1
|
Ramos LT, Roveri V, Toma W, Kiyotani RB, de Assis Junior WRA, Metropolo AP, Dos Santos GA, Rodrigues AZ, Guimarães LL. Predicted environmental concentration (PEC), environmental risk assessment (ERA) and prioritization of antiretroviral drugs (ARVs) in seawater from Guarujá (Brazilian coastal zone). MARINE ENVIRONMENTAL RESEARCH 2025; 204:106964. [PMID: 39842069 DOI: 10.1016/j.marenvres.2025.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/15/2024] [Accepted: 01/11/2025] [Indexed: 01/24/2025]
Abstract
The antiretroviral therapy program's success in managing the human immunodeficiency virus (HIV) has inadvertently led to the release of antiretrovirals (ARVs) into worldwide aquatic ecosystems. However, few studies investigated the risks of ARV loadings that flow continuously to the marine waters of South America (such as Brazil). Against this backdrop, the aims of this study were: (i) to estimate the Predicted Environmental Concentration (PEC) of thirteen ARVs worldwide used in HIV treatment, and which are frequently disposed of in the marine aquatic ecosystems of Guarujá, São Paulo coastline, Brazil.; (ii) predict, through the Environmental Risk Assessment (ERA), the potential acute and chronic risks of these ARVs; and (iii) create a prioritization list of the most hazardous ARVs, based on the intrinsic properties of these compounds, i.e.: occurrence (O); persistence (P), bioaccumulation (B) and toxicity (T) (OPBT criteria). The PEC calculations indicated that all the ARVs examined in this study require an assessment of their impact on aquatic organisms, as all results exceeded the limits set by the guidelines of the European Medicines Agency., i.e., the PEC ranged between 0.37 and 99.39 μg/L. The results of individual ERA showed the following trend: (i) 56.41% of the results of acute toxicity indicated high toxicity for the three trophic levels; 33.33% of the results indicated low risk for one of the trophic levels, and 10.26% indicated moderate toxicity, and (ii) in terms of chronic toxicity, 33.33% of the results indicated moderate risks, 35.90% indicated low or no risk, and 30.77% indicated high risks. Regarding the results of the mixture of ARVs, the ERA showed a high acute and/or chronic risk for all five classes tested, i.e., (i) nucleoside/nucleotide reverse transcriptase inhibitors; ii) non-nucleoside reverse transcriptase inhibitors; iii) protease inhibitors; (iv) integrase strand transfer inhibitors; and (v) chemokine receptor antagonists. Ultimately, the final ranking of the OPBT approach was etravirine (the highest-priority ARV in seawater from Guarujá), followed by: nevirapine > efavirenz > ritonavir > lopinavir > maraviroc > atazanavir > darunavir > abacavir > dolutegravir > zidovudine > tenofovir > lamivudine.
Collapse
Affiliation(s)
- Leonardo Teixeira Ramos
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil
| | - Vinicius Roveri
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil; Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, Santos, 11045-002, São Paulo, Brazil; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Walber Toma
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil
| | - Rafael Barreiros Kiyotani
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil
| | - Wellington Rui Andrade de Assis Junior
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil
| | - Ana Paula Metropolo
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil
| | - Gilmar Aparecido Dos Santos
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil
| | - Aírton Zogaib Rodrigues
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil.
| |
Collapse
|
2
|
Munzhelele E, Ayinde W, Gitari W, Pindihama G, Mudzielwana R. Occurrence of efavirenz, levonorgestrel, ibuprofen, and diclofenac in wastewaters of limpopo province, South Africa. Heliyon 2025; 11:e41524. [PMID: 39906835 PMCID: PMC11791289 DOI: 10.1016/j.heliyon.2024.e41524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/27/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025] Open
Abstract
This study aims to investigate the occurrence of efavirenz, levonorgestrel, ibuprofen, and diclofenac in wastewaters of Vhembe and Mopane District Municipalities, Limpopo Province, South Africa. A total of 48 samples were collected at the inlet and outlet of the selected wastewater treatment plants during April, July, and October 2023. The physicochemical parameters such as pH, electrical conductivity, total dissolved solids, and dissolved oxygen of the influent and effluent were determined in the field, while total organic carbon (TOC) and chemical oxygen demand (COD) were determined in the laboratory. The LC-20 prominence High-pressure liquid chromatography with a Photo-diode Array (PDA) detector was employed to quantify and profile the targeted pharmaceutical compounds. Levonorgestrel and efavirenz were analyzed using the gradient elution method, while the isocratic method was applied to analyze diclofenac and ibuprofen. The obtained results showed that the concentration ranges for ibuprofen were
Collapse
Affiliation(s)
- E.P. Munzhelele
- Environmental Remediation and Nanoscience (EnviReN), Department of Geography and Environmental Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, Limpopo Province, South Africa
| | - W.B. Ayinde
- Environmental Remediation and Nanoscience (EnviReN), Department of Geography and Environmental Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, Limpopo Province, South Africa
- Water Research Group, Civil Engineering, Faculty of Engineering and Built Environment, Upper Campus, University of Cape Town. Private Bag X3, Rondebosch, 7701, South Africa
| | - W.M. Gitari
- Environmental Remediation and Nanoscience (EnviReN), Department of Geography and Environmental Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, Limpopo Province, South Africa
- School of Chemistry and Material Sciences, Technical University of Kenya, Haile Selassie Avenue, Nairobi, P.O. Box 52428 - 00200, Nairobi- Kenya, South Africa
| | - G.K. Pindihama
- Environmental Remediation and Nanoscience (EnviReN), Department of Geography and Environmental Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, Limpopo Province, South Africa
| | - R. Mudzielwana
- Environmental Remediation and Nanoscience (EnviReN), Department of Geography and Environmental Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, Limpopo Province, South Africa
| |
Collapse
|
3
|
Gomes MP, Gomes LP. Tracking the surge of psychiatric pharmaceuticals in urban rivers of Curitiba amidst and beyond the SARS-CoV-2 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176685. [PMID: 39383963 DOI: 10.1016/j.scitotenv.2024.176685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
The heightened contamination of urban rivers with psychiatric drugs poses significant environmental and public health risks due to their persistence and bioaccumulative nature. In this study, we assessed the concentrations of 10 psychiatric medicines in water and sediment samples from three rivers in Curitiba, Brazil, spanning the SARS-CoV-2 pandemic from September 2020 to November 2023. Our analysis revealed substantial variations in drug concentrations across rivers and sampling periods, with fluoxetine and sertraline being the most prevalent in waters (up to 1118 ng L-1) and sediments (up to 70 ng g-1 DW). Sediments emerged as primary repositories for psychiatric drugs. The COVID-19 pandemic notably impacted drug concentrations, with fluoxetine and alprazolam concentrations surging by up to 741 % and 524 %, respectively, compared to pre-pandemic levels. The current concentrations of drugs in rivers pose risks to aquatic life. Despite variations, overall drug concentrations increased by 20 % for fluoxetine and 15 % for alprazolam after the pandemic. These findings underscore the persistent environmental risks associated with heightened drug consumption, emphasizing the urgent need for continued monitoring and intervention strategies to mitigate ecological and public health impacts.
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C. P. 19031, Curitiba, 81531-980 Paraná, Brazil.
| | - Lorena Pedrosa Gomes
- Prefeitura Municipal de Formiga, Secretaria Municipal de Saúde, Rua Doutor Teixeira Soares, 264, Centro, Formiga 35570-000, Minas Gerais, Brazil
| |
Collapse
|
4
|
Xia X, Mu H, Li Y, Hou Y, Li J, Zhao Z, Zhao Q, You S, Wei L. Which emerging micropollutants deserve more attention in wastewater in the post-COVID-19 pandemic period? Based on distribution, risk, and exposure analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175511. [PMID: 39147043 DOI: 10.1016/j.scitotenv.2024.175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Aggravated accumulation of emerging micropollutants (EMs) in aquatic environments, especially after COVID-19, raised significant attention throughout the world for safety concerns. This article reviews the sources and occurrence of 25 anti-COVID-19 related EMs in wastewater. It should be pointed out that the concentration of anti-COVID-19 related EMs, such as antivirals, plasticizers, antimicrobials, and psychotropic drugs in wastewater increased notably after the pandemic. Furthermore, the ecotoxicity, ecological, and health risks of typical EMs before and after COVID-19 were emphatically compared and analyzed. Based on the environmental health prioritization index method, the priority control sequence of typical EMs related to anti-COVID-19 was identified. Lopinavir (LPV), venlafaxine (VLX), di(2-ethylhexyl) phthalate (DEHP), benzalkonium chloride (BAC), triclocarban (TCC), di-n-butyl phthalate (DBP), citalopram (CIT), diisobutyl phthalate (DIBP), and triclosan (TCS) were identified as the top-priority control EMs in the post-pandemic period. Besides, some insights into the toxicity and risk assessment of EMs were also provided. This review provides direction for proper understanding and controlling the EMs pollution after COVID-19, and is of significance to evaluate objectively the environmental and health impacts induced by COVID-19.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huizhi Mu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaqun Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanlong Hou
- The 404 Company Limited, CNNC, Lanzhou 732850, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zixuan Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Wroński M, Trawiński J, Skibiński R. Electrochemical removal of antiretroviral drug - raltegravir from aquatic media: Multivariate optimization, degradation studies and transformation products characterization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122584. [PMID: 39305864 DOI: 10.1016/j.jenvman.2024.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
Electrochemical degradation of the antiretroviral drug raltegravir was investigated using different electrode materials (platinum, glassy carbon and boron-doped diamond). After preliminary studies with the use of multivariate chemometric method, electrochemical degradation was conducted with a boron-doped diamond electrode and phosphate buffer at pH 9. To assess the role of different variable in degradation kinetics, final experiments were conducted with varying applied current densities, chloride and humic acid concentrations, and using a natural river water sample. The results showed that raltegravir degradation generally followed pseudo-first-order kinetics. The degradation rate was inhibited by the presence of humic acid, while increasing the applied current density or chloride concentration enhanced the removal of raltegravir. Degradation process performed in the river water sample followed second-order kinetics and led to almost complete degradation of raltegravir within 30 min, highlighting the impact of natural matrices on reaction kinetics. Total organic carbon analysis was utilized, showing that even rapid degradation of the parent compound did not ensure total mineralization. Additionally, the energy consumption analysis revealed that the presence of chloride ions significantly improves efficiency of the organic carbon elimination. With the use of high-resolution mass spectrometry fourteen transformation products were elucidated, and their aquatic toxicity was predicted using in silico approach. Half of the identified transformation products were found to possess higher aquatic toxic potential than the parent compound, emphasizing the necessity of the mineralization assessment.
Collapse
Affiliation(s)
- Michał Wroński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland.
| |
Collapse
|
6
|
Choudhury A, Ojha PK, Ray S. Hazards of antiviral contamination in water: Dissemination, fate, risk and their impact on fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135087. [PMID: 38964042 DOI: 10.1016/j.jhazmat.2024.135087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.
Collapse
Affiliation(s)
- Abhigyan Choudhury
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Probir Kumar Ojha
- Drug Discovery and Development (DDD) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
7
|
Manyepa P, Gani KM, Seyam M, Banoo I, Genthe B, Kumari S, Bux F. Removal and risk assessment of emerging contaminants and heavy metals in a wastewater reuse process producing drinkable water for human consumption. CHEMOSPHERE 2024; 361:142396. [PMID: 38777194 DOI: 10.1016/j.chemosphere.2024.142396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
This study focuses on the removal and risk assessment of twenty emerging contaminants (ECs) and heavy metals in a REMIX water treatment plant (RWTP) that produces drinking water from combination of wastewater reuse and desalination. The membrane biological reactor (MBR) exhibit removal rates exceeding 95% of pharmaceuticals like acetaminophen, trimethoprim, diclofenac, naproxen, and emtricitabine. The efficiency of brackish reverse osmosis (BWRO) in removing ECs is highlighted, showing substantial efficacy with reduction rates of 99.5%, 75.5%, and 51.2% for sulfamethoxazole, venlafaxine, and benzotriazole, respectively. The advanced oxidation process based on Fenton process reveals removal (>95%) of emtricitabine, efavirenz, and carbamazepine. The study confirms that the combination of treatment units within the RWTP effectively removes heavy metals (>90%), complying with acceptable limits. Risk quotient (RQ) calculations indicate the efficiency of the RWTP in EC removal, serving as benchmarks for public acceptance of reclaimed water. In the context of heavy metals, the study concludes negligible cancer risks associated with reclaimed water consumption over a lifetime. Quantitative structure-activity relationship and occurrence, persistence, bioaccumulation and toxicity (OPBT) models were used to assess EC risk. The study screened and identified potential persistant, bio accumulating and toxic PBT ECs. Critical control points (CCPs) in the RWTP are identified, with brackish and seawater reverse osmosis (BWRO and SWRO) and advanced oxidation process (AOP) recognized as pivotal in hazard management. The study provides valuable insights on the removal of ECs and heavy metals in a wastewater reuse process and demonstrates potential of adopted process configuration in supplying safe drinking water from wastewater recycling.
Collapse
Affiliation(s)
- Prince Manyepa
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa; Department of Civil Engineering and Geomatics, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Khalid Muzamil Gani
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa; Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | - Mahomed Seyam
- Department of Civil Engineering and Geomatics, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Ismail Banoo
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Bettina Genthe
- Department of Microbiology, University of Stellensbosch, Svate Bag X1 Matieland 7602, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
8
|
Guo Z, He H, Liu K, Li Z, Xi Y, Liao Z, Dao G, Huang B, Pan X. Toxic mechanisms of the antiviral drug arbidol on microalgae in algal bloom water at transcriptomic level. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134678. [PMID: 38781856 DOI: 10.1016/j.jhazmat.2024.134678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Increasing antivirals in surface water caused by their excessive consumption pose serious threats to aquatic organisms. Our recent research found that the input of antiviral drug arbidol to algal bloom water can induce acute toxicity to the growth and metabolism of Microcystis aeruginosa, resulting in growth inhibition, as well as decrease in chlorophyll and ATP contents. However, the toxic mechanisms involved remained obscure, which were further investigated through transcriptomic analysis in this study. The results indicated that 885-1248 genes in algae were differentially expressed after exposure to 0.01-10.0 mg/L of arbidol, with the majority being down-regulated. Analysis of commonly down-regulated genes found that the cellular response to oxidative stress and damaged DNA bonding were affected, implying that the stress defense system and DNA repair function of algae might be damaged. The down-regulation of genes in porphyrin metabolism, photosynthesis, carbon fixation, glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation might inhibit chlorophyll synthesis, photosynthesis, and ATP supply, thereby hindering the growth and metabolism of algae. Moreover, the down-regulation of genes related to nucleotide metabolism and DNA replication might influence the reproduction of algae. These findings provided effective strategies to elucidate toxic mechanisms of contaminants on algae in algal bloom water.
Collapse
Affiliation(s)
- Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zihui Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanting Xi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
9
|
Berrios L, Bogar GD, Bogar LM, Venturini AM, Willing CE, Del Rio A, Ansell TB, Zemaitis K, Velickovic M, Velickovic D, Pellitier PT, Yeam J, Hutchinson C, Bloodsworth K, Lipton MS, Peay KG. Ectomycorrhizal fungi alter soil food webs and the functional potential of bacterial communities. mSystems 2024; 9:e0036924. [PMID: 38717159 PMCID: PMC11237468 DOI: 10.1128/msystems.00369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 06/19/2024] Open
Abstract
Most of Earth's trees rely on critical soil nutrients that ectomycorrhizal fungi (EcMF) liberate and provide, and all of Earth's land plants associate with bacteria that help them survive in nature. Yet, our understanding of how the presence of EcMF modifies soil bacterial communities, soil food webs, and root chemistry requires direct experimental evidence to comprehend the effects that EcMF may generate in the belowground plant microbiome. To this end, we grew Pinus muricata plants in soils that were either inoculated with EcMF and native forest bacterial communities or only native bacterial communities. We then profiled the soil bacterial communities, applied metabolomics and lipidomics, and linked omics data sets to understand how the presence of EcMF modifies belowground biogeochemistry, bacterial community structure, and their functional potential. We found that the presence of EcMF (i) enriches soil bacteria linked to enhanced plant growth in nature, (ii) alters the quantity and composition of lipid and non-lipid soil metabolites, and (iii) modifies plant root chemistry toward pathogen suppression, enzymatic conservation, and reactive oxygen species scavenging. Using this multi-omic approach, we therefore show that this widespread fungal symbiosis may be a common factor for structuring soil food webs.IMPORTANCEUnderstanding how soil microbes interact with one another and their host plant will help us combat the negative effects that climate change has on terrestrial ecosystems. Unfortunately, we lack a clear understanding of how the presence of ectomycorrhizal fungi (EcMF)-one of the most dominant soil microbial groups on Earth-shapes belowground organic resources and the composition of bacterial communities. To address this knowledge gap, we profiled lipid and non-lipid metabolites in soils and plant roots, characterized soil bacterial communities, and compared soils amended either with or without EcMF. Our results show that the presence of EcMF changes soil organic resource availability, impacts the proliferation of different bacterial communities (in terms of both type and potential function), and primes plant root chemistry for pathogen suppression and energy conservation. Our findings therefore provide much-needed insight into how two of the most dominant soil microbial groups interact with one another and with their host plant.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, California, USA
| | - Glade D. Bogar
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Laura M. Bogar
- Department of Plant Biology, University of California, Davis, Davis, California, USA
| | | | - Claire E. Willing
- Department of Biology, Stanford University, Stanford, California, USA
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Anastacia Del Rio
- Department of Biology, Stanford University, Stanford, California, USA
| | - T. Bertie Ansell
- Department of Biology, Stanford University, Stanford, California, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Kevin Zemaitis
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Marija Velickovic
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Dusan Velickovic
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Jay Yeam
- Department of Biology, Stanford University, Stanford, California, USA
| | - Chelsea Hutchinson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kent Bloodsworth
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mary S. Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Earth System Science, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Rana G, Dhiman P, Kumar A, Chauhan A, Sharma G. Recent advances in photocatalytic removal of antiviral drugs by Z-scheme and S-scheme heterojunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40851-40872. [PMID: 38837030 DOI: 10.1007/s11356-024-33876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
The possible impact of antivirals on ecosystems and the emergence of antiviral resistance are the reasons for concern about their environmental release. Consequently, there has been a significant increase in curiosity regarding their presence in both organic and synthetic systems in recent years. The primary objective of this review is to address the void of information regarding the global presence of antiviral drugs in both wastewater and natural water sources. Photocatalytic degradation of pollutants is an eco-friendly, cost-effective method that effectively addresses environmental degradation. The development of efficient photocatalysts remains a significant issue in accelerating the degradation of pollutants, especially when employing solar light. Thus, the development of Z-scheme and S-scheme semiconductor heterojunctions has emerged as a viable method to improve light absorption and enhance the redox capability of photocatalysts. The principles of Z-scheme and S-scheme are reviewed extensively. The degradation route and occurrence of antiviral are discussed briefly. Finally, a short preview of the degradation of antiviral using Z-scheme and S-scheme is also highlighted.
Collapse
Affiliation(s)
- Garima Rana
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, India.
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, India
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, India
| | - Ankush Chauhan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, India
| |
Collapse
|
11
|
Tabana LS, Adekoya GJ, Tichapondwa SM. Integrated study of antiretroviral drug adsorption onto calcined layered double hydroxide clay: experimental and computational analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32282-32300. [PMID: 38649603 PMCID: PMC11133027 DOI: 10.1007/s11356-024-33406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
This study focused on the efficacy of a calcined layered double hydroxide (CLDH) clay in adsorbing two antiretroviral drugs (ARVDs), namely efavirenz (EFV) and nevirapine (NVP), from wastewater. The clay was synthesized using the co-precipitation method, followed by subsequent calcination in a muffle furnace at 500 °C for 4 h. The neat and calcined clay samples were subjected to various characterization techniques to elucidate their physical and chemical properties. Response surface modelling (RSM) was used to evaluate the interactions between the solution's initial pH, adsorbent loading, reaction temperature, and initial pollutant concentration. Additionally, the adsorption kinetics, thermodynamics, and reusability of the adsorbent were evaluated. The results demonstrated that NVP exhibited a faster adsorption rate than EFV, with both reaching equilibrium within 20-24 h. The pseudo-second order (PSO) model provided a good fit for the kinetics data. Thermodynamics analysis revealed that the adsorption process was spontaneous and exothermic, predominantly governed by physisorption interactions. The adsorption isotherms followed the Freundlich model, and the maximum adsorption capacities for EFV and NVP were established to be 2.73 mg/g and 2.93 mg/g, respectively. Evaluation of the adsorption mechanism through computational analysis demonstrated that both NVP and EFV formed stable complexes with CLDH, with NVP exhibiting a higher affinity. The associated adsorption energies were established to be -731.78 kcal/mol for NVP and -512.6 kcal/mol for EFV. Visualized non-covalent interaction (NCI) graphs indicated that hydrogen bonding played a significant role in ARVDs-CLDH interactions, further emphasizing physisorption as the dominant adsorption mechanism.
Collapse
Affiliation(s)
- Lehlogonolo Shane Tabana
- Department of Chemical Engineering, Sustainable Environmental and Water Utilisation Processes Division, University of Pretoria, Pretoria, South Africa.
| | - Gbolahan Joseph Adekoya
- Institute of NanoEnginieering Research (INER) & Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, South Africa
| | - Shepherd Masimba Tichapondwa
- Department of Chemical Engineering, Sustainable Environmental and Water Utilisation Processes Division, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Simelane L, Mahlambi P, Rochat S, Baker B. Removal of antiretroviral drugs from wastewater using activated macadamia nutshells: Adsorption kinetics, adsorption isotherms, and thermodynamic studies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11020. [PMID: 38636954 DOI: 10.1002/wer.11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/28/2023] [Accepted: 03/23/2024] [Indexed: 04/20/2024]
Abstract
Antiretroviral drugs (ARVDs) have been extensively employed in health care to improve the quality of life and lifecycle longevity. However, overuse and improper disposal of ARVDs have been recognized as an emerging concern whereby wastewater treatment major recipients. Therefore, in this work, the activated macadamia nutshells (MCNs) were explored as low-cost adsorbents for the removal of ARVDs in wastewater samples. Fourier transform infrared spectroscopy (FTIR), Scanning Electron microscopy (SEM), Brunauer-Emmet-Teller (BET), and Powder X-ray diffraction (PXRD). The highest removal efficiency (R.E) was above 86% for the selected analytes nevirapine, abacavir, and efavirenz. The maximum adsorption capacity of the functionalized MCN adsorbent was 10.79, 27.44, and 38.17 mg/g for nevirapine, abacavir, and efavirenz for HCl-modified adsorbent. In contrast, NaOH modified had adsorption capacities of 13.67, 14.25, and 20.79 mg/g. The FTIR showed distinct functional groups OH and CO, which facilitate the removal of selected ARVDs. From studying kinetics parameters, the pseudo-second-order (R2 = 0.990-0.996) was more dominant than the pseudo-first-order (R2 = 0.872-0.994). The experimental data was most fitted in the Freundlich model with (R2 close to 1). The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. The study indicated that MCNs are an eco-friendly, low-cost, and effective adsorbent for the removal of nevirapine, abacavir, and efavirenz. PRACTITIONER POINTS: Modification macadamia nutshell with HCl and NaOH improved physio-chemical properties that yielded high removal efficiency compared with raw macadamia nutshells. Modification of macadamia by HCl showed high removal efficiency, which could be attributed to high interaction such as H-bonding that improves adsorption. The macadamia nutshell as an adsorbent showed so much robustness with regeneration studies yielding to about 69.64% of selected compounds.
Collapse
Affiliation(s)
- Lindokuhle Simelane
- Department of Chemistry, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Precious Mahlambi
- Department of Chemistry, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | | | | |
Collapse
|
13
|
Xu Y, Liu Y, Liang C, Guo W, Ngo HH, Peng L. Favipiravir biotransformation by a side-stream partial nitritation sludge: Transformation mechanisms, pathways and toxicity evaluation. CHEMOSPHERE 2024; 353:141580. [PMID: 38430943 DOI: 10.1016/j.chemosphere.2024.141580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Information on biotransformation of antivirals in the side-stream partial nitritation (PN) process was limited. In this study, a side-stream PN sludge was adopted to investigate favipiravir biotransformation under controlled ammonium and pH levels. Results showed that free nitrous acid (FNA) was an important factor that inhibited ammonia oxidation and the cometabolic biodegradation of favipiravir induced by ammonia oxidizing bacteria (AOB). The removal efficiency of favipiravir reached 12.6% and 35.0% within 6 days at the average FNA concentrations of 0.07 and 0.02 mg-N L-1, respectively. AOB-induced cometabolism was the sole contributing mechanism to favipiravir removal, excluding AOB-induced metabolism and heterotrophic bacteria-induced biodegradation. The growth of Escherichia coli was inhibited by favipiravir, while the AOB-induced cometabolism facilitated the alleviation of the antimicrobial activities with the formed transformation products. The biotransformation pathways were proposed based on the roughly identified structures of transformation products, which mainly involved hydroxylation, nitration, dehydrogenation and covalent bond breaking under enzymatic conditions. The findings would provide insights on enriching AOB abundance and enhancing AOB-induced cometabolism under FNA stress when targeting higher removal of antivirals during the side-stream wastewater treatment processes.
Collapse
Affiliation(s)
- Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yaxuan Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
14
|
Shen X, Li Q, Hu W, Yang M, An W, Hu J. Relationships of Liver X Receptor Antagonists and Atherosclerosis in Drinking Water from Six Chinese Major Cities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19374-19382. [PMID: 37948298 DOI: 10.1021/acs.est.3c06029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
While environmental factors have been considered contributors to atherosclerosis, it remains unclear whether drinking water promotes foam cell formation, the initial event of atherosclerosis. This study revealed that drinking water from six major cities in China, namely, Harbin, Jinan, Shanghai, Wuhan, Chongqing, and Zhuhai, significantly promoted foam cell formation in an in vitro macrophage model at a minimum concentration fold of 2. Moreover, cholesterol efflux was significantly impeded by all samples at 2-16-fold, while cholesterol influx was induced only by samples from Jinan and Chongqing at 16-fold, suggesting the dominant role of efflux in foam cell formation. Interestingly, except for the sample from Jinan, the samples exhibited complete inhibition of liver X receptor α (LXRα) activities at 160-fold, indicating the potential role of chemicals in drinking water in promoting foam cell formation by antagonizing LXRα. Through LXRα protein affinity selection-mass spectrometry, we identified ten LXRα-binding compounds, with efavirenz being revealed for the first time as a significant inducer of foam cell formation through LXRα antagonism. Overall, this study clarifies the atherosclerotic risks posed by drinking water and demonstrates the efavirenz-related atherosclerotic effects.
Collapse
Affiliation(s)
- Xinming Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qiang Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Wenxin Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei An
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
15
|
Omotola EO, Genthe B, Ndlela L, Olatunji OS. Evaluation of the probable synergistic toxicity of selected potentiated antiretroviral and antibiotics on some aquatic biomarker organisms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1489. [PMID: 37975952 PMCID: PMC10656311 DOI: 10.1007/s10661-023-12068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Environmental effects of active pharmaceutical compounds (APCs) in the environment are not well characterized, hence the need for comprehensive evaluation. This study employed three bioassays using three organisms, namely, Allium cepa, Daphnia magna, and Salmonella typhimurium, in the ecotoxicity study of lone and a mixture of selected APCs, namely, lamivudine (L), an antiretroviral, and ciprofloxacin (C) and sulfamethoxazole (S), antibiotics, at a concentration range between 10 and 100 ppb, in order to evaluate the potential of the lone and ternary mixture to exert synergistic toxicity. Study results from exposure to lone APCs showed that the L, C, and S trio individually had fatal impacts on daphnids, with mortality rates of 100, 75, and 95%, respectively, after 48 h. Sulfamethoxazole showed a mutagenic tendency, with a mutation ratio (background/sample ratio) of 2.0. Lamivudine showed a lethal impact on the root length of A. cepa (p > 0.05, p = 3.60E-3). Further microscopic examination of the A. cepa root tip revealed chromosomal aberrations on exposure to each compound. The LCS-mix ecotoxicology bioassays indicated a synergistic effect on the daphnids, probably due to potentiation. Although the LCS mix had a cytotoxic effect (evidenced by the absence of bacteria colonies) on exposed TA 98 P450 Salmonella typhimurium strain, this effect was not observed in other bacterial strains. Microscopic examination of A. cepa exposed to the LCS-mix revealed an aberration in the mitotic stage of the cell. The impact of combination of the pharmaceuticals in aqueous ecosystems was greater than when exposed to the tested individual pharmaceutical compounds. Study result showed that these compounds have tendencies to pose a higher risk to exposed living entities when in combined/potentiated forms, and this could lead to distortion of the regular functioning of the ecosystem, particularly bacterial and other microbial populations that are listed among primary producers of the aquatic food web.
Collapse
Affiliation(s)
- Elizabeth Oyinkansola Omotola
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4000, South Africa
- Department of Chemical Sciences, Tai Solarin University of Education, Ogun State, PMB 2118, Ijebu Ode, Nigeria
| | - Bettina Genthe
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Luyanda Ndlela
- Natural Resources and the Environment Division, Council for Scientific and Industrial Research, Stellenbosch, 7599, South Africa
| | | |
Collapse
|
16
|
Bartels I, Jaeger M, Schmidt TC. Determination of anti-SARS-CoV-2 virustatic pharmaceuticals in the aquatic environment using high-performance liquid chromatography high-resolution mass spectrometry. Anal Bioanal Chem 2023; 415:5365-5377. [PMID: 37439856 PMCID: PMC10444687 DOI: 10.1007/s00216-023-04811-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
The Covid-19 pandemic has affected the global population since 2019. The rapid development and approval of vaccines has brought relief. Yet, effective cures are still being researched. Even if the pandemic situation may end, SARS-CoV-2 will remain and, thus, continued application of the drugs will lead to emissions of the active ingredients into the aquatic environment, as with other anthropogenic micropollutants. However, a general method for trace analysis of antiviral drugs is still missing. To this purpose, favipiravir, remdesivir, its active metabolite GS-441524, molnupiravir and its active metabolite EIDD-1931 were selected as representative analytes. A method was developed based on solid phase extraction and high-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry. Optimization comprised the choice of chromatographic columns, elution gradient, mass spectrometry and tandem mass spectrometry parameters. Solid phase extraction proved suitable for increase in limits of detection and quantitation. amelioration of the limits of detection and quantitation. Matrix effects were investigated applying the optimized method to a wastewater sample with added virustatics. All five compounds could be separated with reversed phase chromatography, whereas EIDD-1931 profited from hydrophilic interaction liquid chromatography. The optimized method yielded limits of detection and quantification of 2.1·10-1, 6.9·10-1 µg·L-1 for favipiravir, 1.8·10-3, 5.5·10-3 µg·L-1 for remdesivir, 1.9·10-3, 7.6·10-3 µg·L-1 for GS-441524, 2.9·10-3, 8.7·10-3 µg·L-1 for molnupiravir, and 1.3·10-1, 3.8·10-1 µg·L-1 for EIDD 1931. The method was first applied to compound stability testing at pH 2.8 and 9.7. At pH 2.8, remdesivir, GS-441524 and molnupiravir proved stable, whereas about 14% of EIDD-1931 and favipiravir were degraded. All five antiviral compounds were almost completely decomposed at pH 9.7. The application of the method was further demonstrated for potential transformation product detection on favipiravir ozonation monitoring.
Collapse
Affiliation(s)
- Indra Bartels
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Frankenring 20, 47798, Krefeld, Germany
- Faculty of Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Martin Jaeger
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Frankenring 20, 47798, Krefeld, Germany.
| | - Torsten C Schmidt
- Faculty of Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| |
Collapse
|
17
|
Zhang Z, He D, Zhao S, Qu J. Recent Developments in Semiconductor-Based Photocatalytic Degradation of Antiviral Drug Pollutants. TOXICS 2023; 11:692. [PMID: 37624197 PMCID: PMC10458903 DOI: 10.3390/toxics11080692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The prevalence of antiviral drugs (ATVs) has seen a substantial increase in response to the COVID-19 pandemic, leading to heightened concentrations of these pharmaceuticals in wastewater systems. The hydrophilic nature of ATVs has been identified as a significant factor contributing to the low degradation efficiency observed in wastewater treatment plants. This characteristic often necessitates the implementation of additional treatment steps to achieve the complete degradation of ATVs. Semiconductor-based photocatalysis has garnered considerable attention due to its promising potential in achieving efficient degradation rates and subsequent mineralization of pollutants, leveraging the inexhaustible energy of sunlight. However, in recent years, there have been few comprehensive reports that have thoroughly summarized and analyzed the application of photocatalysis for the removal of ATVs. This review commences by summarizing the types and occurrence of ATVs. Furthermore, it places a significant emphasis on delivering a comprehensive summary and analysis of the characteristics pertaining to the photocatalytic elimination of ATVs, utilizing semiconductor photocatalysts such as metal oxides, doped metal oxides, and heterojunctions. Ultimately, the review sheds light on the identified research gaps and key concerns, offering invaluable insights to steer future investigations in this field.
Collapse
Affiliation(s)
- Zhaocheng Zhang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China;
| | - Dongyang He
- School of Environment, Northeast Normal University, Changchun 130117, China;
| | - Siyu Zhao
- School of Environment, Northeast Normal University, Changchun 130117, China;
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, China;
| |
Collapse
|
18
|
Chukwu KB, Abafe OA, Amoako DG, Essack SY, Abia ALK. Antibiotic, Heavy Metal, and Biocide Concentrations in a Wastewater Treatment Plant and Its Receiving Water Body Exceed PNEC Limits: Potential for Antimicrobial Resistance Selective Pressure. Antibiotics (Basel) 2023; 12:1166. [PMID: 37508262 PMCID: PMC10376008 DOI: 10.3390/antibiotics12071166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Although the rise in antimicrobial resistance has been attributed mainly to the extensive and indiscriminate use of antimicrobials such as antibiotics and biocides in humans, animals and on plants, studies investigating the impact of this use on water environments in Africa are minimal. This study quantified selected antibiotics, heavy metals, and biocides in an urban wastewater treatment plant (WWTP) and its receiving water body in Kwazulu-Natal, South Africa, in the context of the predicted no-effect concentrations (PNEC) for the selection of antimicrobial resistance (AMR). Water samples were collected from the WWTP effluent discharge point and upstream and downstream from this point. Heavy metals were identified and quantified using the United States Environmental Protection Agency (US EPA) method 200.7. Biocides and antibiotic residues were determined using validated ultra-high-performance liquid chromatography with tandem mass spectrometry-based methods. The overall highest mean antibiotic, metal and biocide concentrations were observed for sulfamethoxazole (286.180 µg/L), neodymium (Nd; 27.734 mg/L), and benzalkonium chloride (BAC 12) (7.805 µg/L), respectively. In decreasing order per sampling site, the pollutant concentrations were effluent > downstream > upstream. This implies that the WWTP significantly contributed to the observed pollution in the receiving water. Furthermore, most of the pollutants measured recorded values exceeding the recommended predicted no-effect concentration (PNEC) values, suggesting that the microbes in such water environments were at risk of developing resistance due to the selection pressure exerted by these antimicrobials. Further studies are required to establish such a relationship.
Collapse
Affiliation(s)
- Kelechi B Chukwu
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Ovokeroye A Abafe
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Residue Laboratory, Agricultural Research Council-Onderstepoort Veterinary Research Campus, Onderstepoort 0110, South Africa
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Department of Integrative Biology and Bioinformatics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Akebe L K Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Environmental Research Foundation, Westville 3630, South Africa
| |
Collapse
|
19
|
Gwenzi W, Marumure J, Makuvara Z, Simbanegavi TT, Njomou-Ngounou EL, Nya EL, Kaetzl K, Noubactep C, Rzymski P. The pit latrine paradox in low-income settings: A sanitation technology of choice or a pollution hotspot? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163179. [PMID: 37003330 DOI: 10.1016/j.scitotenv.2023.163179] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Pit latrines are widely promoted to improve sanitation in low-income settings, but their pollution and health risks receive cursory attention. The present narrative review presents the pit latrine paradox; (1) the pit latrine is considered a sanitation technology of choice to safeguard human health, and (2) conversely, pit latrines are pollution and health risk hotspots. Evidence shows that the pit latrine is a 'catch-all' receptacle for household disposal of hazardous waste, including; (1) medical wastes (COVID-19 PPE, pharmaceuticals, placenta, used condoms), (2) pesticides and pesticide containers, (3) menstrual hygiene wastes (e.g., sanitary pads), and (4) electronic wastes (batteries). Pit latrines serve as hotspot reservoirs that receive, harbour, and then transmit the following into the environment; (1) conventional contaminants (nitrates, phosphates, pesticides), (2) emerging contaminants (pharmaceuticals and personal care products, antibiotic resistance), and (3) indicator organisms, and human bacterial and viral pathogens, and disease vectors (rodents, houseflies, bats). As greenhouse gas emission hotspots, pit latrines contribute 3.3 to 9.4 Tg/year of methane, but this could be an under-estimation. Contaminants in pit latrines may migrate into surface water, and groundwater systems serving as drinking water sources and pose human health risks. In turn, this culminates into the pit latrine-groundwater-human continuum or connectivity, mediated via water and contaminant migration. Human health risks of pit latrines, a critique of current evidence, and current and emerging mitigation measures are presented, including isolation distance, hydraulic liners/ barriers, ecological sanitation, and the concept of a circular bioeconomy. Finally, future research directions on the epidemiology and fate of contaminants in pit latrines are presented. The pit latrine paradox is not meant to downplay pit latrines' role or promote open defaecation. Rather, it seeks to stimulate discussion and research to refine the technology to enhance its functionality while mitigating pollution and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Sciences, School of Natural Sciences, Great Zimbabwe University, Off Old Great Zimbabwe Road, P.O. Box 1235, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Sciences, School of Natural Sciences, Great Zimbabwe University, Off Old Great Zimbabwe Road, P.O. Box 1235, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP 167, Zimbabwe
| | | | - Esther Laurentine Nya
- Faculty of Arts, Letters and Social Sciences, University of Maroua, P.O. Box 644, Maroua, Cameroon
| | - Korbinian Kaetzl
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany.
| | - Chicgoua Noubactep
- Centre for Modern Indian Studies (CeMIS), University of Göttingen, Waldweg 26, 37073 Göttingen, Germany; Department of Applied Geology, University of Göttingen, Goldschmidtstraße 3, D-37077 Göttingen, Germany; School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, 211100 Nanjing, PR China.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland.
| |
Collapse
|
20
|
Wang R, Luo J, Li C, Chen J, Zhu N. Antiviral drugs in wastewater are on the rise as emerging contaminants: A comprehensive review of spatiotemporal characteristics, removal technologies and environmental risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131694. [PMID: 37269566 DOI: 10.1016/j.jhazmat.2023.131694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Antiviral drugs (ATVs) are widely used to treat illnesses caused by viruses. Particularly, ATVs were consumed in such large quantities during the pandemic that high concentrations were detected in wastewater and aquatic environment. Since ATVs are not fully absorbed by the human or animal body, this results in large amounts of them being discharged into the sewage through urine or feces. Most ATVs can be degraded by microbes at wastewater treatment plants (WWTPs), while some ATVs either require deep treatment to reduce concentration and toxicity. Parent and metabolites residing in effluent posed a varying degree of risk when entering the aquatic environment, while increasing the potential of natural reservoirs for environmentally acquired antiviral drug resistance potential. There is a rising research on the behavior of ATVs in the environment has surged since the pandemic. In the context of multiple viral diseases worldwide, especially during the current COVID-19 pandemic, a comprehensive assessment of the occurrence, removal, and risk of ATVs is urgently needed. This review aims to discuss the fate of ATVs in WWTPs from various regions in the world with wastewater as the main analyzing object. The ultimate goal is to focus on ATVs with high ecological impact and regulate their use or develop advanced treatment technologies to mitigate the risk to the environment.
Collapse
Affiliation(s)
- Ruming Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinming Luo
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jiamiao Chen
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
21
|
Wang R, Yang W, Cai C, Zhong M, Dai X. Dose-response and type-dependent effects of antiviral drugs in anaerobic digestion of waste-activated sludge for biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27045-7. [PMID: 37209333 DOI: 10.1007/s11356-023-27045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
In the context of the COVID-19 pandemic, antiviral drugs (AVDs) were heavily excreted into wastewater and subsequently enriched in sewage sludge due to their widespread use. The potential ecological risks of AVDs have attracted increasing attention, but information on the effects of AVDs on sludge anaerobic digestion (AD) is limited. In this study, two typical AVDs (lamivudine and ritonavir) were selected to investigate the responses of AD to AVDs by biochemical methane potential tests. The results indicated that the effects of AVDs on methane production from sludge AD were dose- and type-dependent. The increased ritonavir concentration (0.05-50 mg/kg TS) contributed to an 11.27-49.43% increase in methane production compared with the control. However, methane production was significantly decreased at high lamivudine doses (50 mg/kg TS). Correspondingly, bacteria related to acidification were affected when exposed to lamivudine and ritonavir. Acetoclastic and hydrotropic methanogens were inhibited at a high lamivudine dose, while ritonavir enriched methylotrophic and hydrotropic methanogens. Based on the analysis of intermediate metabolites, the inhibition of lamivudine and the promotion of ritonavir on acidification and methanation were confirmed. In addition, the existence of AVDs could affect sludge properties. Sludge solubilization was inhibited when exposed to lamivudine and enhanced by ritonavir, perhaps caused by their different structures and physicochemical properties. Moreover, lamivudine and ritonavir could be partially degraded by AD, but 50.2-68.8% of AVDs remained in digested sludge, implying environmental risks.
Collapse
Affiliation(s)
- Rui Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Wan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Menghuan Zhong
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
22
|
Maged A, El-Fattah HA, Kamel RM, Kharbish S, Elgarahy AM. A comprehensive review on sustainable clay-based geopolymers for wastewater treatment: circular economy and future outlook. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:693. [PMID: 37204517 DOI: 10.1007/s10661-023-11303-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
In the present era of significant industrial development, the presence and dispersal of countless water contaminants in water bodies worldwide have rendered them unsuitable for various forms of life. Recently, the awareness of environmental sustainability for wastewater treatment has increased rapidly in quest of meeting the global water demand. Despite numerous conventional adsorbents on deck, exploring low-cost and efficient adsorbents is interesting. Clays and clays-based geopolymers are intensively used as natural, alternative, and promising adsorbents to meet the goals for combating climate change and providing low carbon, heat, and power. In this narrative work, the present review highlights the persistence of some inorganic/organic water pollutants in aquatic bodies. Moreover, it comprehensively summarizes the advancement in the strategies associated with synthesizing clays and their based geopolymers, characterization techniques, and applications in water treatment. Furthermore, the critical challenges, opportunities, and future prospective regarding the circular economy are additionally outlined. This review expounded on the ongoing research studies for leveraging these eco-friendly materials to address water decontamination. The adsorption mechanisms of clays-based geopolymers are successfully presented. Therefore, the present review is believed to deepen insights into wastewater treatment using clays and clays-based geopolymers as a groundbreaking aspect in accord with the waste-to-wealth concept toward broader sustainable development goals.
Collapse
Affiliation(s)
- Ali Maged
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Hadeer Abd El-Fattah
- Chemistry Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Rasha M Kamel
- Chemistry Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Sherif Kharbish
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Ahmed M Elgarahy
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
23
|
Almeida A, De Mello-Sampayo C, Lopes A, Carvalho da Silva R, Viana P, Meisel L. Predicted Environmental Risk Assessment of Antimicrobials with Increased Consumption in Portugal during the COVID-19 Pandemic; The Groundwork for the Forthcoming Water Quality Survey. Antibiotics (Basel) 2023; 12:antibiotics12040652. [PMID: 37107014 PMCID: PMC10135311 DOI: 10.3390/antibiotics12040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The environmental release of antimicrobial pharmaceuticals is an imminent threat due to ecological impacts and microbial resistance phenomena. The recent COVID-19 outbreak will likely lead to greater loads of antimicrobials in the environment. Thus, identifying the most used antimicrobials likely to pose environmental risks would be valuable. For that, the ambulatory and hospital consumption patterns of antimicrobials in Portugal during the COVID-19 pandemic (2020–2021) were compared with those of 2019. A predicted risk assessment screening approach based on exposure and hazard in the surface water was conducted, combining consumption, excretion rates, and ecotoxicological/microbiological endpoints in five different regions of Portugal. Among the 22 selected substances, only rifaximin and atovaquone demonstrated predicted potential ecotoxicological risks for aquatic organisms. Flucloxacillin, piperacillin, tazobactam, meropenem, ceftriaxone, fosfomycin, and metronidazole showed the most significant potential for antibiotic resistance in all analysed regions. Regarding the current screening approach and the lack of environmental data, it is advisable to consider rifaximin and atovaquone in subsequent water quality surveys. These results might support the forthcoming monitorisation of surface water quality in a post-pandemic survey.
Collapse
Affiliation(s)
- Anabela Almeida
- Centro de Investigação Vasco da Gama (CIVG), Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Campus Universitário de Lordemão, 3020-210 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Universidade de Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.A.); (L.M.)
| | - Cristina De Mello-Sampayo
- Laboratory of Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Lopes
- Agência Portuguesa do Ambiente (APA), Rua da Murgueira, 9, 2610-124 Amadora, Portugal
| | - Rita Carvalho da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Biosafety Unit, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Paula Viana
- Agência Portuguesa do Ambiente (APA), Rua da Murgueira, 9, 2610-124 Amadora, Portugal
| | - Leonor Meisel
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.Ulisboa), 1600-277 Lisbon, Portugal
- Correspondence: (A.A.); (L.M.)
| |
Collapse
|
24
|
Nasri-Nasrabadi B, Czech B, Yadav R, Shirvanimoghaddam K, Krzyszczak A, Unnikrishnan V, Naebe M. Radially aligned hierarchical N-doped porous carbon beads derived from oil-sand asphaltene for long-life water filtration and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160896. [PMID: 36516923 DOI: 10.1016/j.scitotenv.2022.160896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The application of waste-derived highly efficient adsorbent for organic pollutants removal from water and wastewater is presented. Highly porous carbon beads with radially aligned macrochannels were prepared from asphaltene. Well-ordered inwardly aligned macrovoids favored solute diffusion and maximized the liquid accommodation capacity. A further N-doping could modulate the sorbent hydrophilicity leading to an outstanding absorption performance for a range of organic solvents and oily chemicals. N-doped carbon beads were effective sorbents of lopinavir (LNV) and ritonavir (RNV) from water and wastewater. The process of sorption was fast, and the highest removal was noted for RNV than LPV. N-doping favored LNV and RNV adsorption due to the increased porous structure of N-doped asphaltene beads. The chemisorption of both LPV and RTV was a rate-limiting step. The presence of co-pollutants in treated wastewater enhanced LPV and RNV removal and an up to 470 % increase was noted. The presence of LPV or RTV in distilled water was not toxic to Aliivibrio fischeri or even can stimulate their growth. However, after the adsorption process, the solution of RTV reduced its toxicity significantly and the final solution was not toxic. The opposite effect was noted for LPV. Given the repeatability, high removal performance, and cost-effectiveness of the asphaltene-based carbon microtubes when compared to other well-known sorbents such as carbon nanotubes, they demonstrated great potential as a low-cost and effective agent for long-life water filtration and wastewater treatment.
Collapse
Affiliation(s)
- Bijan Nasri-Nasrabadi
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Vic 3216, Australia
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland
| | - Ram Yadav
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Vic 3216, Australia
| | | | - Agnieszka Krzyszczak
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland
| | - Vishnu Unnikrishnan
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Vic 3216, Australia
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Vic 3216, Australia.
| |
Collapse
|
25
|
Baluchová S, Mamaloukou A, Koldenhof RH, Buijnsters JG. Modification-free boron-doped diamond as a sensing material for direct and reliable detection of the antiretroviral drug nevirapine. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
26
|
Ngwenya N, Mahlambi P. Methods optimization and application: Solid phase extraction, Ultrasonic extraction and Soxhlet extraction for the determination of antiretroviral drugs in river water, wastewater, sludge, soil and sediment. J Pharm Biomed Anal 2023; 230:115358. [PMID: 37044007 DOI: 10.1016/j.jpba.2023.115358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
The continuous release of antiretroviral drugs into the environmental has resulted in the interest to assess their occurrence in various environmental matrices. Their presence has led to antiretroviral drugs being considered the pollutants of concern due to their possible alterations of the ecosystem as well as the antiviral resistance that may develop upon their unintentional consumption. Therefore, in this work, solid phase extraction (SPE), ultrasonic extraction (UE), Soxhlet extration (SE) and liquid chromatography coupled to photodiode array detector (LC-PDA) methods have been optimized and validated. They were then applied for the simultaneous determination of abacavir, nevirapine and efavirenz antiretroviral drugs in wastewater, river water, sludge, soil and sediments. The percentage recoveries ranged from 71% to 112% for SPE, 88 - 108% for SE and 61 - 104% for UE. Good precision with a relative standard deviation less than 20% in all compounds for all methods was obtained. The LODs and LOQs ranged between 0.68 and 0.77 µg/L and 2.1-2.4 µg/L for SPE; 0.8-0.9 µg/kg and 2.3-2.8 µg/kg for SE and 1.6-2.8 µg/kg and 4.9 - 7.0 µg/kg for UE, respectively. The concentrations ranged from <lod - 102 µg/L, <lod - 814 µg/L, and <lod - 6759 µg/L, <lod - 138 µg/g, <lod - 98.9 µg/g, in river water, wastewater, sludge, soil and sediment samples, respectively. Abacavir was dominant in water while efavirenz was dominant in soil/sediments. The results showed that SE is more sensitive and more accurate than UE, hence it can be recommended for routine analysis despite its longer extraction times. The percentage removal efficiency ranged from 44% to 87% for nevirapine, 6-53% for efavirenz, and 75-91% for abacavir which indicates that these compounds were not completely removed during the WWTP processes, hence they ended up in river waters.
Collapse
Affiliation(s)
- Nduduzo Ngwenya
- School of Chemistry and Physics, University of KwaZulu Natal, Private Bag X 01, Pietermaritzburg 3209, South Africa
| | - Precious Mahlambi
- School of Chemistry and Physics, University of KwaZulu Natal, Private Bag X 01, Pietermaritzburg 3209, South Africa.
| |
Collapse
|
27
|
Kunene PN, Mahlambi PN. Case study on antiretroviral drugs uptake from soil irrigated with contaminated water: Bio-accumulation and bio-translocation to roots, stem, leaves, and fruits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121004. [PMID: 36608725 DOI: 10.1016/j.envpol.2023.121004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study aimed to evaluate the potential of uptake of the commonly used antiretroviral drugs (ARVDs) in South Africa (abacavir, nevirapine, and efavirenz) by vegetable plants (beetroot, spinach, and tomato) from contaminated soil culture. The study results showed that all the studied vegetables have the potential to take up abacavir, nevirapine, and efavirenz from contaminated soil, be absorbed by the root, and translocate them to the aerial part of the plants. The total percentage of ARVDs found in the individual plant was mainly attributed to abacavir which contributed 53% in beetroot and 48% in spinach, while efavirenz (42%) was the main contributor in tomato. Abacavir was found at high concentrations to a maximum of 40.21 μg/kg in the spinach root, 18.43 μg/kg in the spinach stem, and 6.77 μg/kg in the spinach soil, while efavirenz was the highest concentrations, up to 35.44 μg/kg in tomato leaves and 8.86 μg/kg in tomato fruits. Spinach roots accumulated more ARVDs than beetroot and tomato however, the concentrations were not statistically different. Hydrophobicity was the main effect on the linearity, accumulation, and translocation of ARVDs. This study advances knowledge on the fate of ARVDs in agroecosystems, particularly in plant root - ARVD interaction and the resulting potentially toxic effects on plants. These results suggest that the quality of water used for crop irrigation needs to be assessed prior to irrigation to avoid vegetable plant pollution as contaminated water results in the contaminants uptake by plants. This may lead to the transfer of pollutants to the edible crops parts of and thus be unintentionally consumed by humans. More studies need to be continuously conducted to evaluate ARVDs bioaccumulation and their mechanism of uptake by other vegetables. The use of the pot-plant system can be recommended because it closely relates to the agricultural world.
Collapse
Affiliation(s)
- P N Kunene
- Department of Chemistry, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - P N Mahlambi
- Department of Chemistry, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
28
|
Evgenidou Ε, Vasilopoulou K, Ioannidou E, Koronaiou L, Nannou C, Trikkaliotis D, Bikiaris D, Kyzas G, Lambropoulou D. Photocatalytic Degradation of the Antiviral Drug Abacavir Using Titania-Graphene Oxide Nanocomposites in Landfill Leachate. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
29
|
Reddy K, Renuka N, Kumari S, Ratha SK, Moodley B, Pillay K, Bux F. Assessing the potential for nevirapine removal and its ecotoxicological effects on Coelastrella tenuitheca and Tetradesmus obliquus in aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120736. [PMID: 36460185 DOI: 10.1016/j.envpol.2022.120736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Remediation of the antiretroviral (ARV) drug, nevirapine (NVP) has attracted considerable scientific attention in recent years due to its frequent detection and persistence in aquatic environments and potential hazards to living organisms. Algae-based technologies have been emerging as an environmentally friendly option for the removal of pharmaceutical compounds, but their ARV drug removal potential has not been fully explored yet. This study aimed to explore the ecotoxicity and removal potential of NVP by two microalgal species, Coelastrella tenuitheca and Tetradesmus obliquus. Lower environmental concentrations (up to 200 ng L-1) of NVP enhanced the microalgal growth, and the highest dry cell weight of 941.27 mg L-1 was obtained in T. obliquus at 50 ng L-1 NVP concentration. Both microalgae showed varying removal efficiencies (19.53-74.56%) when exposed to NVP concentration levels of up to 4000 ng L-1. At the late log phase (day 8), T. obliquus removed the highest percentage of NVP (74.56%), while C. tenuitheca removed 48% at an initial NVP concentration of 50 ng L-1. Photosynthetic efficiency (Fv/Fm and rETR) of the two microalgal species, however, was not affected by environmental concentrations of NVP (up to 4000 ng L-1) at the mid log phase of growth. SEM analysis demonstrated that both algal species produced distinct ridges on their cell surfaces after NVP uptake. In the ecotoxicity study, the calculated IC50 values of NVP (0-100 mg L-1) after 96 h of exposure were 23.45 mg L-1 (C. tenuitheca) and 18.20 mg L-1 (T. obliquus). The findings of the present study may contribute to a better understanding of the environmental hazards associated with NVP and the efficacy of microalgae in removing this pharmaceutical from aquatic environments.
Collapse
Affiliation(s)
- Karen Reddy
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sachitra Kumar Ratha
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa; Phycology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Brenda Moodley
- School of Chemistry and Physics, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban, 4000, South Africa
| | - Kriveshin Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
30
|
Venter P, van Onselen R. Evaluating the "wrong-way-round" electrospray ionization of antiretroviral drugs for improved detection sensitivity. Anal Bioanal Chem 2023; 415:1187-1193. [PMID: 36637494 PMCID: PMC9899738 DOI: 10.1007/s00216-022-04499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
The presence of antiretroviral drugs (ARVDs) in the aquatic environment poses a significant health risk to the ecosystem. The dilution of these compounds during wastewater treatment processes, followed by discharge into the environment, results in extremely low concentrations in the range of ng/L. Therefore, to enable detection of these low concentrations, it is important to determine the most efficient electrospray ionization (ESI) mode using the right mobile phase modifier and to establish a selective extraction procedure. In this study, we compared the ESI intensity in the positive and negative mode using both formic acid (FA) and ammonium hydroxide (NH4OH) as mobile phase modifiers. The results revealed a phenomenon known as the "wrong-way-round" (WWR) ESI in which high intensity [M + H]+ ions were detected under basic conditions using NH4OH as modifier and, similarly, high intensity [M-H]- ions were detected under acidic conditions using FA as modifier. Furthermore, mixed-mode strong cation (MCX) and mixed-mode strong anion (MAX) exchange sorbents were evaluated for extraction recoveries, which yielded extraction recoveries between 60 and 100%. Finally, the recoveries obtained using mixed-mode ion exchange sorbents compared to ion production during the ESI process provide evidence that ions produced in solution do not necessarily reflect the ions that are produced during the ESI process. Based on the results of this study, it is recommended to evaluate the optimal ionization mode under basic and acidic conditions, instead of defaulting to the use of acidic modifiers with positive ion detection.
Collapse
Affiliation(s)
- Pieter Venter
- grid.415021.30000 0000 9155 0024Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa
| | - Rianita van Onselen
- grid.415021.30000 0000 9155 0024Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa
| |
Collapse
|
31
|
Shehu Z, Nyakairu GWA, Tebandeke E, Odume ON. Overview of African water resources contamination by contaminants of emerging concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158303. [PMID: 36030854 DOI: 10.1016/j.scitotenv.2022.158303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This review look at several classes of contaminants of emerging concern (CECs) in conventional and non-conventional water resources across the African continent's five regions. According to the review, pharmaceuticals, endocrine-disrupting chemicals, personal care products, pesticides, per- and polyfluoroalkyl compounds, and microplastics were found in conventional and non-conventional water resources. Most conventional water resources, such as rivers, streams, lakes, wells, and boreholes, are used as drinking water sources. Non-conventional water sources, such as treated wastewater (effluents), are used for domestic and agricultural purposes. However, CECs remain part of the treated wastewater, which is being discharged to surface water or used for agriculture. Thus, wastewater (effluent) is the main contributor to the pollution of other water resources. For African countries, the prevalence of rising emerging pollutants in water poses a severe environmental threat. There are different adverse effects of CECs, including the development of antibiotic-resistant bacteria, ecotoxicological effects, and several endocrine disorders. Therefore, this needs the urgent attention of the African Union, policymakers, Non-Governmental Organizations, and researchers to come together and tackle the problem.
Collapse
Affiliation(s)
- Zaccheus Shehu
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda; Department of Chemistry, Gombe State University, P.M. B. 127, Gombe, Nigeria
| | | | - Emmanuel Tebandeke
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | |
Collapse
|
32
|
Mokgope H, Leudjo Taka A, Klink MJ, Pakade VE, Walmsley T. Quantification of some ARVs' removal efficiency from wastewater using a moving bed biofilm reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2928-2942. [PMID: 36515197 DOI: 10.2166/wst.2022.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To date, in South Africa alone, there are an estimated 4.5 million people receiving antiretroviral (ARV) therapy. This places South Africa as the country with the largest ARV therapy programme in the world. As a result, there are an increasing number of reports on the occurrence of ARVs in South African waters. Achieving efficient and bio-friendly methods for the removal of these pollutants is considered as a concern for environmental researchers. This study aims at studying the efficiency of a moving bed biofilm reactor (MBBR) system for removing ARVs from wastewater. A continuous-flow laboratory scale system was designed, built, installed, and operated at a carrier filling rate of 30%, an organic loading rate of 0.6 kg COD/m3.d-1 OLR, a hydraulic retention time of 18h, and a 27.8 mL/min flow rate. The systems were monitored over time for the elimination of conventional wastewater parameters i.e., Biological Oxygen Demand, Chemical Oxygen Demand, and nutrients. The results showed that the MBBR system as a bio-friendly method has high efficiency in removing Nevirapine, Tenofovir, Efavirenz, Ritonavir and Emtricitabine from the synthetic influent sample with an average removal of 62%, 74%, 94%, 94% and 95%, respectively, after 10 days of operation.
Collapse
Affiliation(s)
- Herman Mokgope
- Department of Biotechnology, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa
| | - Anny Leudjo Taka
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa E-mail:
| | - Michael John Klink
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa E-mail:
| | - Vusumzi Emmanuel Pakade
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa E-mail:
| | - Tara Walmsley
- Department of Biotechnology, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa
| |
Collapse
|
33
|
Tyhali A, Forbes PB. N − nitrosamines in surface and drinking waters: An African status report. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Tito GS, Abolanle AS, Kuvarega AT, Mamba BB, Feleni U. Nickel Selenide Quantum dot Reactor for Electro‐oxidation of Nevirapine in Wastewater. ChemistrySelect 2022. [DOI: 10.1002/slct.202202294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ginny S. Tito
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1710 Johannesburg South Africa
| | - Adekunle S. Abolanle
- Obafemi Awolowo University Department of Chemistry Ibadan Road 220005, lle-lfe Osun Nigeria
| | - Alex T. Kuvarega
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1710 Johannesburg South Africa
| | - Bhekie B. Mamba
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1710 Johannesburg South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1710 Johannesburg South Africa
| |
Collapse
|
35
|
Trawiński J, Wroński M, Skibiński R. Efficient removal of anti-HIV drug - maraviroc from natural water by peroxymonosulfate and TiO 2 photocatalytic oxidation: Kinetic studies and identification of transformation products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115735. [PMID: 35863307 DOI: 10.1016/j.jenvman.2022.115735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
In this study photochemical transformation of the antiretroviral pharmaceutical maraviroc under the simulated UV-Vis radiation was presented. The drug was shown to be extremely photo-resistant, with a half-life over 250 h, which is particularly significant, considering its presence in the aquatic environments. Addition of the natural river water matrix substantially increased the degradation rate, albeit the process led to formation of numerous phototransformation products. Due to high photostability and presumable environmental persistence of maraviroc, a photocatalytic method of its elimination was proposed. Although titanium dioxide alone presented acceptable results, its combination with peroxymonosulfate enormously accelerated the degradation process, increasing it over 67 000 times in comparison with the direct photolysis. Substitution of ultrapure water with river water resulted in inhibition of the PMS-driven processes, however the decomposition efficiency was still very high. Noteworthy, majority of the identified photoproducts were still present after termination of irradiation in all the experiments, which may indicate necessity of ecotoxicological assessment of those compounds.
Collapse
Affiliation(s)
- Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Michał Wroński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland.
| |
Collapse
|
36
|
Eryildiz B, Yavuzturk Gul B, Koyuncu I. A sustainable approach for the removal methods and analytical determination methods of antiviral drugs from water/wastewater: A review. JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103036. [PMID: 35966450 PMCID: PMC9359512 DOI: 10.1016/j.jwpe.2022.103036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 05/05/2023]
Abstract
In the last years, antiviral drugs especially used for the treatment of COVID-19 have been considered emerging contaminants because of their continuous occurrence and persistence in water/wastewater even at low concentrations. Furthermore, as compared to antiviral drugs, their metabolites and transformation products of these pharmaceuticals are more persistent in the environment. They have been found in environmental matrices all over the world, demonstrating that conventional treatment technologies are unsuccessful for removing them from water/wastewater. Several approaches for degrading/removing antiviral drugs have been studied to avoid this contamination. In this study, the present level of knowledge on the input sources, occurrence, determination methods and, especially, the degradation and removal methods of antiviral drugs are discussed in water/wastewater. Different removal methods, such as conventional treatment methods (i.e. activated sludge), advanced oxidation processes (AOPs), adsorption, membrane processes, and combined processes, were evaluated. In addition, the antiviral drugs and these metabolites, as well as the transformation products created as a result of treatment, were examined. Future perspectives for removing antiviral drugs, their metabolites, and transformation products were also considered.
Collapse
Affiliation(s)
- Bahriye Eryildiz
- Istanbul Technical University, Environmental Engineering Department, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Environmental Engineering Department, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
37
|
Sharma M, Yadav A, Dubey KK, Tipple J, Das DB. Decentralized systems for the treatment of antimicrobial compounds released from hospital aquatic wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156569. [PMID: 35690196 DOI: 10.1016/j.scitotenv.2022.156569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
In many developing countries, untreated hospital effluents are discharged and treated simultaneously with municipal wastewater. However, if the hospital effluents are not treated separately, they pose concerning health risks due to the possible transport of the antimicrobial genes and microbes in the environment. Such effluent is considered as a point source for a number of potentially infectious microorganisms, waste antimicrobial compounds and other contaminants that could promote antimicrobial resistance development. The removal of these contaminants prior to discharge reduces the exposure of antimicrobials to the environment and this should lower the risk of superbug development. At an effluent discharge site, suitable pre-treatment of wastewater containing antimicrobials could maximise the ecological impact with potentially reduced risk to human health. In addressing these points, this paper reviews the applications of decentralized treatment systems toward reducing the concentration of antimicrobials in wastewater. The most commonly used techniques in decentralized wastewater treatment systems for onsite removal of antimicrobials were discussed and evidence suggests that hybrid techniques should be more useful for the efficient removal of antimicrobials. It is concluded that alongside the cooperation of administration departments, health industries, water treatment authorities and general public, decentralized treatment technology can efficiently enhance the removal of antimicrobial compounds, thereby decreasing the concentration of contaminants released to the environment that could pose risks to human and ecological health due to development of antimicrobial resistance in microbes.
Collapse
Affiliation(s)
- Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Joshua Tipple
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
38
|
Ojo BO, Arotiba OA, Mabuba N. Evaluation of FTO-BaTiO3/NiTiO3 electrode towards sonoelectrochemical degradation of emerging pharmaceutical contaminants in water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Fernández LP, Brasca R, Repetti MR, Attademo AM, Peltzer PM, Lajmanovich RC, Culzoni MJ. Bioaccumulation of abacavir and efavirenz in Rhinella arenarum tadpoles after exposure to environmentally relevant concentrations. CHEMOSPHERE 2022; 301:134631. [PMID: 35443209 DOI: 10.1016/j.chemosphere.2022.134631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Antiretrovirals are pharmaceuticals used in the treatment of the human immunodeficiency virus; they are contaminants of emerging concern that have received considerable attention in recent decades due to their potential negative environmental effects. Data on the bioaccumulation and possible environmental risks posed by these drugs to aquatic organisms are very scarce. Therefore, the aim of this study was to evaluate the bioaccumulation of abacavir and efavirenz in Rhinella arenarum tadpoles subjected to acute static toxicity tests (96 h) at environmentally relevant concentrations. The analytical procedure consisted of the development and optimization of a method involving ultra-high performance liquid chromatography with tandem mass spectrometry detection. The instrumental conditions, optimized by design of experiments using the response surface methodology, yielded limits of detection of 0.3 μg L-1 for abacavir and 0.9 μg L-1 for efavirenz; and limits of quantification of 1.9 μg L-1 for abacavir and 5.6 μg L-1 for efavirenz. Subsequently, the bioaccumulation of the pharmaceutical drugs in tadpoles was evaluated at three exposure concentrations. Efavirenz displayed the highest bioaccumulation levels. This study shows the bioaccumulation potential of abacavir and efavirenz in amphibian tadpoles at exposure concentrations similar to those already detected in the environment, indicating an ecological risk for R. arenarum and probably other aquatic organisms exposed to these drugs in water bodies.
Collapse
Affiliation(s)
- Lesly Paradina Fernández
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Romina Brasca
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| | - Maria Rosa Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.
| |
Collapse
|
40
|
Method optimisation and application based on solid phase extraction of non steroidal anti-inflammatory drugs, antiretroviral drugs, and a lipid regulator from coastal areas of Durban, South Africa. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AbstractThis study presents an optimized method that is applicable in monitoring the occurrence of pharmaceuticals in a wide range of aquatic environments. The optimised Solid Phase Extraction method is based on Bond Elut Plexa cartridges for the identification and quantification of three non-steroidal anti-inflammatory drugs, three antiretroviral drugs and a lipid regulator in the coastal area of Durban city, South Africa covering four seasons. The extracted compounds are qualitatively and quantitatively detected by a high-performance liquid phase chromatographic instrument coupled to a photodiode array detector. The recoveries range from 62 to 110% with a Relative Standard Deviation of 0.56−4.68%, respectively, for the determination of emtricitabine, tenofovir, naproxen, diclofenac, ibuprofen, efavirenz, and gemfibrozil. The analytical method is validated by spiking estuarine water samples with 5 µg L− 1 of a mixture containing the target pharmaceuticals and the matrix detection limit is established to be 0.62–1.78 µg L− 1 for the target compounds. The optimized method is applied to seasonal monitoring of pharmaceuticals at chosen study sites from winter and spring of 2019 and summer and autumn of 2020. The results indicate the concentration of the pharmaceuticals studied varies with the type of aquatic environment and season.
Collapse
|
41
|
Mahaye N, Musee N. Effects of Two Antiretroviral Drugs on the Crustacean Daphnia magna in River Water. TOXICS 2022; 10:toxics10080423. [PMID: 36006102 PMCID: PMC9416331 DOI: 10.3390/toxics10080423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Antiretroviral (ARVs) drugs are used to manage the human immunodeficiency virus (HIV) disease and are increasingly being detected in the aquatic environment. However, little is known about their effects on non-target aquatic organisms. Here, Daphnia magna neonates were exposed to Efavirenz (EFV) and Tenofovir (TFV) ARVs at 62.5–1000 µg/L for 48 h in river water. The endpoints assessed were mortality, immobilization, and biochemical biomarkers (catalase (CAT), glutathione S-transferase (GST), and malondialdehyde (MDA)). No mortality was observed over 48 h. Concentration- and time-dependent immobilization was observed for both ARVs only at 250–1000 µg/L after 48 h, with significant immobilization observed for EFV compared to TFV. Results for biochemical responses demonstrated that both ARVs induced significant changes in CAT and GST activities, and MDA levels, with effects higher for EFV compared to TFV. Biochemical responses were indicative of oxidative stress alterations. Hence, both ARVs could potentially be toxic to D. magna.
Collapse
|
42
|
Czech B, Krzyszczak A, Boguszewska-Czubara A, Opielak G, Jośko I, Hojamberdiev M. Revealing the toxicity of lopinavir- and ritonavir-containing water and wastewater treated by photo-induced processes to Danio rerio and Allivibrio fischeri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153967. [PMID: 35182634 PMCID: PMC8849850 DOI: 10.1016/j.scitotenv.2022.153967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 05/30/2023]
Abstract
In coronavirus disease 2019 (COVID-19), among many protocols, lopinavir and ritonavir in individual or combined forms with other drugs have been used, causing an increase in the concentration of antiviral drugs in the wastewater and hospital effluents. In conventional wastewater treatment plants, the removal efficiency of various antiviral drugs is estimated to be low (<20%). The high values of predicted no-effect concentration (PNEC) for lopinavir and ritonavir (in ng∙L-1) reveal their high chronic toxicity to aquatic organisms. This indicates that lopinavir and ritonavir are current priority antiviral drugs that need to be thoroughly monitored and effectively removed from any water and wastewater samples. In this study, we attempt to explore the impacts of two photo-induced processes (photolysis and photocatalysis) on the toxicity of treated water and wastewater samples containing lopinavir and ritonavir to zebrafish (Danio rerio) and marine bacteria (Allivibrio fischeri). The obtained results reveal that traces of lopinavir in water under photo-induced processes may cause severe problems for Danio rerio, including pericardial edema and shortening of the tail, affecting its behavior, and for Allivibrio fischeri as a result of the oxygen-depleted environment, inflammation, and oxidative stress. Hence, lopinavir must be removed from water and wastewater before being in contact with light. In contrast, the photo-induced processes of ritonavir-containing water and wastewater reduce the toxicity significantly. This shows that even if the physicochemical parameters of water and wastewater are within the standard requirements/limits, the presence of traces of antiviral drugs and their intermediates can affect the survival and behavior of Danio rerio and Allivibrio fischeri. Therefore, the photo-induced processes and additional treatment of water and wastewater containing ritonavir can minimize its toxic effect.
Collapse
Affiliation(s)
- Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland.
| | - Agnieszka Krzyszczak
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Grzegorz Opielak
- Chair and Department of Human Physiology, Medical University of Lublin, ul. Radziwillowska 11, 20-080 Lublin, Poland
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka Street 15, 20-950 Lublin, Poland
| | - Mirabbos Hojamberdiev
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
43
|
Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front Microbiol 2022; 13:869332. [PMID: 35558129 PMCID: PMC9087044 DOI: 10.3389/fmicb.2022.869332] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of emerging contaminants in the environment, such as pharmaceuticals, is a growing global concern. The excessive use of medication globally, together with the recalcitrance of pharmaceuticals in traditional wastewater treatment systems, has caused these compounds to present a severe environmental problem. In recent years, the increase in their availability, access and use of drugs has caused concentrations in water bodies to rise substantially. Considered as emerging contaminants, pharmaceuticals represent a challenge in the field of environmental remediation; therefore, alternative add-on systems for traditional wastewater treatment plants are continuously being developed to mitigate their impact and reduce their effects on the environment and human health. In this review, we describe the current status and impact of pharmaceutical compounds as emerging contaminants, focusing on their presence in water bodies, and analyzing the development of bioremediation systems, especially mycoremediation, for the removal of these pharmaceutical compounds with a special focus on fungal technologies.
Collapse
Affiliation(s)
- Maite Ortúzar
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain
| | - Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Finland and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland.,Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe, Saarbrücken, Germany.,University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Winnipeg, MB, Canada
| | - Darío Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Jesús González-López
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Elisabet Aranda
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
44
|
Hojamberdiev M, Czech B, Wasilewska A, Boguszewska-Czubara A, Yubuta K, Wagata H, Daminova SS, Kadirova ZC, Vargas R. Detoxifying SARS-CoV-2 antiviral drugs from model and real wastewaters by industrial waste-derived multiphase photocatalysts. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128300. [PMID: 35077970 PMCID: PMC8767938 DOI: 10.1016/j.jhazmat.2022.128300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/01/2022] [Accepted: 01/16/2022] [Indexed: 05/28/2023]
Abstract
The use of antiviral drugs has surged as a result of the COVID-19 pandemic, resulting in higher concentrations of these pharmaceuticals in wastewater. The degradation efficiency of antiviral drugs in wastewater treatment plants has been reported to be too low due to their hydrophilic nature, and an additional procedure is usually necessary to degrade them completely. Photocatalysis is regarded as one of the most effective processes to degrade antiviral drugs. The present study aims at synthesizing multiphase photocatalysts by a simple calcination of industrial waste from ammonium molybdate production (WU photocatalysts) and its combination with WO3 (WW photocatalysts). The X-ray diffraction (XRD) results confirm that the presence of multiple crystalline phases in the synthesized photocatalysts. UV-Vis diffuse reflectance spectra reveal that the synthesized multiphase photocatalysts absorb visible light up to 620 nm. Effects of calcination temperature of industrial waste (550-950 °C) and WO3 content (0-100%) on photocatalytic activity of multiphase photocatalysts (WU and WW) for efficient removal of SARS-CoV-2 antiviral drugs (lopinavir and ritonavir) in model and real wastewaters are studied. The highest k1 value is observed for the photocatalytic removal of ritonavir from model wastewater using WW4 (35.64 ×10-2 min-1). The multiphase photocatalysts exhibit 95% efficiency in the photocatalytic removal of ritonavir within 15 of visible light irradiation. In contrast, 60 min of visible light irradiation is necessary to achieve 95% efficiency in the photocatalytic removal of lopinavir. The ecotoxicity test using zebrafish (Danio rerio) embryos shows no toxicity for photocatalytically treated ritonavir-containing wastewater, and the contrary trend is observed for photocatalytically treated lopinavir-containing wastewater. The synthesized multiphase photocatalysts can be tested and applied for efficient degradation of other SARS-CoV-2 antiviral drugs in wastewater in the future.
Collapse
Affiliation(s)
- Mirabbos Hojamberdiev
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland.
| | - Anna Wasilewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, Lublin 20-093, Poland
| | - Kunio Yubuta
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hajime Wagata
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
| | - Shahlo S Daminova
- Department of Inorganic Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan; Uzbekistan-Japan Innovation Center of Youth, University Str. 2B, Tashkent 100095, Uzbekistan
| | - Zukhra C Kadirova
- Department of Inorganic Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan; Uzbekistan-Japan Innovation Center of Youth, University Str. 2B, Tashkent 100095, Uzbekistan
| | - Ronald Vargas
- Instituto Tecnológico de Chascomús (INTECH) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) / Universidad Nacional de San Martín (UNSAM), Avenida Intendente Marino, Km 8,2, B7130IWA Chascomús, Provincia de Buenos Aires, Argentina
| |
Collapse
|
45
|
Electrospun carbon nanofibres: Preparation, characterization and application for adsorption of pollutants from water and air. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Omotola EO, Oluwole AO, Oladoye PO, Olatunji OS. Occurrence, detection and ecotoxicity studies of selected pharmaceuticals in aqueous ecosystems- a systematic appraisal. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103831. [PMID: 35151848 DOI: 10.1016/j.etap.2022.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical compounds (PCs) have globally emerged as a significant group of environmental contaminants due to the constant detection of their residues in the environment. The main scope of this review is to fill the void of information on the knowledge on the African occurrence of selected PCs in environmental matrices in comparison with those outside Africa and their respective toxic actions on both aquatic and non-aquatic biota through ecotoxicity bioassays. To achieve this objective, the study focused on commonly used and detected pharmaceutical drugs (residues). Based on the conducted literature survey, Africa has the highest levels of ciprofloxacin, sulfamethoxazole, lamivudine, acetaminophen, and diclofenac while Europe has the lowest of all these PC residues in her physical environments. For ecotoxicity bioassays, the few data available are mostly on individual groups of pharmaceuticals whereas there is sparsely available data on their combined forms.
Collapse
Affiliation(s)
- Elizabeth Oyinkansola Omotola
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa; Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria.
| | | | - Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States
| | | |
Collapse
|
47
|
Morales-Paredes CA, Rodríguez-Díaz JM, Boluda-Botella N. Pharmaceutical compounds used in the COVID-19 pandemic: A review of their presence in water and treatment techniques for their elimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152691. [PMID: 34974020 PMCID: PMC8717703 DOI: 10.1016/j.scitotenv.2021.152691] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 05/10/2023]
Abstract
During the COVID-19 pandemic, high consumption of antivirals, antibiotics, antiparasitics, antiprotozoals, and glucocorticoids used in the treatment of this virus has been reported. Conventional treatment systems fail to efficiently remove these contaminants from water, becoming an emerging concern from the environmental field. Therefore, the objective of the present work is to address the current state of the literature on the presence and removal processes of these drugs from water bodies. It was found that the concentration of most of the drugs used in the treatment of COVID-19 increased during the pandemic in water bodies. Before the pandemic, Azithromycin concentrations in surface waters were reported to be in the order of 4.3 ng L-1, and during the pandemic, they increased up to 935 ng L-1. Laboratory scale studies conclude that adsorption and advanced oxidation processes (AOPs) can be effective in the removal of these drugs. Up to more than 80% removal of Azithromycin, Chloroquine, Ivermectin, and Dexamethasone in aqueous solutions have been reported using these processes. Pilot-scale tests achieved 100% removal of Azithromycin from hospital wastewater by adsorption with powdered activated carbon. At full scale, treatment plants supplemented with ozonation and artificial wetlands removed all Favipiravir and Azithromycin, respectively. It should be noted that hybrid technologies can improve removal rates, process kinetics, and treatment cost. Consequently, the development of new materials that can act synergistically in technically and economically sustainable treatments is required.
Collapse
Affiliation(s)
- Carlos Augusto Morales-Paredes
- Departamento de Ingeniería Química, Universidad de Alicante, Alicante E-03080, Spain; Editorial Universitaria, Universidad Laica Eloy Alfaro de Manabí, Manta 130802, Ecuador.
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130104, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo 130104, Ecuador
| | - Nuria Boluda-Botella
- Departamento de Ingeniería Química, Universidad de Alicante, Alicante E-03080, Spain; Instituto Universitario del Agua y las Ciencias Ambientales, Universidad de Alicante, Alicante E-03080, Spain
| |
Collapse
|
48
|
Kumari M, Kumar A. Environmental and human health risk assessment of mixture of Covid-19 treating pharmaceutical drugs in environmental waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152485. [PMID: 34942257 PMCID: PMC8686450 DOI: 10.1016/j.scitotenv.2021.152485] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 04/14/2023]
Abstract
This study identified ecological and human health risks exposure of COVID-19 pharmaceuticals and their metabolites in environmental waters. Environmental concentrations in aquatic species were predicted using surface water concentrations of pharmaceutical compounds. Predicted No-Effect Concentrations (PNEC) in aquatic organisms (green algae, daphnia, and fish) was estimated using EC50/LC50 values of pharmaceutical compounds taken from USEPA ECOSAR database. PNEC for human health risks was calculated using the acceptable daily intake values of drugs. Ecological PNEC revealed comparatively high values in algae (Chronic toxicity PNEC values, high to low: ribavirin (2.65 × 105 μg/L) to ritonavir (2.3 × 10-1 μg/L)) than daphnia and fish. Risk quotient (RQ) analysis revealed that algae (Avg. = 2.81 × 104) appeared to be the most sensitive species to pharmaceutical drugs followed by daphnia (Avg.: 1.28 × 104) and fish (Avg.: 1.028 × 103). Amongst the COVID-19 metabolites, lopinavir metabolites posed major risk to aquatic species. Ritonavir (RQ = 6.55) is the major drug responsible for human health risk through consumption of food (in the form fish) grown in pharmaceutically contaminated waters. Mixture toxicity analysis of drugs revealed that algae are the most vulnerable species amongst the three trophic levels. Maximum allowable concentration level for mixture of pharmaceuticals was found to be 0.53 mg/L.
Collapse
Affiliation(s)
- Minashree Kumari
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110017, India.
| | - Arun Kumar
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110017, India.
| |
Collapse
|
49
|
Krasucka P, Rombel A, Yang XJ, Rakowska M, Xing B, Oleszczuk P. Adsorption and desorption of antiviral drugs (ritonavir and lopinavir) on sewage sludges as a potential environmental risk. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127901. [PMID: 34906870 DOI: 10.1016/j.jhazmat.2021.127901] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The aim of this work was to evaluate the adsorption capacity and mechanism of two antiviral drugs AVDs (lopinavir (LOP) and ritonavir (RIT)) on three various sewage sludges (SSLs). The results showed that SSLs differed in the structure and chemical composition and LOP and RIT had a high affinity to the studied SSLs (Kd in ranges 2076-3449 L/kg). The adsorption capacities differed between SSLs and ranged 7.55-8.71 mg/g (RIT) and 8.10-8.64 mg/g (LOP). The Freundlich model provided a best fitting of adsorption isotherms of all AVDs-SSLs. The adsorption kinetics were best described by pseudo-second order kinetic model. The adsorption of LOP and RIT on SSLs was exothermic, spontaneous, and thermodynamically feasible. The sorption of LOP and RIT to SSLs was complex due to the diverse chemical composition of SSLs and the differences in the chemical structure of AVDs. Analysis of binary solution of both AVDs showed the competition effect between AVDs and a decrease in adsorption efficiency (3-17%) compared to single solutions. The amount of desorbed AVDs from all SSLs was low (less than 15%). The findings of the present work are significant in the prediction of fate and persistence of AVDs on SSLs in the context of their further transmission and possible environmental contamination.
Collapse
Affiliation(s)
- Patrycja Krasucka
- Faculty of Chemistry, Department of Radiochemistry and Environmental Chemistry, Maria Curie-Sklodowska University, 3M. Curie-Sklodowska Sq., 20-031 Lublin, Poland
| | - Aleksandra Rombel
- Faculty of Chemistry, Department of Radiochemistry and Environmental Chemistry, Maria Curie-Sklodowska University, 3M. Curie-Sklodowska Sq., 20-031 Lublin, Poland
| | - Xiao Jin Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Magdalena Rakowska
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Patryk Oleszczuk
- Faculty of Chemistry, Department of Radiochemistry and Environmental Chemistry, Maria Curie-Sklodowska University, 3M. Curie-Sklodowska Sq., 20-031 Lublin, Poland.
| |
Collapse
|
50
|
Da Ruos J, Baldo MA, Daniele S. Analytical Methods for the Determination of Major Drugs Used for the Treatment of COVID-19. A Review. Crit Rev Anal Chem 2022; 53:1698-1732. [PMID: 35195461 DOI: 10.1080/10408347.2022.2039094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
At the beginning of the COVID-19 outbreak (end 2019 - 2020), therapeutic treatments based on approved drugs have been the fastest approaches to combat the new coronavirus pandemic. Nowadays several vaccines are available. However, the worldwide vaccination program is going to take a long time and its success will depend on the vaccine public's acceptance. Therefore, outside of vaccination, the repurposing of existing antiviral, anti-inflammatory and other types of drugs, have been considered an alternative medical strategy for the COVI-19 infection. Due to the broad clinical potential of the drugs, but also to their possible side effects, analytical methods are needed to monitor the drug concentrations in biological fluids and pharmaceutical products. This review deals with analytical methods developed in the period 2015 - July 2021 to detect potential drugs that, according to a literature survey, have been taken into consideration for the treatment of COVID-19. The drugs considered here have been selected on the basis of the number of articles published in the period January 2020-July 2021, using the combination of the keywords: COVID-19 and drugs or SARS-CoV-2 and drugs. A section is also devoted to monoclonal antibodies. Over the period considered, the analytical methods have been employed in a variety of real samples, such as body fluids (plasma, blood and urine), pharmaceutical products, environmental matrices and food.
Collapse
Affiliation(s)
- Jessica Da Ruos
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - M Antonietta Baldo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| |
Collapse
|