1
|
Zhao T, Xu Y, Bi M, Li H, Li G, Rillig MC. Soil properties explain the variability in tire wear particle effects in soil based on a laboratory test with 59 soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126271. [PMID: 40252749 DOI: 10.1016/j.envpol.2025.126271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Tire wear particles (TWPs) are among the most prevalent microplastics in the environment, with potential detrimental effects on ecosystem health and functionality. While little is known how the effects of TWPs on soil physicochemical and microbial properties vary across different soil types, and if so, which factors contribute to this variability. To address this knowledge gap, we conducted a laboratory experiment involving soils from 59 grassland plots across two sampling regions in Germany, each experienced varying land-use intensities. These soils were treated with (at a concentration of 10 mg g-1) and without TWPs. At harvest, we measured soil water-stable aggregates (WSA), pH, respiration, and decomposition rate. Our results revealed that TWPs negatively, neutrally, or positively impacted these parameters depending on soil types. Random forest analysis indicated that the variability in TWP effects was significantly explained by grazing frequency for WSA (14.5 %), by clay content for pH (9 %), by bulk density for respiration (7.9 %), and by silt content for decomposition rate (12 %). Partial dependence analysis and piecewise regression further suggested that low-intensity grazing (∼0.7-1.2) reduced TWP effects on WSA; clay content (420-550 g kg-1) increased TWP effects on pH; bulk density (0.75-0.88) decreased TWP effects, and silt content (460-620 g kg-1) enhanced TWP effects on decomposition rate, with the identified thresholds of 1.45, 353 g kg-1, 0.84, and 327 353 g kg-1, respectively. These results highlighted the context-dependent nature of TWP pollution, with significant variability observed across different sampling points. Additionally, our findings suggest that TWP pollution is particularly of concern in soils with high clay, silt, high bulk density, and areas with intensive land-use intensity. Our study contributes to a better understanding of the mechanisms by which TWPs impact soil, and how these effects are regulated by environmental factors.
Collapse
Affiliation(s)
- Tingting Zhao
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Yaqi Xu
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Mohan Bi
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Huiying Li
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Matthias C Rillig
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| |
Collapse
|
2
|
Tariq Z, Williams ID, Cundy AB, Zapata-Restrepo LM. A Critical Review of Sampling, Extraction and Analysis Methods for Tyre and Road Wear Particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126440. [PMID: 40373858 DOI: 10.1016/j.envpol.2025.126440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Tyre and road wear particles (TRWPs) have become an increasing contamination concern because of their extensive distribution in the environment. A comprehensive overview of the methods for sampling, treatment and analysis of environmental samples for TRWPs (and their benefits and limitations) is lacking. We evaluate and critically assess the sampling, treatment and analysis methods previously reported for water, air, road dust and sediment/soil samples. We suggest research frameworks for studying TRWPs in these media. Microscopy and thermal analysis techniques such as scanning electron microscopy (with energy dispersive X-ray analysis), environmental scanning electron microscopy, 2-dimensional gas chromatography mass spectrometry and liquid chromatography with tandem mass spectrometry in the case of complex samples, are optimal methods for determination of the number and mass of TRWPs. Issues for further investigation and analysis recommendations are provided.
Collapse
Affiliation(s)
- Zainab Tariq
- School of Engineering, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
| | - Ian D Williams
- School of Engineering, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Andrew B Cundy
- GAU-Radioanalytical, School of Ocean and Earth Science, National Oceanography Centre (Southampton), University of Southampton, Southampton, SO14 3ZH, United Kingdom
| | - Lina M Zapata-Restrepo
- Institute of Biology, Faculty of Natural and Exact Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
3
|
Babczyńska A, Bańska M, Mizera K, Tarnawska M, Augustyniak M, Rozpędek K, Łozowski B, Brożek J, Potocka I, Kowalewska-Groszkowska M, Sawadro M, Czerwonka A, Žaltauskaitė J, Sujetovienė G, Giulianini P, Renzi M, Giglio A. The effects of tread rubber and road dust particles on stress, immunity and digestive biomarkers in the larvae of the mealworm Tenebrio molitor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118289. [PMID: 40344779 DOI: 10.1016/j.ecoenv.2025.118289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Airborne road and abrasive car parts particles penetrate into aquatic and soil environments, but also, settling on vegetation along highways, enter trophic chains as a result of consumption by herbivorous invertebrates. The effects of this exposure are poorly recognized. The study aimed to assess the toxicity of two traffic-connected materials: tread rubber (TR) particles and environmentally relevant field-collected road dust (RD), to the Tenebrio molitor larvae under laboratory conditions using a set of protective (heat shock protein - HSP70, metallothionein - Mts levels), immunity (lysozyme - Lys, defensin - Def levels) and digestive (protease, amylase, and celulase activities) biomarkers. ELISA assay was used for protein levels, while fluorimetric and spectrophotometric methods were used for enzymatic activity studies. RD and TR particles were characterized by SEM/EDS techniques. The representative TR particle sizes were within the range of 31 µm and 274 µm. For the RD, the size of the particles were 153-587 µm. Fat body HSP70 levels were, on average, twice lower in groups exposed to RD particles. For fat body Mts, RD and TR caused the decrease while in the gut, the effect depended on the particle type. Gut lysozyme levels increased for both particles while in fat body this effect was made by RD. Digestive enzyme activity did not reflect exposure to TR and RD particles. RD induced changes in more experimental groups than TR. This may be due to the greater complexity of their composition. Further studies focusing on material type, concentration, exposure duration, and particle size are necessary to understand the effects of traffic-connected material on terrestrial herbivores.
Collapse
Affiliation(s)
- Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland.
| | - Michalina Bańska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Katarzyna Mizera
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Bartosz Łozowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Jolanta Brożek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Izabela Potocka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | | | - Marta Sawadro
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Agnieszka Czerwonka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University., Universiteto st. 10, Akademija, Kaunas LT-53361, Lithuania
| | - Gintarė Sujetovienė
- Department of Environmental Sciences, Vytautas Magnus University., Universiteto st. 10, Akademija, Kaunas LT-53361, Lithuania
| | - Piero Giulianini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, Trieste 34127, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, Trieste 34127, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Sciences, Di.B.E.S.T., University of Calabria, Cosenza, Italy
| |
Collapse
|
4
|
Ozhan HO, Elnemr AMT. Effect of shredded vehicle tyres as microplastics on stabilization of a sandy soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36451-y. [PMID: 40325294 DOI: 10.1007/s11356-025-36451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
One of the primary sources that contributes to the microplastic contamination in soil is the abrasion of vehicle wheel tyres on roads. On the other hand, the stability of a road is maintained by compacting the subbase soil beneath the road. In this study, standard Proctor compaction tests were performed on 0.025, 0.05, 0.1, 0.2, 0.5, 1, and 2% tyre microplastics-added well-graded sand (SW) that represented a subbase soil contaminated with shredded vehicle tyre microplastics. Test results indicated that a microplastic concentration of up to 0.1% caused the maximum dry unit weight (Ɣdmax) to increase from 16.58 to 17.03 kN/m3 and the optimum water content (wopt) to decrease from 15.4 to 13.8%. As a result, 0.1% tyre microplastic addition caused an increase of 0.45% in the Ɣdmax and a decrease of 1.6% in the wopt. Further increase in the microplastic concentration resulted in a decrease in the Ɣdmax and increase in the wopt. In conclusion, by compacting a well-graded sandy subbase soil beneath a road that was contaminated with tyre microplastics not only prevented the scattering of the microplastics to the environment but also provided enhancement in stability. As a practical implication, a sandy subbase soil contaminated with tyre microplastics can be compacted with smooth wheel rollers in the field in order to enhance the compaction degree of the soil beneath a road and prevent the scattering of the microplastics to a certain extent.
Collapse
Affiliation(s)
- Hakki O Ozhan
- Dept. of Civil Engineering, Yeditepe Univ, Inonu Mah., Kayisdagi Cad., 326 A, 26 Agustos Yerlesimi, Atasehir, Istanbul, 34755, Turkey.
| | - Abdelrahman Maher Taha Elnemr
- Dept. of Civil Engineering, Yeditepe Univ, Inonu Mah., Kayisdagi Cad., 326 A, 26 Agustos Yerlesimi, Atasehir, Istanbul, 34755, Turkey
| |
Collapse
|
5
|
Polukarova M, Gaggini EL, Rødland E, Sokolova E, Bondelind M, Gustafsson M, Strömvall AM, Andersson-Sköld Y. Tyre wear particles and metals in highway roadside ditches: Occurrence and potential transport pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125971. [PMID: 40043875 DOI: 10.1016/j.envpol.2025.125971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
Tyre wear particles (TWP) pose significant environmental concerns, necessitating a comprehensive understanding of their environmental distribution for accurate risk assessment. Roadside soil has not been extensively studied for TWP occurrence and distribution. This study aims to characterise the occurrence and distribution of TWP and associated metals in roadside soils and to investigate the correlations between these contaminants. Soil samples were collected from two road ditches along a Swedish national motorway at varying depths and distances from the contamination source. TWP in fractions <500 μm were analysed using PYR-GC/MS. Results indicated that TWP concentrations in soil samples ranged from 0.74 ± 0.20 to 12.40 ± 1.88 mg/kg d.w., consistent with other studies, and decreased with distance from the road, similar to Zn. In one ditch, TWP concentrations remained constant with depth, unlike concentrations of Co and Cr, which increased, while in the other ditch, TWP and most metals did not decrease with depth or distance from the outlet. Strong correlations were found between concentrations of TWP and Zn in one, but not the other, where Zn might have followed different transport due to leaching. Metal correlations in both ditches suggest traffic-related but not necessarily tyre wear origins. These findings are crucial for risk assessments of traffic-related pollutants, particularly TWP, and their spread into soils.
Collapse
Affiliation(s)
- Maria Polukarova
- Swedish National Road and Transport Research Institute Gothenborg (VTI), Regnbågsgatan 1, 417 55, Gothenburg, Sweden; Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden.
| | - Elly Lucia Gaggini
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Elisabeth Rødland
- Norwegian Institute for Water Research, Økernveien 94, NO-0579, Oslo, Norway
| | - Ekaterina Sokolova
- Uppsala University, Department of Earth Sciences, SE-752 36, Uppsala, Sweden
| | - Mia Bondelind
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Mats Gustafsson
- Swedish National Road and Transport Research Institute Linköping (VTI), SE-581 95, Linköping, Sweden
| | - Ann-Margret Strömvall
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- Swedish National Road and Transport Research Institute Gothenborg (VTI), Regnbågsgatan 1, 417 55, Gothenburg, Sweden; Chalmers University of Technology, Department of Architecture and Civil Engineering, Division of Geology and Geotechnics, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
6
|
Surendran D, Sakai H, Takagi S, Dimapilis DA. Tire-based microplastics: Composition, detection, and impacts of advanced oxidation processes in drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179114. [PMID: 40088789 DOI: 10.1016/j.scitotenv.2025.179114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Microplastic pollution, particularly that from tire, presents critical environmental and public health concerns. They contribute 60 % of the total microplastic pollution. Tire-based microplastics, which contain synthetic polymers and toxic chemical additives, are significant contributors to microplastic pollution in aquatic systems. They release various hazardous substances, including heavy metals, polycyclic aromatic hydrocarbons, and other persistent pollutants, which adversely affect ecosystems and pose risks to drinking water quality. Advanced oxidation processes (AOP) such as ultraviolet based treatment, ozonation and sulfate radical based processes show potential for mitigating these microplastics by fragmenting them and degrading the leached chemicals. Radicals generated during AOP (such as sulfate radicals (SO₄•-), peroxide radicals (HO₂•) and hydroxyl radicals (•OH), have also been successful in removing the transformation products associated with tire microplastics. This combined action of AOP has potential in mitigating the primary tire microplastics and the leached chemicals from it. AOP studies reported from the other microplastic researches (PP, PE, PVC etc.) shows promising results in mitigating them from drinking water sources. TMP appears to behave similarly to other microplastic polymers in terms of fragmentation. However, research is still lacking in quantifying this process due to the presence of complex chemicals additives in it. Additionally, studies focusing on their removal in DWTPs, particularly those that consider both TMP and their associated chemical leachates, remain limited. This review discusses the chemical composition, detection techniques, fragmentation of tire-related microplastics by AOP, and leaching of chemicals from them. This review also suggests modification of treatment techniques, challenges for implementing them to real world treatment and scopes in optimization of treatment conditions to mitigate tire wear particles and the associated chemicals.
Collapse
Affiliation(s)
- Dilraj Surendran
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan.
| | - Shogo Takagi
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan
| | - Daryll Anne Dimapilis
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan
| |
Collapse
|
7
|
Sampalo M, Gómez M, Almeda R. Impact of tire particle leachates on microplankton communities in the Canary Islands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117787. [PMID: 39908871 DOI: 10.1016/j.ecoenv.2025.117787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
Tire wear particles (TWP) are a major source of microplastics in the environment. Despite their prevalence, the effects of tire particle leachates on marine microplankton communities remains poorly understood. In this study, we assessed the acute impacts of tire particle leachates on the structure of coastal microplankton assemblages from the Canary Islands. Five laboratory experiments were conducted, exposing microplankton to a range of leachate dilutions over 72 h, with TWP leachates prepared from an initial concentration of 1 g L⁻¹ .Our results revealed that the abundances of diatoms, most dinoflagellates, and ciliates were significantly reduced following exposure to leachates, with median effective concentrations (EC50) ranging from 30 to 660 mg L-1 depending on the plankton community. Interestingly, Ostreopsis cf. ovata, a harmful algal bloom (HAB)-forming species, exhibited relatively high tolerance to tire particle leachates compared to other microplankton. Compared to other marine biota, ciliates appear to be most vulnerable plankton group to tire particle leachates (EC50 = 30 and 146 mg L-1). The higher tolerance of O. cf. ovata to pollution compared to other phytoplankton species (resource competitors), in combination with other factors, may contribute to the rise of HABs in polluted coastal areas. Although field data on TWP are limited, the observed negative effects on microplankton occurred at environmentally relevant concentrations. Our results indicate that TWP pollution can significantly impact marine planktonic communities, highlighting the urgent need to reduce TWP emissions and develop less toxic tire rubber additives.
Collapse
Affiliation(s)
- Marta Sampalo
- EOMAR, ECOAQUA, University of Las Palmas of Gran Canaria (ULPGC), Spain.
| | - May Gómez
- EOMAR, ECOAQUA, University of Las Palmas of Gran Canaria (ULPGC), Spain
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, University of Las Palmas of Gran Canaria (ULPGC), Spain.
| |
Collapse
|
8
|
Zhang Q, Xu X, Song C, Zhang D, Kong Y, Cui X. Effect of UV exposure and natural aging on the in vitro PAHs bioaccessibility associated with tire wear particles in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175751. [PMID: 39197782 DOI: 10.1016/j.scitotenv.2024.175751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Tire wear particles (TWP), as an emerging type of microplastics, are a significant source of contaminants in roadside soils due to their high concentration of pollutants, including polycyclic aromatic hydrocarbons (PAHs). This study explored the impact of ultraviolet (UV) exposure and natural aging on the in vitro bioaccessibility of PAHs associated with TWP in soil on a China-wide scale. Our findings suggested that UV exposure amplified the negative charge of TWP by 75 % and increased the hydrophobic groups on the particle surface. The bioaccessibility of 3- and 4-ring PAHs in TWP was significantly (p < 0.05) heightened by UV exposure. After 20 types of soils containing 2 % UV-exposed TWP underwent natural aging, the bioaccessibility of PAHs saw a significant decrease (p < 0.05) to 16-48 %, compared to 28-96 % in the unaged group. Soil pH and electrical conductivity (EC) were the two primary soil properties positively influencing the reduction of in vitro PAHs concentration and PAHs bioaccessibility. According to the prediction results, soils in southern China presented the highest potential region for the release of bioaccessible PAHs from TWP, highlighting the regional specificity of environmental impact. Our study provides valuable insights into the biological impact of PAHs associated with TWP on a regional scale, and offers scientific evidence for targeted soil risk management strategies.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chenzhuo Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dengke Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Zhang X, Zhao B, Zhang Y, Zhang J, Li Y, Zhong J, Diao J, Ma F, Liu H, Duan K. Sources, interactions, influencing factors and ecological risks of microplastics and antibiotic resistance genes in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175226. [PMID: 39098429 DOI: 10.1016/j.scitotenv.2024.175226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are gaining increasing attention as they pose a threat to the ecological environment and human health as emerging contaminants. MPs has been proved to be a hot spot in ARGs, and although it has been extensively studied in water environment, the results of bibliometrics statistical analysis in this paper showed that relevant studies in soil ecological environment are currently in the initial stage. In view of this, the paper provides a systematic review of the sources, interactions, influencing factors, and ecological risks associated with MPs and ARGs in soil environments. Additionally, the mechanism and influencing factors of plastisphere formation and resistance are elaborated in detail. The MPs properties, soil physicochemical properties, soil environmental factors and agricultural activities are the primarily factors affecting the interaction between MPs and ARGs in soil. Challenges and development directions of related research in the future are also prospected. It is hoped that the review could assist in a deeper comprehension and exploration of the interaction mechanism between MPs and ARGs in soil as well as the function of MPs in the transmission process of ARGs among diverse environmental media and organisms, and provide theory basis and reference for the MPs and ARGs pollution control and remediation in soil.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Yin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Yingquan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jinkui Zhong
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jingru Diao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Hui Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| |
Collapse
|
10
|
Foetisch A, Grunder A, Kuster B, Stalder T, Bigalke M. All black: a microplastic extraction combined with colour-based analysis allows identification and characterisation of tire wear particles (TWP) in soils. MICROPLASTICS AND NANOPLASTICS 2024; 4:25. [PMID: 39493282 PMCID: PMC11525289 DOI: 10.1186/s43591-024-00102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
While tire wear particles (TWP) have been estimated to represent more than 90% of the total microplastic (MP) emitted in European countries and may have environmental health effects, only few data about TWP concentrations and characteristics are available today. The lack of data stems from the fact that no standardized, cost efficient or accessible extraction and identification method is available yet. We present a method allowing the extraction of TWP from soil, performing analysis with a conventional optical microscope and a machine learning approach to identify TWP in soil based on their colour. The lowest size of TWP which could be measured reliably with an acceptable recovery using our experimental set-up was 35 µm. Further improvements would be possible given more advanced technical infrastructure (higher optical magnification and image quality). Our method showed a mean recovery of 85% in the 35-2000 µm particle size range and no blank contamination. We tested for possible interference from charcoal (as another black soil component with similar properties) in the soils and found a reduction of the interference from charcoal by 92% during extraction. We applied our method to a highway adjacent soil at 1 m, 2 m, 5 m, and 10 m and detected TWP in all samples with a tendency to higher concentrations at 1 m and 2 m from the road compared to 10 m from the road. The observed TWP concentrations were in the same order of magnitude as what was previously reported in literature in highway adjacent soils. These results demonstrate the potential of the method to provide quantitative data on the occurrence and characteristics of TWP in the environment. The method can be easily implemented in many labs, and help to address our knowledge gap regarding TWP concentrations in soils. Supplementary Information The online version contains supplementary material available at 10.1186/s43591-024-00102-9.
Collapse
Affiliation(s)
- Alexandra Foetisch
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
- Institute of Applied Geoscience, Technical University of Darmstadt, Schnittspahnstraβe 9, Darmstadt, 64287 Germany
| | - Adrian Grunder
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
| | - Benjamin Kuster
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
| | - Tobias Stalder
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
- Institute of Applied Geoscience, Technical University of Darmstadt, Schnittspahnstraβe 9, Darmstadt, 64287 Germany
| |
Collapse
|
11
|
Rocha Vogel A, Kolberg Y, Schmidt M, Kahlert H, von Tümpling W. Potential deterioration of chemical water quality due to trace metal adsorption onto tire and road wear particles - Environmentally representative experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124571. [PMID: 39032551 DOI: 10.1016/j.envpol.2024.124571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Tire wear particles are an increasing issue in particle emissions to the environment. Germany-wide approximately 100,000 t tire wear particles are emitted every year into the environment which are estimated to be one third of the microplastic emissions. Up to 20% are estimated to reach inland surface waters. Their behavior in the aquatic environment is understudied. Tire wear particles have an overly hydrophobic surface that is capable of adsorbing substances like trace elements. In this study we investigated the adsorption and desorption of trace metals onto and from the particle surface of tire-related samples in water samples of the Freiberger Mulde, a river with naturally elevated concentration of trace elements. The priority trace metals Cr, Ni, Zn, Cd and Pb show a significant adsorption onto the particle surface of tire-related samples. Tire wear particles themselves revealed adsorption of mainly Ni, Cd and Pb. Regarding the German classification for suspended matter in freshwaters, an endangering of the chemical water quality is expected due to the adsorption process and not due to the particles themselves. Upcoming electromobility is expected to increase the Zn (increased tire abrasion) and decrease the Cu amount (reduced brake abrasion) released to freshwaters.
Collapse
Affiliation(s)
- Angus Rocha Vogel
- Helmholtz Centre for Environmental Research (UFZ), Central Laboratory for Water Analytics and Chemometrics, Brückstr. 3a, 39114 Magdeburg, Germany; Friedrich-Schiller-University Jena, Institute for Inorganic and Analytical Chemistry, Humboldtstraße 8, 07743 Jena, Germany.
| | - Yannik Kolberg
- Helmholtz Centre for Environmental Research (UFZ), Central Laboratory for Water Analytics and Chemometrics, Brückstr. 3a, 39114 Magdeburg, Germany; University of Greifswald, Institute for Biochemistry, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research (UFZ), Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig, Germany
| | - Heike Kahlert
- University of Greifswald, Institute for Biochemistry, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Wolf von Tümpling
- Helmholtz Centre for Environmental Research (UFZ), Central Laboratory for Water Analytics and Chemometrics, Brückstr. 3a, 39114 Magdeburg, Germany; Friedrich-Schiller-University Jena, Institute for Inorganic and Analytical Chemistry, Humboldtstraße 8, 07743 Jena, Germany
| |
Collapse
|
12
|
Xing D, Zhao T, Tan X, Liu J, Wu S, Xu J, Yan M, Sun B, Liu S, Zheng P. Microplastics in tea from planting to the final tea product: Traceability, characteristics and dietary exposure risk analysis. Food Chem 2024; 455:139636. [PMID: 38833871 DOI: 10.1016/j.foodchem.2024.139636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Tea, sold as tea bags or loose tea, is a popular drink worldwide. We quantified microplastics in loose tea during various stages of production, from planting to processing and brewing. The quantity of microplastics in tea ranged from (70-3472 pcs/kg), with the highest abundance detected during processing, mainly in the rolling stage (2266 ± 1206 pcs/kg tea). Scanning electron microcopy revealed scratches and pits on the surface of microplastics fibers from tea plantation soil and processed tea, and their degradation was characterized by cracks and fractures. Exposure risks, based on an estimated dietary intake of 0.0538-0.0967 and 0.0101-0.0181 pcs /kg body weight /day for children and adults, respectively, are considered very low. This study not only evaluates the extent of research on microplastics pollution in tea, but also assess the risk of people's exposure to microplastics through drinking tea.
Collapse
Affiliation(s)
- Daiman Xing
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Tangmilan Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xindong Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jing Liu
- College of Resources and Environment, South China Agriculture University, Guangzhou 510642, China
| | - Shihan Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jingyu Xu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Bae SH, Chae E, Park YS, Lee SW, Yun JH, Choi SS. Characteristics of tire-road wear particles (TRWPs) and road pavement wear particles (RPWPs) generated through a novel tire abrasion simulator based on real road pavement conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173948. [PMID: 38880134 DOI: 10.1016/j.scitotenv.2024.173948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Microparticles such as tire-road wear particles (TRWPs) and road pavement wear particles (RPWPs) are generated by the friction between tire tread and road surface. TRWPs and RPWPs on roads are dispersed through traffic and transferred to rivers and seas via runoff to accumulate in sediments. However, research on the generation of both TRWP and RPWP has rarely been conducted. In this study, the generation of both TRWP and RPWP was investigated using a novel tire abrasion simulator equipped with paved road and bus tire, and their contributions to the generation of microparticles were examined. Two types of model paved roads, asphalt and concrete pavements (AP and CP, respectively), were applied. TRWPs generated from the simulator exhibited morphologies very similar to those on real roads. The abrasion rate for the CP was 2.8 times higher than that for the AP. The wear particle size distributions peaked at the size ranges of 63-106 μm and 212-500 μm for the AP and CP, respectively. Totals of 84 wt% and 89 wt% of the wear particles were distributed in size ranges of 38-212 μm for the AP and 106-1000 μm for the CP. The tire wear particle (TWP) contents in the total wear particles of 38-500 μm were 21.7 wt% and 30.0 wt% for the AP and CP, respectively, and decreased as the particle size decreased. The weight of RPWP was higher than that of TWP in TRWP. Contributions from road pavement to the generation of wear particles of 38-500 μm were 3.6 and 2.3 times higher than those from tire tread for the AP and CP, respectively, and the contribution increased as the wear particle size decreased.
Collapse
Affiliation(s)
- Seok-Hu Bae
- Chassis & Materials Research Laboratory, Korea Automotive Technology Institute, 303 Pungse-ro, Pungse-myun, Dongnam-gu, Chonan-si, Chungnam 31214, Republic of Korea
| | - Eunji Chae
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Yong-Soo Park
- Daekyung Engineering Co., 32, Seokcheon-ro 398 beon-gil, Bucheon-si, Gyeonggi-do 14450, Republic of Korea
| | - Seung-Won Lee
- Chassis & Materials Research Laboratory, Korea Automotive Technology Institute, 303 Pungse-ro, Pungse-myun, Dongnam-gu, Chonan-si, Chungnam 31214, Republic of Korea
| | - Ju-Ho Yun
- Chassis & Materials Research Laboratory, Korea Automotive Technology Institute, 303 Pungse-ro, Pungse-myun, Dongnam-gu, Chonan-si, Chungnam 31214, Republic of Korea
| | - Sung-Seen Choi
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
14
|
Jeong S, Ryu H, Shin H, Lee MG, Hong J, Kim H, Kwon JT, Lee J, Kim Y. Quantification of tire wear particles in road dust based on synthetic/natural rubber ratio using pyrolysis-gas chromatography-mass spectrometry across diverse tire types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173796. [PMID: 38851327 DOI: 10.1016/j.scitotenv.2024.173796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Increase in road traffic leads to increased concentrations of tire-wear particles (TWPs), a prominent source of microplastics from vehicles, in road dust. These particles can re-enter the atmosphere or move into aquatic ecosystems via runoff, impacting the environment. Consequently, accurately assessing and managing TWP levels in road dust is crucial. However, the ISO method (ISO/TS 20593 and 21396) uses a constant ratio of styrene-butadiene rubber (SBR) to natural rubber (NR) for all tires, disregarding the variability in tire composition across different types and brands. Our study found substantial SBR content (15.7 %) in heavyweight truck tires, traditionally believed to be predominantly NR. We evaluated the SBR/NR content in 15 tire types and proposed a method to more accurately evaluate TWP concentrations in road dust from five different locations. Our findings suggest that the conventional ISO method may underestimate the concentrations of TWP due to its reliance on a static ratio of SBR/NR. This study underscores the necessity for a more flexible approach that can adapt to the variability in SBR and NR content across different tire types. By delineating the limitations inherent in current assessment methods, our research contributes to a more adaptable understanding of TWP concentrations in road dust. This advancement prompts the development of a revised methodology that more accurately reflects the diverse compositions of tire rubber in environmental samples.
Collapse
Affiliation(s)
- Sohee Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Hyeonjung Ryu
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Hyeokjin Shin
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Min Gyu Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Jaehwan Hong
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Hyunwook Kim
- Department of Environmental Engineering, University of Seoul, Seoul 02504, South Korea
| | - Jung-Taek Kwon
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22733, South Korea
| | - Jaewoong Lee
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22733, South Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
15
|
Rødland ES, Binda G, Spanu D, Carnati S, Bjerke LR, Nizzetto L. Are eco-friendly "green" tires also chemically green? Comparing metals, rubbers and selected organic compounds in green and conventional tires. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135042. [PMID: 38944996 DOI: 10.1016/j.jhazmat.2024.135042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Tires are a major source of synthetic and natural rubber particles, metals and organic compounds, in which several compounds are linked to negative environmental impact. Recent advances in material technology, coupled with focus on sustainability, have introduced a new range of tires, sold as "green, sustainable, and eco-friendly". Although these "green" tires may have lower impact on the environment on a global scale, there is no current knowledge about the chemical composition of "green" tires, and whether they are more eco-friendly when considering the release of tire wear particles or tire-associated chemicals. Here we have investigated the chemical composition of nine "green" vehicle tires, one "green" bike tire and seven "conventional" vehicle tires. No significant difference was found between "green" and "conventional" tires tested in this study. For N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), the average concentration in "green" tires were higher (16 ± 7.8 µg/mg) compared to "conventional" tires (8.7 ± 4.5 µg/mg). The relationship between metals, selected organic compounds and rubbers demonstrated large variation across brands, and lower variability between tires grouped according to their seasonal use. This study indicates that more work is needed to understand how the shift towards sustainable tires might change the chemical composition of tires.
Collapse
Affiliation(s)
| | - Gilberto Binda
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway; Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Stefano Carnati
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | | | - Luca Nizzetto
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway; RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Kong X, Liu Y, Duan Z, Lv J. Bayesian multivariate receptor model and convolutional neural network to identify quantitative sources and spatial distributions of potentially toxic elements in soils: A case study in Qingzhou City, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135184. [PMID: 39024766 DOI: 10.1016/j.jhazmat.2024.135184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Determining sources and spatial distributions of potentially toxic elements (PTEs) is a crucial issue of soil pollution survey. However, uncertainty estimation for source contributions remains lack, and accurate spatial prediction is still challenging. Robust Bayesian multivariate receptor model (RBMRM) was applied to the soil dataset of Qingzhou City (8 PTEs in 429 samples), to calculate source contributions with uncertainties. Multi-task convolutional neural network (MTCNN) was proposed to predict spatial distributions of soil PTEs. RBMRM afforded three sources, consistent with US-EPA positive matrix factorization. Natural source dominated As, Cr, Cu, and Ni contents (78.5 %∼86.1 %), and contributed 37.1 %, 61.0 %, and 65.9 % of Cd, Pb, and Zn, exhibiting low uncertainties with uncertainty index (UI) < 26.7 %. Industrial, traffic, and agricultural sources had significant influences on Cd, Pb, and Zn (30.2 %∼61.9 %), with UI < 39.3 %. Hg originated dominantly from atmosphere deposition (99.1 %), with relatively high uncertainties (UI=87.7 %). MTCNN acquired satisfactory accuracies, with R2 of 0.357-0.896 and nRMSE of 0.092-0.366. Spatial distributions of As, Cd, Cr, Cu, Ni, Pb, and Zn were influenced by parent materials. Cd, Hg, Pb, and Zn showed significant hotspot in urban area. This work conducted a new approach exploration, and practical implications for soil pollution regulation were proposed.
Collapse
Affiliation(s)
- Xiangyi Kong
- College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China
| | - Yang Liu
- Business School, University of Ji'nan, Ji'nan 250022, China
| | - Zongqi Duan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianshu Lv
- College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China.
| |
Collapse
|
17
|
Seewoo BJ, Wong EV, Mulders YR, Goodes LM, Eroglu E, Brunner M, Gozt A, Toshniwal P, Symeonides C, Dunlop SA. Impacts associated with the plastic polymers polycarbonate, polystyrene, polyvinyl chloride, and polybutadiene across their life cycle: A review. Heliyon 2024; 10:e32912. [PMID: 39022097 PMCID: PMC11253235 DOI: 10.1016/j.heliyon.2024.e32912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Polymers are the main building blocks of plastic, with the annual global production volume of fossil carbon-based polymers reaching over 457 million metric tons in 2019 and this figure is anticipated to triple by 2060. There is potential for environmental harm and adverse human health impacts associated with plastic, its constituent polymers and the chemicals therein, at all stages of the plastic life cycle, from extraction of raw materials, production and manufacturing, consumption, through to ultimate disposal and waste management. While there have been considerable research and policy efforts in identifying and mitigating the impacts associated with problematic plastic products such as single-use plastics and hazardous chemicals in plastics, with national and/or international regulations to phase out their use, plastic polymers are often overlooked. In this review, the polymer dimension of the current knowledge on environmental release, human exposure and health impacts of plastic is discussed across the plastic life cycle, including chemicals used in production and additives commonly used to achieve the properties needed for applications for which the polymers are generally used. This review focuses on polycarbonate, polystyrene, polyvinyl chloride, and polybutadiene, four common plastic polymers made from the hazardous monomers, bisphenol, styrene, vinyl chloride and 1,3-butadiene, respectively. Potential alternative polymers, chemicals, and products are considered. Our findings emphasise the need for a whole system approach to be undertaken for effective regulation of plastics whereby the impacts of plastics are assessed with respect to their constituent polymers, chemicals, and applications and across their entire life cycle.
Collapse
Affiliation(s)
- Bhedita J. Seewoo
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch V.S. Wong
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R. Mulders
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M. Goodes
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ela Eroglu
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Manuel Brunner
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Aleksandra Gozt
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Priyanka Toshniwal
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A. Dunlop
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
18
|
Ihenetu SC, Xu Q, Khan ZH, Shabi Ui Hassan Kazmi S, Ding J, Sun Q, Li G. Environmental fate of tire-rubber related pollutants 6PPD and 6PPD-Q: A Review. ENVIRONMENTAL RESEARCH 2024; 258:119492. [PMID: 38936499 DOI: 10.1016/j.envres.2024.119492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
To enhance tire durability, the antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is used in rubber, but it converts into the toxic 6PPD quinone (6PPD-Q) when exposed to oxidants like ozone (O3), causing ecological concerns. This review synthesizes the existing data to assess the transformation, bioavailability, and potential hazards of two tire-derived pollutants 6PPD and 6PPD-Q. The comparative analysis of different thermal methods utilized in repurposing waste materials like tires and plastics into valuable products are analyzed. These methods shed light on the aspects of pyrolysis and catalytic conversion processes, providing valuable perspectives into optimizing the waste valorization and mitigating environmental impacts. Furthermore, we have examined the bioavailability and potential hazards of chemicals used in tire manufacturing, based on the literature included in this review. The bioavailability of these chemicals, particularly the transformation of 6PPD to 6PPD-Q, poses significant ecological risks. 6PPD-Q is highly bioavailable in aquatic environments, indicating its potential for widespread ecological harm. The persistence and mobility of 6PPD-Q in the environment, along with its toxicological effects, highlight the critical need for ongoing monitoring and the development of effective mitigation strategies to reduce its impact on both human health and ecosystem. Future research should focus on understanding the chronic effects of low-level exposure to these compounds on both terrestrial and aquatic ecosystems, as well as the potential for bioaccumulation in the food chain. Additionally, this review outlines the knowledge gaps, recommending further research into the toxicity of tire-derived pollutants in organisms and the health implications for humans and ecosystems.
Collapse
Affiliation(s)
- Stanley Chukwuemeka Ihenetu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Zulqarnain Haider Khan
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Syed Shabi Ui Hassan Kazmi
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Qian Sun
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
19
|
Wagner S, Funk CW, Müller K, Raithel DJ. The chemical composition and sources of road dust, and of tire and road wear particles-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171694. [PMID: 38485005 DOI: 10.1016/j.scitotenv.2024.171694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
To gain better understanding of how the transition to electric vehicles affects road dust (RD) composition, and potential health and environmental risks, it is crucial to analyze the chemical composition of RD and identify its sources. Sources of RD include wear of tire tread (TT), brake wear (BW) and road wear (RW). A relevant component of RD are tire and road wear particles (TRWPs). This literature review compiles data on the chemical bulk composition of RD sources, RD in Asia, Europe and North America and TRWP as a RD component. The focus is on elements such as Cd, Co, Cr, Cu, Ni, Pb, V, and Zn. Although the comparability of global RD data is limited due to differences in sampling and analytical methods, no significant differences in the composition from Asia, Europe, and North America were found for most of the investigated elements studied, except for Cd, Co, and V. Sources of RD were analyzed using elemental markers. On average TT, BW, and RW contributed 3 %, 1 %, and 96 %, respectively. The highest concentrations of TT (9 %) and BW (2 %) were observed in the particle size fraction of RD ≤ 10 μm. It is recommended that these results be verified using additional marker compounds. The chemical composition of TRWPs from different sources revealed that (i) TRWPs isolated from a tunnel dust sample are composed of 31 % TT, 6 % BW, and 62 % RW, and (ii) test material from tire test stands show a similar TT content but different chemical bulk composition likely because e.g., of missing BW. Therefore, TRWPs from test stands need to be chemically characterized prior to their use in hazard testing to validate their representativeness.
Collapse
Affiliation(s)
- Stephan Wagner
- Hochschule Fresenius, Institute for Analytical Research, Idstein, Germany; Hochschule für Angewandte Wissenschaften Hof, Germany.
| | | | - Kathrin Müller
- Hochschule Fresenius, Institute for Analytical Research, Idstein, Germany
| | | |
Collapse
|
20
|
Long Y, Zhang Y, Zhou Z, Liu R, Qiu Z, Qiu Y, Li J, Wang W, Li X, Yin L, Wen X. Are microplastics in livestock and poultry manure an emerging threat to agricultural soil safety? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11543-11558. [PMID: 38212564 DOI: 10.1007/s11356-024-31857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
Microplastics (MPs) have attracted much attention in recent years, due to the difficulty of degradation and threats to ecological systems and humans. Based on the analysis of 1429 articles on MPs in soil, we found that we know little about the behavior and fate of manure-born MPs from the livestock and poultry production systems to agriculture soils. This review summarizes the analytical methods for sampling, separation, and identification and the occurrence of MPs in livestock and poultry manure, mainly based on 7 surveys related to manure-born MPs. Then, the sources, fate, and environmental risks of MPs in livestock and poultry manure are discussed. MPs, heavy metals, pathogens, antibiotic resistance genes, and persistent organic pollutants are common pollutants in livestock and poultry manure. Worse, manure-born MPs will become smaller, rougher, and more numerous and could easily form more toxic compound pollution after complicated processes of manure treatment, which seriously threatens agricultural soil safety. Finally, an outlook is offered for future research. We hope this article to attract attention to the risks of MPs in livestock and poultry manure and provide a reference for future research.
Collapse
Affiliation(s)
- Yuannan Long
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Zhenyu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ruyi Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ziyi Qiu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Yiming Qiu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Juan Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd, Changsha, 410006, China
| | - Xiwei Li
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd, Changsha, 410006, China
| | - Lingshi Yin
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China.
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China.
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| |
Collapse
|
21
|
Rødland ES, Heier LS, Lind OC, Meland S. High levels of tire wear particles in soils along low traffic roads. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166470. [PMID: 37625724 DOI: 10.1016/j.scitotenv.2023.166470] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Traffic pollution has been linked to high levels of metals and organic contaminants in road-side soils, largely due to abrasion of tires, brake pads and the road surface. Although several studies have demonstrated correlations between different pollutants and various traffic variables, they mainly focused on roads with medium to high traffic density (>30,000 vehicles per day). In this study we have focused on investigating tire wear particles and road-related metals (zinc, copper, lead, chromium, nickel, and the metalloid arsenic) in the soils of low traffic roads in rural areas (650-14,250 vehicles per day). Different explanatory factors were investigated, such as traffic density, speed, % heavy vehicles, organic matter content, annual precipitation, soil types and roadside slope profiles. The results show high levels of tire wear particles, from 2000 to 26,400 mg/kg (0.2-2.6 % tire wear in d.w. soil), which is up to five times higher compared to previously reported values in roadside soils of high traffic density areas. A weak but significant correlation was found between tire wear particles, traffic speed and the annual precipitation. No significant relationship was found between tire wear particles metals. The concentrations of metals were comparable to previous studies of high traffic areas of Norway, as well as both urban and rural soils in other countries. For the metals, all factors together explained 45 % of the variation observed, with traffic density (11 %) and organic matter content (10 %) as the most important single variables. The analysis of tire wear particles in soils using Pyrolysis Gas chromatography Mass Spectrometry is challenging, and the results presented demonstrate the need for pretreatment to remove organic matter from the samples before analysis.
Collapse
Affiliation(s)
| | - Lene S Heier
- Norwegian Public Roads Administration, Construction, Postbox 1010, N-2605 Lillehammer, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway
| | - Sondre Meland
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| |
Collapse
|
22
|
Rosso B, Gregoris E, Litti L, Zorzi F, Fiorini M, Bravo B, Barbante C, Gambaro A, Corami F. Identification and quantification of tire wear particles by employing different cross-validation techniques: FTIR-ATR Micro-FTIR, Pyr-GC/MS, and SEM. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121511. [PMID: 36967009 DOI: 10.1016/j.envpol.2023.121511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Tire wear particles (TWPs) are one of the environment's most important emission sources of microplastics. In this work, chemical identification of these particles was carried out in highway stormwater runoff through cross-validation techniques for the first time. Optimization of a pre-treatment method (i.e., extraction and purification) was provided to extract TWPs, avoiding their degradation and denaturation, to prevent getting low recognizable identification and consequently underestimates in the quantification. Specific markers were used for TWPs identification comparing real stormwater samples and reference materials via FTIR-ATR, Micro-FTIR, and Pyrolysis-gas-chromatography-mass spectrometry (Pyr-GC/MS). Quantification of TWPs was carried out via Micro-FTIR (microscopic counting); the abundance ranged from 220,371 ± 651 TWPs/L to 358,915 ± 831 TWPs/L, while the higher mass was 39,6 ± 9 mg TWPs/L and the lowest 31,0 ± 8 mg TWPs/L. Most of the TWPs analyzed were less than 100 μm in size. The sizes were also confirmed using a scanning electron microscope (SEM), including the presence of potential nano TWPs in the samples. Elemental analysis via SEM supported that a complex mixture of heterogeneous composition characterizes these particles by agglomerating organic and inorganic particles that could derive from brake and road wear, road pavement, road dust, asphalts, and construction road work. Due to the analytical lack of knowledge about TWPs chemical identification and quantification in scientific literature, this study significantly contributes to providing a novel pre-treatment and analytical methodology for these emerging contaminants in highway stormwater runoff. The results of this study highlight the uttermost necessity to employ cross-validation techniques, i.e., FTIR-ATR, Micro-FTIR, Pyr-GC/MS, and SEM for the TWPs identification and quantification in the real environmental samples.
Collapse
Affiliation(s)
- Beatrice Rosso
- Department of Environmental Sciences, Informatics, and Statistics; Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy.
| | - Elena Gregoris
- Department of Environmental Sciences, Informatics, and Statistics; Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy; Institute of Polar Sciences, CNR-ISP; Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy.
| | - Lucio Litti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Federico Zorzi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; CEASC (Centro di Analisi e Servizi per la Certificazione), University of Padova, Via Jappelli 1a, 35121 Padova, Italy.
| | - Maurizio Fiorini
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna (BO), Italy.
| | - Barbara Bravo
- Thermo Fisher Scientific, Str. Rivoltana, Km 4 - 20090 Rodano (MI), Italy.
| | - Carlo Barbante
- Department of Environmental Sciences, Informatics, and Statistics; Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy; Institute of Polar Sciences, CNR-ISP; Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy.
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics, and Statistics; Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy; Institute of Polar Sciences, CNR-ISP; Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy.
| | - Fabiana Corami
- Department of Environmental Sciences, Informatics, and Statistics; Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy; Institute of Polar Sciences, CNR-ISP; Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy.
| |
Collapse
|
23
|
Hu X, Zhao HN, Tian Z, Peter KT, Dodd MC, Kolodziej EP. Chemical characteristics, leaching, and stability of the ubiquitous tire rubber-derived toxicant 6PPD-quinone. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:901-911. [PMID: 37042393 DOI: 10.1039/d3em00047h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We here report chemical characteristics relevant to the fate and transport of the recently discovered environmental toxicant 6PPD-quinone (2-((4-methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione or "6PPDQ"). 6PPDQ is a transformation product of the tire rubber antioxidant 6PPD that is ubiquitous in roadway environments, including atmospheric particulate matter, soils, runoff, and receiving waters, after dispersal from tire rubber use and wear on roadways. The aqueous solubility and octanol-water partitioning coefficient (i.e. log KOW) for 6PPDQ were measured to be 38 ± 10 μg L-1 and 4.30 ± 0.02, respectively. Within the context of analytical measurement and laboratory processing, sorption to various laboratory materials was evaluated, indicating that glass was largely inert but loss of 6PPDQ to other materials was common. Aqueous leaching simulations from tire tread wear particles (TWPs) indicated short term release of ∼5.2 μg 6PPDQ per gram TWP over 6 h under flow-through conditions. Aqueous stability tests observed a slight-to-moderate loss of 6PPDQ over 47 days (26 ± 3% loss) for pH 5, 7 and 9. These measured physicochemical properties suggest that 6PPDQ is generally poorly soluble but fairly stable over short time periods in simple aqueous systems. 6PPDQ can also leach readily from TWPs for subsequent environmental transport, posing high potential for adverse effects in local aquatic environments.
Collapse
Affiliation(s)
- Ximin Hu
- Center for Urban Waters, Tacoma, WA, 98421, USA.
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Haoqi Nina Zhao
- Center for Urban Waters, Tacoma, WA, 98421, USA.
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, WA, 98421, USA.
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, 98421, USA
| | - Katherine T Peter
- Center for Urban Waters, Tacoma, WA, 98421, USA.
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, 98421, USA
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA, 98421, USA.
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, 98421, USA
| |
Collapse
|
24
|
More SL, Miller JV, Thornton SA, Chan K, Barber TR, Unice KM. Refinement of a microfurnace pyrolysis-GC-MS method for quantification of tire and road wear particles (TRWP) in sediment and solid matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162305. [PMID: 36801409 DOI: 10.1016/j.scitotenv.2023.162305] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Tire and road wear particles (TRWP) are produced by abrasion at the interface of the pavement and tread surface and contain tread rubber with road mineral encrustations. Quantitative thermoanalytical methods capable of estimating TRWP concentrations are needed to assess the prevalence and environmental fate of these particles. However, the presence of complex organic constituents in sediment and other environmental samples presents a challenge to the reliable determination of TRWP concentrations using current pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) methodologies. We are unaware of a published study evaluating pretreatment and other method refinements for microfurnace Py-GC-MS analysis of the elastomeric polymers in TRWP including polymer-specific deuterated internal standards as specified in ISO Technical Specification (ISO/TS) 20593:2017 and ISO/TS 21396:2017. Thus, potential method refinements were evaluated for microfurnace Py-GC-MS, including chromatography parameter modification, chemical pretreatment, and thermal desorption for cryogenically-milled tire tread (CMTT) samples in an artificial sediment matrix and a sediment field sample. The tire tread dimer markers used for quantification were 4-vinylcyclohexene (4-VCH), a marker for styrene-butadiene rubber (SBR) and butadiene rubber (BR), 4-phenylcyclohexene (4-PCH), a marker for SBR, and dipentene (DP), a marker for natural rubber (NR) or isoprene. The resultant modifications included optimization of GC temperature and mass analyzer settings, along with sample pretreatment with potassium hydroxide (KOH) and thermal desorption. Peak resolution was improved while minimizing matrix interferences with overall accuracy and precision consistent with those typically observed in environmental sample analysis. The initial method detection limit for an artificial sediment matrix was approximately 180 mg/kg for a 10 mg sediment sample. A sediment and a retained suspended solids sample were also analyzed to illustrate the applicability of microfurnace Py-GC-MS towards complex environmental sample analysis. These refinements should help encourage the adoption of pyrolysis techniques for mass-based measurements of TRWP in environmental samples both near and distant from roadways.
Collapse
Affiliation(s)
- Sharlee L More
- Stantec (ChemRisk), Portland, OR, United States of America.
| | - Julie V Miller
- Stantec (ChemRisk), Pittsburgh, PA, United States of America
| | | | - Kathy Chan
- Stantec (ChemRisk), Arlington, VA, United States of America
| | - Timothy R Barber
- Environmental Resources Management, Cleveland, OH, United States of America
| | - Kenneth M Unice
- Stantec (ChemRisk), Pittsburgh, PA, United States of America
| |
Collapse
|
25
|
Federico L, Masseroni A, Rizzi C, Villa S. Silent Contamination: The State of the Art, Knowledge Gaps, and a Preliminary Risk Assessment of Tire Particles in Urban Parks. TOXICS 2023; 11:toxics11050445. [PMID: 37235259 DOI: 10.3390/toxics11050445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Tire particles (TPs) are one of the main emission sources of micro- and nano-plastics into the environment. Although most TPs are deposited in the soil or in the sediments of freshwater and although they have been demonstrated to accumulate in organisms, most research has focused on the toxicity of leachate, neglecting the potential effects of particles and their ecotoxicological impact on the environment. In addition, studies have focused on the impact on aquatic systems and there are many gaps in the biological and ecotoxicological information on the possible harmful effects of the particles on edaphic fauna, despite the soil ecosystem becoming a large plastic sink. The aim of the present study is to review the environmental contamination of TPs, paying particular attention to the composition and degradation of tires (I), transport and deposition in different environments, especially in soil (II), the toxicological effects on edaphic fauna (III), potential markers and detection in environmental samples for monitoring (IV), preliminary risk characterization, using Forlanini Urban Park, Milan (Italy), as an example of an urban park (V), and risk mitigation measures as possible future proposals for sustainability (VI).
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Andrea Masseroni
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Cristiana Rizzi
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
26
|
Panqing Y, Abliz A, Xiaoli S, Aisaiduli H. Human health-risk assessment of heavy metal-contaminated soil based on Monte Carlo simulation. Sci Rep 2023; 13:7033. [PMID: 37120424 PMCID: PMC10148830 DOI: 10.1038/s41598-023-33986-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
Soil contamination soils of by heavy metals (HMs) poses serious threats to the soil environment and enters the human body through exposure pathways such as ingestion and skin contact, posing a threat to human health. The purpose of this study was to analyze the sources and contributions of soil HMs, and to quantitatively assess the human health risks of soil HMs to different populations (i.e. children, adult females and adult males), and to analyze the human health risks caused by various sources of sensitive populations. 170 topsoil (0-20 cm) were collected from Fukang, Jimsar and Qitai on the northern slope of Tianshan Mountains in Xinjiang, China, and the contents of Zn, Cu, Cr, Pb and Hg were determined. This study used the Unmix model and a health-risk assessment (HRA) model to assess the human health risks of five HMs. The results showed that: (1) The mean values of Zn and Cr were lower than the background values of Xinjiang, the mean values of Cu and Pb were slightly higher than the background values of Xinjiang but lower than the national standard, and the mean value of Hg and Pb was higher than the background value of Xinjiang and the national standard. (2) The sources of soil HMs in the region were mainly traffic, natural, coal, and industrial sources. Moreover, the HRA model combined with Monte Carlo simulation showed similar trends in the health-risk status of all population groups in the region. Probabilistic HRA revealed that noncarcinogenic risks were acceptable for all populations (HI < 1) while carcinogenic risks were high (children: 77.52%; female: 69.09%; male: 65.63%). For children, carcinogenic risk from industrial and coal sources exceeded the acceptable threshold by 2.35 and 1.20 times, respectively, and Cr was the main element contributing to human carcinogenic risk. These findings suggest that carcinogenic risks from coal-based Cr emissions cannot be ignored, and the study area should aim to control Cr emissions from industrial sources. The results of this study provide support for the prevention of human health risks and the control of soil HMs pollution across different age groups.
Collapse
Affiliation(s)
- Ye Panqing
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| | - Abdugheni Abliz
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China.
- Ecological Post-Doctoral Research Station, Xinjiang University, Urumqi, 830046, China.
| | - Sun Xiaoli
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| | - Halidan Aisaiduli
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
27
|
Rasmussen LA, Lykkemark J, Andersen TR, Vollertsen J. Permeable pavements: A possible sink for tyre wear particles and other microplastics? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161770. [PMID: 36708844 DOI: 10.1016/j.scitotenv.2023.161770] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In this study, seven roads and parking lots were sampled by a road surface cleaning truck and approximately 100 kg of particulate material was collected per site. Thereafter, the samples were analysed for microplastics, including tyre wear particles. The analyses revealed that tyre wear constituted 0.09 % of the dry mass of the samples on average. Other plastic types were also identified in the samples, but at on average 49 times lower concentrations compared to tyre wear particles. Although the roads and parking lots were used for residential, industrial, and commercial purposes, no correlation between land use and the total concentrations of microplastics was identified. Of microplastics other than tyre wear particles, polypropylene constituted an important fraction in all samples, whereas other polymers were present at various degrees. The contents of heavy metals, sulphur, and total organic carbon were also measured in the samples, but no correlation between them and microplastics was determined. A back-of-the-envelope estimation indicated that the tyre wear material retained by permeable pavements constituted a non-negligible fraction of the total mass of microplastics released on roads and parking lots. Therefore, permeable pavements can serve as a tool for the management of this pollutant.
Collapse
Affiliation(s)
| | - Jeanette Lykkemark
- Department of the Built Environment, Aalborg University, 9220 Aalborg Øst, Denmark
| | - Theis Raaschou Andersen
- VIA University College, Research Centre for Built Environment, Energy, Water and Climate, Banegårdsgade 2, 8700 Horsens, Denmark
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, 9220 Aalborg Øst, Denmark
| |
Collapse
|
28
|
Wang H, Luo Z, Yu R, Yan C, Zhou S, Xing B. Tire wear particles: Trends from bibliometric analysis, environmental distribution with meta-analysis, and implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121150. [PMID: 36720340 DOI: 10.1016/j.envpol.2023.121150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/13/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Tire wear particles (TWPs), as one of pristine microplastics and non-exhaust emission pollutants, have received extensive attention from scholars worldwide in recent years. In the context of the increasing number of related research results, this study evaluated the current status of TWPs research based on bibliometric analysis and meta-analysis and then discussed in-depth the environmental implications involving transport, transformation of released additives in potential and combined pollution with other microplastics in TWPs researches. Results showed that the regional layout of TWPs research was mainly concentrated in Europe and North America, but with specific countries of the United States, Germany, China, the United Kingdom, and Sweden. Thus, Asia and Africa should timely carry out related research on TWPs considering their large vehicle ownerships. In addition, keyword co-occurrence analysis based on CiteSpace showed that biotoxicity, environmental distribution and human health risks are the current research hotspots. Furthermore, the content of TWPs varied greatly by country and environmental media according to the meta-analysis. It is warranted to be urgently investigated on the distribution, quantitative analysis, migration, additives transformation with toxic effects and control measures of TWPs under the influence of various complex factors such as energy innovation and smart driving. The obtained findings can help understand the developing status of TWPs and then promoting their related investigations in future.
Collapse
Affiliation(s)
- Haiming Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Zhuanxi Luo
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shufeng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
29
|
Wang Y, Yang H, He W, Sun P, Zhao W, Liu M. Exploring the Potential Hormonal Effects of Tire Polymers (TPs) on Different Species Based on a Theoretical Computational Approach. Polymers (Basel) 2023; 15:polym15071719. [PMID: 37050333 PMCID: PMC10097371 DOI: 10.3390/polym15071719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Tire polymers (TPs) are the most prevalent type of microplastics and are of great concern due to their potential environmental risks. This study aims to determine the toxicity of TPs with the help of molecular-dynamics simulations of their interactions with receptors and to highlight the differences in the toxicity characteristics of TPs in different environmental media (marine environment, freshwater environment, soil environment). For this purpose, five TPs—natural rubber, styrene–butadiene rubber (SBR), butadiene rubber, nitrile–butadiene rubber, and isobutylene–isoprene rubber—were analyzed. Molecular-dynamics calculations were conducted on their binding energies to neurotoxic, developmental, and reproductive receptors of various organisms to characterize the toxic effects of the five TPs. The organisms included freshwater species (freshwater nematodes, snails, shrimp, and freshwater fish), marine species (marine nematodes, mussels, crab, and marine fish), and soil species (soil nematodes, springtails, earthworms, and spiders). A multilevel empowerment method was used to determine the bio-toxicity of the TPs in various environmental media. A coupled-normalization method–principal-component analysis–factor-analysis weighting method—was used to calculate the weights of the TP toxicity (first level) categories. The results revealed that the TPs were the most biologically neurotoxic to three environmental media (20.79% and 10.57% higher compared with developmental and reproductive toxicity, respectively). Regarding the effects of TPs on organisms in various environmental media (second level), using a subjective empowerment approach, a gradual increase in toxicity was observed with increasing trophic levels due to the enrichment of TPs and the feeding behavior of organisms. TPs had the greatest influence in the freshwater-environment organisms according to the subjective empowerment approach employed to weight the three environmental media (third level). Therefore, using the minimum-value method coupled with the feature-aggregation method, the interval-deflation method coupled with the entropy-weighting method, and the standard-deviation normalization method, the three toxicity characteristics of SBR in three environmental media and four organisms were determined. SBR was found to have the greatest impact on the overall toxicity of the freshwater environment (12.38% and 9.33% higher than the marine and soil environments, respectively). The greatest contribution to neurotoxicity (26.01% and 15.95% higher than developmental and reproductive toxicity, respectively) and the greatest impact on snails and shrimp among organisms in the freshwater environment were observed. The causes of the heterogeneity of SBR’s toxicity were elucidated using amino-acid-residue analysis. SBR primarily interacted with toxic receptors through van der Waals, hydrophobic, π-π, and π-sigma interactions, and the more stable the binding, the more toxic the effect. The toxicity characteristics of TMPs to various organisms in different environments identified in this paper provide a theoretical basis for subsequent studies on the prevention and control of TMPs in the environment.
Collapse
|
30
|
Pyrolysis Process of Mixed Microplastics Using TG-FTIR and TED-GC-MS. Polymers (Basel) 2023; 15:polym15010241. [PMID: 36616592 PMCID: PMC9824846 DOI: 10.3390/polym15010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Microplastics have become a ubiquitous contaminant in the environment. The present study focuses on the identification, characterization, and quantification techniques for tracking microplastics. Due to their unique compositional structure, unambiguous identification of individual polymers in various plastic samples, usually comprised of mixtures of individual polymers, remains a challenge. Therefore, there is limited research on the pyrolysis characterization of mixed samples. In this study, two analytical methods, TG-FTIR and TED-GC-MS combined with thermogravimetric analysis were used to evaluate the thermal-degradation process of individual and mixed samples of polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The primary interaction was the volatilization of terephthalic acid bound to chlorine molecules. The reduction of vinyl-ester functional groups and aromatic hydrocarbon intermediates related to olefin branching was confirmed. Char formation was increased, due to aromatic compounds from PET and PVC. All of the polymers used in the study may be underestimated in quantity, due to combined volatilizations during pyrolysis. TG-FTIR and TED-GC-MS showed forceful advantages in identifying mixed microplastics through different discrimination mechanisms. The study provides deep insight into pyrolysis behaviors and the interactions of mixed polymers, and the obtained results can help better comprehend the complex pyrolysis process.
Collapse
|
31
|
Järlskog I, Jaramillo-Vogel D, Rausch J, Gustafsson M, Strömvall AM, Andersson-Sköld Y. Concentrations of tire wear microplastics and other traffic-derived non-exhaust particles in the road environment. ENVIRONMENT INTERNATIONAL 2022; 170:107618. [PMID: 36356554 DOI: 10.1016/j.envint.2022.107618] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Tire wear particles (TWP) are assumed to be one of the major sources of microplastic pollution to the environment. However, many of the previously published studies are based on theoretical estimations rather than field measurements. To increase the knowledge regarding actual environmental concentrations, samples were collected and analyzed from different matrices in a rural highway environment to characterize and quantify TWP and other traffic-derived non-exhaust particles. The sampled matrices included road dust (from kerb and in-between wheeltracks), runoff (water and sediment), and air. In addition, airborne deposition was determined in a transect with increasing distance from the road. Two sieved size fractions (2-20 µm and 20-125 µm) were analyzed by automated Scanning Electron Microscopy/Energy Dispersive X-ray spectroscopy (SEM/EDX) single particle analysis and classified with a machine learning algorithm into the following subclasses: TWP, bitumen wear particles (BiWP), road markings, reflecting glass beads, metals, minerals, and biogenic/organic particles. The relative particle number concentrations (%) showed that the runoff contained the highest proportion of TWP (up to 38 %). The share of TWP in kerb samples tended to be higher than BiWP. However, a seasonal increase of BiWP was observed in coarse (20-125 µm) kerb samples during winter, most likely reflecting studded tire use. The concentration of the particle subclasses within airborne PM80-1 decreases with increasing distance from the road, evidencing road traffic as the main emission source. The results confirm that road dust and the surrounding environment contain traffic-derived microplastics in both size fractions. The finer fraction (2-20 µm) dominated (by mass, volume, and number) in all sample matrices. These particles have a high potential to be transported in water and air far away from the source and can contribute to the inhalable particle fraction (PM10) in air. This highlights the importance of including also finer particle fractions in future investigations.
Collapse
Affiliation(s)
- Ida Järlskog
- Swedish National Road and Transport Research Institute (VTI), SE-581 95 Linköping, Sweden; Geology and Geotechnics, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | | | - Juanita Rausch
- Particle Vision GmbH, Passage du Cardinal 13b, 1700 Fribourg, Switzerland
| | - Mats Gustafsson
- Swedish National Road and Transport Research Institute (VTI), SE-581 95 Linköping, Sweden
| | - Ann-Margret Strömvall
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- Swedish National Road and Transport Research Institute (VTI), SE-581 95 Linköping, Sweden; Geology and Geotechnics, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
32
|
Thomas J, Moosavian SK, Cutright T, Pugh C, Soucek MD. Method Development for Separation and Analysis of Tire and Road Wear Particles from Roadside Soil Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11910-11921. [PMID: 35980850 DOI: 10.1021/acs.est.2c03695] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A comprehensive understanding of tire and road wear particles (TRWPs) and their detection and quantification in soils is still challenged by the lack of well-set standardized methods, inherent technological inconsistencies, and generalized protocols. Our protocol includes soil sampling, size separation, and organic matter removal by using hydrogen peroxide followed by density separation and analysis. In this context, roadside soil samples from different sites in Kansas and Ohio, USA, were collected and analyzed. Tire cryogrinds analogous to TRWPs were used to evaluate various density separation media, and collected particles more than 1 mm in size were then subjected to infrared spectroscopy (IR), thermogravimetric analysis (TGA), and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) to confirm TRWP presence. Particles smaller than 1 mm were Soxhlet extracted, followed by gas chromatography-mass spectrometry (GC-MS) to validate the presence of tire-related intermediates. SEM-EDX validated the presence of elemental combinations (S + Zn/Na) ± (Al, Ca, Mg, K, Si) attributed to tires. Ketones, carboxylic acids, epoxies, cyclohexane, and benzothiazole sulfenamide (BTS) intermediates were the most probable tire-related intermediates observed in the roadside soil samples. Thus, this simple, widely applicable, cost-effective sample preparation protocol for TRWP analysis can assist TRWP research advancement in terrestrial environments.
Collapse
Affiliation(s)
- Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Seyed Kasra Moosavian
- Civil Engineering, College of Engineering and Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Teresa Cutright
- Civil Engineering, College of Engineering and Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Coleen Pugh
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Mark D Soucek
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
33
|
Lackmann C, Velki M, Šimić A, Müller A, Braun U, Ečimović S, Hollert H. Two types of microplastics (polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner. ENVIRONMENT INTERNATIONAL 2022; 163:107190. [PMID: 35316749 DOI: 10.1016/j.envint.2022.107190] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Microplastics are small plastic fragments that are widely distributed in marine and terrestrial environments. While the soil ecosystem represents a large reservoir for plastic, research so far has focused mainly on the impact on aquatic ecosystems and there is a lack of information on the potentially adverse effects of microplastics on soil biota. Earthworms are key organisms of the soil ecosystem and are due to their crucial role in soil quality and fertility a suitable and popular model organism in soil ecotoxicology. Therefore, the aim of this study was to gain insight into the effects of environmentally relevant concentrations of microplastics on the earthworm Eisenia andrei on multiple levels of biological organization after different exposure periods. Earthworms were exposed to two types of microplastics: (1) polystyrene-HBCD and (2) car tire abrasion in natural soil for 2, 7, 14 and 28d. Acute and chronic toxicity and all subcellular investigations were conducted for all exposure times, avoidance behavior assessed after 48 h and reproduction after 28d. Subcellular endpoints included enzymatic biomarker responses, namely, carboxylesterase, glutathione peroxidase, acetylcholinesterase, glutathione reductase, glutathione S-transferase and catalase activities, as well as fluorescence-based measurements of oxidative stress-related markers and multixenobiotic resistance activity. Multiple biomarkers showed significant changes in activity, but a recovery of most enzymatic activities could be observed after 28d. Overall, only minor effects could be observed on a subcellular level, showing that in this exposure scenario with environmentally relevant concentrations based on German pollution levels the threat to soil biota is minimal. However, in areas with higher concentrations of microplastics in the environment, these results can be interpreted as an early warning signal for more adverse effects. In conclusion, these findings provide new insights regarding the ecotoxicological effects of environmentally relevant concentrations of microplastics on soil organisms.
Collapse
Affiliation(s)
- Carina Lackmann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Antonio Šimić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Axel Müller
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany; Bundesanstalt für Materialforschung und -prüfung (BAM), Fachbereich 6.6: Physik und chemische Analytik der Polymere, Unter den Eichen 87, 12205 Berlin, Germany
| | - Ulrike Braun
- Bundesanstalt für Materialforschung und -prüfung (BAM), Fachbereich 6.6: Physik und chemische Analytik der Polymere, Unter den Eichen 87, 12205 Berlin, Germany; Umweltbundesamt (UBA), Fachgebiet III 2.5 - Überwachungsverfahren, Abwasserentsorgung, Schichauweg 58, 12307 Berlin, Germany
| | - Sandra Ečimović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany.
| |
Collapse
|