (GBCAs) used in magnetic resonance imaging (MRI) has discussed. In the present study, paraoxonase 1 (PON1) enzyme was purified from human serum by simple chromatographic methods with 4095.24 EU mg-1 protein specific activity. The inhibitory activities of gadoteric acid, gadopentetic acid, gadoxetate disodium, and gadodiamide were investigated on PON1 activity of the enzyme. IC50 values were found in the range of 51.28 ± 0.14 to 285.80 ± 0.96 mM. Ki constants were found as 67.95 ± 0.60 mM, 104.97 ± 0.96 mM, 202.33 ± 1.75 mM, and 299.43 ± 2.64 mM for gadoteric acid, gadopentetic acid, gadoxetate disodium, and gadodiamide, respectively. While the inhibition types are determined as competitive of gadoxetate disodium and gadodiamide by the Lineweaver-Burk curves, it was noncompetitive for other compounds. In addition, the molecular docking analyses of gadoxetate disodium and gadodiamide were carried out to understand the binding interactions on the active site of the PON1 enzyme. The structure-activity relationship (SAR) of the drugs was established on the basis of different substituents and their positions in the compounds.
Collapse
Affiliation(s)
- Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Ahmet Yalçın
- Department of Radiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
46
|
Le Goff S, Barrat JA, Chauvaud L, Paulet YM, Gueguen B, Ben Salem D. Compound-specific recording of gadolinium pollution in coastal waters by great scallops. Sci Rep 2019; 9:8015. [PMID: 31142781 PMCID: PMC6541655 DOI: 10.1038/s41598-019-44539-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Gadolinium-based contrast agents (GBCAs), routinely used in magnetic resonance imaging (MRI), end up directly in coastal seawaters where gadolinium concentrations are now increasing. Because many aquatic species could be sensitive to this new pollution, we have evaluated the possibility of using shellfish to assess its importance. Gadolinium excesses recorded by scallop shells collected in Bay of Brest (Brittany, France) for more than 30 years do not reflect the overall consumption in GBCAs, but are largely controlled by one of them, the gadopentetate dimeglumine. Although its use has been greatly reduced in Europe over the last ten years, gadolinium excesses are still measured in shells. Thus, some gadolinium derived from other GBCAs is bioavailable and could have an impact on marine wildlife.
Collapse
Affiliation(s)
- Samuel Le Goff
- Laboratoire Géosciences Océan (UMR CNRS 6538), Université de Bretagne Occidentale et Institut Universitaire Européen de la Mer (IUEM), Place Nicolas Copernic, 29280, Plouzané, France
| | - Jean-Alix Barrat
- Laboratoire Géosciences Océan (UMR CNRS 6538), Université de Bretagne Occidentale et Institut Universitaire Européen de la Mer (IUEM), Place Nicolas Copernic, 29280, Plouzané, France.
| | - Laurent Chauvaud
- Laboratoire des Sciences de l'Environnement Marin (UMR CNRS 6539), LIA BeBEST, Université de Bretagne Occidentale et Institut Universitaire Européen de la Mer, Place Nicolas Copernic, 29280, Plouzané, France
| | - Yves-Marie Paulet
- Laboratoire des Sciences de l'Environnement Marin (UMR CNRS 6539), LIA BeBEST, Université de Bretagne Occidentale et Institut Universitaire Européen de la Mer, Place Nicolas Copernic, 29280, Plouzané, France
| | - Bleuenn Gueguen
- UMS CNRS 3113, Université de Bretagne Occidentale et Institut Universitaire Européen de la Mer, Place Nicolas Copernic, 29280, Plouzané, France
| | - Douraied Ben Salem
- LaTIM (INSERM UMR 1101) Université de Bretagne Occidentale. 22, avenue C. Desmoulins, 29238, Brest Cedex 3, France
| |
Collapse
|
47
|
Hanana H, Turcotte P, Dubé M, Gagnon C, Gagné F. Response of the freshwater mussel, Dreissena polymorpha to sub-lethal concentrations of samarium and yttrium after chronic exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:662-670. [PMID: 30245300 DOI: 10.1016/j.ecoenv.2018.09.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Samarium (Sm) and yttrium (Y) are commonly used rare earth elements (REEs) but there is a scarcity of information concerning their biological effects in non-target aquatic organisms. The purpose of this study was to determine the bioavailability of those REEs and their toxicity on Dreissena polymorpha after exposure to increasing concentration of Sm and Y for 28 days at 15 °C. At the end of the exposure period, the gene expression of superoxide dismutase (SOD), catalase (CAT), metallothionein (MT), glutathione-S-transferase (GST), cytochrome c oxidase 1 (CO1) and cyclin D (Cyc D) were analysed. In addition, we examined lipid peroxidation (LPO), DNA strand breaks (DSB), GST and prostaglandin cyclooxygenase (COX) activities. Results showed a concentration dependent increase in the level of the REEs accumulated in the soft tissue of mussels. Both REEs decreased CAT but did not significantly modulated SOD and MT expressions. Furthermore, Sm3+ up-regulated GST, CO1 and Cyc D, while Y3+ increased and decreased GST and CO1 transcripts levels, respectively. Biomarker activities showed no oxidative damage as evidenced by LPO, while COX activity was decreased and DNA strand breaks levels were changed suggesting that Sm and Y exhibit anti-inflammatory and genotoxic effects. Factorial analysis revealed that the major impacted biomarkers by Sm were LPO, CAT, CO1 and COX, while GST gene expression, COX, Cyc D and CAT as the major biomarkers affected by Y. We conclude that these REEs display different mode of action but further investigations are required in order to define the exact mechanism involved in their toxicity.
Collapse
Affiliation(s)
- Houda Hanana
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7.
| | - Patrice Turcotte
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - Maxime Dubé
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - Christian Gagnon
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - François Gagné
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7.
| |
Collapse
|
48
|
Parisi C, Chandaria VV, Nowlan NC. Blocking mechanosensitive ion channels eliminates the effects of applied mechanical loading on chick joint morphogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0317. [PMID: 30249769 PMCID: PMC6158207 DOI: 10.1098/rstb.2017.0317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2018] [Indexed: 11/12/2022] Open
Abstract
Abnormalities in joint shape are increasingly considered a critical risk factor for developing osteoarthritis in life. It has been shown that mechanical forces during prenatal development, particularly those due to fetal movements, play a fundamental role in joint morphogenesis. However, how mechanical stimuli are sensed or transduced in developing joint tissues is unclear. Stretch-activated and voltage-gated calcium ion channels have been shown to be involved in the mechanoregulation of chondrocytes in vitro. In this study, we analyse, for the first time, how blocking these ion channels influences the effects of mechanical loading on chick joint morphogenesis. Using in vitro culture of embryonic chick hindlimb explants in a mechanostimulation bioreactor, we block stretch-activated and voltage-gated ion channels using, respectively, gadolinium chloride and nifedipine. We find that the administration of high doses of either drug largely removed the effects of mechanical stimulation on growth and shape development in vitro, while neither drug had any effect in static cultures. This study demonstrates that, during joint morphogenesis, mechanical cues are transduced—at least in part—through mechanosensitive calcium ion channels, advancing our understanding of cartilage development and mechanotransduction. This article is part of the Theo Murphy meeting issue ‘Mechanics of development’.
Collapse
Affiliation(s)
- Cristian Parisi
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vikesh V Chandaria
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Niamh C Nowlan
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
49
|
Beyazal Celiker F, Tumkaya L, Mercantepe T, Turan G, Yılmaz A, Beyazal M, Turan A, Inecikli MF, Kösem M. The effect of gadolinium-based contrast agents on rat testis. Andrologia 2018; 50:e13031. [PMID: 29700836 DOI: 10.1111/and.13031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 11/29/2022] Open
Abstract
Previous studies have reported that repeated administrations of linear gadolinium-based contrast agents lead to their accumulation in the brain and other tissues in individuals with normal renal functions. The purpose of this prospective animal study was to investigate the effect of multiple administrations of macrocyclic ionic (gadoteric acid) and linear nonionic (gadodiamide) gadolinium-based contrast agents (GBCAs) on rat testis tissue and to compare these molecules in terms of tissue damage. Thirty-two male Sprague-Dawley rats were kept without drugs for 5 weeks after administration of 0.1 mmol mg-1 kg-1 (0.2 ml/kg) gadodiamide and gadoteric acid for 4 days over 5 weeks. Biochemical, histopathological and immunohistochemical changes in testis tissue were evaluated at the end of 10 weeks. When used in repeated clinical doses, gadolinium was observed to increase apoptosis in the Leydig cells of the rat testis, and to increase serum Ca+2 levels and reduce testosterone levels (p < .05). Although the difference was not statistically significant, a greater loss of spermatozoa and immature germinal cell accumulation were observed in the seminiferous tubule lumen in the GBCA groups compared with the control and saline groups (p > .05). Both linear and macrocyclic contrast agents have toxic effects on testis tissue, irrespective of the type of drug.
Collapse
Affiliation(s)
- F Beyazal Celiker
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - L Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - T Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - G Turan
- Department of Pathology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - A Yılmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - M Beyazal
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - A Turan
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - M F Inecikli
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - M Kösem
- Department of Pathology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
50
|
Mercantepe T, Tümkaya L, Çeliker FB, Topal Suzan Z, Çinar S, Akyildiz K, Mercantepe F, Yilmaz A. Effects of gadolinium-based MRI contrast agents on liver tissue. J Magn Reson Imaging 2018; 48:1367-1374. [PMID: 29607566 DOI: 10.1002/jmri.26031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND MRI with contrast is often used clinically. However, recent studies have reported a high accumulation of gadolinium-based contrast agents (GBCAs) in kidney, liver, and spleen tissues in several mouse models. PURPOSE To compare the effects on liver tissue of gadolinium-based MRI contrast agents in the light of biochemical and histopathological evaluation. STUDY TYPE Institutional Review Board (IRB)-approved controlled longitudinal study. ANIMAL MODEL In all, 32 male Sprague-Dawley rats were divided into a healthy control group subjected to no procedure (Group 1), a sham group (Group 2), a gadodiamide group (Group 3), and a gadoteric acid group (Group 4). FIELD STRENGTH/SEQUENCE Not applicable. ASSESSMENT Liver tissues removed at the end of the fifth week and evaluated pathologically (scored Knodell's histological activity index [HAI] method by two histopathologists) immunohistochemical (caspase-3 and biochemical tests (AST, ALT, TAS, TOS, and OSI method by Erel et al) were obtained. STATISTICAL TESTS Differences between groups were analyzed using the nonparametric Kruskal-Wallis test followed by the Tamhane test, and one-way analysis of variance (ANOVA) followed by Turkey's HSD test. RESULTS An increase was observed in histological activity scores in sections from rats administered gadodiamide and gadoteric acid, and in caspase-3, AST and ALT values (P < 0.05). In contrast, we determined no change in TOS (P = 0.568 and P = 0.094, respectively), TAS (P = 0.151 and P = 0.055, respectively), or OSI (P = 0.949 and P = 0.494, respectively) values. DATA CONCLUSION These data suggest that gadodiamide and gadoteric acid trigger hepatocellular necrosis and apoptosis by causing damage in hepatocytes, although no change occurs in total antioxidant and antioxidant capacity. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:1367-1374.
Collapse
Affiliation(s)
- Tolga Mercantepe
- Department of Histology and Embryology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tümkaya
- Department of Histology and Embryology, Recep Tayyip Erdogan University, Rize, Turkey
| | | | - Zehra Topal Suzan
- Department of Histology and Embryology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Seda Çinar
- Department of Histology and Embryology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Filiz Mercantepe
- Department of Internal Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|