1
|
Pavan FA, Samojeden CG, Rutkoski CF, Folador A, da Fré SP, Pompermaier A, Müller C, Hartmann PA, Hartmann M. Morphological and cellular effects in Boana faber tadpoles (Anura: Hylidae) exposed to atrazine-based herbicide and glyphosate-based herbicide and their mixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1176-1194. [PMID: 39710773 DOI: 10.1007/s11356-024-35368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024]
Abstract
Atrazine and glyphosate are considered some of the main pollutants for aquatic ecosystems, directly and indirectly affecting non-target organisms, such as amphibians. This study aimed to evaluate the sublethal effects of different concentrations of atrazine-based herbicide (ABH) and glyphosate-based herbicide (GBH) commercial formulations, both individually and in a mixture, through toxicity tests on the larval stage of Boana faber. Tadpoles were exposed to concentrations of ABH (2, 9.33, 10.40, 47.21, and 240 μg L-1) and GBH (65, 144, 280, 500, and 1000 μg L-1), as well as a mixture ABH + GBH, for 7 days. Although survival and swimming activity were not significantly affected by herbicide exposure, tadpoles in all treatments showed damage to the mouth and intestine, changes in size and mass, and an increase in the frequency of micronuclei and other nuclear abnormalities. Despite differences in some variables analyzed, it is not possible to definitively state that there is a difference in the toxicity of these two herbicides, as both caused morphological damage and were cyto-genotoxic. Our findings suggest that exposure to commercial formulations of these herbicides, whether alone or in mixture, can directly impact the quality of life of B. faber tadpoles.
Collapse
Affiliation(s)
- Felipe André Pavan
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil
| | - Caroline Garcia Samojeden
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil
| | - Camila Fátima Rutkoski
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil
| | - Alexandre Folador
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil
| | - Silvia Pricila da Fré
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil
| | - Aline Pompermaier
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil
| | - Caroline Müller
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil
| | - Paulo Afonso Hartmann
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil
| | - Marilia Hartmann
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil.
| |
Collapse
|
2
|
Rahman MM, Kim ES, Sung HC. Microplastics as an emerging threat to amphibians: Current status and future perspectives. Heliyon 2024; 10:e28220. [PMID: 38560268 PMCID: PMC10979166 DOI: 10.1016/j.heliyon.2024.e28220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Given their pervasiveness in the environment, particularly in aquatic ecosystems, plastics are posing a growing concern worldwide. Many vertebrates and invertebrates in marine, freshwater, and terrestrial ecosystems exhibit microplastic (MP) uptake and accumulation. Some studies have indicated the fatal impacts of MPs on animals and their possible transfer through food chains. Thus, it is crucial to study MP pollution and its impacts on environment-sensitive and globally threatened animal groups, such as amphibians, which also play an important role in the energy transfer between ecosystems. Unfortunately, research in this field is lacking and sources of organized information are also scarce. Hence, we systematically reviewed published literature on MPs in amphibians to fill the existing knowledge gap. Our review revealed that most of the previous studies have focused on MP bioaccumulation in amphibians, whereas, only a few research highlighted its impacts. We found that more than 80% of the studied species exhibited MP accumulation. MPs were reported to persist in different organs for a long time and get transferred to other trophic levels. They can also exhibit cytotoxic and mutagenic effects and may have fatal impacts. Moreover, they can increase the disease susceptibility of amphibians. Our study concludes the MPs as a potential threat to amphibians and urges increasing the scope and frequency of research on MP pollution and its impacts on this vulnerable animal group. We also provide a generalized method for studying MPs in amphibians with future perspectives and research directions. Our study is significant for extending the knowledge of MPs and their impacts on amphibians and guiding prospective research.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Biological Sciences, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, 61186, Gwangju, Republic of Korea
- Research Center of Ecomimetics, Chonnam National University, Gwangju, 61186, Republic of Korea
- Center for Next Generation Sensor Research and Development, Chonnam National University, Gwangju, 61186, Republic of Korea
- Institute of Sustainable Ecological Environment, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ha-Cheol Sung
- Department of Biological Sciences, Chonnam National University, 61186, Gwangju, Republic of Korea
- Research Center of Ecomimetics, Chonnam National University, Gwangju, 61186, Republic of Korea
- Institute of Sustainable Ecological Environment, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
3
|
Cuzziol Boccioni AP, Peltzer PM, Attademo AM, Leiva L, Colussi CL, Repetti MR, Russell-White K, Di Conza N, Lajmanovich RC. High toxicity of agro-industrial wastewater on aquatic fauna of a South American stream: Mortality of aquatic turtles and amphibian tadpoles as bioindicators of environmental health. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11010. [PMID: 38433361 DOI: 10.1002/wer.11010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
The aim of this study was to characterize an aquatic system of Santa Fe province (Argentina) receiving wastewater from agro-industrial activities (mainly dairy) by in situ assessment (fauna mortality, physicochemical, microbiological, and pesticide residues measurement), and ecotoxicity bioassays on amphibian tadpoles. Water and sediment samples were obtained from the Los Troncos Stream (LTS), previous to the confluence with the "San Carlos" drainage channel (SCC), and from the SCC. Biological parameters (mortality and sublethal biomarkers) were used to evaluate ecotoxicity during 10-day exposure of Rhinella arenarum tadpoles to LTS and SCC samples. Nine pesticides were detected in both LTS and SCC. Chemical and biochemical oxygen demand, ammonia, and coliform count recorded in SCC greatly exceeded limits for aquatic life protection. At SCC and LTS after the confluence with SCC, numerous dying and dead aquatic turtles (Phrynops hilarii) were recorded. In the ecotoxicity assessment, no mortality of tadpoles was observed in LTS treatment, whereas total mortality (100%) was observed in SCC treatments in dilution higher than 50% of water and sediment. For SCC, median lethal concentration and the 95% confidence limits was 18.30% (14.71-22.77) at 24 h; lowest-observed and no-observed effect concentrations were 12.5% and 6.25%, respectively. Oxidative stress and neurotoxicity were observed in tadpoles exposed to 25% SCC dilution treatment. In addition, there was a large genotoxic effect (micronuclei test) in all sublethal SCC dilution treatments (6.25%, 12.5%, and 25%). These results alert about the high environmental quality deterioration and high ecotoxicity for aquatic fauna of aquatic ecosystems affected by agro-industrial wastewater. PRACTITIONER POINTS: Great mortality of turtles was observed in a basin with a high load of agro-industrial wastewater. San Carlos Channel (SCC), where effluents are spilled, is environmentally deteriorated. The water-sediment matrix of SCC caused 100% lethality in tadpoles. SCC dilutions caused neurotoxicity, oxidative stress, and genotoxicity on tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Leonardo Leiva
- Museo Provincial de Ciencias Naturales Florentino Ameghino, Santa Fe, Argentina
| | - Carlina L Colussi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Karen Russell-White
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Noelia Di Conza
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
4
|
Hassan HB, Moniruzzaman M, Majumder RK, Ahmed F, Quaiyum Bhuiyan MA, Ahsan MA, Al-Asad H. Impacts of seasonal variations and wastewater discharge on river quality and associated human health risks: A case of northwest Dhaka, Bangladesh. Heliyon 2023; 9:e18171. [PMID: 37519722 PMCID: PMC10372231 DOI: 10.1016/j.heliyon.2023.e18171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Surface water pollution caused by the discharge of effluents from industrial estates has become a major concern for Dhaka (Bangladesh). This study aims to have a concise look at the severe river water pollution, mainly from effluents discharged from the tannery village. Effluent samples were collected from five ejected points, including the central effluent treatment plant (CETP), twenty adjacent river water, and two pond water nearby Hemayetpur, Savar. Thirty-one parameters have been observed at these sampling points for three seasons, from April 2021 to January 2022. The results obtained from water quality indices, i.e., water quality index (WQI), entropy water quality index (EWQI), and irrigation water quality index (IWQI), show that most studied surface water samples ranked "unsuitable" for consumption, irrigation, and anthropogenic purposes. The highest health risk was observed downstream of Hemayetpur city at the Savar CETP discharge site, indicating higher levels of heavy metal in the river water following the tannery village. Carcinogenic and non-carcinogenic human health risks could be triggered mainly by water consumption as concentrations of arsenic (As), chromium (Cr), nickel (Ni), and lead (Pb) exceeded the upper benchmark of 1 × 10-4 for adults and children. The results of the carcinogenic risk assessment revealed that children were more vulnerable to health hazards, and quick corrective action is required to control the increased levels of heavy metals at all sample locations. Therefore, through bioaccumulation, human health and the environment are affected in these areas. Using river water for consumption, household work, or even irrigation purposes is not advisable. This study's result highlighted that properly implementing compatible policies and programs is required to improve effluent treatment methods and provide biodegradability to the Dhaleshwari River.
Collapse
Affiliation(s)
- Hazzaz Bin Hassan
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Md. Moniruzzaman
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Ratan Kumar Majumder
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Fowzia Ahmed
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Md. Abdul Quaiyum Bhuiyan
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Md. Ariful Ahsan
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Hafiz Al-Asad
- Department of Chemistry, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
5
|
Soldi KC, Londero JEL, Schavinski CR, Schuch AP. Genotoxicity of surface waters in Brazil. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503638. [PMID: 37188436 DOI: 10.1016/j.mrgentox.2023.503638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Brazil has abundant surface water resources, huge aquatic biodiversity and is home to 213 million people. Genotoxicity assays are sensitive tools to detect the effects of contaminants in surface waters and wastewaters, as well as to determine potential risks of contaminated waters to aquatic organisms and human health. This work aimed to survey the articles published in 2000-2021 that evaluated the genotoxicity of surface waters within Brazilian territory to unveil the profile and trends of this topic over time. In our searches, we considered articles focused on assessing aquatic biota, articles that conducted experiments with caged organisms or standardized tests in the aquatic sites, as well as articles that transported water or sediment samples from aquatic sites to the laboratory, where exposures were performed with organisms or standardized tests. We retrieved geographical information on the aquatic sites evaluated, the genotoxicity assays used, the percentage of genotoxicity detected, and, when possible, the causative agent of aquatic pollution. A total of 248 articles were identified. There was a trend of increase in the number of publications and annual diversity of hydrographic regions evaluated over time. Most articles focused on rivers from large metropolises. A very low number of articles were conducted on coastal and marine ecosystems. Water genotoxicity was detected in most articles, regardless of methodological approach, even in little-studied hydrographic regions. The micronucleus test and the alkaline comet assay were widely applied with blood samples, mainly derived from fish. Allium and Salmonella tests were the most frequently used standard protocols. Despite most articles did not confirm polluting sources and genotoxic agents, the detection of genotoxicity provides useful information for the management of water pollution. We discuss key points to be assessed to reach a more complete picture of the genotoxicity of surface waters in Brazil.
Collapse
Affiliation(s)
- Karen Costa Soldi
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - James Eduardo Lago Londero
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cassiano Ricardo Schavinski
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - André Passaglia Schuch
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil; Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Quantitative Analysis of the Research Development Status and Trends of Tannery Wastewater Treatment Technology. Catalysts 2022. [DOI: 10.3390/catal12111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to better grasp the development and trends of tannery wastewater (TWW) treatment research, this paper provides a review of the TWW treatment research dynamics based on the Web of Science (WoS) database and using CiteSpace software. The research dynamics, hot topics, evolutionary history and research trends in this field are revealed. The results showed that research related to TWW treatment has shown a high growth trend in the number of articles in recent years, and India was outstanding in terms of influence in this area. The keyword clustering analysis showed that the main research hotspots in the field of TWW treatment were biological treatment processes (phytoremediation, constructed wetlands, anaerobic treatment and biofilm reactors) and chemical treatment processes (coagulation and flocculation, and advanced oxidation processes). The analysis of new research frontiers showed that the bioremediation and the application of biofuel cells in TWW will become important research directions in the future.
Collapse
|
7
|
Toxicity and genotoxicity of imidacloprid in the tadpoles of Leptodactylus luctator and Physalaemus cuvieri (Anura: Leptodactylidae). Sci Rep 2022; 12:11926. [PMID: 35831394 PMCID: PMC9279336 DOI: 10.1038/s41598-022-16039-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Imidacloprid is a neonicotinoid insecticide used to control agricultural pests around the world. This pesticide can have adverse effects on non-target organisms, especially in aquatic environments. The present study evaluated the toxicity of an imidacloprid-based insecticide in amphibians, using Leptodactylus luctator and Physalaemus cuvieri tadpoles as study models. Spawning of both species were collected within less than 24 h of oviposition from a non-agricultural land at Erechim, Rio Grande do Sul state, Brazil. Survival, swimming activity, body size, morphological malformations, and genotoxic parameters were analyzed at laboratory conditions. A short-term assay was conducted over 168 h (7 days) with five different concentrations of imidacloprid (3–300 µg L−1) being tested. The insecticide did not affect survival, although the tadpoles of both species presented reduced body size, malformed oral and intestine structures, and micronuclei and other erythrocyte nuclear abnormalities following exposure to this imidacloprid-based compound. Exposure also affected swimming activity in L. luctator, which reflected the greater sensitivity of L. luctator to imidacloprid in comparison with P. cuvieri. The swimming activity, body size, and malformations observed in L. luctator and the morphological malformations found in P. cuvieri indicated that even the lowest tested concentration of the insecticide were harmful to amphibians. At concentrations of over 3 μg L−1, P. cuvieri presents a smaller body size, and both species are affected by genotoxic cell damage. This demonstrates that imidacloprid is potentially toxic for the two study species at environmentally relevant concentrations.
Collapse
|
8
|
Gursoy-Haksevenler BH, Atasoy-Aytis E, Dilaver M, Karaaslan Y. Treatability of hazardous substances in industrial wastewater: case studies for textile manufacturing and leather production sectors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:383. [PMID: 35441990 DOI: 10.1007/s10661-022-09982-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Hazardous substances used and produced by different industrial activities pose a potential risk to the environment and to human health. Different physicochemical and/or biological processes are used in industrial wastewater treatment; these methods, however, may not be effective in removing these substances. This study was carried out to comparatively evaluate the removal of hazardous substances through conventional wastewater treatment processes that are used by major industries in Turkey. A four-season monitoring study was carried out in textile manufacturing and leather production sectors, representing industrial activities in Turkey. Samples were analyzed for 45 priority substances defined by the European Union and 250 specific pollutants listed in the Turkish Regulation on Surface Water Quality. For both wastewaters, where biological treatment was performed after pretreatment, their characteristics showed that organics were almost completely removed. except for dichloromethane (44-51% removals) and dioxin and dioxin-like compounds (64-69% removals). Additionally, different removal ratios (16-97%) were obtained for metals; the poorer removal was observed for B, Ba, Ag, Sb, and Si. The remaining metals (Cu, Pb, Sb, V, Si for textile; Cr, Cu, Sb, Si for leather effluents) in the treated wastewaters were still higher than environmental quality standards (EQS) of receiving water bodies. The study revealed that existing treatment processes were not adequate for efficient hazardous substance removal and there is an urgent need to improve them. Finally, advanced treatment technologies were suggested for specific pollutants together with their unit treatment costs.
Collapse
Affiliation(s)
- B Hande Gursoy-Haksevenler
- Department of Political Science and Public Administration, Faculty of Political Science, Marmara University, 34820, Beykoz, Istanbul, Turkey.
| | - Elif Atasoy-Aytis
- Environment and Cleaner Production Institute, TUBITAK Marmara Research Center (MRC), Kocaeli, Turkey
| | - Mehmet Dilaver
- Environment and Cleaner Production Institute, TUBITAK Marmara Research Center (MRC), Kocaeli, Turkey
| | - Yakup Karaaslan
- General Directorate of Water Management, Ministry of Agriculture and Forestry, Ankara, Turkey
| |
Collapse
|
9
|
Zhao J, Wu Q, Tang Y, Zhou J, Guo H. Tannery wastewater treatment: conventional and promising processes, an updated 20-year review. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00082-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
AbstractMismanagement of various wastes especially waste water produced by tanning processes has caused serious environmental problems and ultimately impaired human health. Constant efforts have been making to alleviate the pollution of tannery wastewater (TWW), yet terminal treatment still takes dominance. In this review, research on TWW treatment from 2000 to 2021 was summarized, and main methods such as coagulation and flocculation, adsorption, biological treatment, membrane filtration, advanced oxidation process were briefly discussed. More detailed introduction was given to the method of electrochemical treatment since it has excellent performance such as environmental friendliness and high efficiency, hence attracting more and more research attention in recent years. In view of the harsh physi-chemical conditions of TWW, integrated or combined treatment methods are accordingly recommended with better performance and multi-function, however comprehensive studies on optimization of methods combination and cost-effectiveness are needed. The certain issues that the residue Cr in treatment sludge and high salinity in effluent still remain were put forward in this work and potential solutions were provided. Moreover, this review proposed the perspective that realizing multi-function, recycling, and intensification should be the developing direction for future TWW treatment. This review is expected to provide a general guide for researchers who aspire to ameliorate TWW pollution problems and understand various methods utilized in this field.
Graphical abstract
Collapse
|
10
|
Pavan FA, Samojeden CG, Rutkoski CF, Folador A, Da Fré SP, Müller C, Hartmann PA, Hartmann MT. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103637. [PMID: 33753236 DOI: 10.1016/j.etap.2021.103637] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Pesticide contamination is an important factor in the global decline of amphibians. The herbicides glyphosate and 2,4-D are the most applied worldwide. These herbicides are often found in surface waters close to agricultural areas. This study aims at evaluating the chronic effects caused by glyphosate + 2,4-D mixture in Boana faber and Leptodactylus latrans tadpoles. The combined solution of the glyphosate and 2,4-D, in 5 different concentrations, was applied for 168 h. Herbicide mixtures did not affect the survival of the exposed tadpoles but growth and swimming activity were altered; besides causing several damages in the mouth and intestine. The erythrocytes showed micronuclei and other nuclear abnormalities. There is an ecological risk in the exposure of tadpoles of B. faber and L. latrans from the mixture of glyphosate + 2,4-D. Therefore, the approach used in this study provides important information on how commonly used pesticides can affect non-target organisms.
Collapse
Affiliation(s)
- Felipe André Pavan
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Caroline Garcia Samojeden
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Camila Fátima Rutkoski
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Alexandre Folador
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Silvia Pricila Da Fré
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Caroline Müller
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Paulo Afonso Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Marilia Teresinha Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| |
Collapse
|
11
|
Gomes AR, Chagas TQ, Silva AM, Sueli de Lima Rodrigues A, Marinho da Luz T, Emmanuela de Andrade Vieira J, Malafaia G. Trophic transfer of carbon nanofibers among eisenia fetida, danio rerio and oreochromis niloticus and their toxicity at upper trophic level. CHEMOSPHERE 2021; 263:127657. [PMID: 32814134 DOI: 10.1016/j.chemosphere.2020.127657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Although the toxicity of carbon-based nanomaterials has already been demonstrated in several studies, their transfer in the food chain and impact on the upper trophic level remain unexplored. Thus, based on the experimental food chain "Eisenia fetida → Danio rerio → Oreochromis niloticus", the current study tested the hypothesis that carbon nanofibers (CNFs) accumulated in animals are transferred to the upper trophic level and cause mutagenic and cytotoxic changes. E. fetida individuals were exposed to CNFs and offered to D. rerio, which were later used to feed O. niloticus. The quantification of total organic carbon provided evidence of CNFs accumulation at all evaluated trophic levels. Such accumulation was associated with higher frequency of erythrocyte nuclear abnormalities such as constricted erythrocyte nuclei, vacuole, blebbed, kidney-shaped and micronucleated erythrocytes in Nile tilapia exposed to CNFs via food chain. The cytotoxic effect was inferred based on the smaller size of the erythrocyte nuclei and on the lower "nuclear/cytoplasmic" area ratio in tilapia exposed to CNFs via food chain. Our study provided pioneering evidence about CNFs accumulation at trophic levels of the experimental chain, as well as about the mutagenic and cytotoxic effect of these materials on O. niloticus.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Thales Quintão Chagas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Julya Emmanuela de Andrade Vieira
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil.
| |
Collapse
|
12
|
Taguchi Method and Response Surface Methodology in the Treatment of Highly Contaminated Tannery Wastewater Using Commercial Potassium Ferrate. MATERIALS 2019; 12:ma12223784. [PMID: 31752134 PMCID: PMC6888326 DOI: 10.3390/ma12223784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022]
Abstract
The potential implementation of Envifer®, a commercial product containing potassium ferrate (40.1% K2FeO4), for the purification of highly contaminated tannery wastewater from leather dyeing processes was proposed. The employment of the Taguchi method for optimization of experiments allowed the discoloration (98.4%), chemical oxygen demand (77.2%), total organic carbon (75.7%), and suspended solids (96.9%) values to be lowered using 1.200 g/L K2FeO4 at pH 3 within 9 min. The application of the central composite design (CCD) and the response surface methodology (RSM) with the use of 1.400 g/L K2FeO4 at pH 4.5 diminished the discoloration, the chemical oxygen demand, the total organic carbon, and suspended solids within 9 min. The Taguchi method is suitable for the initial implementation, while the RSM is superior for the extended optimization of wastewater treatment processes.
Collapse
|
13
|
Abstract
Induction of micronucleus (MN) expression is a well-validated biomarker of genotoxic exposure in eukaryotic cells and is widely used in biomonitoring programs. The presence of permeable skin, which facilitates toxicant exposure and local abundance, is among the characteristics that make amphibians good indicators of ecosystem health. The presence of large nucleated erythrocytes, which divide in the circulation, makes amphibian erythrocytes an ideal target tissue to detect genotoxin exposure using the MN assay. Published literature have highlighted the promising prospects of using the amphibian MN assay as a sensitive biomonitoring tool for water quality assessment to detect potential genotoxins. The present chapter provides the basic outline of the amphibian MN assay and highlights its use in genotoxicity testing in experimental and biomonitoring studies.
Collapse
Affiliation(s)
- Anirudha Giri
- Environment and Human Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University Silchar 788011 Assam India
| | - Sarbani Giri
- Molecular Genetics Laboratory, Department of Life Science and Bioinformatics, Assam University Silchar 788011 Assam India
| |
Collapse
|
14
|
Yadav A, Raj A, Purchase D, Ferreira LFR, Saratale GD, Bharagava RN. Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vigna radiata and Allium cepa. CHEMOSPHERE 2019; 224:324-332. [PMID: 30826702 DOI: 10.1016/j.chemosphere.2019.02.124] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 05/09/2023]
Abstract
The leather industry is a major source of environmental pollution in India. The wastewater generated by leather industries contains very high pollution parameters due to the presence of a complex mixture of organic and inorganic pollutants even after the treatment at a Common Effluent Treatment Plant (CETP) and disturbs the ecological flora and fauna. The nature, characteristics and toxicity of CETP treated wastewater is yet to be fully elucidated. Thus, this study aims to characterize and evaluate the toxicity of CETP treated tannery wastewater collected from the Unnao district of Uttar Pradesh, India. In addition to measuring the physico-chemical parameters, the residual organic pollutants was identified by GC-MS analysis and phytotoxicity, cytotoxicity and genotoxicity of the treated wastewater was evaluated using Vigna radiata L. and Allium cepa L. Results showed that the treated wastewater contained very high pollution parameters (TDS 3850 mg/L, BOD 680 mg/L, COD-1300 mg/L). GC-MS analysis revealed the presence of various types of residual organic pollutants including benzoic acid, 3-[4,-(T-butyl) Phenyl] furan-2-5-dione, benzeneacetamide, resorcinol, dibutyl phthalate, and benzene-1,2,4-triol. Further, toxicological studies showed the phytotoxic nature of the wastewater as it inhibited seed germination in V. radiata L. and root growth of A. cepa. Genotoxicity was evidenced in the root tip cell of A. cepa where chromosomal aberrations (stickiness, chromosome loss, C-mitosis, and vagrant chromosome) and nuclear abnormalities like micronucleated and binucleated cells were observed. Thus, results suggested that it is not safe to discharge these wastewater into the environment.
Collapse
Affiliation(s)
- Ashutosh Yadav
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, England, United Kingdom
| | - Luiz Fernando R Ferreira
- Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49.032-490, Aracaju, Sergipe, Brazil; Post‑Graduated Program on Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49.032-490, Aracaju, Sergipe, Brazil
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India.
| |
Collapse
|
15
|
Benvindo-Souz M, Borges RE, Pacheco SM, Santos LRDS. Micronucleus and other nuclear abnormalities in exfoliated cells of buccal mucosa of bats at different trophic levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:120-127. [PMID: 30690342 DOI: 10.1016/j.ecoenv.2019.01.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
The micronucleus (MN) test in exfoliated cells of the buccal mucosa is a relatively non-invasive method for the monitoring of populations exposed to genotoxic risks. In this study, the MN test was used as bats conservation strategy. The highest frequencies of micronuclei were recorded in the frugivorous bats sampled in both urban and agricultural environments, as well as in insectivorous bats from the urban zone. Female of this group (insectivorous) presented higher frequency of MN when compared to males. Other guilds showed no difference in gender assessments in each environment, as well as in the correlation between weight and MN. In addition to micronuclei, a number of other types of nuclear abnormality were recorded, including binucleated cells and karyolysis in the frugivores from the agricultural environment. Binucleated cells were also relatively common in urban frugivores and insectivores, and karyolysis was common in insectivores. Nectarivorous bats did not exhibit a significant increase in any type of nuclear abnormality in either environment. In summary, study results indicate that buccal mucosa of bats is a sensitive site for detecting micronuclei and other nuclear abnormalities. However, more research is needed to indicate whether xenobiotic agents are affecting this cellular integrity.
Collapse
Affiliation(s)
| | | | - Susi Missel Pacheco
- Research Department, Institute Sauver and PCM Brazil, Porto Alegre, RS, Brazil
| | | |
Collapse
|
16
|
Araújo APDC, Mesak C, Montalvão MF, Freitas ÍN, Chagas TQ, Malafaia G. Anti-cancer drugs in aquatic environment can cause cancer: Insight about mutagenicity in tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2284-2293. [PMID: 30292121 DOI: 10.1016/j.scitotenv.2018.09.373] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 05/17/2023]
Abstract
Cyclophosphamide (Cyc) and 5-fluorouracil (5-FU) are two of the most used antineoplastic drugs (AD) in the world. However, their discharge in the environment became a yet-unknown environmental issue that has impact on some groups of animals, such as amphibians. We assessed tadpoles (Lithobates catesbeianus) exposed to environmental concentrations (EC) of Cyc and 5-FU to evaluate whether they can cause morphological and mutagenic changes in them. We defined the following groups: control, positive control (50 mg/L of Cyc), EC-Cyc-I (0.2 μg/L), EC-Cyc-II (0.5 μg/L), EF-Cyc (2.0 μg/L), EC-5-FU-I (13.0 μg/L), EC-5-FU-II (30.4 μg/L) and EF-5-FU (123.5 μg/L). EC groups presented predictive AD concentrations in 10% and 25% hospital-effluent dilutions in water. EF groups met gross hospital-effluent concentrations. Based on our data, ADs caused intestinal changes and influenced the interocular distance in tadpoles after 30-day exposure. We also observed the aneugenic and clastogenic effect of ADs due to the higher frequency of micronucleated and binucleated erythrocytes, and blebbed, multilobulated, notched and kidney-shaped nuclei in animals exposed to them. Based on such changes, we assume that Cyc and 5-FU can trigger malignant cell transformation processes, and cancer, in animals exposed to them, even at low concentrations. Our study is the first to describe that Cyc and 5-FU, spread in the environment, cause damages in non-target organisms opposite to their original end.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Carlos Mesak
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Ítalo Nascimento Freitas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Thales Quintão Chagas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil.
| |
Collapse
|
17
|
Pollo FE, Grenat PR, Otero MA, Babini S, Salas NE, Martino AL. Evaluation in situ of genotoxic and cytotoxic response in the diploid/polyploid complex Odontophrynus (Anura: Odontophrynidae) inhabiting agroecosystems. CHEMOSPHERE 2019; 216:306-312. [PMID: 30384299 DOI: 10.1016/j.chemosphere.2018.10.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Polyploidization has been documented across a wide range of vertebrates. Gene duplication could promote better adaptation to environmental changes and to chronic injury or stress. We investigated if genotoxic and cytotoxic responses to agricultural impact are affected by ploidy. We evaluate syntopic populations of the cryptic diploid/polyploid complex Odontophrynus cordobae/O. americanus breeding in an agroecosystem from Central Argentina. The blood of 72 adult anurans was analysed. We used erythrometry to distinguish Odontophrynus individuals with different ploidy levels. We calculated micronucleus frequencies (Mn) and erythrocytic nuclear abnormalities (ENAs) as genotoxic effects and enucleated, mitotic, pyknotic and immature erythrocytes as cytotoxic endpoints (CYT). Mn, ENAs and CYT frequencies were significantly different between diploid and polyploid organisms. The higher frequencies of Mn and CYT were recorded in polyploid organisms, and the higher frequency of ENAs was recorded in diploids. These results indicate that stress response, as indicated by most genotoxic and cytotoxic endpoints, was higher in polyploids respect to diploids. Polyploidy could provide greater genetic flexibility increasing buffering against exogenous DNA-damaging agents and thus confer an advantage over diploids under certain environmental conditions.
Collapse
Affiliation(s)
- Favio E Pollo
- Ecología-Educación Ambiental, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, National University of Río Cuarto, ruta 36km 601, Río Cuarto, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Pablo R Grenat
- Ecología-Educación Ambiental, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, National University of Río Cuarto, ruta 36km 601, Río Cuarto, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Manuel A Otero
- Ecología-Educación Ambiental, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, National University of Río Cuarto, ruta 36km 601, Río Cuarto, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Selene Babini
- Ecología-Educación Ambiental, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, National University of Río Cuarto, ruta 36km 601, Río Cuarto, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Nancy E Salas
- Ecología-Educación Ambiental, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, National University of Río Cuarto, ruta 36km 601, Río Cuarto, Córdoba, Argentina
| | - Adolfo L Martino
- Ecología-Educación Ambiental, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, National University of Río Cuarto, ruta 36km 601, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
18
|
Mesak C, Montalvão MF, Paixão CFC, Mendes BDO, Araújo APDC, Quintão TC, Malafaia G. Do Amazon turtles exposed to environmental concentrations of the antineoplastic drug cyclophosphamide present mutagenic damages? If so, would such damages be reversible? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6234-6243. [PMID: 30637546 DOI: 10.1007/s11356-019-04155-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Antineoplastic drugs (AD) have been increasingly used, but the disposal of their wastes in the environment via hospital effluent and domestic sewage has emerged as an environmental issue. The current risks posed to these animals and effects of pollutants on the reptiles' population level remain unknown due to lack of studies on the topic. The aim of the present study was to evaluate the mutagenicity of neonate Podocnemis expansa exposed to environmental concentrations (EC) of cyclophosphamide (Cyc). The adopted doses were EC-I 0.2 μg/L and EC-II 0.5 μg/L Cyc. These doses correspond to 1/10 and ¼ of concentrations previously identified in hospital effluents. Turtles exposed to the CyC recorded larger total number of erythrocyte nuclear abnormalities than the ones in the control group after 48-h exposure. The total number of abnormalities for both groups (EC-I and EC-II) 96 h after the experiment had started was statistically similar to that of animals exposed to high Cyc concentration (positive control 5 × 104 μg/L). This outcome confirms the mutagenic potential of Cyc, even at low concentrations. On the other hand, when the animals were taken to a pollutant-free environment, their mutagenic damages disappeared after 240 h. After such period, their total of abnormalities matched the basal levels recorded for the control group. Therefore, our study is the first evidence of AD mutagenicity in reptiles, even at EC and short-term exposure, as well as of turtles' recovery capability after the exposure to Cyc.
Collapse
Affiliation(s)
- Carlos Mesak
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Caroliny Fátima Chaves Paixão
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Bruna de Oliveira Mendes
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Thales Chagas Quintão
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, 75790-000, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, 75790-000, Brazil.
| |
Collapse
|
19
|
do Amaral DF, Montalvão MF, de Oliveira Mendes B, da Costa Araújo AP, de Lima Rodrigues AS, Malafaia G. Sub-lethal effects induced by a mixture of different pharmaceutical drugs in predicted environmentally relevant concentrations on Lithobates catesbeianus (Shaw, 1802) (Anura, ranidae) tadpoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:600-616. [PMID: 30411290 DOI: 10.1007/s11356-018-3656-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/31/2018] [Indexed: 06/08/2023]
Abstract
The increasing consumption of medications by humans has negative effects such as the increased disposal of these compounds in the environment. Little is known about how the disposal of a "drug mix" (DM) in aquatic ecosystems can affect their biota. Thus, we evaluated whether the exposure of Lithobates casteibeianus tadpoles to a DM composed of different medication classes (antibiotic, anti-inflammatory, antidepressant, anxiolytic, analgesic, and antacid drugs)-at environmentally relevant concentrations-may change their oral morphology, trigger behavioral disorders, and have mutagenic effects on erythrocyte cells. Based on our data, animals exposed to the DM showed changes in mandibular sheath pigmentation, dentition, and swimming activity, as well as atypical behavior in the social aggregation test [with co-specific and interspecific (Physalaemus cuvieri) individuals] and antipredatory defensive response deficit (chemical stimulus from Odonata larvae), after 15 exposure days. The mutagenic analysis revealed higher frequency of nuclear abnormalities in the erythrocytes of tadpoles exposed to the DM (e.g., multilobulated, blebbed, kidney-shaped, notched nucleus, binuclear, and micronucleated erythrocytes). Given the chemical complexity of the DM, we assumed that several organic functions may have been affected, either by the isolated, synergistic, antagonistic, or additive action of DM compounds. Finally, our study confirms the toxicological potential of DM in L. catesbeianus tadpoles, with emphasis to impacts that can affect the fitness of individuals and their natural populations. Thus, we suggest that more attention should be given to the disposal of medications in the environment and reinforce the need of improving water and sewage treatment systems.
Collapse
Affiliation(s)
- Diogo Ferreira do Amaral
- Post-Graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Post-Graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Bruna de Oliveira Mendes
- Post-Graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Post-Graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Post-Graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
- Biologigal Sciences Department, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil.
- Biologigal Sciences Department, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano-Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil.
| |
Collapse
|
20
|
Monteiro JADN, Cunha LAD, Costa MHPD, Reis HSD, Aguiar ACDS, Oliveira-Bahia VRLD, Burbano RMR, Rocha CAMD. Mutagenic and histopathological effects of hexavalent chromium in tadpoles of Lithobates catesbeianus (Shaw, 1802) (Anura, Ranidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:400-407. [PMID: 30064085 DOI: 10.1016/j.ecoenv.2018.07.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
The potential mutagenic and histopathological effects of the hexavalent chromium were investigated in Lithobates catesbeianus tadpoles. These larvae (GS 25-31) were exposed to three nominal concentrations of potassium dichromate (4, 12, and 36 mg L-1) and 5 mg L-1 of Cyclophosphamide as a positive control (PC), for 24 h. A negative control (NC) was also added to the experiment. Our results showed that, in general, the micronuclei (MN) were less frequent than the erythrocyte nuclear abnormalities (ENA); there was a significant difference in the frequency of MN between the NC and all treated groups (p < 0.05) in a concentration-dependent curve, in addition the PC did not differ from the chromium treatments. Also, only PC and the group treated with potassium dichromate at 36 mg L-1 showed significantly higher frequencies of ENA than NC (p < 0.05). Chromium treatments promoted cell retention in the Sub-G1 phase and a decrease of cells in the S and G2/M phases indicating inhibition of the cell cycle. All treatments with chromium led to liver and kidney histopathological lesions, especially with 36 mg L-1 (greater number of lesions). In conclusion, hexavalent chromium was mutagenic to L. catesbeianus tadpoles and its toxic effects also resulted in anti-mitotic activity, besides inducing histopathological alterations in liver and kidney. Amphibians have been proven to be useful bioindicators, and we suggest that tadpoles of different species can be used to represent the environmental impacts in aquatic ecosystems.
Collapse
Affiliation(s)
- José Augusto do Nascimento Monteiro
- Laboratory of Human Cytogenetics and Genetic Toxicology (Laboratório de Citogenética Humana e Genética Toxicológica), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Lorena Araújo da Cunha
- Laboratory of Human Cytogenetics and Genetic Toxicology (Laboratório de Citogenética Humana e Genética Toxicológica), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Mary Helen Pestana da Costa
- Laboratory of Human Cytogenetics and Genetic Toxicology (Laboratório de Citogenética Humana e Genética Toxicológica), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Herald Souza Dos Reis
- Coordination of Biological Sciences (Coordenação de Ciências Biológicas), Federal Institute of Education, Science and Technology of Pará (Instituto 19 Federal de Educação, Ciência e Tecnologia do Pará), Belém, Pará, Brazil
| | - Aliceane Carolina da Silva Aguiar
- Multidisciplinary Laboratory of Biology (Laboratório Multidisciplinar de Biologia à Distância), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Veronica Regina Lobato de Oliveira-Bahia
- Multidisciplinary Laboratory of Biology (Laboratório Multidisciplinar de Biologia à Distância), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Rommel Mario Rodríguez Burbano
- Laboratory of Human Cytogenetics and Genetic Toxicology (Laboratório de Citogenética Humana e Genética Toxicológica), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil.
| | - Carlos Alberto Machado da Rocha
- Fishery and Agribusiness Resource Coordination (Coordenação de Recursos Pesqueiros e Agronegócio), Federal Institute of Education, Science and Technology of Pará (Instituto Federal de Educação, Ciência e Tecnologia do Pará), Belém, Pará, Brazil.
| |
Collapse
|
21
|
de Souza JM, Rabelo LM, de Faria DBG, Guimarães ATB, da Silva WAM, Rocha TL, Estrela FN, Chagas TQ, de Oliveira Mendes B, Malafaia G. The intake of water containing a mix of pollutants at environmentally relevant concentrations leads to defensive response deficit in male C57Bl/6J mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:186-197. [PMID: 29432930 DOI: 10.1016/j.scitotenv.2018.02.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Previous studies have individually confirmed the toxic effects from different pollutants on mammals. However, effects resulting from the exposure of these animals to multi-pollutant mixes have not been studied so far. Thus, the aim of the current study is to assess the effect from the chronic exposure (105days) of C57Bl/6J mice to a mix of pollutants on their response to potential predators. In order to do so, the following groups were formed: "control", "Mix 1× [compounds from 15 pollutants identified in surface waters at environmentally relevant concentration (ERC)]", "Mix 10×" and "Mix 25×" (concentrations 10 and 25 times higher than the ERC). From the 100th experimental day on, the animals were subjected to tests in order to investigate whether they showed locomotor, visual, olfactory and auditory changes, since these abilities are essential to their anti-predatory behavior. Next, the animals' behavior towards potential predators (Felis catus and Pantherophis guttatus) was assessed. The herein collected data did not show defensive response from any of the experimental groups to the predatory stimulus provided by P. guttatus. However, the control animals, only, presented anti-predatory behavior when F. catus was introduced in the apparatus, fact that suggests defensive response deficit resulting from the treatments. Thus, the current study is pioneer in showing that the chronic intake of water containing a mix of pollutants (even at low concentrations) leads to behavioral disorders able to affect the survival and population dynamics of mammalian species at ecological level.
Collapse
Affiliation(s)
- Joyce Moreira de Souza
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil
| | | | - Denise Braga Gomes de Faria
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil
| | - Abraão Tiago Batista Guimarães
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil
| | - Wellington Alves Mizael da Silva
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | - Bruna de Oliveira Mendes
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute of Education, Science and Technology, Urutaí Campus, GO, Brazil; Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil.
| |
Collapse
|
22
|
Mesak C, de Oliveira Mendes B, de Oliveira Ferreira R, Malafaia G. Mutagenic assessment of Lithobates catesbeianus tadpoles exposed to the 2,4-D herbicide in a simulated realistic scenario. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15235-15244. [PMID: 29679270 DOI: 10.1007/s11356-018-1979-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The aim of the current study is to assess possible erythrocyte mutagenic effects on Lithobates catesbeianus tadpoles exposed to water contaminated with 2,4-D. In order to do so, tadpoles were exposed to a predictive and environmentally relevant herbicide concentration (1.97 mg/L), which is likely to be found in lentic environments formed by superficial water runoffs in pasture areas where the herbicide was applied. The micronucleus test, as well as tests for other nuclear abnormalities, was conducted after 3, 5, and 9 days of exposure (d.e.). Changes in the biomass and mouth-cloaca length or interference in the larval development of the animals (in the three evaluated times) were not recorded. However, tadpoles exposed to 2,4-D showed the highest total number of nuclear abnormalities, as well as the highest frequency of binucleated erythrocytes and kidney-shaped nuclei (shortly after 3 d.e.). The micronucleus frequency was also higher in animals exposed to 2,4-D (in the 3rd, 5th, and 9th d.e.), as well as the frequency of binucleated cells (3rd, 5th, and 9th d.e.) presenting notched (9th d.e.) and blebbled (9th d.e.) nuclei in comparison to those of the control, after 5 and 9 days of exposure. Therefore, the current study is a pioneer in showing that 2,4-D has a mutagenic effect on L. catesbeianus tadpoles, even at low concentrations (environmentally relevant) and for a short period of time, a fact that may lead to direct losses in anuran populations living in areas adjacent to those subjected to 2,4-D herbicide application.
Collapse
Affiliation(s)
- Carlos Mesak
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, Goias, Brazil
| | - Bruna de Oliveira Mendes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, Goias, Brazil
| | - Raíssa de Oliveira Ferreira
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, Goias, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, Goias, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano-Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, Goias, CEP: 75790-000, Brazil.
| |
Collapse
|
23
|
do Amaral DF, Montalvão MF, de Oliveira Mendes B, da Silva Castro AL, Malafaia G. Behavioral and mutagenic biomarkers in tadpoles exposed to different abamectin concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12932-12946. [PMID: 29478167 DOI: 10.1007/s11356-018-1562-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
It is known that pesticides such as abamectin (ABA) present cytotoxic effects on target organisms; however, the effects from ABA on non-target organisms such as amphibians are poorly understood. The aim of the current study is to investigate whether the exposure of Lithobates catesbeianus tadpoles to different abamectin concentrations [12.5, 25, and 50% of the median lethal concentration (LC50)] leads to behavioral and morphological changes and/or generates possible cytotoxic effects. The aggregation test showed that tadpoles exposed to the highest ABA concentrations did not respond to the stimulus from non-familial and unrelated co-specific species. On the other hand, there was no difference in the total number of crossings in the central line of the herein adopted apparatus between groups; it suggests that ABA did not affect animal locomotion in the aforementioned test, although changes in the normal swimming pattern of tadpoles exposed to the pesticide were recorded in the swimming activity test. In addition, the herein exposed animals did not respond to the predatory stimulus in the antipredator response test; this result suggests defensive response deficit caused by the pesticide. With respect to their oral morphology, tadpoles exposed to ABA presented the lowest scores for mandibular pigmentation and structures, as well as for dentition condition. Finally, it was possible seeing that the exposure to ABA, even at the lowest concentration (12.5% of the LC50), resulted in nuclear changes in the erythrocytes of the animals; these changes became evident in the increased number of micronuclei and in other nuclear abnormalities. Thus, besides confirming the cytotoxic potential of ABA in amphibians, the current study corroborates the hypothesis that the exposure to the herein investigated pesticide leads to behavioral and morphological changes in tadpoles, fact that may negatively reflect on the survival, as well as on natural populations of these individuals.
Collapse
Affiliation(s)
- Diogo Ferreira do Amaral
- Post-graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Post-graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Bruna de Oliveira Mendes
- Post-graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - André Luis da Silva Castro
- Post-graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
- Biologigal Sciences Department, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
- Biologigal Sciences Department, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Urutaí, GO, Brazil.
- Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, CEP: 75790-000, Brazil.
| |
Collapse
|
24
|
Amaral DFD, Montalvão MF, Mendes BDO, de Souza JM, Chagas TQ, Rodrigues ASDL, Malafaia G. Insights about the toxic effects of tannery effluent on Lithobates catesbeianus tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:791-801. [PMID: 29202290 DOI: 10.1016/j.scitotenv.2017.11.310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
Tannery industries are considered highly polluting due to the large production of polluted wastewater [untreated tannery effluent (UTE)]. Although previous studies have already shown the consequences from fish, birds and mammals' exposure to this pollutant, little is known about its toxicological effect on representatives of class amphibian. Thus, we aim at assessing whether short-term UTE exposure, even at low concentrations (0.2% UTE diluted in water), would be able to induce behavioral, morphological and cyto-genotoxic changes in L. catesbeianus tadpoles. In order to do so, two experimental groups were set (control and tannery effluent) and exposed, or not, to UTE for seven days. A positive control group (cyclophosphamide) was included in the experimental design in order to assess cyto-genotoxicity. Our behavioral results showed that tadpoles exposed to the contaminant presented abnormal responses in the predator-response test; therefore, it evidenced losses in their capacity to recognize chemical olfactory cues of a potential predator. We also searched for changes in mouth length, in dentition, in body length before and after the eyes of animals exposed to UTE. Besides, we observed higher nuclear abnormality frequency in the circulating erythrocytes of tadpoles exposed to the contaminant, as well as in animals belonging to the positive control group. Some of the observed abnormalities were micronuclei, binucleated, notched, kidney-shaped and blebbed cells, multilobulated nuclei, as well as lower mitotic index. Therefore, our data confirm the hypothesis that UTE causes behavioral, morphological and cyto-genotoxic changes in L. catesbeianus tadpoles, fact that opens new perspectives to other investigations about how and which UTE constituents were responsible for the observed effects.
Collapse
Affiliation(s)
- Diogo Ferreira do Amaral
- Post-Graduation Program in the Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | - Mateus Flores Montalvão
- Post-Graduation Program in the Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | - Bruna de Oliveira Mendes
- Post-Graduation Program in the Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | - Joyce Moreira de Souza
- Post-Graduation Program in the Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | - Thales Quintão Chagas
- Post-Graduation Program in the Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Post-Graduation Program in the Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil; Biologigal Sciences Department, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in the Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil; Biologigal Sciences Department, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, GO, Brazil; Post-Graduation Program in Animal Biodiversity, Federal University of Goiás, Samambaia Campus, Goiânia, GO, Brazil.
| |
Collapse
|
25
|
Quintão TC, Rabelo LM, Alvarez TGS, Guimarães AT, Rodrigues ASL, Cardoso LS, Ferreira RO, Malafaia G. Precopulatory sexual behavior of male mice is changed by the exposure to tannery effluent. CHEMOSPHERE 2018; 195:312-324. [PMID: 29272800 DOI: 10.1016/j.chemosphere.2017.12.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Although the toxic potential of tannery effluents (TE) is acknowledged, the impacts these residues have on mammals who intake water contaminated with this pollutant are not completely known. Thus, in order to broaden the knowledge about how these contaminants affect the biota, the aim of the current study is to assess different behavioral categories (e.g.: sexual odor preference, opposite-sex attraction, and sexual discrimination) related to the sexual motivation and pre-copulation of male Swiss mice subjected to TE intake for 30 days, at concentrations 0.8% and 22%. The animals were subjected to locomotor performance evaluation through the Basso Mouse Scale (BMS), as well as to the open field (OF), odor preference (OPT), sexual orientation (SOT) and to scent marking tests (SMT) one week before the experiment ended. Our results evidenced that the treatments did not affect the animals' locomotor activity (in OF and BMS) or caused changes compatible to anxiogenic or anxiolytic behavior (in OF). However, mice exposed to TE (at both concentrations) presented discriminatory capacity deficit in the OPT test at the time to distinguish conspecific odors from the same sex, and from the opposite sex. They randomly explored (without preference) males and females, did not responded to stimuli in the SOT test, as well as did not appear capable of detecting female odor (in estrus phase) during the SMT. Thus, the current study was pioneer in evidencing that TE can influence the reproduction and the population dynamics of small rodents who intake water contaminated with the pollutant.
Collapse
Affiliation(s)
- Thales Chagas Quintão
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | | | - T G S Alvarez
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | - A T Guimarães
- Post-graduation Program in the Conservation of Cerrado Natural Resources and Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | - A S L Rodrigues
- Post-graduation Program in the Conservation of Cerrado Natural Resources and Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | - L S Cardoso
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | - R O Ferreira
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil; Post-graduation Program in the Conservation of Cerrado Natural Resources and Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil.
| |
Collapse
|
26
|
de Faria DBG, Montalvão MF, de Souza JM, de Oliveira Mendes B, Malafaia G, Rodrigues ASDL. Analysis of various effects of abamectin on erythrocyte morphology in Japanese quails (Coturnix japonica). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2450-2456. [PMID: 29127630 DOI: 10.1007/s11356-017-0677-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Although previous studies have already confirmed the toxicological potential of abamectin (ABA) in different experimental models (from invertebrates to vertebrates), almost nothing is known about the impacts the exposure to this pesticide can cause on birds. Thus, the aim of our study is to investigate the cytotoxic effects on the erythrocytes of female Japanese quails (Coturnix japonica) exposed to low abamectin concentrations. In order to do so, three experimental groups were proposed: "control," composed of quails exposed to abamectin-free drinking water; "ABA 1% median lethal dose (LD50)," comprising birds exposed to water containing 15.5 mg a.i./L of abamectin (via commercial formulation Kraft® 36EC), and "ABA 10% LD50," composed by birds exposed to water containing 155.0 mg a.i./L of abamectin. The micronucleus test and the tests applied to other nuclear abnormalities in the peripheral blood of birds were conducted 40 days after exposure. Our study revealed significant physical abnormalities in nuclear shapes (erythrocytes with asymmetric constriction nuclei, notched nuclei, indented and moved nucleus) of those birds exposed to higher abamectin levels. When all nuclear abnormalities were tallied, a significant dose-dependent trend was noted. Therefore, our study presents initial imprints on determination of abamectin-mediated cellular toxicity in avifauna which can be instrumental in checking polluted ecosystems.
Collapse
Affiliation(s)
- Denise Braga Gomes de Faria
- Post-Graduation Program in Conservation of Natural Resources in Cerrado, Goiano Federal Institute of Education, Science and Technology - Urutaí Campus, Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Post-Graduation Program in Conservation of Natural Resources in Cerrado, Goiano Federal Institute of Education, Science and Technology - Urutaí Campus, Urutaí, GO, Brazil
| | - Joyce Moreira de Souza
- Post-Graduation Program in Conservation of Natural Resources in Cerrado, Goiano Federal Institute of Education, Science and Technology - Urutaí Campus, Urutaí, GO, Brazil
| | - Bruna de Oliveira Mendes
- Post-Graduation Program in Conservation of Natural Resources in Cerrado, Goiano Federal Institute of Education, Science and Technology - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Natural Resources in Cerrado, Goiano Federal Institute of Education, Science and Technology - Urutaí Campus, Urutaí, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2.5 km, Zona Rural, Urutaí, GO, 75790-000, Brazil.
- Rodovia Geraldo Silva Nascimento, 2.5 km, Zona Rural, Urutaí, GO, CEP: 75790-000, Brazil.
| | - Aline Sueli de Lima Rodrigues
- Post-Graduation Program in Conservation of Natural Resources in Cerrado, Goiano Federal Institute of Education, Science and Technology - Urutaí Campus, Urutaí, GO, Brazil
| |
Collapse
|