1
|
Zhu H, Zhu H, Tian Y, Liang X, Yang X. The design and preparation of PDI modified NH 2-MIL-101(Fe) for high efficiency removal of dimethoate in peroxymonosulfate system: Performance, mechanism, pathway and toxicity assessment. ENVIRONMENTAL RESEARCH 2025; 266:120534. [PMID: 39638022 DOI: 10.1016/j.envres.2024.120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The widespread use of organophosphorus pesticide dimethoate (DMT) in agriculture poses a threat to human health. In this work, the perylene tetracarboxylic diimide (PDI) modified NH2-MIL-101(Fe) (PDI/MIL) with strong covalent bond C(=O)-N were designed and prepared by a step solvothermal method. The synergistic effect between photocatalytic and peroxymonosulfate (PMS) activation for the DMT elimination over PDI/MIL was gained. Interestingly, PDI/MIL(1:10)/PMS showed boosting degradation efficiency (95.6%) for DMT under 18 min simulated sunlight irradiation. Its apparent reaction rate constant was 24.7 times higher than that of NH2-MIL-101(Fe)/PMS. Moreover, its reusability, stability and mineralization ability were evaluated, and a remarkable mineralization rate of 95.3% with 90 min was achieved. The enhanced activity were attributed to the formation of amide bond that exhibited superior charger transport ability and amount of produced active species. Combined the results obtained from the HPLC-MS and molecular structure characteristics of DMT analyzed by Fukui index, the degradation pathways were proposed. The toxicity of intermediates were predicted by Ecological Structure Activity Relationship (ECOSAR), Toxicity Estimation Software Tool (T.E.S.T.), and Vibrio fischeri experiments. Our work provided deep insights into the mechanisms of DMT degradation via photocatalysis-activated PMS over organic semiconductor modified metal organic frameworks.
Collapse
Affiliation(s)
- Huixia Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Huayi Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Yu Tian
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xiaoxia Liang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xia Yang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| |
Collapse
|
2
|
Liu X, Cheng X, Lian J, Tang J, Wang R. Z-scheme heterojunction BiOBr/MIL-100(Fe) visible photocatalytic-permonosulfate degradation of AO7. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:363-381. [PMID: 40018896 DOI: 10.2166/wst.2025.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/18/2024] [Indexed: 03/01/2025]
Abstract
Metal-organic frameworks (MOFs) have garnered significant interest in the field of photocatalysis. In this study, Z-scheme heterojunction BM-x composites consisting of bismuth bromide oxide (BiOBr) and iron-based metal-organic backbone (MIL-100(Fe)) were successfully synthesized using ethylene glycol as a solvent. The composites were characterized using various techniques. BM-x exhibit abundant functional groups, large specific surface areas, and narrow band gap energy, thus provide numerous active sites for catalytic reactions and respond well to visible light. Notably, BM-7 displays remarkable catalytic activity in a visible light-activated permonosulfate (PMS) system and achieves a degradation rate of 99.02% over 100 mg/L gold orange II (AO7) within 60 min. The effects of BM-7 and PMS addition, initial AO7 concentration, initial pH, inorganic anions, and humic acid on the degradation system were investigated. The proposed mechanism of the Z-scheme heterojunction in the BM-7 photocatalyst demonstrates effective photoelectron transfer from the BiOBr conduction band to the MIL-100(Fe) valence band, resulting in excellent catalytic activity. Radical burst experiments identified 1O2, h+, and ·O2- as the main active substances. BM-7 has high stability and reusability, with a degradation rate reduction of only 14.48% after three recycles. These findings provide valuable insights into using persulfate combined with visible light.
Collapse
Affiliation(s)
- Xin Liu
- Research Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Xianxiong Cheng
- Research Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China E-mail:
| | - Junfeng Lian
- Research Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Jiahua Tang
- Research Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Rui Wang
- Research Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
3
|
Abdi J, Mazloom G, Hayati B. Sonocatalytic degradation of tetracycline hydrochloride using SnO 2 hollow-nanofiber decorated with UiO-66-NH 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122572. [PMID: 39299111 DOI: 10.1016/j.jenvman.2024.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/18/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
In this study, a porous hollow nanofiber SnO2 was decorated with UiO-66-NH2 nanoparticles with straightforward solvothermal method and utilized for sonocatalytic degradation of tetracycline (TC) by ultrasonic irradiation (USI). The prepared materials were characterized using different techniques such as SEM, EDS, FTIR, XRD, BET, XPS, UV-DRS, EIS, and zeta potential. SnO2 PHNF/UiO-66-NH2 nanocomposite offered the highest apparent rate constant of 0.0397 min-1 which was 6.3 and 3.1 times higher than those obtained for SnO2 PHNF and UiO-66-NH2, respectively. The integration of nanocomposite components revealed the synergy factor of 1.58, which can be due to the created heterojunctions resulted in efficiently charge carriers separation and retaining high redox ability. The effects of different affecting parameters such as TC initial concentration, pH of the solution, catalyst dosage, trapping agents, and coexisting anions on the catalytic performance were examined. The inhibitory effects of anions were confirmed to be decreased in the sequence of Cl- > NO3- > SO42-, while the sonocatalytic efficiency of the nanocomposite improved considerably in the presence of humic acid and bicarbonate. Also, the excellent performance of the catalyst was preserved during six successive cycles, suggesting the high stability of the prepared catalyst. In addition, based on the scavenger analysis, the created O2·-, OH·, and holes were contributed to the TC degradation. In conclusion, the creation heterojunction is an impressive methodology for improving the sonocatalytic activity of a catalyst, and SnO2 PHNF/UiO-66-NH2 nanocomposite was introduced as a satisfactory catalyst in sonocatalytic degradation of organic contaminants.
Collapse
Affiliation(s)
- Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Golshan Mazloom
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, Babolsar, Iran
| | - Bagher Hayati
- Department of Environmental Health, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| |
Collapse
|
4
|
Ren Z, Zhang C, Chen J, Zhang H, Meng J, Han X, Liang J. Highly efficient recovery of Zn (II) from zinc-containing wastewater by tourmaline tailings geopolymers to in-situ construct nanoscale ZnS for the photodegradation of tetracycline hydrochloride. ENVIRONMENTAL RESEARCH 2024; 259:119504. [PMID: 38945514 DOI: 10.1016/j.envres.2024.119504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
While treating zinc-containing wastewater, recovering zinc for reuse as a secondary resource has significant environmental and economic benefits. Herein, based on the alkali-activated tourmaline tailings geopolymers (TTG) after adsorption of zinc ions (Zn (II)), a series of new composites with in-situ construction ZnS nanoparticles on TTG (ZnS/TTG) were synthesized, and used as photocatalysts for the photodegradation of tetracycline hydrochloride (TCH) in solution. Specifically, ZnS nanoparticles were uniformly and stably distributed in the layered structure of TTG, interweaving with each other to generate an interfacial electric field, which could induce more photocarrier generation. Meanwhile, TTG acted as an electron acceptor to accelerate the electron transfer at the interface, thus enhancing the photodegradation activity for TCH. The active radical quenching experiments combined with the ESR indicated that the active species produced during the photocatalytic degradation of TCH by ZnS/TTG composites were •O2- and photogenerated h+. When the initial concentration of Zn (II) was 60 mg/L, the synthesized 60-ZnS/TTG composites (0.5 g/L) reached 91.53% degradation efficiency of TCH (10 mg/L) at pH = 6. Furthermore, the possible pathways and mechanism of 60-ZnS/TTG composites photodegraded TCH were revealed with the aid of degraded intermediates. This report not only proposed valuable references for reusing heavy metal ions and removing TCH from wastewater, but also provided promising ideas for realizing the conversion of used adsorbents into high-efficiency photocatalysts.
Collapse
Affiliation(s)
- Zhixiao Ren
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Caihong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Jinpeng Chen
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Hong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Junping Meng
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Xiaoyu Han
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China.
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China.
| |
Collapse
|
5
|
Shahabinejad H, Binazadeh M, Esmaeilzadeh F, Hashemi F, Mousavi SM. Optimization of cerium-based metal-organic framework synthesis for maximal sonophotocatalytic tetracycline degradation. Sci Rep 2024; 14:16887. [PMID: 39043803 PMCID: PMC11266555 DOI: 10.1038/s41598-024-67676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Wastewater treatment is inevitably required to alleviate the pollution of water resources by various contaminants such as antibiotics. MOFs are novel materials with photocatalytic activities. In this study, sonophotocatalytic degradation of tetracycline (TC) by the Cerium-based MOF (Ce-MOF) is optimized by modification of its synthesis route. Ce-MOF synthesis by room temperature (RT), hydrothermal (HT), and sonochemical synthesis (SC) are studied. TC degradation experiments revealed the superiority of SC synthesis. The interplay of main synthesis parameters, namely, initial ligand concentration, ultrasound (US) power and time on sonophotocatalytic activity of Ce-MOF, were investigated by response surface methodology model (RSM) utilizing the central composite experimental design (CCD). The optimum SC synthesis conditions are an initial ligand concentration of 8.4 mmol/L, a sonication power of 50 amplitude, and a US time of 60 min. The optimally synthesized Ce-MOF was characterized by infrared spectroscopy, FTIR, XRD, FE-SEM, TEM, zeta potential analysis, diffuse reflectance spectroscopy, particle size analysis, Mott-Schottky analysis, photocurrent analysis, electrochemical impedance spectra, and photoluminescence spectroscopy. The findings indicate that the removal efficiency of TC can reach up to 81.75% within 120 min in an aqueous solution containing an initial TC concentration of 120 ppm and 1 g/L Ce-MOF at pH of 7. Mineralization efficiency of the process is 71% according to COD measurements. The Ce-MOF catalyst retained its chemical stability and remained active upon TC degradation which makes it a promising candidate for wastewater treatment.
Collapse
Affiliation(s)
- Hanieh Shahabinejad
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 7134851154, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 7134851154, Iran.
| | - Feridun Esmaeilzadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 7134851154, Iran
| | - Faezeh Hashemi
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 7134851154, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
6
|
GokulaKrishnan SA, Arthanareeswaran G, Devi DR. Bi 2WO 6 nanoparticles anchored on membrane by grafting via in-situ polymerization for the treatment of antibiotic and pesticides wastewater. CHEMOSPHERE 2024; 351:141214. [PMID: 38246504 DOI: 10.1016/j.chemosphere.2024.141214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Antibiotics, natural organic matter, and pesticides are detected in the ecosystem's domestic water, surface water, and groundwater and are largely applied in pharmaceuticals and agriculture. Polymeric membranes are effectively remove the various pollutants in the water bodies, but fouling is one of the major limitations of commercial membranes. Herein, we modified the polymeric membrane surface with inorganic photocatalytic nanoparticles. In this work, the hydrothermal method is used for the synthesis of Bi2WO6 nanoparticles and as-synthesized nanoparticles grafted onto the various polymeric membranes, including polyetherimide (PEI), cellulose acetate (CA), polyvinylidene fluoride (PVDF), and polysulfone (PSF). The functional group studies confirmed the existence of nanoparticles and hydroxyl groups on the hybrid membrane. Further, finger-like voids, top-surface morphology, and roughness on the membrane surface were validated via Field Emission Scanning Electron Microscopy (FESEM) and Atomic force microscopy (AFM), respectively. The significant rejection of tetracycline, humic acid, and fulvic acid + atrazine was noted with the synthesized membranes in the following order: PVDF (81.1%, 78.8%, 80.6%) > CA (70.1%, 69.3%, 71.7%) > PSF (72.5%, 73.6%, 67.1%) > PEI (75.9%, 65.5%, 63.7%). The photodegradation efficiency of hybrid membranes against tetracycline, humic acid, and fulvic acid + atrazine was observed in the order: PEI (28.5%, 25.8%, 30.2%) < CA (46.5%, 42.4%, 40.5%) < PSF (46.9%, 37.7%, 44.7%) < PVDF (67.7%, 62.1%, 64.3%). These membranes exhibit an outstanding permeate flux recovery ratio to the neat membrane. Therefore, the grafting of Bi2WO6 nanoparticles creates a potential bonding with PVDF membranes than other polymeric membranes, thus exhibiting an outstanding rejection than hybrid and neat membranes.
Collapse
Affiliation(s)
- S A GokulaKrishnan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, TamilNadu, 620015, India.
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, TamilNadu, 620015, India.
| | - D Ramya Devi
- Department of Chemical Engineering, Dhanalakshmi Srinivasan Engineering College, Perambalur, TamilNadu, 621 212, India
| |
Collapse
|
7
|
Wang B, Liu X, Liu B, Huang Z, Zhu L, Wang X. Three-dimensional porous La(OH) 3/g-C 3N 4 adsorption-photocatalytic synergistic removal of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22158-22170. [PMID: 38403828 DOI: 10.1007/s11356-024-32546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
La(OH)3/g-C3N4 composites were successfully synthesized via one-step calcination using urea, melamine, and La(NO3)3·nH2O as raw materials, and applied to UV-induced photocatalytic tetracycline (TC) removal. Comprehensive characterization by an X-ray diffraction (XRD), Fourier transform infrared reflection (FT-IR), high-resolution transmission electron microscope (HRTEM), and other techniques analyzed effects of La3+ doping, especially N vacancies and cyano groups as active sites. Compared to pure g-C3N4 and La(OH)3, synthesized La(OH)3/g-C3N4 composites exhibited a three-dimensional porous nanosheet structure with specific surface area of 83.62 m2/g and equilibrium TC adsorption capacity up to 285.59 mg/g; La(OH)3 doping significantly improved composite structure. After dispersing 10 mg La-CN-0.5 photocatalyst in 60 mL 40 mg/L TC solution, TC removal reached 91.08% in 30 min under UV irradiation, exhibiting excellent performance. Additionally, La-CN-0.5 showed significant adsorption-photocatalytic synergism, with the quasi-primary kinetic constant increased by 1.83-fold. The efficiency of high tetracycline (TC) concentration treatment through adsorption photocatalytic degradation by La-CN-0.5 was confirmed by the utilization of free radical trapping and electron spin resonance (ESR) tests. The significant involvement of ∙O2-, ∙OH, and h+ in this process was observed. These findings propose that the prepared La-CN-0.5 material exhibits a unique capability for adsorption photocatalysis, providing a promising approach for the efficient removal of high TC concentrations.
Collapse
Affiliation(s)
- Bohai Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xian Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bei Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhongwei Huang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lei Zhu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan, 430065, China.
| |
Collapse
|
8
|
Zhang H, Meng F, Wei H, Yu W, Yao S. Novel Z-scheme MgFe 2O 4/Bi 2WO 6 heterojunction for efficient photocatalytic degradation of tetracycline hydrochloride: Mechanistic insight, degradation pathways and density functional theory calculations. J Colloid Interface Sci 2023; 652:1282-1296. [PMID: 37659301 DOI: 10.1016/j.jcis.2023.08.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
In this study, a new Z-scheme MgFe2O4/Bi2WO6 heterojunction was successfully prepared by hydrothermal and wet ball milling process. The results of the study showed that after 90 min of visible light exposure, the photocatalytic degradation of tetracycline hydrochloride (TCH) by 25%-MgFe2O4/Bi2WO6 heterojunction was as high as 95.82%, and the highest photocatalytic rate (0.0281 min-1) was 4.61 and 3.43 times higher than that of pure Bi2WO6 (0.0061 min-1) and MgFe2O4 (0.0082 min-1), respectively. Furthermore, spin-polarized density functional theory (DFT) calculations were performed to provide additional evidence of the presence of a Z-scheme charge transfer mechanism between MgFe2O4 and Bi2WO6. We investigated the effects of initial TCH concentration, pH, coexisting ions and different water sources on the efficiency of photocatalytic degradation of TCH in composite samples. The recovery experiments demonstrated that the MgFe2O4/Bi2WO6 composites had good stability and repeatability. A series of experimental results showed that 25%-MgFe2O4/Bi2WO6 had a larger specific surface area, better ultraviolet and visible absorbance, superior charge transfer and higher efficiency of photogenerated electron-hole pair separation. This paper provides new ideas for the design and preparation of new Z-scheme heterojunctions and has great prospects for practical applications in the field of wastewater treatment.
Collapse
Affiliation(s)
- Han Zhang
- School of Materials Science and Engineering, Anhui University, Hefei 230601, PR China
| | - Fanming Meng
- School of Materials Science and Engineering, Anhui University, Hefei 230601, PR China.
| | - Hainan Wei
- School of Materials Science and Engineering, Anhui University, Hefei 230601, PR China
| | - Wenqing Yu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, PR China
| | - Sheng Yao
- School of Materials Science and Engineering, Anhui University, Hefei 230601, PR China
| |
Collapse
|
9
|
Zhang W, Tan Q, Liu T, He Y, Chen G, Chen K, Han D, Qin D, Niu L. Fabrication of water-floating litchi-like polystyrene-sphere-supported TiO 2/Bi 2O 3 S-scheme heterojunction for efficient photocatalytic degradation of tetracycline. MATERIALS HORIZONS 2023; 10:5869-5880. [PMID: 37861418 DOI: 10.1039/d3mh01348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The exploration of advanced photocatalysts for antibiotic degradation is critical, but it remains a challenge due to the lack of rational structural design and in-depth insights into molecular oxygen activation. Water-floating photocatalysts could be one of the best choices owing to their technical features in terms of reasonability and efficiency involving a high oxygenation of photocatalyst surface, fully solar irradiation, and simple recycling and reuse. Herein, a floatable litchi-like architecture of a polystyrene-sphere-supported TiO2/Bi2O3 (PS@TiO2/Bi2O3) S-scheme heterojunction was skillfully constructed and evaluated for photodegradation of model tetracycline (TC) antibiotics. By integrating the advantages of floatability and S-scheme, the TC removal rate of the optimal PS@TiO2/Bi2O3-0.4 catalyst can reach 88.4% under 1 h illumination, which is higher than that of pristine Bi2O3 (60.8%) and PS@TiO2 (40.1%). Moreover, PS@TiO2/Bi2O3-0.4 exhibits high recyclability and stability, and there is no significant loss of activity after five cycles of repeated use. With the aid of liquid chromatography-mass spectrometry analysis and density functional theory calculations, a reasonable degradation pathway for TC was proposed. The present work provides a recyclable and efficient approach for the photodegradation of TC, expecting to guide the innovative exploitation of other environmental systems.
Collapse
Affiliation(s)
- Wensheng Zhang
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Qingmei Tan
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Tianren Liu
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Ying He
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Gang Chen
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Ke Chen
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Dongxue Han
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongdong Qin
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
10
|
Zhu B, Dong Q, Huang J, Yang M, Chen X, Zhai C, Chen Q, Wang B, Tao H, Chen L. Self-Assembly of Bi 2Sn 2O 7/β-Bi 2O 3 S-Scheme Heterostructures for Efficient Visible-Light-Driven Photocatalytic Degradation of Tetracycline. ACS OMEGA 2023; 8:13702-13714. [PMID: 37091378 PMCID: PMC10116523 DOI: 10.1021/acsomega.2c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Fabrication of S-scheme heterojunctions with enhanced redox capability offers an effective approach to address environmental remediation. In this study, high-performance Bi2Sn2O7/β-Bi2O3 S-scheme heterojunction photocatalysts were fabricated via the in situ growth of Bi2Sn2O7 on β-Bi2O3 microspheres. The optimized Bi2Sn2O7/β-Bi2O3 (BSO/BO-0.4) degradation efficiency for tetracycline hydrochloride was 95.5%, which was 2.68-fold higher than that of β-Bi2O3. This improvement originated from higher photoelectron-hole pair separation efficiency, more exposed active sites, excellent redox capacity, and efficient generation of ·O2 - and ·OH. Additionally, Bi2Sn2O7/β-Bi2O3 exhibited good stability against photocatalytic degradation, and the degradation efficiency remained >89.7% after five cycles. The photocatalytic mechanism of Bi2Sn2O7/β-Bi2O3 S-scheme heterojunctions was elucidated. In this study, we design and fabricate high-performance heterojunction photocatalysts for environmental remediation using S-scheme photocatalysts.
Collapse
Affiliation(s)
- Baikang Zhu
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
- National
and Local Joint Engineering Research Center of Harbor Oil & Gas
Storage and Transportation Technology, Zhoushan 316022, China
| | - Qinbin Dong
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jianghua Huang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mengmeng Yang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xianlei Chen
- Zhoushan
Institute of Calibration and Testing for Quality and Technology Supervision, Zhoushan, Zhejiang 316000, China
| | - Chunyang Zhai
- School
of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315021, China
| | - Qingguo Chen
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bohong Wang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hengcong Tao
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
- National
and Local Joint Engineering Research Center of Harbor Oil & Gas
Storage and Transportation Technology, Zhoushan 316022, China
| | - Li Chen
- Department
of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100036, China
| |
Collapse
|
11
|
Adsorption performance and mechanism of U(VI) in aqueous solution by hollow microspheres Bi2WO6. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Abdel Aziz YS, Sanad MMS, Abdelhameed RM, Zaki AH. In-situ construction of Zr-based metal-organic framework core-shell heterostructure for photocatalytic degradation of organic pollutants. Front Chem 2023; 10:1102920. [PMID: 36688034 PMCID: PMC9845943 DOI: 10.3389/fchem.2022.1102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Photocatalysis is an eco-friendly promising approach to the degradation of textile dyes. The majority of reported studies involved remediation of dyes with an initial concentration ≤50 mg/L, which was away from the existing values in textile wastewater. Herein, a simple solvothermal route was utilized to synthesize CoFe2O4@UiO-66 core-shell heterojunction photocatalyst for the first time. The photocatalytic performance of the as-synthesized catalysts was assessed through the photodegradation of methylene blue (MB) and methyl orange (MO) dyes at an initial concentration (100 mg/L). Under simulated solar irradiation, improved photocatalytic performance was accomplished by as-obtained CoFe2O4@UiO-66 heterojunction compared to bare UiO-66 and CoFe2O4. The overall removal efficiency of dyes (100 mg/L) over CoFe2O4@UiO-66 (50 mg/L) reached >60% within 180 min. The optical and photoelectrochemical measurements showed an enhanced visible light absorption capacity as well as effective interfacial charge separation and transfer over CoFe2O4@UiO-66, emphasizing the successful construction of heterojunction. The degradation mechanism was further explored, which revealed the contribution of holes (h+), superoxide (•O2 -), and hydroxyl (•OH) radicals in the degradation process, however, h+ were the predominant reactive species. This work might open up new insights for designing MOF-based core-shell heterostructured photocatalysts for the remediation of industrial organic pollutants.
Collapse
Affiliation(s)
| | | | - Reda M. Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Giza, Egypt
| | - Ayman H. Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
13
|
Gao L, Han D, Wang Z, Gu F. Metal-organic framework MIL-68(In)-NH2-derived carbon-covered cobalt-doped bi-crystalline In2O3 tubular structures for efficient photocatalytic degradation of tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
High sensitive fluorescent sensing and photocatalytic degradation performance of two-dimensional Tb-organic network. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Li Z, Li Z, Liang J, Fan W, Li Y, Shen Y, Huang D, Yu Z, Wang S, Hou Y. Bi-functional S-scheme S-Bi2WO6/NiO heterojunction for photocatalytic ciprofloxacin degradation and CO2 reduction: mechanisms and pathways. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Advances in Bi 2WO 6-Based Photocatalysts for Degradation of Organic Pollutants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248698. [PMID: 36557830 PMCID: PMC9785842 DOI: 10.3390/molecules27248698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
With the rapid development of modern industries, water pollution has become an urgent problem that endangers the health of human and wild animals. The photocatalysis technique is considered an environmentally friendly strategy for removing organic pollutants in wastewater. As an important member of Bi-series semiconductors, Bi2WO6 is widely used for fabricating high-performance photocatalysts. In this review, the recent advances of Bi2WO6-based photocatalysts are summarized. First, the controllable synthesis, surface modification and heteroatom doping of Bi2WO6 are introduced. In the respect of Bi2WO6-based composites, existing Bi2WO6-containing binary composites are classified into six types, including Bi2WO6/carbon or MOF composite, Bi2WO6/g-C3N4 composite, Bi2WO6/metal oxides composite, Bi2WO6/metal sulfides composite, Bi2WO6/Bi-series composite, and Bi2WO6/metal tungstates composite. Bi2WO6-based ternary composites are classified into four types, including Bi2WO6/g-C3N4/X, Bi2WO6/carbon/X, Bi2WO6/Au or Ag-based materials/X, and Bi2WO6/Bi-series semiconductors/X. The design, microstructure, and photocatalytic performance of Bi2WO6-based binary and ternary composites are highlighted. Finally, aimed at the existing problems in Bi2WO6-based photocatalysts, some solutions and promising research trends are proposed that would provide theoretical and practical guidelines for developing high-performance Bi2WO6-based photocatalysts.
Collapse
|
17
|
Abdel-Azim SM, Younus MM, Dhmees AS, Pannipara M, Wageh S, Galhoum AA. Facile Synthesis of ZnS/1T-2H MoS 2nanocomposite for Boosted adsorption/photocatalytic degradation of methylene blue under visiblelight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86825-86839. [PMID: 35796927 DOI: 10.1007/s11356-022-21255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Facile solvothermal techniques were used to manufacture ZnS/1T-2H MoS2 nanocomposite (ZMS) with outstanding adsorption-photocatalytic activity. The formed catalyst was characterized by different tools; XRD, HR-TEM, EDX, FTIR, Raman, N2adsorprion/desorption, Zeta potential, PL,and XPS. The analysis provided the formation on mixed phase of metallic 1Tand 2H phases. ZMS has a high porosity and large specific surface area, and it has a high synergistic adsorption-photocatalytic degradation effect for MB, with a removal efficiency of ≈100% in 45 minutes under visible light irradiation. The extraordinary MB removal efficiency of ZMS was attributed not only to the high specific surface area (49.15 m2/g) and precious reactive sites generated by ZMS, but also to the formation of 1T and 2H phases if compared to pristine MoS2 (MS). The best adsorption affinity was induced by the existance of 1T phase. The remarkably enhanced photocatalytic activity of ZMS nanocomposite can be ascribed to the 2D heterostructure which enhances the adsorption for pollutants, provides abundant reaction active sites, extends the photoresponse to visible light region.
Collapse
Affiliation(s)
| | - Mohammed M Younus
- Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | | | - Mehboobali Pannipara
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - Ahmed A Galhoum
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt.
| |
Collapse
|
18
|
Liu JP, Fu YX, Wang ZH, Ma XY, Wu XF, Li HY, Kang YW, Wang H, Ci LJ. Synthesis, characterization and photocatalytic properties of In 2.77S 4/Ti 3C 2 composites. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2022; 128:1065. [PMID: 36406017 PMCID: PMC9660147 DOI: 10.1007/s00339-022-06228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Recently, the problem of water pollution, caused by antibiotics, is becoming more and more serious. Photocatalysis is one of the promising technologies for removing antibiotics from water. Herein, the In2.77S4/Ti3C2 composites were prepared by an in-situ hydrothermal growth method for photocatalytic degradation of tetracycline (TC). The as-developed composites were characterized by various methods. The UV-Vis DRS spectra reveals that the introduction of Ti3C2 makes the bandgap of the as-prepared composites smaller and the visible light absorption ability improved. The photocatalytic degradation efficiency of the as-prepared composite is enhanced under visible light illumination. It is shown as first increasing and then decreasing with increasing the content of Ti3C2 in the composite and reaches to the maximum of 89.3% in 90 min, which is higher than 75.1% of In2.77S4 and 6.7% of Ti3C2. The reason of improvement is the interface between In2.77S4 and Ti3C2 is tightly combined to form a heterojunction. Moreover, the photocurrent intensity of the as-obtained composite is improved, while its Nyquist arc radius is decreased. In addition, holes are the main active species and ·OH and ·O2 - play an auxiliary role during the degradation of TC.
Collapse
Affiliation(s)
- Jin-Peng Liu
- School of Materials Science and Engineering, Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, Shijiazhuang, 050043 China
| | - Yun-Xuan Fu
- School of Materials Science and Engineering, Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, Shijiazhuang, 050043 China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384 China
| | - Ze-Hong Wang
- School of Materials Science and Engineering, Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, Shijiazhuang, 050043 China
| | - Xiao-Ye Ma
- School of Materials Science and Engineering, Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, Shijiazhuang, 050043 China
| | - Xiang-Feng Wu
- School of Materials Science and Engineering, Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, Shijiazhuang, 050043 China
| | - Hong-Yang Li
- School of Materials Science and Engineering, Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, Shijiazhuang, 050043 China
| | - Ye-Wei Kang
- School of Materials Science and Engineering, Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, Shijiazhuang, 050043 China
| | - Hui Wang
- School of Materials Science and Engineering, Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, Shijiazhuang, 050043 China
| | - Li-Jie Ci
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035 China
| |
Collapse
|
19
|
Siddhardhan E, Surender S, Arumanayagam T. Degradation of tetracycline drug in aquatic environment by visible light active CuS/CdS photocatalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Krishnan SAG, Sasikumar B, Arthanareeswaran G, László Z, Nascimben Santos E, Veréb G, Kertész S. Surface-initiated polymerization of PVDF membrane using amine and bismuth tungstate (BWO) modified MIL-100(Fe) nanofillers for pesticide photodegradation. CHEMOSPHERE 2022; 304:135286. [PMID: 35690168 DOI: 10.1016/j.chemosphere.2022.135286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Pirimicarb as a pesticide is used to control the aphids in the agriculture field; however, it affects the groundwater ecosystem by leaching through the soil profile. The post-synthetic amine and BWO modified MIL-100 (Fe) nanofillers were synthesized. The photocatalytic property of amine-functionalized and BWO@MIL-100(Fe) nanofillers was confirmed by the lesser bandgap energy than the unmodified MIL-100 (Fe) nanofiller. Herein, we constructed a nanofillers grafted PVDF membrane via in-situ polymerization technique for the pirimicarb reduction and photodegradation. Furthermore, the nanofiller's grafted membranes were characterized by FESEM, XRD, FTIR, and contact angle analysis. The carboxylic acid peak was observed on the FTIR which demonstrated the PAA grafted on the membrane surface and similar crystalline peaks evident that the nanofillers were grafted on the membrane surface. Furthermore, surface morphology studies have exhibited the dispersion of nanofillers and enhanced microvoids in the cross-section of the membrane. The decrease in the water contact angle of the membrane depicted the improved antifouling properties and surface energy. The nanofiller's grafted membranes have shown higher hydrophilicity correlated well with the enhanced pure water flux in the order M4 > M5 > M2 > M3 > M6 > M7 compared to the neat membrane (M1). In BWO@MIL-100(Fe) membrane has shown a higher permeate flux (25.99 L m-2.h-1) than the neat PVDF membrane. The BWO@MIL-100(Fe) grafted PVDF membrane has also shown excellent pirimicarb photodegradation of 81% at pH 5. The proposed MIL-100 (Fe) and bismuth tungsten nanocomposite will pave the way for the different MOF-based photocatalytic materials for membrane-based pesticide degradation.
Collapse
Affiliation(s)
- S A Gokula Krishnan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamilnadu, 620015, India
| | - B Sasikumar
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamilnadu, 620015, India
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamilnadu, 620015, India.
| | - Zsuzsanna László
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Erika Nascimben Santos
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Gábor Veréb
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Szabolcs Kertész
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Zhang Y, Wang L, Lu L, Liu M, Yuan Z, Yang L, Liu C, Huang S, Rao Y. Highly efficient decontamination of tetracycline and pathogen by a natural product-derived Emodin/HAp photocatalyst. CHEMOSPHERE 2022; 305:135401. [PMID: 35738405 DOI: 10.1016/j.chemosphere.2022.135401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
To address the water pollution induced by pharmaceuticals, especially antibiotics, and pathogens, natural product emodin, a traditional Chinese medicine with the characteristic large π-conjugation anthraquinone structure, was used to rationally develop a novel Emodin/HAp photocatalyst by integrating with a thermally stable and recyclable support material hydroxyapatite (HAp) through a simple preparation method. It was found that its photocatalytic activity to generate reactive oxygen species (ROS) was greatly improved due to the migration of photogenerated electrons and holes between emodin and HAp upon visible light irradiation. Thus, this Emodin/HAp photocatalyst not only quickly photodegraded tetracycline with 99.0% removal efficiency but also exhibited complete photodisinfection of pathogenic bacteria Staphylococcus aureus upon visible light irradiation. Therefore, this study offers a new route for the design and preparation of multifunctional photocatalysts using widely available natural products for environmental remediation.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Lijun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Liushen Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Meiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Lifeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Shuping Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
22
|
Gu X, Tan C, He L, Guo J, Zhao X, Qi K, Yan Y. Mn 2+ doped AgInS 2 photocatalyst for formaldehyde degradation and hydrogen production from water splitting by carbon tube enhancement. CHEMOSPHERE 2022; 304:135292. [PMID: 35691399 DOI: 10.1016/j.chemosphere.2022.135292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 05/26/2023]
Abstract
In this work, AgInS2 and Mn2+ doped AgInS2 (Mn-AgInS2) with different Mn2+: (Ag+ + In3+) ratios were synthesized via a low temperature liquid method. The photocatalytic activity of the obtained samples was followed by taking formaldehyde as the target pollutant under visible light irradiation. The photocatalysts were passed through various characterization procedures to investigate their morphological, structural and photophysical characteristics. The optimal proportion sample [with the ratio n (Mn2+): n (Ag+ + In3+) = 1:100] photodegraded about 79% formaldehyde in 150 min. These upgraded activities are attributed to the enhanced visible light absorption and superior charge separation due to the presence of Mn2+ as confirmed site from charge separation measurements. In addition, a possible mechanism for the photodegradation of formaldehyde is proposed based on the experimental results. Furthermore, the photocatalytic water splitting performance of Mn-AgInS2 and multi-walled carbon nanotubes (MWCNTs) modified Mn-AgInS2 is investigated and compared under simulated sunlight irradiation, and remarkable hydrogen production is achieved (105 μmol h-1 g-1) by using the latter.
Collapse
Affiliation(s)
- Xinyue Gu
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Chen Tan
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Lixian He
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Jie Guo
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Xia Zhao
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China.
| | - Ya Yan
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China.
| |
Collapse
|
23
|
Liu T, Yang F, Wang L, Pei L, Hu Y, Li R, Hou K, Ren T. Synergistic Effect of Charge Separation and Multiple Reactive Oxygen Species Generation on Boosting Photocatalytic Degradation of Fluvastatin by ZnIn 2S 4/Bi 2WO 6 Z-Scheme Heterostructured Photocatalytst. TOXICS 2022; 10:toxics10100555. [PMID: 36287836 PMCID: PMC9612086 DOI: 10.3390/toxics10100555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 05/25/2023]
Abstract
The application of semiconductor photocatalysts with narrow band gaps is hindered by the rapid recombination of electron-hole pairs and limitation of multiple reactive oxygen species (ROS) synchronous generation. A n-n-type direct Z-scheme heterostructured photocatalyst was constructed based on the staggered band alignment of bismuth tungstate (Bi2WO6) and indium zinc sulfide (ZnIn2S4) to reveal the synergistic effect of charge separation and multiple ROS synchronous generation on boosting photocatalytic performance. Under irradiation, electrons in the conduction band (CB) of Bi2WO6 and holes in the valence band (VB) of ZnIn2S4 recombined at interface to prolong the lifetime of electrons in the CB of ZnIn2S4 and holes in the VB of Bi2WO6. Meanwhile, the multiple ROS synchronously generated to oxidize pollutant due to the strong redox ability of electrons of ZnIn2S4 and holes of Bi2WO6, which was determined by the CB potential of ZnIn2S4 and VB potential of Bi2WO6. The results provided valuable insights for the application of photocatalysts with a narrow band gap in the field of water pollution control.
Collapse
Affiliation(s)
- Tingting Liu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Fanyu Yang
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Liming Wang
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Liang Pei
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijin 100101, China
| | - Yushan Hu
- Northwest Branch of Beijing CCI Architectural Design Co., Ltd., Xi’an 710065, China
| | - Ru Li
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Kang Hou
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Tianlong Ren
- Xi’an Capital Water Company Limited, Xi’an 710086, China
| |
Collapse
|
24
|
Li Z, Chen S, Li Z, Sun J, Yang J, Wei J, Wang S, Song H, Hou Y. Visible light driven antibiotics degradation using S-scheme Bi 2WO 6/CoIn 2S 4 heterojunction: Mechanism, degradation pathways and toxicity assessment. CHEMOSPHERE 2022; 303:135113. [PMID: 35623437 DOI: 10.1016/j.chemosphere.2022.135113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
S-scheme heterojunction photocatalysts with strong redox ability and excellent photocatalytic activity are highly desired for photocatalytic degradation of pollutants. Herein, S-scheme Bi2WO6/CoIn2S4 heterojunctions were synthesized using hydrothermal method. The photo-induced carriers transfer mechanism of the S-scheme Bi2WO6/CoIn2S4 heterojunction was clarified by band structure analysis, ultraviolet photoelectron spectrometer (UPS), electron spin resonance (ESR) and radical trapping experiments. Significant enhance of light absortion, and more efficient carriers separation were observed from the Bi2WO6/CoIn2S4 with CoIn2S4 nanoclusters growing on the surface of petal-like Bi2WO6 nanosheets. TC degradation efficiency of 90% was achieved by Bi2WO6/CoIn2S4 (15:1) within 3 h of irradiation, and ·O2-and ·OH radicals were dominated contributors. Possible decomposition pathways of TC were proposed, and ECOSAR analysis showed that most of the intermediates exhibited lower ecotoxicity than TC. This work provides reference on the constructing ternary-metal-sulfides-based S-scheme heterojunctions for improving photocatalytic performance.
Collapse
Affiliation(s)
- Zuji Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shuo Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhihong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jiangli Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jinhang Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jingwen Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning, 530007, China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning, 530007, China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Nanning, 530004, China.
| |
Collapse
|
25
|
Li X, Zhang H, Du X, Wang S, Zhang Q, Li H, Ye F. Efficient visible-light-driven degradation of tetracycline by a 2D/2D rGO-Bi 2WO 6 heterostructure. ENVIRONMENTAL RESEARCH 2022; 212:113326. [PMID: 35439458 DOI: 10.1016/j.envres.2022.113326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Constructing heterostructures has been a simple yet effective strategy for improving the photocatalytic performance of individual semiconductor photocatalysts. However, the poor quality of the contacted interface coupled with the narrow and overlapping light absorption scope between heterocomponents limits potential improvement. Herein, a 2D/2D rGO-Bi2WO6 heterostructure with face-to-face compact contact interface and UV to NIR light absorption ability was synthesized to overcome the aforementioned limitations. The as-prepared 2 wt%-rGO-Bi2WO6 with a high contact interface quality exhibits the highest kinetic rate of (5.53 ± 0.75) × 10-2 L mg-1 min-1 toward tetracycline (TC) degradation, which is 2.4 times higher than that of pristine Bi2WO6 and 2.1 times higher than that of the 2 wt%-rGO-Bi2WO6 composite with a poor interface quality. Moreover, approximately 30% of TC can be mineralized with a 2 wt%-rGO-Bi2WO6 presented system after 120 min. The subsequent Escherichia coli culture and liquid chromatography-mass spectrometry were employed to detect the biotoxicity variation of degradation intermediates and the possible transformation pathways of TC, respectively. Finally, the reactive species trapping results indicate that photogenerated holes and superoxide radical anions play dominant roles during the TC degradation process. This work provides a facile and effective method to fabricate an efficient heterojunction photocatalyst for pollutant degradation.
Collapse
Affiliation(s)
- Xinyu Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuaijie Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Fei Ye
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
26
|
Photocatalytic oxidation of oxytetracycline hydrochloride by using natural marine material supported perovskite composites. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Kan L, Chang C, Wang Q, Wang X. Glycol assisted splitting BiOIO3 into plasmonic bismuth coupled with BiOI co-modified Bi2WO6 (BiOI/Bi/Bi2WO6) to form indirect Z-scheme heterojunction for efficient photocatalytic degradation of BPA. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Khan MM, Rahman A, Matussin SN. Recent Progress of Metal-Organic Frameworks and Metal-Organic Frameworks-Based Heterostructures as Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2820. [PMID: 36014685 PMCID: PMC9413115 DOI: 10.3390/nano12162820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 05/09/2023]
Abstract
In the field of photocatalysis, metal-organic frameworks (MOFs) have drawn a lot of attention. MOFs have a number of advantages over conventional semiconductors, including high specific surface area, large number of active sites, and an easily tunable porous structure. In this perspective review, different synthesis methods used to prepare MOFs and MOFs-based heterostructures have been discussed. Apart from this, the application of MOFs and MOFs-based heterostructures as photocatalysts for photocatalytic degradation of different types of pollutants have been compiled. This paper also highlights the different strategies that have been developed to modify and regulate pristine MOFs for improved photocatalytic performance. The MOFs modifications may result in better visible light absorption, effective photo-generated charge carriers (e-/h+), separation and transfer as well as improved recyclability. Despite that, there are still many obstacles and challenges that need to be addressed. In order to meet the requirements of using MOFs and MOFs-based heterostructures in photocatalysis for low-cost practical applications, future development and prospects have also been discussed.
Collapse
Affiliation(s)
- Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei
| | | | | |
Collapse
|
29
|
Ning R, Pang H, Yan Z, Lu Z, Wang Q, Wu Z, Dai W, Liu L, Li Z, Fan G, Fu X. An innovative S-scheme AgCl/MIL-100(Fe) heterojunction for visible-light-driven degradation of sulfamethazine and mechanism insight. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129061. [PMID: 35650744 DOI: 10.1016/j.jhazmat.2022.129061] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
The development of high efficient photocatalysts for antibiotics contamination in water remains a severe challenge. In this study, a novel step-scheme (S-scheme) photocatalytic heterojunction nanocomposites were fabricated from integrating AgCl nanoparticles on the MIL-100(Fe) octahedron surface through facile multi-stage stirring strategy. The S-scheme heterojunction structure in AgCl/MIL-100(Fe) (AM) nanocomposite provided a more rational utilization of electrons (e-) and holes (h+), accelerated the carrier transport at the junction interface, and enhanced the overall photocatalytic performance of nanomaterials. The visible-light-driven photocatalysts were used to degrade sulfamethazine (SMZ) which attained a high removal efficiency (99.9%). The reaction mechanisms of SMZ degradation in the AM photocatalytic system were explored by electron spin resonance (ESR) and active species capture experiments, which superoxide radical (•O2-), hydroxyl radical (•OH), and h+ performed as major roles. More importantly, the SMZ degradation pathway and toxicity assessment were proposed. There were four main pathways of SMZ degradation, including the processes of oxidation, hydroxylation, denitrification, and desulfonation. The toxicity of the final products in each pathway was lower than that of the parent according to the toxicity evaluation results. Therefore, this work might provide new insights into the environmentally-friendly photocatalytic processes of S-scheme AM nanocomposites for the efficient degradation of antibiotics pollutants.
Collapse
Affiliation(s)
- Rongsheng Ning
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China; Zijin Mining Group Co, Ltd., Fujian, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002 Fujian, PR China.
| | - Zhenyu Lu
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China
| | | | - Zengling Wu
- Zijin Mining Group Co, Ltd., Fujian, PR China
| | - Wenxin Dai
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002 Fujian, PR China
| | - Lingshan Liu
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China
| | - Zhongsheng Li
- Zijin Internationl Holdings Co., Ltd, 572000, Hainan, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116 Fujian, PR China.
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002 Fujian, PR China
| |
Collapse
|
30
|
Luo J, Lin P, Zheng P, Zhou X, Ning X, Zhan L, Wu Z, Liu X, Zhou X. In suit constructing S-scheme FeOOH/MgIn 2S 4 heterojunction with boosted interfacial charge separation and redox activity for efficiently eliminating antibiotic pollutant. CHEMOSPHERE 2022; 298:134297. [PMID: 35283143 DOI: 10.1016/j.chemosphere.2022.134297] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/19/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic elimination of antibiotic pollutant is an appealing avenue in response to the water contamination, but it still suffers from sluggish charge detachment, limited redox capacity as well as poor visible light utilization. Herein, a particular S-scheme FeOOH/MgIn2S4 heterojunction with wide visible light absorption was triumphantly constructed by in-situ growth of MgIn2S4 nanoparticles onto the surface of FeOOH nanorods, and employed as a high-efficiency visible light driven photocatalyst for removing tetracycline (TC). Conspicuously, the as-obtained FeOOH(15 wt%)/MgIn2S4 elucidated the optimal TC removal rate of 0.01258 min-1 after 100 min of visible light illumination, which was almost 33.1 and 6.6 times larger than those of neat FeOOH and MgIn2S4, separately. The exceptional degradation performance was principally put down to the establishment of S-scheme heterojunction between FeOOH and MgIn2S4, which could not merely accelerate the detachment of photogenerated carriers, but also retain the powerful reducing ability of photoinduced electrons for MgIn2S4 and high oxidizing capacity of photoexcited holes for FeOOH, strongly driving the generation of plentiful active species including holes, superoxide and hydroxyl radicals. Additionally, the possible degradation mechanism and pathways of TC were also speculated. This work offers a valuable perspective for constructing high-efficiency S-scheme heterojunction photocatalysts for eradicating antibiotics.
Collapse
Affiliation(s)
- Jin Luo
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Pingping Lin
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Pilang Zheng
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Xunfu Zhou
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Xiaomei Ning
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Liang Zhan
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Zhijun Wu
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Xiangning Liu
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong, 510632, China
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China.
| |
Collapse
|
31
|
He Y, Fu Q, Li X, Yin L, Wang D, Liu Y. ZIF-8-derived photocatalyst membrane for water decontamination: From static adsorption-degradation to dynamic flow removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153865. [PMID: 35176358 DOI: 10.1016/j.scitotenv.2022.153865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Photocatalysis has been considered a promising method for environmental purification. However, powder nanomaterials are not suitable for large-scale application due to the limit of low recyclability and energy-intensive operation. Integrating and depositing powder photocatalysts on monolithic substrates may solve these issues. In this study, a ZIF-8 photocatalyst membrane and its derived product (ZnS photocatalyst membrane) was constructed by a facile in-situ treatment of cellulose-based substrate (take filter paper as an example). Both the two nanomaterials were confirmed to be tightly anchored to filter paper with the aid of chemical interaction. Under visible light irradiation, excellent dynamic-flow photocatalytic removal efficiencies of methylene blue (MB) degradation (97% within 80 min, k = 0.042 ± 0.002 min-1) and Cr(VI) reduction (100% within 60 min, k = 0.116 ± 0.007 min-1) were achieved by the prepared ZIF-8 photocatalyst membrane and its derived ZnS photocatalyst, respectively. Considering the high MB adsorption capacity and facile regeneration process of ZIF-8 photocatalyst membrane, the adsorption-degradation strategy was promising for its universal applications. The MB degradation pathway and photocatalytic mechanisms were also explored. Ultimately, a comprehensive discussion on the advantages and implications of prepared photocatalyst membranes for photocatalytic water treatment was rationally proposed. This study provided a promising method for water decontamination and demonstrated the significant superiority of monolithic membrane for photocatalytic water treatment.
Collapse
Affiliation(s)
- Yanying He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaopei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Linmiao Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
32
|
Dai X, Feng S, Wu W, Zhou Y, Ye Z, Wang Y, Cao X. Photocatalytic Degradation of Tetracycline by Z-Scheme Bi2WO6/ZIF-8. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02273-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
MIL-101 (Fe) @Ag Rapid Synergistic Antimicrobial and Biosafety Evaluation of Nanomaterials. Molecules 2022; 27:molecules27113497. [PMID: 35684436 PMCID: PMC9182184 DOI: 10.3390/molecules27113497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Metal-organic frameworks (MOFs), which have become popular in recent years as excellent carriers of drugs and biomimetic materials, have provided new research ideas for fighting pathogenic bacterial infections. Although various antimicrobial metal ions can be added to MOFs with physical methods, such as impregnation, to inhibit bacterial multiplication, this is inefficient and has many problems, such as an uneven distribution of antimicrobial ions in the MOF and the need for the simultaneous addition of large doses of metal ions. Here, we report on the use of MIL-101(Fe)@Ag with efficient metal-ion release and strong antimicrobial efficiency for co-sterilization. Fe-based MIL-101(Fe) was synthesized, and then Ag+ was uniformly introduced into the MOF by the substitution of Ag+ for Fe3+. Scanning electron microscopy, powder X-ray diffraction (PXRD) Fourier transform infrared spectroscopy, and thermogravimetric analysis were used to investigate the synthesized MIL-101(Fe)@Ag. The characteristic peaks of MIL-101(Fe) and silver ions could be clearly seen in the PXRD pattern. Comparing the diffraction peaks of the simulated PXRD patterns clearly showed that MIL-101(Fe) was successfully constructed and silver ions were successfully loaded into MIL-101(Fe) to synthesize an MOF with a bimetallic structure, that is, the target product MIL-101(Fe)@Ag. The antibacterial mechanism of the MOF material was also investigated. MIL-101(Fe)@Ag exhibited low cytotoxicity, so it has potential applications in the biological field. Overall, MIL-101(Fe)@Ag is an easily fabricated structurally engineered nanocomposite with broad-spectrum bactericidal activity.
Collapse
|
34
|
Guo KK, Yang YL, Dong SM, Li FY, Jiang XY, Xu L. Decomposition-Reassembly Synthesis of a Silverton-Type Polyoxometalate 3D Framework: Semiconducting Properties and Photocatalytic Applications. Inorg Chem 2022; 61:6411-6420. [PMID: 35442652 DOI: 10.1021/acs.inorgchem.1c03928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyoxometalate-based all-inorganic three-dimensional (3D) frameworks have recently attracted attention as a unique class of materials due to their unique physicochemical properties and a wide field of application with excellent prospects. We herein synthesized a novel all-inorganic 3D framework material based on cobalt-substituted Silverton-type polyoxometalate, H6{Co6W10O42[Co(H2O)4]3}·2H2O (Co9W10), which was successfully constructed using Na12[WCo3II(H2O)2(CoIIW9O34)2]·46-48H2O (Co5W19) and Co(NO3)2·6H2O as starting materials in a hydrothermal reaction via a decomposition-reassembly route together with the rational adjustment of pH values. Co9W10 has been structurally characterized using single-crystal X-ray diffraction. Photocurrent response, band-gap (Eg) value, and the VB-XPS spectrum have been measured to reveal the semiconducting property of Co9W10. Furthermore, we synthesized x% PTh/Co9W10 composites (PTh = polythiophene, x = 0.5, 1, 2, 5) for photodegradation of tetracycline hydrochloride (TH) to evaluate the photocatalytic activities of title composites. Due to the optimal molar ratio of hybrids and matching energy levels, 2% PTh/Co9W10 composites show the best photocatalytic activities among these composites.
Collapse
Affiliation(s)
- Ke-Ke Guo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Yan-Li Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Si-Meng Dong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Feng-Yan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xin-Ye Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Lin Xu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
35
|
Li D, Hua T, Li X, Cheng J, Du K, Hu Y, Chen Y. In-situ fabrication of ionic liquids/MIL-68(In)-NH 2 photocatalyst for improving visible-light photocatalytic degradation of doxycycline hydrochloride. CHEMOSPHERE 2022; 292:133461. [PMID: 34974040 DOI: 10.1016/j.chemosphere.2021.133461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Metal-organic framework (MOFs)-based composites have been popular in photocatalysis due to their outstanding physicochemical properties, such as large surface area, high activity and good transmission properties. Herein, a method of ionic liquids (ILs)-assisted synthesis of IL/MIL-68(In)-NH2 composite materials were proposed, and composites were used for visible light catalytic degradation of doxycycline hydrochloride (DOXH). The effects of four kinds of ionic liquids on the structure and photocatalytic properties of the composites were explored, including diethylenetriamine acetate ([DETA][OAc]), diethylenetriamine hexafluorophosphate ([DETA][PF6]), 1-ethyl-3-methylimidazole acetate ([EMIM][OAc]) and 1-ethyl-3-methylimidazole hexafluorophosphate ([EMIM][PF6]). The results show that the introduction of different ionic liquids affects the grain growth of MOFs material and photocatalytic activity. Among them, ILDAc/MIL-68(In)-NH2 samples showed the highest photocatalytic activity. 92% removal rate of doxycycline hydrochloride and kinetic degradation constant (0.00918 min-1) was observed under the optimal addition of ILDAc (10 wt%), which was 4.6 times that of MIL-68(In)-NH2. The enhancement was attributed to a combined effect of efficient adsorption at low concentration, an increase of active sites, and efficient charge transfer. In addition, the effects of pH and initial concentration were investigated. Finally, the photocatalytic mechanism of DOXH was elucidated, and the possible intermediate products and degradation pathways were discussed. Considering the excellent photostability and ultra-fast photodegradation of ILDAc/MIL-68(In)-NH2, this study opens up a new prospect for the preparation of ionic liquids functionalized MOFs with wide practical application value.
Collapse
Affiliation(s)
- Dongmei Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Tao Hua
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoman Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianhua Cheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| | - Kesi Du
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Yongyou Hu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuancai Chen
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
36
|
Chen ML, Lu TH, Li SS, Wen L, Xu Z, Cheng YH. Photocatalytic degradation of imidacloprid by optimized Bi 2WO 6/NH 2-MIL-88B(Fe) composite under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19583-19593. [PMID: 34719759 DOI: 10.1007/s11356-021-17187-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/20/2021] [Indexed: 05/19/2023]
Abstract
Imidacloprid as a widely used neonicotinoid insecticide can cause harmful pesticide residue inevitably. Metal-organic frameworks (MOFs) were innovatively composited to improve the light absorption and degradation performance of Bi2WO6 semiconductor, which expanded the photodegradation application in solving environmental problems. Based on the synergistic effect of Bi2WO6 and NH2-MIL-88B(Fe), a Bi2WO6/NH2-MIL-88B(Fe) (BNM) heterojunction photocatalyst with high-performance of photocatalytic degradation activities was successfully synthesized. The optimized BNM catalyst had a good degradation rate under visible light, which was mainly caused by generation of the active ·OH. Transient photocurrent response and electrochemical impedance tests verified that 1:2 BNM exhibits a highest charge separation and a lowest carrier recombination rate which were favorable to the photocatalytic activity. Cycle experiments show that the composite photocatalyst had good reusability and stability which were very important for potential industry applications.
Collapse
Affiliation(s)
- Mao-Long Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China.
| | - Tian-Hui Lu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Shan-Shan Li
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Li Wen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Zhou Xu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Yun-Hui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China.
| |
Collapse
|
37
|
Jin D, He D, Lv Y, Zhang K, Zhang Z, Yang H, Liu C, Qu J, Zhang YN. Preparation of metal-free BP/CN photocatalyst with enhanced ability for photocatalytic tetracycline degradation. CHEMOSPHERE 2022; 290:133317. [PMID: 34921858 DOI: 10.1016/j.chemosphere.2021.133317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The successful application of photocatalysis in practical water treatment opreations relies greatly on the development of highly efficient, stable and low-cost photocatalysts. The low-cost metal-free photocatalyst made up of black phosphorus (BP) and graphitic carbon nitride (CN) was successfully constructed and firstly used for the photocatalytic treatment of antibiotic contaminants in this work. Compared with bare CN, the BP/CN photocatalyst exhibited the enhanced photocatalytic performance for tetracycline hydrochloride (HTC) degradation, that 99% of HTC was removed by 6BP/CN (doping amount of BP was 6%) within 30 min under the simulated visible-light irradiation. The efficiency was even comparable to those of some high-efficiency photocatalysts recently-reported such as Fe0@POCN, CuInS2/Bi2MoO6 and Cu2O@HKUST-1. Under natural sunlight illumination, the determined apparent rate constant for degradation of HTC by BP/CN was 2.7 times as that by P25 TiO2. The experimental results indicated that loading BP on CN could enhance the separation of charge carriers and promote the ability of light absorption for visible-light, thus leading to a greater catalytic activity. Meanwhile, the influences of different operating variables (pH, water, ion and HTC concentration) on HTC degradation were studied in detail. Furthermore, the degradation pathway of HTC was also proposed. In addition, the photocatalytic activity of the BP/CN for production of hydrogen peroxide (H2O2) was also studied, which could reach up to 501.04 μmol g-1h-1. It is anticipated that BP/CN photocatalyst could be used for practical water treatment.
Collapse
Affiliation(s)
- Dexin Jin
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Dongyang He
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yihan Lv
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kangning Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhaocheng Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Hao Yang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chuanhao Liu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China.
| |
Collapse
|
38
|
Chen X, Liu X, Zhu L, Tao X, Wang X. One-step fabrication of novel MIL-53(Fe, Al) for synergistic adsorption-photocatalytic degradation of tetracycline. CHEMOSPHERE 2022; 291:133032. [PMID: 34843831 DOI: 10.1016/j.chemosphere.2021.133032] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Bimetallic MOFs (MIL-53 (Fe, Al)) were successfully fabricated via a facile one-step solvothermal method for the removal of tetracycline (TC) from aqueous solutions. Tetracycline adsorption and photocatalytic experiments indicate that the optimum bimetallic synthetic molar ratio is 3:2 (40%MIL-53(Fe, Al)). The adsorption data are well fitted by the Freundlich model and pseudo-second-order adsorption kinetics. 40%MIL-53(Fe, Al) has an adsorption capacity of up to 402.033 mg/g. After the dark adsorption phase, 10 mg of 40%MIL-53(Fe, Al) can remove 94.33% of the tetracycline in a 70 mL aqueous solution (20 mg/L) under 50 min irradiation, while only 71.39% and 81.82% of the tetracycline are removed by MIL-53(Fe) and MIL-53(Al) under the same conditions. In addition, 40%MIL-53(Fe, Al) exhibits a significant adsorption-photocatalytic synergy (under direct irradiation without a dark adsorption phase), in which the pseudo-first-order kinetic constant increases by a factor of 3.11. Quenching experiments and ESR characterization indicate that ·O2-, ·OH, and h+ are the main active species in the photocatalytic process. Meanwhile, 40%MIL-53(Fe, Al) demonstrates good stability, with a tetracycline removal rate that still reaches 83.70% after 4 cycles. These results suggest that the prepared 40%MIL-53(Fe, Al) catalyst is a novel adsorption-photocatalytic material that can be used for the efficient treatment of tetracycline.
Collapse
Affiliation(s)
- Xueqi Chen
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| | - Xian Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| | - Lei Zhu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| | - Xiumei Tao
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| |
Collapse
|
39
|
Liang Y, Zhang Q, Li S, Fei J, Zhou J, Shan S, Li Z, Li H, Chen S. Highly efficient removal of quinolones by using the easily reusable MOF derived-carbon. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127181. [PMID: 34844338 DOI: 10.1016/j.jhazmat.2021.127181] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
As anthropogenic antibiotics, quinolones, e.g., ofloxacin have adverse impacts on ecological systems and human heaths. The removal of quinolones is of great importance, and adsorption techniques have been widely used to remove this hazardous contaminant. However, a robust and easy-operating adsorbent is still emergently required due to the complex chemical structure of quinolones. In this study, we successfully synthesized the promising metallic carbons (MCs) containing carbon nanotubes and cobalt nanoparticles by carbonizing Zn/Co-ZIF at 900 °C. Three different molar ratios of Co and Zn were applied to optimize the adsorption capacity on ofloxacin (OFL). Results showed MC with molar ratio of Co and Zn at 3:1 (Co-CNT/NPC3/1) achieved the maximal adsorption capacity to 118.3 mg g-1. Its adsorption performance was satisfied in the pH range from 5 to 9 and ionic strengths at 0.01 M. The main mechanisms for these adsorptions were identified as electrostatic attraction, metal coordination and π-π EDA. Removal efficiencies of quinolones higher than 68 mg g-1 indicated the strong feasibility of this adsorbent for wastewater treatments. The regeneration of Co-CNT/NPC3/1 at 600 °C allowed its at least 4-time reusability and its magnetic property enabled external magnets to recycle it from real environments.
Collapse
Affiliation(s)
- Yixuan Liang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Qiyu Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Sumei Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Jiaying Fei
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Jian Zhou
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Saisai Shan
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Ziyi Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Hanbing Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Sha Chen
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
40
|
Yang G, Liang Y, Yang J, Wang K, Zeng Z, Xiong Z. A BiOBr/Bi 4MoO 9 edge-on heterostructure with fast electron transport for efficient photocatalytic activity. Dalton Trans 2021; 50:16488-16492. [PMID: 34734221 DOI: 10.1039/d1dt02924j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study demonstrates the rational design and construction of a BiOBr/Bi4MoO9 edge-on heterostructure by growing fish scale-like BiOBr nanosheets on the surface of Bi4MoO9. Such structural and compositional merits expedite electron transport and offer a large interfacial contact area and abundant reactive sites. Optimized BiOBr/Bi4MoO9 exhibited outstanding TC degradation activity.
Collapse
Affiliation(s)
- Gui Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yujun Liang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Jian Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Kun Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Zikang Zeng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Zhuoran Xiong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|