1
|
Yim G, Howe CG, Gallagher LG, Gilbert-Diamond D, Calafat AM, Botelho JC, Karagas MR, Romano ME. Prenatal per- and polyfluoroalkyl substance mixtures and weight for length from birth to 12 months: The New Hampshire Birth Cohort Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179446. [PMID: 40311330 DOI: 10.1016/j.scitotenv.2025.179446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVE To examine the joint associations of plasma concentrations of prenatal per- and polyfluoroalkyl substances (PFAS) mixtures with birth size and postnatal anthropometry measures. MATERIAL AND METHODS The current study included 641 mother-child dyads from the New Hampshire Birth Cohort Study. PFAS concentrations were quantified in maternal plasma samples collected during pregnancy (median: 28 weeks of gestation). Information on infant weight and length were abstracted from medical records and converted to sex- and age-standardized weight-for-length z-score according to the World Health Organization standard curves. Bayesian kernel machine regression (BKMR) was used to investigate the joint associations of multiple PFAS concentrations during pregnancy with weight-for-length z score at birth, 6-months, and 12-months. To account for longitudinal outcomes, we also fit linear mixed effect models between PFAS exposure burden score, a novel method to quantify total exposure burden to PFAS mixtures, and changes in weight-for-length from birth to 12 months of age. A multiplicative interaction term ("PFAS burden score × time [birth as a reference, 6 months, and 12 months of age]") was included to evaluate a potential time-varying relationship. All models were adjusted for maternal age, education, marital status, parity, smoking, seafood consumption, pre-pregnancy body mass index, and gestational week of blood draw. RESULTS In BKMR models, all 95 % credible intervals included the null value. In linear mixed effects models, PFAS exposure burden score was associated with a lower weight-for-length z-score (β = -0.20; 95 % confidence interval = -0.35, -0.04). The multiplicative interaction term was significant at both 6 and 12 months of age (P < 0.01 for both time points), particularly among female infants, suggesting a shift toward positive associations between the prenatal PFAS mixtures and weight-for-length z-score during infancy. CONCLUSIONS Prenatal PFAS mixtures may affect fetal and infant anthropometry measures differently by life stage and biological sex.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA.
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Lisa G Gallagher
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA; Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth-Hitchcock Weight and Wellness Center, Department of Medicine at Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
2
|
Bradley PM, Romanok KM, Smalling KL, Donahue L, Gaikowski MP, Hines RK, Breitmeyer SE, Gordon SE, Loftin KA, McCleskey RB, Meppelink SM, Schreiner ML. Tapwater exposures, residential risk, and mitigation in a PFAS-impacted-groundwater community. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1368-1388. [PMID: 40223753 DOI: 10.1039/d5em00005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Tapwater (TW) safety and sustainability are priorities in the United States. Per/polyfluoroalkyl substance(s) (PFAS) contamination is a growing public-health concern due to prolific use, widespread TW exposures, and mounting human-health concerns. Historically-rural, actively-urbanizing communities that rely on surficial-aquifer private wells incur elevated risks of unrecognized TW exposures, including PFAS, due to limited private-well monitoring and contaminant-source proliferation in urbanizing landscapes. Here, a broad-analytical-scope TW-assessment was conducted in a hydrologically-vulnerable, Mississippi River alluvial-island community, where PFAS contamination of the shallow-alluvial drinking-water aquifer has been documented, but more comprehensive contaminant characterization to inform decision-making is currently lacking. In 2021, we analyzed 510 organics, 34 inorganics, and 3 microbial groups in 11 residential and community locations to assess (1) TW risks beyond recognized PFAS issues, (2) day-to-day and year-to-year risk variability, and (3) suitability of the underlying sandstone aquifer as an alternative source to mitigate TW-PFAS exposures. Seventy-six organics and 25 inorganics were detected. Potential human-health risks of detected TW exposures were explored based on cumulative benchmark-based toxicity quotients (∑TQ). Elevated risks (∑TQ ≥ 1) from organic and inorganic contaminants were observed in all alluvial-aquifer-sourced synoptic samples but not in sandstone-aquifer-sourced samples. Repeated sampling at 3 sites over 52-55 h indicated limited variability in risk over the short-term. Comparable PFAS-specific ∑TQ for spatial-synoptic, short-term (3 days) temporal, and long-term (3 years quarterly) temporal samples indicated that synoptic results provided useful insight into the risks of TW-PFAS exposures at French Island over the long-term. No PFAS detections in sandstone-aquifer-sourced samples over a 3 year period indicated no PFAS-associated risk and supported the sandstone aquifer as an alternative drinking-water source to mitigate community TW-PFAS exposures. This study illustrated the importance of expanded contaminant monitoring of private-well TW, beyond known concerns (in this case, PFAS), to reduce the risks of a range of unrecognized contaminant exposures.
Collapse
|
3
|
Li X, Li W, Wang Z, Wang X, Cai Y, Shi Y. Atmospheric Emission of Per- and Polyfluoroalkyl Substances (PFAS) from a Fluoropolymer Manufacturing Facility: Focus on Emerging PFAS and the Potential Contribution of Condensable PFAS on their Atmospheric Partitioning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9709-9720. [PMID: 40327782 DOI: 10.1021/acs.est.5c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Fluoropolymer manufacturing facility (FMF) has been regarded as a main source of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in the atmosphere. In this study, suspect screening was performed to identify emerging PFAS in gas, particles, and dust both inside and outside a large FMF in China. A total of 74 emerging PFAS were tentatively identified with a confidence level of 3 or higher, 32 of which were reported in the environment for the first time. The semi-quantitative concentrations of the emerging PFAS, with perfluoroalkyl ether carboxylic acids (PFECAs) and Cl-PFECAs being predominant, accounted for 21-95% (mean: 46%) of the combined concentrations of emerging and legacy PFAS. Although the PFAS concentrations in the atmosphere decreased rapidly by more than 95% within 5 km, short-chain PFAS in PM2.5 were transported farther, especially C4 and C5 perfluoroalkyl carboxylic acids, which decreased by 66% and 79% within 5 km, respectively. Emerging PFAS with an ionic terminal group are mainly distributed in the particle phase, while alcohol-related PFAS are found in the gas phase. The ratios of PFAS in the gas phase inside the FMF were much higher than those outside, which could be reasonably explained by the condensation of gaseous PFAS onto fine particles shortly after being emitted.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, Shandong Province 250061, China
| | - Zhanyun Wang
- Technology and Society Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Xianfeng Wang
- Shandong Provincial Eco-environment Monitoring Center, Jinan 250101, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
4
|
Giorgetti A, Fornasari A, Bonasoni MP, Ferretti A, Seidenari A, Sech M, Piva E, Pascali JP, Fais P. Per- and polyfluoroalkyl substances (PFAS) in placental compartments: Histopathological and toxicological data integration in an Italian cohort. ENVIRONMENTAL RESEARCH 2025; 279:121846. [PMID: 40383424 DOI: 10.1016/j.envres.2025.121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic environmental contaminants with widespread industrial and consumer applications, characterized by strong chemical stability and environmental persistence. Recent studies have highlighted placental permeability to PFAS, though evidence of direct histopathological impairment remains limited. This study aimed to investigate potential associations between PFAS exposure and histopathological abnormalities in placental samples. A total of 23 at-term pregnant women were recruited from two hospitals in Italy as part of a multicenter study. Placental samples, divided into maternal (decidua) and fetal (villi) compartments, were analyzed for PFAS concentration and histopathological alterations. PFAS were detected in 95.7 % of samples. The most frequently detected PFAS were PFOS (88 %), followed by PFHxS (83 %), PFOA (83 %), PFBS (54 %) and PFHxA (54 %). Preliminary findings suggest variable PFAS concentrations among subjects, with histopathological examination revealing placental alterations of potential clinical relevance. The observed histopathological alterations, particularly in cases of malperfusion and angiogenesis changes, suggest that PFAS may contribute to placental dysfunction, potentially affecting pregnancy outcomes. In particular, it could be hypothesized that PFHxA could exert an adverse influence on placental angiogenesis, due to pre-placental hypoxia stimulating the angiogenesis and resulting in increased ramification and number of branches. While direct causative links remain to be fully elucidated, these results underscore the need for further investigations into PFAS-related placental effects and their implications for fetal development.
Collapse
Affiliation(s)
- Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Arianna Fornasari
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | | | - Alice Ferretti
- Obstetrics and Gynaecology Unit Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Anna Seidenari
- Department of Medical and Surgical Sciences, Unit of Obstetrics and Gynaecology, University of Bologna, Bologna, Italy
| | - Maria Sech
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Elena Piva
- dtoLABS, Via Pozzuoli, 13C/13D, 30038, Spinea, VE, Italy
| | - Jennifer P Pascali
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy.
| | - Paolo Fais
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Zhao N, Zhang X, Li Y, Zhang H, Yang E, Ding L, Liu Y. Associations between in utero exposure of per- and polyfluoroalkyl substances (PFAS) mixture and anthropometry measures at birth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126093. [PMID: 40113195 DOI: 10.1016/j.envpol.2025.126093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
In utero exposure to per- and polyfluoroalkyl substances (PFAS), which are recognized developmental toxicants, potentially leads to decreased anthropometric measures in infants at birth. We analyzed 16 PFAS in 350 cord serum samples from Jinan, China, using ultra-high-performance liquid chromatography integrated with Orbitrap mass spectrometry. Birth length, birth weight, and head circumference were extracted from medical records and converted into z-scores (BL-z, BW-z and HC-z, respectively). Multivariable linear regression (MLR) models were employed to investigate the associations between individual PFAS and these birth anthropometric z-scores. To assess the cumulative effects of PFAS, quantile g-computation (QGC) and Bayesian kernel machine regression (BKMR) models were employed. Additionally, stratified analyses were performed to derive sex-specific estimates of the associations. MLR analysis revealed significant associations between specific PFAS and reduced birth anthropometric measures varying by infant sex. For example, log2-transformed concentration of cord serum perfluorooctanoic acid (PFOA) was associated with reduced BL-z (β = -0.12 (-0.18, -0.06), p < 0.001) and BW-z (β = -0.20 (-0.31, -0.10), p < 0.001) in all infants. Perfluoroheptanesulfonic acid (PFHpS) was inversely associated with BL-z (β = -0.07 (-0.13, -0.02), p = 0.03) and HC-z (β = -0.06 (-0.11, -0.02), p = 0.01) exclusively in males. BKMR and QGC models suggested general negative dose-response pattern between exposure to PFAS mixtures and BL-z, BW-z, and HC-z in males. Conversely, these associations were not evident in females. The key PFAS identified as contributors to the joint effects, along with the directions of their estimated impacts as determined by the mixture methods, showed marginal consistency with the results obtained from the MLR models. Our study underscored that in utero exposure to certain PFAS was associated with reduced anthropometric measures at birth. Male infants were more susceptible to PFAS exposure, particularly to combined PFAS mixture effects.
Collapse
Affiliation(s)
- Nan Zhao
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, Shandong, China
| | - Xiaozhen Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Yahui Li
- Jinan Digital Application Center of Ecology and Environment (Jinan Grid Supervision Center of Ecological and Environmental Protection), Jinan, 250102, Shandong, China
| | - Haoyu Zhang
- School of Environmental Research Institute, Shandong University, Qingdao, 266237, Shandong, China
| | - En Yang
- Environmental Monitoring Station of Lanshan Branch of Rizhao Ecology and Environment Bureau, Rizhao, 276800, Shandong, China
| | - Lei Ding
- School of Environmental Research Institute, Shandong University, Qingdao, 266237, Shandong, China.
| | - Yi Liu
- School of Public Health, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
6
|
Leuthner TC, Zhang S, Kohrn BF, Stapleton HM, Baugh LR. Structure-specific variation in per- and polyfluoroalkyl substances toxicity among genetically diverse Caenorhabditis elegans strains. Toxicol Sci 2025; 205:205-219. [PMID: 39985174 PMCID: PMC12038255 DOI: 10.1093/toxsci/kfaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are in 99% of humans and are associated with a range of adverse health outcomes. It is impossible to test the >14,500 structurally diverse "forever chemicals" for safety, therefore improved assays to quantify structure-activity relationships are needed. Here, we determined the toxicity of a structurally distinct set of PFAS in 12 genetically diverse strains of the genetic model system Caenorhabditis elegans. Dose-response curves for perfluoroalkyl carboxylic acids (PFNA, PFOA, PFPeA, and PFBA), perfluoroalkyl sulfonic acids (PFOS and PFBS), perfluoroalkyl sulfonamides (PFOSA and PFBSA), fluoroether carboxylic acids (GenX and PFMOAA), fluoroether sulfonic acid (PFEESA), and fluorotelomers (6:2 FTCA and 6:2 FTS) were determined in the C. elegans laboratory reference strain, N2, and 11 genetically diverse wild strains. Body length was quantified after 48 h of developmental exposure of L1 arrest-synchronized larvae to estimate effective concentration values (EC50). PFAS toxicity ranged by 3 orders of magnitude. Long-chain PFAS had greater toxicity than short-chain. Fluorosulfonamides were more toxic than carboxylic and sulfonic acids. Genetic variation resulted in variation in susceptibility among 12 strains to almost all chemicals. Different C. elegans strains varied in susceptibility to different PFAS, which suggests distinct molecular responses to specific structural attributes. Harnessing the natural genetic diversity of C. elegans and the structural complexity of PFAS is a powerful approach that can be used to investigate mechanisms of toxicity which may identify potentially susceptible individuals or populations and predict toxicity of untested PFAS to inform regulatory policies and improve human and environmental health.
Collapse
Affiliation(s)
- Tess C Leuthner
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, United States
| |
Collapse
|
7
|
Domingo JL. A review of the occurrence and distribution of Per- and polyfluoroalkyl substances (PFAS) in human organs and fetal tissues. ENVIRONMENTAL RESEARCH 2025; 272:121181. [PMID: 39978621 DOI: 10.1016/j.envres.2025.121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
This review synthesizes current evidence on PFAS concentrations across human organs and tissues, excluding blood matrices. Literature search was conducted using PubMed, Web of Science, and Scopus. The earliest reported study on the topic measured PFOS, PFOSA, PFOA, and PFHxS levels in human liver and serum, showing mean liver concentrations of 18.8 ng/g and a liver-to-serum ratio of 1.3:1 for PFOS. Subsequent research extended these findings to other organs, with measurements in pooled samples indicating organ-specific accumulation patterns. PFOS was predominant in liver, kidney, and lung, while PFOA was more prominent in bone. Pathological conditions, such as liver disease, have shown to influence PFAS distribution, with diseased tissues exhibiting altered accumulation patterns. On the other hand, the occurrence of PFAS in fetal and placental tissues demonstrated that these compounds cross the placenta, although fetal exposure levels were significantly lower than maternal levels. Tissue-specific accumulation has been reported, with liver and lung showing higher concentrations compared to other fetal tissues. Associations between PFAS levels in the placenta and birth outcomes indicated potential sex-specific effects, including reduced birth weight in male infants exposed to higher PFOS levels. This review highlights important differences in the detection frequencies and concentrations of PFAS across organs and the specific studies. These variations are attributed to differences in analytical methods, sample characteristics, and exposure sources. The findings underscore the need for standardized methodologies and further research to better understand PFAS distribution in human tissues and their potential health impacts, particularly during critical developmental stages.
Collapse
Affiliation(s)
- Jose L Domingo
- Universitat Rovira i Virgili, School of Medicine, Laboratory of Toxicology and Environmental Health, San Llorens 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
8
|
Schrott R, Ladd-Acosta C, Padmanabhan V, Barr DB, Breton CV, Cardenas A, Carignan CC, Dabelea D, Dunlop AL, Fallin DM, Hivert MF, Howerton EM, Knight AK, Oken E, Peterson AK, Petriello MC, Ruden D, Schmidt RJ, Smith AK, Starling AP, Yang IV, Zhu Y, Goodrich JM. Prenatal per- and polyfluoroalkyl substance exposures and DNA methylation among newborns in the Environmental influences on Child Health Outcomes program. ENVIRONMENTAL EPIGENETICS 2025; 11:dvaf010. [PMID: 40401168 PMCID: PMC12094075 DOI: 10.1093/eep/dvaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/06/2025] [Accepted: 04/21/2025] [Indexed: 05/23/2025]
Abstract
Gestation is a vulnerable window when exposure to per- and polyfluoroalkyl substances (PFAS) may impact child development and health. Epigenetic modification, including DNA methylation (DNAm), may be one mechanism linking prenatal PFAS exposure to offspring outcomes. We tested associations between prenatal PFAS and newborn DNAm in 1017 participants from 6 cohorts in the US Environmental influences on Child Health Outcomes consortium. Concentrations of PFAS [perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid] were measured in maternal serum or plasma. DNAm was quantified in newborn dried blood spot or umbilical cord blood leukocytes using the Infinium HumanMethylation450 (450K) or MethylationEPIC (EPIC) arrays. We tested associations between prenatal PFAS and neonatal blood DNAm on the 450K (n = 772) and EPIC (n = 245) arrays; results were meta-analysed across the platforms. Regional changes in DNAm were investigated, and findings were checked for replication in the Michigan Mother-Infant Pairs (MMIP) cohort (n = 140). Following correction for false discovery rate (q = 0.1 for meta-analyses), we identified an association between PFHxS and one cytosine-guanine (CpG) mapped to CASC3 (q = 0.065) that replicated in MMIP (P = .006). PFOS was associated with six CpG sites, of which five were mapped to the genes KIAA1841, ABR, LEP, SERPINA1, and LOXL1. One differentially methylated region (DMR) was associated with prenatal PFOA exposure, and one DMR was associated with PFOS exposure. In this multicohort analysis including a diverse group from the USA, PFOA, PFOS, PFHxS, and PFNA exposures in pregnancy were associated with offspring DNAm, and the implications for children's health merit further exploration.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Carrie V Breton
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, United States
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Courtney C Carignan
- Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Danielle M Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, United States
| | - Ellen M Howerton
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Anna K Knight
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, United States
| | - Alicia K Peterson
- Division of Research, Kaiser Permanente Northern California, Pleasanton, Pleasanton 94588 United States
| | - Michael C Petriello
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, United States
| | - Douglas Ruden
- Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, Davis, CA 95817, United States
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Anne P Starling
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 , United States
| | - Ivana V Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Pleasanton, Pleasanton 94588 United States
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
9
|
Eick SM, Sehgal N, Salamova A, Fiedler N, Hood RB, Yakimavets V, Promkam N, Prapamontol T, Suttiwan P, Sittiwang S, Mangklabruks A, Naksen W, Panuwet P, Barr DB. Per- and polyfluoroalkyl substances in paired serum and breastmilk samples among pregnant farmworkers in Thailand. Int J Hyg Environ Health 2025; 264:114509. [PMID: 39647432 PMCID: PMC11788031 DOI: 10.1016/j.ijheh.2024.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely detected in pregnant persons and can be transferred to the developing fetus in utero. Breastfeeding may represent an important source of PFAS exposure for infants. However, studies quantifying levels of PFAS in breastmilk samples remain scarce, particularly in low- and middle-income countries. We examined breastmilk as a postnatal PFAS exposure source among mother-infant pairs in Thailand. Pregnant farmworkers were enrolled in the Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE), a prospective birth cohort in Northern Thailand, between 2017 and 2019. We quantified levels of eight PFAS in maternal serum samples obtained during the second trimester, as well as in breastmilk samples obtained at 9.5 months and 11.5 months in infancy (N = 46 matched pairs). For each PFAS, we calculated lactational (serum to milk) transfer efficiencies and lactational estimated daily intake. PFOA, PFOS PFHxS, PFNA, PFDA, and PFUnDA were detected in >90% of serum samples. PFOS was detected in >60% of breastmilk samples obtained at 9.5 and 11.5 months, while PFNA was detected in >50% of 9.5-month breastmilk samples only. All remaining PFAS were detected in <50% of breastmilk samples. The lactational transfer efficiency for PFOS was 7.03% (SD = 5.78) and 5.83% (SD = 5.21) at 9.5 and 11.5 months, respectively. The lactational estimated daily intake for PFOS was 12.1 ng/kg bodyweight/day (SD = 5.49) and 10 ng/kg bodyweight/day (SD = 6.22) at 9.5 and 11.5 months, respectively. For PFNA, the lactational transfer efficiency and estimated daily intake at 9.5 months was 14.7% (SD = 14.3) and 6.14% (SD = 3.40), respectively. Within one of the first PFAS biomonitoring studies conducted in Thailand, we found that legacy PFAS were widely detected in serum, and some compounds were also detected in breastmilk of farmworkers. This study provides new evidence enhancing our understanding of postnatal exposure to PFAS.
Collapse
Affiliation(s)
- Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Neha Sehgal
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nancy Fiedler
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Robert B Hood
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nattawadee Promkam
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Tippawan Prapamontol
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Panrapee Suttiwan
- Chulalongkorn University, Faculty of Psychology, Life Di Center, Bangkok, Thailand
| | - Supattra Sittiwang
- Chulalongkorn University, Faculty of Psychology, Life Di Center, Bangkok, Thailand
| | | | - Warangkana Naksen
- Chiang Mai University, Faculty of Public Health, Chiang Mai, Thailand
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Everson TM, Sehgal N, Campbell K, Barr DB, Panuwet P, Yakimavets V, Chen K, Perez C, Shankar K, Eick SM, Pearson KJ, Andres A. Placental PFAS concentrations are associated with perturbations of placental DNA methylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125737. [PMID: 39862910 DOI: 10.1016/j.envpol.2025.125737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The placenta is crucial for fetal development, is affected by PFAS toxicity, and evidence is accumulating that gestational PFAS perturb the epigenetic activity of the placenta. Gestational PFAS exposure can adversely affect offspring, yet individual and cumulative impacts of PFAS on the placental epigenome remain underexplored. Here, we conducted an epigenome-wide association study (EWAS) to examine the relationships between placental PFAS levels and DNA methylation in a cohort of mother-infant dyads in Arkansas (N = 151). We measured 17 PFAS in human placental tissues and quantified placental DNA methylation levels via the Illumina EPIC Microarray. We tested for differential DNA methylation with individual PFAS, and with mixtures of multiple PFAS. Our results demonstrated that numerous epigenetic loci were perturbed by PFAS, with PFHxS exhibiting the most abundant effects. Mixture analyses suggested cumulative effects of PFOA and PFOS, while PFHxS may act more independently. We additionally explored whether sex-specific effects may be present and concluded that future large studies should explicitly test for sex-specific effects. The genes that are annotated to our PFAS-associated epigenetic loci are primarily involved in growth processes and cardiometabolic health, while some genes are involved in neurodevelopment. These findings shed light on how prenatal PFAS exposures affect birth outcomes and children's health, emphasizing the importance of understanding PFAS mechanisms in the in-utero environment.
Collapse
Affiliation(s)
- Todd M Everson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA; Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA.
| | - Neha Sehgal
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kyle Campbell
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kelsey Chen
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Cynthia Perez
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kartik Shankar
- USDA Agricultural Research Service, Responsive Agricultural Food Systems Research Unit, College Station, TX, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA; Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kevin J Pearson
- Department of Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, USA
| | - Aline Andres
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Children's Nutrition Center, Little Rock, AR, USA
| |
Collapse
|
11
|
Gaillard L, Barouki R, Blanc E, Coumoul X, Andréau K. Per- and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts. Trends Endocrinol Metab 2025; 36:249-261. [PMID: 39181731 DOI: 10.1016/j.tem.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
The widespread use of per- and polyfluoroalkyl substances (PFASs), and their resistance to degradation, renders human exposure to them inevitable. PFAS exposure disturbs endocrine function, potentially affecting cognitive development in newborns through thyroid dysfunction during pregnancy. Recent studies reveal varying male and female reproductive toxicity across PFAS classes, with alternative analogs affecting sperm parameters and legacy PFASs correlating with conditions like endometriosis. Metabolically, PFASs exposure is linked to metabolic disorders, including obesity, type 2 diabetes mellitus (T2DM), dyslipidemia, and liver toxicity, particularly in early childhood. This review focuses on the endocrine-disrupting impact of PFASs, particularly on fertility, thyroid, and metabolic functions. We highlight the complexity of the PFAS issue, given the large number of molecules and their extremely diverse mixed effects.
Collapse
Affiliation(s)
- Lucas Gaillard
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Robert Barouki
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Etienne Blanc
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Xavier Coumoul
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France.
| | - Karine Andréau
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| |
Collapse
|
12
|
Li X, Hou M, Zhang F, Ji Z, Cai Y, Shi Y. Per- and Polyfluoroalkyl Substances and Female Health Concern: Gender-based Accumulation Differences, Adverse Outcomes, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1469-1486. [PMID: 39803974 DOI: 10.1021/acs.est.4c08701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The deleterious health implications of perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widely recognized. Females, in contrast to males, exhibit unique pathways for PFAS exposure and excretion, leading to complex health outcomes. The health status of females is largely influenced by hormone-related processes. PFAS have been reported to be associated with various aspects of female health, including reproductive system disorders and pregnancy-related diseases. In this article, we provide insights into the correlations between PFAS and female-prevalent diseases. Current epidemiological and toxicological evidence has demonstrated that the adverse effects of PFAS on the health of the female reproductive system are primarily attributed to the disruption of the hypothalamic-pituitary-gonadal (HPG) axis and hormonal homeostasis. However, these findings do not sufficiently elucidate the intricate associations between PFAS and specific diseases. Furthermore, autoimmune disorders, another category that is more prevalent in women compared to men, require additional investigation. Immune biomarkers pertinent to autoimmune disorders have been observed to be influenced by PFAS exposure, although epidemiological evidence is insufficient to substantiate these relations. Further thorough exploration encompassing epidemiological and toxicological studies is essential to elucidating the inherent influence of PFAS on human pathologies. Additionally, comprehensive investigations into female health issues beyond their reproductive functions is essential.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhang
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, HangzhouZhejiang310007, China
| | - Zhengquan Ji
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, HangzhouZhejiang310007, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Rabotnick MH, Haidari A, Dolinoy DC, Meijer JL, Harris SM, Burant CF, Padmanabhan V, Goodrich JM. Early pregnancy serum PFAS are associated with alterations in the maternal lipidome. ENVIRONMENTAL RESEARCH 2024; 263:120183. [PMID: 39426451 PMCID: PMC11639123 DOI: 10.1016/j.envres.2024.120183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been detected in the blood of humans and animals worldwide. Exposure to some PFAS are associated with multiple adverse pregnancy outcomes. Existing literature has identified a strong association with PFAS exposure and metabolic dysfunction in humans, including modification of lipid metabolism. Using a subset of the Michigan Mother-Infant Pairs cohort (n = 95), this study investigated associations between first trimester plasma levels of PFAS and maternal lipids and metabolites in the first trimester (T1), at the time of delivery (T3), and in the infant cord blood (CB) using untargeted shotgun lipidomics and metabolomics. Identifying PFAS-induced alterations in the maternal lipid- or metabolome at specific timepoints may help elucidate windows of susceptibility to adverse pregnancy outcomes. Out of 9 PFAS measured, 7 were detected in at least 20% of samples and were used for further analyses. PFOS and PFHxS were measured at the highest concentrations with medians of 5.76 ng/mL and 3.33 ng/mL, respectively. PFOA, PFNA, and PFDA had lower measured values with medians of <1.2 ng/mL. PFHxS concentrations were positively associated with monounsaturated sphingomyelins (SMs) in T1 maternal plasma in adjusted models, determined by an adjusted p-value (q) < 0.1. PFHxS was positively associated with saturated and polyunsaturated SMs and inversely associated with saturated diacylglycerols in T1. Following metabolite-specific analysis, two mono-unsaturated diacylglycerols with carbon chain lengths of 32 and 35 were inversely associated with PFHxS in T1. In T3, only the association between PFHxS and SMs remained, but was attenuated. In addition, PFDA was associated with an increase in polyunsaturated plasmenyl-phosphatidylethanolamines in T3. No associations were identified between PFAS and infant cord blood lipids. Continued research into PFAS associated disruptions in lipid metabolism at sensitive stages of gestation may provide insight into the mechanisms that lead to adverse birth and pregnancy outcomes.
Collapse
Affiliation(s)
- Margaret H Rabotnick
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ariana Haidari
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jennifer L Meijer
- Department of Medicine, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Lu S, Zhu X, Zeng P, Hu L, Huang Y, Guo X, Chen Q, Wang Y, Lai L, Xue A, Wang Y, Wang Z, Song W, Liu Q, Bian G, Li J, Bu Q, Cen X. Exposure to PFOA, PFOS, and PFHxS induces Alzheimer's disease-like neuropathology in cerebral organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125098. [PMID: 39389246 DOI: 10.1016/j.envpol.2024.125098] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), a class of ubiquitous synthetic organic chemicals, are widely utilized across various industrial applications. However, the long-term neurological health effects of PFAS mixture exposure in humans remain poorly understood. To address this gap, we have designed a comprehensive study to predict and validate cell-type-specific neurotoxicity of PFASs using single-cell RNA sequencing (scRNA-seq) and cerebral organoids. Cerebral organoids were exposed to a PFAS mixture at concentrations of 1 × (10 ng/ml PFOS and PFOA, and 1 ng/ml PFHxS), 30 × , and 900 × over 35 days, with a follow-up analysis at day 70. Pathological alterations and lipidomic profiles were analyzed to identify disrupted molecular pathways and mechanisms. The scRNA-seq data revealed a significant impact of PFASs on neurons, suggesting a potential role in Alzheimer's Disease (AD) pathology, as well as intellectual and cognitive impairments. PFAS-treated cerebral organoids exhibited Aβ accumulation and tau phosphorylation. Lipidomic analyses further revealed lipid disturbances in response to PFAS mixture exposure, linking PFAS-induced AD-like neuropathology to sphingolipid metabolism disruption. Collectively, our findings provide novel insights into the PFAS-induced neurotoxicity, highlighting the significance of sphingolipid metabolism in the development of AD-like neuropathology. The use of cerebral organoids and scRNA-seq offers a powerful methodology for evaluating the health risks associated with environmental contaminants, particularly those with neurotoxic potential.
Collapse
Affiliation(s)
- Shiya Lu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xizhi Zhu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Pinli Zeng
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Linxia Hu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yan Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xinhua Guo
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiqi Chen
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yantang Wang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Li Lai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Aiqin Xue
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yanli Wang
- Jinniu Maternity and Child Health Hospital of Chengdu, Chengdu, 610036, China
| | - Zhiqiu Wang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wenbo Song
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qian Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Guohui Bian
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jiayuan Li
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qian Bu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Windisch M, Klymenko R, Grießler H, Kittinger C. Assessment of Cytotoxicity and Genotoxicity of Plasma-Treated Perfluorooctanesulfonate Containing Water Using In Vitro Bioassays. TOXICS 2024; 12:889. [PMID: 39771104 PMCID: PMC11728540 DOI: 10.3390/toxics12120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
The contamination of ground and surface waters with per- and polyfluoroalkyl substances (PFASs) is of major concern due to their potential adverse effects on human health. The carbon-fluorine bond makes these compounds extremely stable and hardly degradable by natural processes. Therefore, methods for PFAS removal from water are desperately needed. In this context, plasma treatment of water has been proposed as an effective method with reported removal rates exceeding 90%. However, the high reactivity of plasma discharge results in the formation of many reactive species, like radicals, ozone, or even solvated electrons, which lead to a complex reaction cascade and, consequently, to the generation of a wide variety of different chemical products. The toxicological properties of these PFAS breakdown products are largely unknown. The present study focuses on a toxicological assessment of PFAS-containing plasma-treated water samples. Aqueous solutions of long-chain perfluorooctanesulfonate (PFOS) were treated with various plasma-atmospheric regimes. Subsequently, plasma-treated water samples were subjected to in vitro bioassays. Cytotoxicity and genotoxicity were assessed with the MTS assay using human liver cells (HepG2) and the Ames MPFTM assay using Salmonella Typhimurium strains. Our results demonstrate varying cyto- and genotoxic properties of water containing PFAS breakdown products depending on the atmosphere present during plasma treatment. Based on the results of this study, the atmosphere used during plasma treatment affects the toxicological properties of the treated sample. Further studies are therefore needed to uncover the toxicological implications of the different treatment parameters, including the PFAS starting compound, the atmosphere during treatment, as well as the quantity of plasma energy applied.
Collapse
Affiliation(s)
- Markus Windisch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria; (M.W.)
| | - Roman Klymenko
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8911 MA Leeuwarden, The Netherlands;
- Electrical Energy Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Hannah Grießler
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria; (M.W.)
| | - Clemens Kittinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria; (M.W.)
| |
Collapse
|
16
|
Haimbaugh A, Meyer DN, Connell ML, Blount-Pacheco J, Tolofari D, Gonzalez G, Banerjee D, Norton J, Miller CJ, Baker TR. Environmental Exposure to Per- and Polyfluorylalkyl Substances (PFASs) and Reproductive Outcomes in the General Population: A Systematic Review of Epidemiological Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1615. [PMID: 39767456 PMCID: PMC11675763 DOI: 10.3390/ijerph21121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
This Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) systematic review synthesized effects of background levels of per- and polyfluorylalkyl substance (PFAS) levels on reproductive health outcomes in the general public: fertility, preterm birth, miscarriage, ovarian health, menstruation, menopause, sperm health, and in utero fetal growth. The inclusion criteria included original research (or primary) studies, human subjects, and investigation of outcomes of interest following non-occupational exposures. It drew from four databases (Web of Science, PubMed, Embase and Health and Environmental Research Online (HERO)) using a standardized search string for all studies published between 1 January 2017 and 13 April 2022. Risk of bias was assessed by two independent reviewers. Data were extracted and reviewed by multiple reviewers. Each study was summarized under its outcome in terms of methodology and results and placed in context, with recommendations for future research. Of 1712 records identified, 30 were eligible, with a total of 27,901 participants (33 datasets, as three studies included multiple outcomes). There was no effect of background levels of PFAS on fertility. There were weakly to moderately increased odds of preterm birth with higher perfluorooctane sulfonic acid (PFOS) levels; the same for miscarriage with perfluorooctanoic acid (PFOA) levels. There was limited yet suggestive evidence for a link between PFAS and early menopause and primary ovarian insufficiency; menstrual cycle characteristics were inconsistent. PFAS moderately increased odds of PCOS- and endometriosis-related infertility, respectively. Sperm motility and DNA health were moderately impaired by multiple PFAS. Fetal growth findings were inconsistent. This review may be used to inform forthcoming drinking water standards and policy initiatives regarding PFAS compounds and drinking water. Future reviews would benefit from more recent studies. Larger studies in these areas are warranted. Future studies should plan large cohorts and open access data availability to capture small effects and serve the public. Funding: Great Lakes Water Authority (Detroit, MI), the Erb Family Foundation through Healthy Urban Waters at Wayne State University (Detroit, MI), and Wayne State University CLEAR Superfund Research (NIH P42ES030991).
Collapse
Affiliation(s)
- Alex Haimbaugh
- Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA; (A.H.); (J.B.-P.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32611, USA; (D.N.M.); (M.L.C.); (G.G.); (D.B.)
| | - Danielle N. Meyer
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32611, USA; (D.N.M.); (M.L.C.); (G.G.); (D.B.)
| | - Mackenzie L. Connell
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32611, USA; (D.N.M.); (M.L.C.); (G.G.); (D.B.)
| | - Jessica Blount-Pacheco
- Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA; (A.H.); (J.B.-P.)
| | - Dienye Tolofari
- Great Lakes Water Authority, Detroit, MI 48226, USA; (D.T.); (J.N.)
| | - Gabrielle Gonzalez
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32611, USA; (D.N.M.); (M.L.C.); (G.G.); (D.B.)
| | - Dayita Banerjee
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32611, USA; (D.N.M.); (M.L.C.); (G.G.); (D.B.)
| | - John Norton
- Great Lakes Water Authority, Detroit, MI 48226, USA; (D.T.); (J.N.)
| | - Carol J. Miller
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI 48202, USA;
| | - Tracie R. Baker
- Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA; (A.H.); (J.B.-P.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32611, USA; (D.N.M.); (M.L.C.); (G.G.); (D.B.)
| |
Collapse
|
17
|
Kee KH, Seo JI, Kim SM, Shiea J, Yoo HH. Per- and polyfluoroalkyl substances (PFAS): Trends in mass spectrometric analysis for human biomonitoring and exposure patterns from recent global cohort studies. ENVIRONMENT INTERNATIONAL 2024; 194:109117. [PMID: 39612744 DOI: 10.1016/j.envint.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants that have been shown to contribute to human exposure, thereby raising a range of health concerns. In this context, human biomonitoring is essential for linking exposure levels of PFAS with their potential health risks. Mass spectrometry-based analytical techniques have been extensively adopted for the evaluation of PFAS levels across various cohorts. However, challenges arising from the use of biological samples (e.g., plasma, serum, urine, etc.) necessitate ongoing research and refinement of analytical methodologies. This review provides an overview of current trends in mass spectrometry-based approaches for human biomonitoring of PFAS, including sample collection and preparation, and instrumental techniques. We also explore analytical strategies to overcome challenges in obtaining PFAS-free blank matrices and address the risk of background contamination. Moreover, this review examines differing PFAS exposure patterns across regions by analyzing recent international cohort studies, specifically those conducted in the US and China over the past five years. Accordingly, several key research gaps in biomonitoring studies that need to be addressed moving forward are highlighted.
Collapse
Affiliation(s)
- Kyung Hwa Kee
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jeong In Seo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Su Min Kim
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
18
|
Xu L, Li Y, Chen L, Wang S, Ding X, Zhu P, Jiao J. Transplacental transfer of perfluorinated and poly-fluorinated substances in maternal-cord serum and association with birth weight: A birth cohort study, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124943. [PMID: 39260555 DOI: 10.1016/j.envpol.2024.124943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Although the effects of traditional perfluorinated and polyfluorinated substances (PFASs) exposure have been extensively explored, research on novel PFASs remains limited, and there is a lack of data regarding their placental transfer and fetal impact. Herein, we aimed to examine maternal and fetal PFASs exposure levels, placental transfer efficiency (TTE), and the consequences of prenatal exposure on birth weight. The study included 214 mother-child pairs recruited in Wuxi birth cohort from 2019 to 2021. Twenty-three PFASs were quantified in maternal serum during the second trimester and umbilical serum during delivery. Median concentrations of ∑23PFASs in maternal and cord sera were 9.34 and 6.88 ng/mL, respectively. The novel alternatives exhibited elevated levels of maternal and fetal exposure, such as perfluorovaleric acid (PFPeA, 2.00 ng/mL and 1.66 ng/mL, respectively) and perfluorohexane sulfonate (PFHxS, 1.77 and 1.14 ng/mL, respectively). With increasing carbon chain length, the TTE of perfluorocarbonic acid (PFCAs) displayed a pattern of initially decreasing before subsequently increasing, with novel alternatives exhibiting a relatively high TTE. Multiple linear regression showed that exposure to perfluorobutane sulfonate (PFBS) and PFPeA in cord serum positively correlated with the birth weight of female infants (β = 231.04 g, 95% confidence interval [CI]: 21.73-440.36; β = 121.26 g, 95% CI: 29.51-213.00). No nonlinear relationship was observed between cord serum PFASs and birth weight. The weighted quantile sum (WQS) regression analysis has reaffirmed that PFPeA and PFBS were predominant contributors to the positive correlation observed between the mixture of PFASs and birth weight. Our findings suggest that novel PFASs may exhibit a heightened susceptibility for transplacental transfer and that exposure to PFBS and PFPeA during pregnancy could be linked to increased birth weight.
Collapse
Affiliation(s)
- Lingling Xu
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Yao Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Limei Chen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Shunan Wang
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Xinliang Ding
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Pengfei Zhu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Jiandong Jiao
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China.
| |
Collapse
|
19
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
20
|
Begum S, Prince N, Mínguez-Alarcón L, Chen Y, Soeteman DI, Fangal V, Huang M, Wheelock C, Mendez K, Litonjua AA, Weiss ST, Lasky-Su J, Kelly RS. Pregnancy complications and birth outcomes following low-level exposure to per- and polyfluoroalkyl substances in the vitamin D antenatal asthma reduction trial. ENVIRONMENTAL SCIENCE. ADVANCES 2024; 3:1426-1437. [PMID: 39156222 PMCID: PMC11328948 DOI: 10.1039/d4va00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic, highly fluorinated aliphatic compounds, commonly utilised in a wide variety of consumer products with diverse applications. Since the genesis of these compounds, a growing body of evidence has demonstrated adverse health effects associated with PFAS exposure. In a racially diverse cohort of 459 pregnant mothers, demographically weighted towards minority representation (black 44.4%, white 38.4%, other 17.2%), across three major populous cities of the US, PFAS profiling was performed. Nine distinct PFAS species were quantified using mass spectrometry in plasma samples collected during the third trimester. Multivariable logistic and linear regression analyses were conducted to interrogate the associations of PFAS with gestational and birth outcomes: gestational diabetes, preeclampsia, gestational age at delivery, low birth weight, birth weight-, birth length- and head circumference-for-gestational-age. Detectable levels for eight out of nine profiled PFAS species were found in the plasma of pregnant mothers with a median range of 0.1-2.70 ng ml-1. Using a mixtures approach, we observe that increased quantile-based g-computation (Qg-comp) "total" PFAS levels were associated with increased newborn birth-weight-for-gestational-age (β 1.28; 95% CI 1.07-1.52; FDR p 0.006). In study centre-stratified analyses, we observed a similar trend in Boston pregnant mothers, with Qg-comp total PFAS associated with higher newborn birth-weight-for-gestational-age (β 1.39; 95% CI 1.01-1.92, FDR p 0.05). We additionally found elevated PFUA concentrations were associated with longer gestational terms in San Diego pregnant mothers (β 0.60; 95% CI 0.18-1.02, FDR p 0.05). In this multi-city study, we detected lower levels of PFAS than in many previous US environmental studies, concordant with current US trends indicating environmental PFAS levels are falling, and we note geographical variation in the associations between PFAS levels and birth outcomes.
Collapse
Affiliation(s)
- Sofina Begum
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London London UK
| | - Nicole Prince
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
- Department of Environmental Health, Harvard T. H. Chan School of Public Health Boston MA USA
| | - Yulu Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Djøra I Soeteman
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
- Center for Health Decision Science, Harvard T. H. Chan School of Public Health Boston MA USA
| | - Vrushali Fangal
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
- Weill Institute for Cell and Molecular Biology, Cornell University Ithaca NY USA
| | - Mengna Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Craig Wheelock
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institute Stockholm Sweden
| | - Kevin Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center Rochester NY USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| |
Collapse
|
21
|
Ford LC, Lin HC, Zhou YH, Wright FA, Gombar VK, Sedykh A, Shah RR, Chiu WA, Rusyn I. Characterizing PFAS hazards and risks: a human population-based in vitro cardiotoxicity assessment strategy. Hum Genomics 2024; 18:92. [PMID: 39218963 PMCID: PMC11368000 DOI: 10.1186/s40246-024-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants of concern because of their wide use, persistence, and potential to be hazardous to both humans and the environment. Several PFAS have been designated as substances of concern; however, most PFAS in commerce lack toxicology and exposure data to evaluate their potential hazards and risks. Cardiotoxicity has been identified as a likely human health concern, and cell-based assays are the most sensible approach for screening and prioritization of PFAS. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a widely used method to test for cardiotoxicity, and recent studies showed that many PFAS affect these cells. Because iPSC-derived cardiomyocytes are available from different donors, they also can be used to quantify human variability in responses to PFAS. The primary objective of this study was to characterize potential human cardiotoxic hazard, risk, and inter-individual variability in responses to PFAS. A total of 56 PFAS from different subclasses were tested in concentration-response using human iPSC-derived cardiomyocytes from 16 donors without known heart disease. Kinetic calcium flux and high-content imaging were used to evaluate biologically-relevant phenotypes such as beat frequency, repolarization, and cytotoxicity. Of the tested PFAS, 46 showed concentration-response effects in at least one phenotype and donor; however, a wide range of sensitivities were observed across donors. Inter-individual variability in the effects could be quantified for 19 PFAS, and risk characterization could be performed for 20 PFAS based on available exposure information. For most tested PFAS, toxicodynamic variability was within a factor of 10 and the margins of exposure were above 100. This study identified PFAS that may pose cardiotoxicity risk and have high inter-individual variability. It also demonstrated the feasibility of using a population-based human in vitro method to quantify population variability and identify cardiotoxicity risks of emerging contaminants.
Collapse
Affiliation(s)
- Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred A Wright
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | | | | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA.
| |
Collapse
|
22
|
Aßhoff N, Bernsmann T, Esselen M, Stahl T. A sensitive method for the determination of per- and polyfluoroalkyl substances in food and food contact material using high-performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 2024; 1730:465041. [PMID: 38878743 DOI: 10.1016/j.chroma.2024.465041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 07/28/2024]
Abstract
Dietary intake is the major pathway of human exposure to per- and polyfluoroalkyl substances (PFAS). Due to their generally very low concentrations in food, especially for foods of plant origin, and their toxicological relevance, demand is growing for improved selective and sensitive analytical methods for the determination of PFAS in the lower ng/kg range. The relevance is pointed out due to the fact that the European Commission has published limits of quantification (LOQs) in the lower ng/kg range for different food matrices in Recommendation (EU) 2022/1431 on the monitoring of perfluoroalkyl substances in food. For example, LOQs of 2 ng/kg for perfluorooctanesulfonic acid (PFOS), 1 ng/kg for perfluorooctanoic acid (PFOA), 1 ng/kg for perfluorononanoic acid (PFNA) and 4 ng/kg for perfluorohexanesulfonic acid (PFHxS) in fruit, vegetables and baby foods are required. A new, very sensitive method is presented here for the determination of 22 PFAS in food and food contact materials. The method is based on liquid-solid extraction and automated clean-up using two solid phase extraction techniques. The analytes are separated and detected by HPLC-MS/MS. A limit of detection (LOD) of 0.33 ng/kg and an LOQ of 1.0 ng/kg are attained for plant foods such as fruits and vegetables as well as for milk and baby food. For foods of animal origin such as egg, meat, fish and paper-based food contact materials an LOD of 1.6 ng/kg as well as an LOQ of 5.0 ng/kg are attained. PFOS and PFOA were the most abundant compounds in the food samples with concentration as high as 1,051 ng/kg of PFOA in sea weed samples and 772 ng/kg of PFOS in eggs samples. In food contact material samples, higher levels were found with a maximum of 310,000 ng/kg PFHxA. In sum the presented method firstly allows determination of PFAS in a wide variety of foodstuffs and paper-based food contact materials at EU-required concentration ranges.
Collapse
Affiliation(s)
- Norina Aßhoff
- Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe, Joseph-König-Str. 40, 48147 Münster, Germany; Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149 Münster, Germany.
| | - Thorsten Bernsmann
- Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe, Joseph-König-Str. 40, 48147 Münster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149 Münster, Germany
| | - Thorsten Stahl
- Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe, Joseph-König-Str. 40, 48147 Münster, Germany
| |
Collapse
|
23
|
Ma X, Cai D, Chen Q, Zhu Z, Zhang S, Wang Z, Hu Z, Shen H, Meng Z. Hunting Metabolic Biomarkers for Exposure to Per- and Polyfluoroalkyl Substances: A Review. Metabolites 2024; 14:392. [PMID: 39057715 PMCID: PMC11278593 DOI: 10.3390/metabo14070392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a class of persistent synthetic chemicals extensively utilized across industrial and consumer sectors, raising substantial environmental and human health concerns. Epidemiological investigations have robustly linked PFAS exposure to a spectrum of adverse health outcomes. Altered metabolites stand as promising biomarkers, offering insights into the identification of specific environmental pollutants and their deleterious impacts on human health. However, elucidating metabolic alterations attributable to PFAS exposure and their ensuing health effects has remained challenging. In light of this, this review aims to elucidate potential biomarkers of PFAS exposure by presenting a comprehensive overview of recent metabolomics-based studies exploring PFAS toxicity. Details of PFAS types, sources, and human exposure patterns are provided. Furthermore, insights into PFAS-induced liver toxicity, reproductive and developmental toxicity, cardiovascular toxicity, glucose homeostasis disruption, kidney toxicity, and carcinogenesis are synthesized. Additionally, a thorough examination of studies utilizing metabolomics to delineate PFAS exposure and toxicity biomarkers across blood, liver, and urine specimens is presented. This review endeavors to advance our understanding of PFAS biomarkers regarding exposure and associated toxicological effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhen Meng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| |
Collapse
|
24
|
Choi JW, Oh J, Bennett DH, Calafat AM, Schmidt RJ, Shin HM. Prenatal exposure to per- and polyfluoroalkyl substances and child behavioral problems. ENVIRONMENTAL RESEARCH 2024; 251:118511. [PMID: 38387490 PMCID: PMC11144101 DOI: 10.1016/j.envres.2024.118511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may adversely affect child behaviors; however, findings of epidemiologic studies are inconsistent. We examined prenatal PFAS exposure in association with child behavioral problems. METHODS Participants were 177 mother-child pairs from MARBLES (Markers of Autism Risk in Babies - Learning Early Signs), a cohort with elevated familial likelihood of autism spectrum disorder (ASD). We quantified nine PFAS in maternal serum (1-3 samples per mother) collected from the 1st to 3rd trimesters of pregnancy. Child behavioral problems were assessed at 3 years of age using the Child Behavior Checklist (CBCL), developed to test for various behavioral problems of children. We examined associations of the CBCL scores with individual PFAS concentrations and with their mixture using negative binomial regression and weighted quantile sum regression models. RESULTS Higher prenatal perfluorononanoate (PFNA) concentrations were associated with higher scores of externalizing problems [β = 0.16, 95% CI (0.01, 0.32)] and aggressive behavior [β = 0.17 (0.01, 0.32)]. Higher PFNA, perfluorooctane sulfonate (PFOS), and perfluorodecanoate (PFDA) were associated with higher scores of sleep problems [β = 0.34 (0.15, 0.54) for PFNA, β = 0.20 (0.02, 0.37) for PFOS, and β = 0.19 (0.00, 0.37) for PFDA]. No significant associations observed for typically developing children, whereas PFOS, PFNA, and PFDA were associated with several behavioral problems among children diagnosed with ASD or other neurodevelopmental concerns. Exposure to a mixture of PFAS was associated with higher scores of sleep problems and aggressive behavior, mostly contributed by PFNA and PFDA. CONCLUSIONS Our study showed that prenatal exposure to some PFAS could increase child behavioral problems at 3 years of age. However, our results should be interpreted with caution because we relied on data from a cohort with increased familial likelihood of ASD and thereby had more behavioral problems.
Collapse
Affiliation(s)
- Jeong Weon Choi
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| | - Jiwon Oh
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California, Davis, CA, USA; MIND Institute, Sacramento, CA, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
25
|
Leuthner TC, Zhang S, Kohrn BF, Stapleton HM, Baugh LR. Structure-specific variation in per- and polyfluoroalkyl substances toxicity among genetically diverse Caenorhabditis elegans strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596269. [PMID: 38854041 PMCID: PMC11160736 DOI: 10.1101/2024.05.29.596269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background There are >14,500 structurally diverse per- and polyfluoroalkyl substances (PFAS). Despite knowledge that these "forever chemicals" are in 99% of humans, mechanisms of toxicity and adverse health effects are incompletely known. Furthermore, the contribution of genetic variation to PFAS susceptibility and health consequences is unknown. Objectives We determined the toxicity of a structurally distinct set of PFAS in twelve genetically diverse strains of the genetic model system Caenorhabditis elegans. Methods Dose-response curves for four perfluoroalkyl carboxylic acids (PFNA, PFOA, PFPeA, and PFBA), two perfluoroalkyl sulfonic acids (PFOS and PFBS), two perfluoroalkyl sulfonamides (PFOSA and PFBSA), two fluoroether carboxylic acids (GenX and PFMOAA), one fluoroether sulfonic acid (PFEESA), and two fluorotelomers (6:2 FCA and 6:2 FTS) were determined in the C. elegans laboratory reference strain, N2, and eleven genetically diverse wild strains. Body length was quantified by image analysis at each dose after 48 hr of developmental exposure of L1 arrest-synchronized larvae to estimate effective concentration values (EC50). Results There was a significant range in toxicity among PFAS: PFOSA > PFBSA ≈ PFOS ≈ PFNA > PFOA > GenX ≈ PFEESA > PFBS ≈ PFPeA ≈ PFBA. Long-chain PFAS had greater toxicity than short-chain, and fluorosulfonamides were more toxic than carboxylic and sulfonic acids. Genetic variation explained variation in susceptibility to PFBSA, PFOS, PFBA, PFOA, GenX, PFEESA, PFPeA, and PFBA. There was significant variation in toxicity among C. elegans strains due to chain length, functional group, and between legacy and emerging PFAS. Conclusion C. elegans respond to legacy and emerging PFAS of diverse structures, and this depends on specific structures and genetic variation. Harnessing the natural genetic diversity of C. elegans and the structural complexity of PFAS is a powerful New Approach Methodology (NAM) to investigate structure-activity relationships and mechanisms of toxicity which may inform regulation of other PFAS to improve human and environmental health.
Collapse
Affiliation(s)
- Tess C. Leuthner
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, North Carolina, USA
| |
Collapse
|
26
|
Marin M, Annunziato KM, Tompach MC, Liang W, Zahn SM, Li S, Doherty J, Lee J, Clark JM, Park Y, Timme-Laragy AR. Maternal PFOS exposure affects offspring development in Nrf2-dependent and independent ways in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106923. [PMID: 38669778 PMCID: PMC11177596 DOI: 10.1016/j.aquatox.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous legacy environmental contaminant detected broadly in human samples and water supplies. PFOS can cross the placenta and has been detected in cord blood and breastmilk samples, underscoring the importance of understanding the impacts of maternal PFOS exposure during early development. This study aimed to investigate the effects of a preconception exposure to PFOS on developmental endpoints in offspring, as well as examine the role of the transcription factor Nuclear factor erythroid-2-related factor (Nrf2a) in mediating these effects. This transcription factor regulates the expression of several genes that protect cells against oxidative stress including during embryonic development. Adult female zebrafish were exposed to 0.02, 0.08 or 0.14 mg/L PFOS for 1 week (duration of one cycle of oocyte maturation) and then paired with unexposed males from Nrf2a mutant or wildtype strains. Embryos were collected for two weeks or until completion of 5 breeding events. PFOS was maternally transferred to offspring independent of genotype throughout all breeding events in a dose-dependent manner, ranging from 2.77 to 23.72 ng/embryo in Nrf2a wildtype and 2.40 to 15.80 ng/embryo in Nrf2a mutants. Although embryo viability at collection was not impacted by maternal PFOS exposure, developmental effects related to nutrient uptake, growth and pancreatic β-cell morphology were observed and differed based on genotype. Triglyceride levels were increased in Nrf2a wildtype eggs from the highest PFOS group. In Nrf2a wildtype larvae there was a decrease in yolk sac uptake while in Nrf2a mutants there was an increase. Additionally, there was a significant decrease in pancreatic β-cell (islet) area in wildtype larvae from the 0.14 mg/L PFOS accompanied by an increase in the prevalence of abnormal islet morphologies compared to controls. Abnormal morphology was also observed in the 0.02 and 0.08 mg/L PFOS groups. Interestingly, in Nrf2a mutants there was a significant increase in the pancreatic β-cell area in the 0.02 and 0.08 mg/L PFOS groups and no changes in the prevalence of abnormal islet morphologies. These results suggest that the regulation of processes like nutrient consumption, growth and pancreatic β-cell development are at least partially modulated by the presence of a functional Nrf2a transcriptomic response. Overall, preconception exposure to environmental pollutants, such as PFOS, may impact the maturing oocyte and cause subtle changes that can ultimately impact offspring health and development.
Collapse
Affiliation(s)
- Marjorie Marin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Kate M Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Madeline C Tompach
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sarah M Zahn
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
27
|
Lockington C, Favetta LA. How Per- and Poly-Fluoroalkyl Substances Affect Gamete Viability and Fertilization Capability: Insights from the Literature. J Xenobiot 2024; 14:651-678. [PMID: 38804291 PMCID: PMC11130945 DOI: 10.3390/jox14020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
There has been emerging research linking per- and poly-fluoroalkyl substances (PFAS) to gamete viability and fertility. PFAS, prevalent in the environment and water supplies, undergo slow degradation due to their C-F bond and a long half-life (2.3-8.5 years). In females, PFAS inhibit the hypothalamic-pituitary-gonadal (HPG) axis, reducing follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, leading to the inhibition of androgen and estradiol production. PFAS have been found to cause detrimental effects on egg quality through impairing folliculogenesis. In males, PFAS can impair sperm motility and morphology: two fundamental qualities of successful fertilization. PFAS exposure has been proven to inhibit testosterone production, sperm capacitation, and acrosomal reaction. After fertilization, the results of PFAS exposure to embryos have also been investigated, showing reduced development to the blastocyst stage. The aim of this review is to report the main findings in the literature on the impact of PFAS exposure to gamete competency and fertilization capability by highlighting key studies on both male and female fertility. We report that there is significant evidence demonstrating the negative impacts on fertility after PFAS exposure. At high doses, these environmentally abundant and widespread compounds can significantly affect human fertility.
Collapse
Affiliation(s)
| | - Laura A. Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
28
|
Everson TM, Sehgal N, Barr DB, Panuwet P, Yakimavets V, Perez C, Shankar K, Eick SM, Pearson KJ, Andres A. Placental PFAS concentrations are associated with perturbations of placental DNA methylation at loci with important roles on cardiometabolic health. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.06.24306905. [PMID: 38766233 PMCID: PMC11100840 DOI: 10.1101/2024.05.06.24306905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The placenta is crucial for fetal development, is affected by PFAS toxicity, and evidence is accumulating that gestational PFAS perturb the epigenetic activity of the placenta. Gestational PFAS exposure is can adversely affect offspring, yet individual and cumulative impacts of PFAS on the placental epigenome remain underexplored. Here, we conducted an epigenome-wide association study (EWAS) to examine the relationships between placental PFAS levels and DNA methylation in a cohort of mother-infant dyads in Arkansas. We measured 17 PFAS in human placental tissues and quantified placental DNA methylation levels via the Illumina EPIC Microarray. We tested for differential DNA methylation with individual PFAS, and with mixtures of multiple PFAS. Our results demonstrated that numerous epigenetic loci were perturbed by PFAS, with PFHxS exhibiting the most abundant effects. Mixture analyses suggested cumulative effects of PFOA and PFOS, while PFHxS may act more independently. We additionally explored whether sex-specific effects may be present and concluded that future large studies should explicitly test for sex-specific effects. The genes that are annotated to our PFAS-associated epigenetic loci are primarily involved in growth processes and cardiometabolic health, while some genes are involved in neurodevelopment. These findings shed light on how prenatal PFAS exposures affect birth outcomes and children's health, emphasizing the importance of understanding PFAS mechanisms in the in-utero environment.
Collapse
Affiliation(s)
- Todd M. Everson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Neha Sehgal
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Cynthia Perez
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kevin J. Pearson
- Department of Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine
| | - Aline Andres
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
- Arkansas Children’s Nutrition Center, Little Rock, AR
| |
Collapse
|
29
|
Biggeri A, Stoppa G, Facciolo L, Fin G, Mancini S, Manno V, Minelli G, Zamagni F, Zamboni M, Catelan D, Bucchi L. All-cause, cardiovascular disease and cancer mortality in the population of a large Italian area contaminated by perfluoroalkyl and polyfluoroalkyl substances (1980-2018). Environ Health 2024; 23:42. [PMID: 38627679 PMCID: PMC11022451 DOI: 10.1186/s12940-024-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are associated with many adverse health conditions. Among the main effects is carcinogenicity in humans, which deserves to be further clarified. An evident association has been reported for kidney cancer and testicular cancer. In 2013, a large episode of surface, ground and drinking water contamination with PFAS was uncovered in three provinces of the Veneto Region (northern Italy) involving 30 municipalities and a population of about 150,000. We report on the temporal evolution of all-cause mortality and selected cause-specific mortality by calendar period and birth cohort in the local population between 1980 and 2018. METHODS The Italian National Institute of Health pre-processed and made available anonymous data from the Italian National Institute of Statistics death certificate archives for residents of the provinces of Vicenza, Padua and Verona (males, n = 29,629; females, n = 29,518) who died between 1980 and 2018. Calendar period analysis was done by calculating standardised mortality ratios using the total population of the three provinces in the same calendar period as reference. The birth cohort analysis was performed using 20-84 years cumulative standardised mortality ratios. Exposure was defined as being resident in one of the 30 municipalities of the Red area, where the aqueduct supplying drinking water was fed by the contaminated groundwater. RESULTS During the 34 years between 1985 (assumed as beginning date of water contamination) and 2018 (last year of availability of cause-specific mortality data), in the resident population of the Red area we observed 51,621 deaths vs. 47,731 expected (age- and sex-SMR: 108; 90% CI: 107-109). We found evidence of raised mortality from cardiovascular disease (in particular, heart diseases and ischemic heart disease) and malignant neoplastic diseases, including kidney cancer and testicular cancer. CONCLUSIONS For the first time, an association of PFAS exposure with mortality from cardiovascular disease was formally demonstrated. The evidence regarding kidney cancer and testicular cancer is consistent with previously reported data.
Collapse
Affiliation(s)
- Annibale Biggeri
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padua, Padua, Italy
| | - Giorgia Stoppa
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padua, Padua, Italy.
| | | | - Giuliano Fin
- Comitato mamme NO-PFAS, Vicenza, Padua, Verona, Italy
| | - Silvia Mancini
- Emilia-Romagna Cancer Registry, Romagna Cancer Institute, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Forlì, Italy
| | - Valerio Manno
- Statistical Service, Istituto Superiore di Sanità, Rome, Italy
| | - Giada Minelli
- Statistical Service, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Zamagni
- Emilia-Romagna Cancer Registry, Romagna Cancer Institute, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Forlì, Italy
| | | | - Dolores Catelan
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padua, Padua, Italy
| | - Lauro Bucchi
- Emilia-Romagna Cancer Registry, Romagna Cancer Institute, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Forlì, Italy
| |
Collapse
|
30
|
Qiao JC, Li ZH, Ma YB, Ma HY, Zhang MY, Zhang XJ, Hu CY. Associations of per- and polyfluoroalkyl substances (PFAS) and their mixture with risk of rheumatoid arthritis in the U.S. adult population. Environ Health 2024; 23:38. [PMID: 38609943 PMCID: PMC11015572 DOI: 10.1186/s12940-024-01073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are known environmental contaminants with immunosuppressive properties. Their connection to rheumatoid arthritis (RA), a condition influenced by the immune system, is not well studied. This research explores the association between PFAS exposure and RA prevalence. METHODS This research utilized data from the NHANES, encompassing a sample of 10,496 adults from the 2003-2018 cycles, focusing on serum levels of several PFAS. The presence of RA was determined based on self-reports. This study used multivariable logistic regression to assess the relationship between individual PFAS and RA risk, adjusting for covariates to calculate odds ratios (ORs). The combined effects of PFAS mixtures were evaluated using BKMR, WQS regression, and quantile g-computation. Additionally, sex-specific associations were explored through stratified analysis. RESULTS Higher serum PFOA (OR = 0.88, 95% CI: 0.79, 0.98), PFHxS (OR = 0.91, 95% CI: 0.83, 1.00), PFNA (OR = 0.87, 95% CI: 0.77, 0.98), and PFDA (OR = 0.89, 95% CI: 0.81, 0.99) concentration was related to lower odds of RA. Sex-specific analysis in single chemical models indicated the significant inverse associations were only evident in females. BKMR did not show an obvious pattern of RA estimates across PFAS mixture. The outcomes of sex-stratified quantile g-computation demonstrated that an increase in PFAS mixture was associated with a decreased odds of RA in females (OR: 0.76, 95% CI: 0.62, 0.92). We identified a significant interaction term of the WQS*sex in the 100 repeated hold out WQS analysis. Notably, a higher concentration of the PFAS mixture was significantly associated with reduced odds of RA in females (mean OR = 0.93, 95% CI: 0.88, 0.98). CONCLUSIONS This study indicates potential sex-specific associations of exposure to various individual PFAS and their mixtures with RA. Notably, the observed inverse relationships were statistically significant in females but not in males. These findings contribute to the growing body of evidence indicating that PFAS may have immunosuppressive effects.
Collapse
Affiliation(s)
- Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yu-Bo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hui-Ya Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- Management & Checkup Center, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Meng-Yue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, China.
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, China.
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
- Department of Humanistic Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
31
|
Zhang Y, Mustieles V, Martin L, Sun Y, Hillcoat A, Fang X, Bibi Z, Torres N, Coburn-Sanderson A, First O, Irene S, Petrozza JC, Botelho JC, Calafat AM, Wang YX, Messerlian C. Maternal and Paternal Preconception Serum Concentrations of Per and Polyfluoroalkyl Substances in Relation to Birth Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2683-2692. [PMID: 38290209 PMCID: PMC10924800 DOI: 10.1021/acs.est.3c07954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Prenatal per and polyfluoroalkyl substances (PFAS) exposure is associated with adverse birth outcomes. There is an absence of evidence on the relationship between maternal and paternal preconception PFAS exposure and birth outcomes. This study included 312 mothers and 145 fathers with a singleton live birth from a preconception cohort of subfertile couples seeking fertility treatment at a U.S. clinic. PFAS were quantified in serum samples collected before conception. Gestational age (GA) and birthweight (BW) were abstracted from delivery records. We also assessed low birthweight (BW < 2500 g) and preterm birth (GA < 37 completed weeks). We utilized multivariable linear regression, logistic regression, and quantile-based g computation to examine maternal or paternal serum concentrations of individual PFAS and mixture with birth outcomes. Maternal serum concentrations of perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS), and the total PFAS mixture were inversely associated with birthweight. Maternal PFOS concentration was associated with a higher risk of low birthweight. Conversely, paternal PFOS and PFHxS concentrations were imprecisely associated with higher birthweight. No associations were found for gestational age or preterm birth. The findings have important implications for preconception care. Future research with larger sample sizes would assist in validating these findings.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain. Instituto de Investigación Biosanitaria Ibs GRANADA, Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexandra Hillcoat
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xin Fang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zainab Bibi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole Torres
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ayanna Coburn-Sanderson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Souter Irene
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| | - John C. Petrozza
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| | - Julianne C. Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| |
Collapse
|
32
|
Li ZM, Roos A, Serfass TL, Lee C, Kannan K. Concentrations of 45 Per- and Polyfluoroalkyl Substances in North American River Otters ( Lontra canadensis) from West Virginia, USA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2089-2101. [PMID: 38231021 DOI: 10.1021/acs.est.3c09467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
North American river otters (Lontra canadensis) are top predators in riverine ecosystems and are vulnerable to per- and polyfluoroalkyl substance (PFAS) exposure. Little is known about the magnitude of exposure and tissue distribution of PFAS in river otters. We measured 45 PFAS in various tissues of 42 river otters collected from several watersheds in the state of West Virginia, USA. The median concentrations of ∑All (sum concentration of 45 PFAS) varied among tissues in the following decreasing order: liver (931 ng/g wet weight) > bile > pancreas > lung > kidney > blood > brain > muscle. Perfluoroalkylsulfonates (PFSAs) were the predominant compounds accounting for 58-75% of the total concentrations, followed by perfluoroalkyl carboxylates (PFCAs; 21-35%). 8:2 fluorotelomer sulfonate (8:2 FTS), 10:2 FTS, and 6:2 chlorinated polyfluoroalkyl ether sulfonate were frequently found in the liver (50-90%) and bile (96-100%), whereas hexafluoropropylene oxide dimer acid (HFPO-DA) was rarely found. The hepatic concentrations of ∑All in river otters collected downstream of a fluoropolymer production facility located along the Ohio River were 2-fold higher than those in other watersheds. The median whole body burden of ∑All was calculated to be 1580 μg. PFOS and perfluorooctanoic acid (PFOA) concentrations in whole blood of some river otters exceeded the human toxicity reference values, which warrant further studies.
Collapse
Affiliation(s)
- Zhong-Min Li
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, State University of New York at Albany, Empire State Plaza, Albany, New York 12237, United States
| | - Anna Roos
- Department of Environmental Monitoring and Research, Swedish Museum of Natural History, Stockholm SE-10405, Sweden
| | - Thomas L Serfass
- Department of Biology and Natural Resources, Frostburg State University, Frostburg, Maryland 21532, United States
| | - Conner Lee
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, State University of New York at Albany, Empire State Plaza, Albany, New York 12237, United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, State University of New York at Albany, Empire State Plaza, Albany, New York 12237, United States
| |
Collapse
|
33
|
Qiu M, Chen J, Liu M, Nie Z, Ke M, Dong G, Zhao H, Zhou C, Zeng H, He B, Chen J, Zhuang J, Li X, Ou Y. Single-cell RNA sequencing reveals the role of mitochondrial dysfunction in the cardiogenic toxicity of perfluorooctane sulfonate in human embryonic stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115945. [PMID: 38183750 DOI: 10.1016/j.ecoenv.2024.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Perfluorooctane sulfonate (PFOS), an endocrine-disrupting chemical pollutant, affects embryonic heart development; however, the mechanisms underlying its toxicity have not been fully elucidated. Here, Single-cell RNA sequencing (scRNA-seq) was used to investigate the overall effects of PFOS on myocardial differentiation from human embryonic stem cells (hESCs). Additionally, apoptosis, mitochondrial membrane potential, and ATP assays were performed. Downregulated cardiogenesis-related genes and inhibited cardiac differentiation were observed after PFOS exposure in vitro. The percentages of cardiomyocyte and cardiac progenitor cell clusters decreased significantly following exposure to PFOS, while the proportion of primitive endoderm cell was increased in PFOS group. Moreover, PFOS inhibited myocardial differentiation and blocked cellular development at the early- and middle-stage. A Gene Ontology analysis and pseudo-time trajectory illustrated that PFOS disturbed multiple processes related to cardiogenesis and oxidative phosphorylation in the mitochondria. Furthermore, PFOS decreased mitochondrial membrane potential and induced apoptosis. These results offer meaningful insights into the cardiogenic toxicity of PFOS exposure during heart formation as well as the adverse effects of PFOS on mitochondria.
Collapse
Affiliation(s)
- Min Qiu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Jing Chen
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Mingqin Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, PR China
| | - Zhiqiang Nie
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Miaola Ke
- Department of Blood Transfusion, Sun Yat-Sen University Cancer Center, Guangzhou 510050, PR China
| | - Guanghui Dong
- Department of Occupational and Environmental, Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Haishan Zhao
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Chengbin Zhou
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Haiyan Zeng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, PR China
| | - Biaochuan He
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Jimei Chen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Xiaohong Li
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Yanqiu Ou
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| |
Collapse
|
34
|
Zhang J, Hu L, Xu H. Dietary exposure to per- and polyfluoroalkyl substances: Potential health impacts on human liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167945. [PMID: 37871818 DOI: 10.1016/j.scitotenv.2023.167945] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), dubbed "forever chemicals", are widely present in the environment. Environmental contamination and food contact substances are the main sources of PFAS in food, increasing the risk of human dietary exposure. Numerous epidemiological studies have established the link between dietary exposure to PFAS and liver disease. Correspondingly, PFAS induced-hepatotoxicity (e.g., hepatomegaly, cell viability, inflammation, oxidative stress, bile acid metabolism dysregulation and glycolipid metabolism disorder) observed from in vitro models and in vivo rodent studies have been extensively reported. In this review, the pertinent literature of the last 5 years from the Web of Science database was researched. This study summarized the source and fate of PFAS, and reviewed the occurrence of PFAS in food system (natural and processed food). Subsequently, the characteristics of human dietary exposure PFAS (population characteristics, distribution trend, absorption and distribution) were mentioned. Additionally, epidemiologic evidence linking PFAS exposure and liver disease was alluded, and the PFAS-induced hepatotoxicity observed from in vitro models and in vivo rodent studies was comprehensively reviewed. Lastly, we highlighted several critical knowledge gaps and proposed future research directions. This review aims to raise public awareness about food PFAS contamination and its potential risks to human liver health.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330299, China.
| |
Collapse
|
35
|
Di Credico A, Weiss A, Corsini M, Gaggi G, Ghinassi B, Wilbertz JH, Di Baldassarre A. Machine learning identifies phenotypic profile alterations of human dopaminergic neurons exposed to bisphenols and perfluoroalkyls. Sci Rep 2023; 13:21907. [PMID: 38081991 PMCID: PMC10713827 DOI: 10.1038/s41598-023-49364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the loss of midbrain dopaminergic neurons. Endocrine disrupting chemicals (EDCs) are active substances that interfere with hormonal signaling. Among EDCs, bisphenols (BPs) and perfluoroalkyls (PFs) are chemicals leached from plastics and other household products, and humans are unavoidably exposed to these xenobiotics. Data from animal studies suggest that EDCs exposure may play a role in PD, but data about the effect of BPs and PFs on human models of the nervous system are lacking. Previous studies demonstrated that machine learning (ML) applied to microscopy data can classify different cell phenotypes based on image features. In this study, the effect of BPs and PFs at different concentrations within the real-life exposure range (0.01, 0.1, 1, and 2 µM) on the phenotypic profile of human stem cell-derived midbrain dopaminergic neurons (mDANs) was analyzed. Cells exposed for 72 h to the xenobiotics were stained with neuronal markers and evaluated using high content microscopy yielding 126 different phenotypic features. Three different ML models (LDA, XGBoost and LightGBM) were trained to classify EDC-treated versus control mDANs. EDC treated mDANs were identified with high accuracies (0.88-0.96). Assessment of the phenotypic feature contribution to the classification showed that EDCs induced a significant increase of alpha-synuclein (αSyn) and tyrosine hydroxylase (TH) staining intensity within the neurons. Moreover, microtubule-associated protein 2 (MAP2) neurite length and branching were significantly diminished in treated neurons. Our study shows that human mDANs are adversely impacted by exposure to EDCs, causing their phenotype to shift and exhibit more characteristics of PD. Importantly, ML-supported high-content imaging can identify concrete but subtle subcellular phenotypic changes that can be easily overlooked by visual inspection alone and that define EDCs effects in mDANs, thus enabling further pathological characterization in the future.
Collapse
Affiliation(s)
- Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | | | - Massimo Corsini
- Dipartimento Di Neuroscienze Umane, "Sapienza" University of Rome, Chieti, Italy
| | - Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | | | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| |
Collapse
|
36
|
San Román A, Abilleira E, Irizar A, Santa-Marina L, Gonzalez-Gaya B, Etxebarria N. Optimization for the analysis of 42 per- and polyfluorinated substances in human plasma: A high-throughput method for epidemiological studies. J Chromatogr A 2023; 1712:464481. [PMID: 37948771 DOI: 10.1016/j.chroma.2023.464481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
There is an increasing awareness about the presence of per- and polyfluoroalkyl substances (PFAS) in many environmental and biological compartments, including human biofluids and tissues. However, the increase of PFAS replacements, including alternatives with shorter chain or less bioaccumulative potential, has broaden the exposure and the need for wider identification procedures. Moreover, the low volumes available for human blood or plasma, and the high number of samples needed to assess adequately epidemiologic studies, require particularly fast, reproducible and, if possible, miniaturized protocols. Therefore, accurate and robust analytical methods are still needed to quantify the PFAS's burden in humans and to understand potential health risks. In this study, we have developed and validated the analysis of 42 PFAS in human plasma by means of a Captiva 96-well micro extraction plate and a LC-q-Orbitrap. For the optimization of the analytical workflow, three extraction/clean-up methods were tested, and the selected one was validated using spiked artificial and bovine plasma at four concentration levels. The final method showed high absolute recoveries for the 42 PFAS, ranging from 52% to 130%, instrumental detection limits between 0.001-0.6 ng mL-1, overall good precision (CV < 20% for most of the PFAS) and a low uncertainty (< 30% of relative expanded deviation, k = 2). The method was further validated both with the NIST plasma Standard Reference Material 1950, showing that the accuracy of the provided results was between 63%-101%, and by the proficiency test arranged by the Arctic Monitoring Assessment Program (AMAP, 2022) obtaining satisfactory results within 95% confidence interval of the assigned value.
Collapse
Affiliation(s)
- Anne San Román
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country.
| | - Eunate Abilleira
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country
| | - Amaia Irizar
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country
| | - Loreto Santa-Marina
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country
| | - Belen Gonzalez-Gaya
- Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain
| | - Nestor Etxebarria
- Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain
| |
Collapse
|
37
|
Chen H, Kapidzic M, Gantar D, Aksel S, Levan J, Abrahamsson DP, Jigmeddagva U, Basrai S, San A, Gaw SL, Woodruff TJ, Fisher SJ, Robinson JF. Perfluorooctanoic acid induces transcriptomic alterations in second trimester human cytotrophoblasts. Toxicol Sci 2023; 196:187-199. [PMID: 37738295 PMCID: PMC10682971 DOI: 10.1093/toxsci/kfad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Poly- and perfluroroalkylated substances (PFAS) are a major class of surfactants used in industry applications and consumer products. Despite efforts to reduce the usage of PFAS due to their environmental persistence, compounds such as perfluorooctanoic acid (PFOA) are widely detected in human blood and tissue. Although growing evidence supports that prenatal exposures to PFOA and other PFAS are linked to adverse pregnancy outcomes, the target organs and pathways remain unclear. Recent investigations in mouse and human cell lines suggest that PFAS may impact the placenta and impair trophoblast function. In this study, we investigated the effects of PFOA on cytotoxicity and the transcriptome in cultured second trimester human cytotrophoblasts (CTBs). We show that PFOA significantly reduces viability and induces cell death at 24 h, in a concentration-dependent manner. At subcytotoxic concentrations, PFOA impacted expression of hundreds of genes, including several molecules (CRH, IFIT1, and TNFSF10) linked with lipid metabolism and innate immune response pathways. Furthermore, in silico analyses suggested that regulatory factors such as peroxisome proliferator-activated receptor-mediated pathways may be especially important in response to PFOA. In summary, this study provides evidence that PFOA alters primary human CTB viability and gene pathways that could contribute to placental dysfunction and disease.
Collapse
Affiliation(s)
- Hao Chen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Danielle Gantar
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Sena Aksel
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Justine Levan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Dimitri P Abrahamsson
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Unurzul Jigmeddagva
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Sanah Basrai
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Ali San
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Stephanie L Gaw
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94143, USA
| |
Collapse
|
38
|
Siwakoti RC, Cathey A, Ferguson KK, Hao W, Cantonwine DE, Mukherjee B, McElrath TF, Meeker JD. Prenatal per- and polyfluoroalkyl substances (PFAS) exposure in relation to preterm birth subtypes and size-for-gestational age in the LIFECODES cohort 2006-2008. ENVIRONMENTAL RESEARCH 2023; 237:116967. [PMID: 37634691 PMCID: PMC10913455 DOI: 10.1016/j.envres.2023.116967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals widely used in consumer and industrial products. Numerous studies have linked prenatal PFAS exposures to increased risks of adverse pregnancy outcomes such as preterm birth (PTB) and small-for-gestational age (SGA).However, limited evidence is available for the effects of PFAS on PTB subtypes and large-for-gestational age (LGA). OBJECTIVE To examine the associations of PFAS with PTB [overall, placental (pPTB), spontaneous (sPTB)], BW Z-score, and size-for-gestational age (SGA, LGA). METHODS Our nested case-control study included 128 preterm cases and 373 term controls from the LIFECODES cohort between 2006 and 2008 (n = 501). Plasma concentrations of nine PFAS were measured in early pregnancy samples. Logistic regression was used to assess individual PFAS-birth outcome associations, while Bayesian Kernel Machine Regression (BKMR) was used to evaluate the joint effects of all PFAS. Effect modification by fetal sex was examined, and stratified analyses were conducted to obtain fetal sex-specific estimates. RESULTS Compared to term births, the odds of pPTB were higher from an interquartile range increase in perfluorodecanoic acid (PFDA) (OR = 1.60, 95% CI: 1.00-2.56), perfluorononanoic acid (PFNA) (OR = 1.67, 95% CI: 1.06-2.61), and perfluoroundecanoic acid (PFUA) (OR = 1.77, 95% CI: 1.00-3.12), with stronger associations observed in women who delivered males. BKMR analysis identified PFNA as the most important PFAS responsible for pPTB (conditional PIP = 0.78), with increasing ORs at higher percentiles of PFAS mixture. For LGA, positive associations were observed with PFDA and perfluorooctanoic acid in females only, and with PFUA in males only. BKMR analysis showed increasing, but null effects of PFAS mixture on LGA. CONCLUSIONS The effect of prenatal exposure to single and multiple PFAS on PTB and LGA depended on fetal sex. Future studies should strongly consider examining PTB subtypes and sex-specific effects of PFAS on pregnancy outcomes.
Collapse
Affiliation(s)
- Ram C Siwakoti
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Amber Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kelly K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Wei Hao
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
40
|
Gumilar KE, Priangga B, Lu CH, Dachlan EG, Tan M. Iron metabolism and ferroptosis: A pathway for understanding preeclampsia. Biomed Pharmacother 2023; 167:115565. [PMID: 37751641 DOI: 10.1016/j.biopha.2023.115565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
Preeclampsia (PE) is a serious medical condition that poses a significant health risk to women and children worldwide, particularly in the middle- and low-income countries. It is a complex syndrome that occurs as a result of abnormal pregnancy. Hypertension is the most common symptom of PE, with proteinuria and specific organ systems as detrimental targets. PE's pathogenesis is diverse, and its symptoms can overlap with other diseases. In early pregnancy, when the placenta takes over control, oxidative stress may be closely associated with ferroptosis, a type of cell death caused by intracellular iron accumulation. Ferroptosis in the placenta is defined by redox-active iron availability, loss of antioxidant capacity and phospholipids containing polyunsaturated fatty acids (PUFA) oxidation. Recent studies suggest a compelling potential link between ferroptosis and PE. In this article, we comprehensively review the current understanding of PE and discuss one of its emerging underlying mechanisms, the ferroptosis pathway. We also provide perspective and analysis on the implications of this process in the diagnosis, prevention, and treatment of preeclampsia. We aim to bridge the gap between clinicians and basic scientists in understanding this harmful disease and challenge the research community to put more effort into this exciting new area.
Collapse
Affiliation(s)
- Khanisyah Erza Gumilar
- Graduate Institute of Biomedical Science, China Medical University, Taichung 406040, Taiwan, ROC; Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bayu Priangga
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chien-Hsing Lu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan, ROC
| | - Erry Gumilar Dachlan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ming Tan
- Graduate Institute of Biomedical Science, China Medical University, Taichung 406040, Taiwan, ROC; Institute of Biochemistry & Molecular Biology, and Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan, ROC.
| |
Collapse
|
41
|
Jiang T, Pervez MN, Quianes MM, Zhang W, Naddeo V, Liang Y. Effective stabilization of per- and polyfluoroalkyl substances (PFAS) precursors in wastewater treatment sludge by surfactant-modified clay. CHEMOSPHERE 2023; 341:140081. [PMID: 37678594 DOI: 10.1016/j.chemosphere.2023.140081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The application of biosolids or treated sewage sludge containing per- and polyfluoroalkyl substances (PFAS) in agricultural lands and the disposal of sludge in landfills pose high risks to humans and the environment. Although PFAS precursors have not been regulated yet, their potential transformation to highly regulated perfluoroalkyl acids (PFAAs) may enable them to serve as a long-term source and make remediation of PFAAs a continuing task. Therefore, treating precursors in sewage sludge is even more, certainly not less, critical than treating or removing PFAAs. In this study, a green surfactant-modified clay sorbent was evaluated for its efficacy in stabilizing two representative PFAA precursors in sludge, e.g., N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) and 6:2 fluorotelomer sulfonic acid (6:2 FTSA), in comparison with unmodified clay and powdered activated carbon (PAC). Results showed N-EtFOSAA and 6:2 FTSA exhibited distinct adsorption behaviors in the sludge without sorbents due to their different physicochemical properties, such as hydrophobicity and functional groups. Among the three sorbents, the modified clay reduced the water leachability of N-EtFOSAA and 6:2 FTSA by 91.5% and 95.4%, respectively, compared to controls without amendments at the end of the experiment (47 days). Within the same duration, PAC decreased the water leachability of N-EtFOSAA and 6:2 FTSA by 60.6% and 37.3%, respectively. At the same time, the unmodified clay demonstrated a poor stabilization effect and even promoted the leaching of precursors. These findings suggested that the modified clay had the potential for stabilization of precursors, while negatively charged and/or hydrophilic sorbents, such as the unmodified clay, should be avoided in the stabilization process. These results could provide valuable information for developing effective amendments for stabilizing PFAS in sludge or biosolids. Future research should evaluate the long-term effect of the stabilization approach using actual sludge from wastewater treatment facilities.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA.
| | - Md Nahid Pervez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Monica M Quianes
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano, 84084, Italy
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
42
|
Zhang Y, Lv J, Fan YJ, Tao L, Xu J, Tang W, Sun N, Zhao LL, Xu DX, Huang Y. Evaluating the Effect of Gestational Exposure to Perfluorohexane Sulfonate on Placental Development in Mice Combining Alternative Splicing and Gene Expression Analyses. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117011. [PMID: 37995155 PMCID: PMC10666825 DOI: 10.1289/ehp13217] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Perfluorohexane sulfonate (PFHxS) is a frequently detected per- and polyfluoroalkyl substance in most populations, including in individuals who are pregnant, a period critical for early life development. Despite epidemiological evidence of exposure, developmental toxicity, particularly at realistic human exposures, remains understudied. OBJECTIVES We evaluated the effect of gestational exposure to human-relevant body burden of PFHxS on fetal and placental development and explored mechanisms of action combining alternative splicing (AS) and gene expression (GE) analyses. METHODS Pregnant ICR mice were exposed to 0, 0.03, and 0.3 μ g / kg / day from gestational day 7 to day 17 via oral gavage. Upon euthanasia, PFHxS distribution was measured using liquid chromatography-tandem mass spectrometry. Maternal and fetal phenotypes were recorded, and histopathology was examined for placenta impairment. Multiomics was adopted by combining AS and GE analyses to unveil disruptions in mRNA quality and quantity. The key metabolite transporters were validated by quantitative real-time PCR (qRT-PCR) for quantification and three-dimensional (3D) structural simulation by AlphaFold2. Targeted metabolomics based on liquid chromatography-tandem mass spectrometry was used to detect amino acid and amides levels in the placenta. RESULTS Pups developmentally exposed to PFHxS exhibited signs of intrauterine growth restriction (IUGR), characterized by smaller fetal weight and body length (p < 0.01 ) compared to control mice. PFHxS concentration in maternal plasma was 5.01 ± 0.54 ng / mL . PFHxS trans-placenta distribution suggested dose-dependent transfer through placental barrier. Histopathology of placenta of exposed dams showed placental dysplasia, manifested with an attenuated labyrinthine layer area and deescalated blood sinus counts and placental vascular development index marker CD34. Combined GE and AS analyses pinpointed differences in genes associated with key biological processes of placental development, proliferation, metabolism, and transport in placenta of exposed dams compared to that of control dams. Further detection of placental key transporter gene expression, protein structure simulation, and amino acid and amide metabolites levels suggested that PFHxS exposure during pregnancy led to impairment of placental amino acid transportation. DISCUSSION The findings from this study suggest that exposure to human-relevant very-low-dose PFHxS during pregnancy in mice caused IUGR, likely via downregulating of placental amino acid transporters, thereby impairing placental amino acid transportation, resulting in impairment of placental development. Our findings confirm epidemiological findings and call for future attention on the health risk of this persistent yet ubiquitous chemical in the early developmental stage and provide a new approach for understanding gene expression from both quantitative and qualitative omics approaches in toxicological studies. https://doi.org/10.1289/EHP13217.
Collapse
Affiliation(s)
- Yihao Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jia Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yi-Jun Fan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Department of Gynecology and Obstetrics, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jingjing Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Weitian Tang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Nan Sun
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the PRC, Hefei, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the PRC, Hefei, China
| |
Collapse
|
43
|
Hofmann A, Mishra JS, Yadav P, Dangudubiyyam SV, Blesson CS, Kumar S. PFOS Impairs Mitochondrial Biogenesis and Dynamics and Reduces Oxygen Consumption in Human Trophoblasts. JOURNAL OF ENVIRONMENTAL SCIENCE AND PUBLIC HEALTH 2023; 7:164-175. [PMID: 37920428 PMCID: PMC10621633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a synthetic chemical used in various commercial applications and industrial settings, has led to contamination of drinking water and has been detected in the bloodstream of pregnant women with gestational complications. Recent investigations have indicated that PFOS disrupts placental function; however, the mechanism remains elusive. Given the significant abundance of mitochondria in the placenta, which play a pivotal role in fulfilling the heightened energy requirements of pregnancy, our research aimed to examine the repercussions of PFOS exposure on mitochondrial dynamics within placental trophoblasts. Specifically, human trophoblasts (HTR-8/SVneo) were exposed to environmentally relevant concentrations of PFOS ranging from 0.1 to 50 μM for 48 hours. Findings revealed that PFOS exposure elicited a concentration-dependent decrease in basal, maximal, and ATP-linked respiration. PFOS inhibited the activity of electron transport complexes I, II, and III, resulting in diminished ATP production. Furthermore, PFOS reduced mitochondrial DNA copy number, indicating less mitochondrial content. Concurrently, there was a downregulation in the expression of mitochondrial biogenesis-related genes, including PGC-1α, NRF1, and NRF2. Notably, PFOS perturbed mitochondrial dynamics by suppressing the expression of fission-related genes (FIS1 and DRP1) and fusion-related genes (MFN1 and MFN2). In summary, our findings suggest that PFOS exposure leads to a decline in mitochondrial content and compromises the bioenergetic capacity of trophoblasts by impairing cellular respiration. This reduction in mitochondrial biogenesis and alterations in fission/fusion dynamics induced by PFOS may contribute to mitochondrial dysfunction in trophoblasts. Consequently, strategies that preserve mitochondrial function in trophoblasts may mitigate PFOS-induced impairment of placental energy metabolism.
Collapse
Affiliation(s)
- Alissa Hofmann
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sri Vidya Dangudubiyyam
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Chellakkan S Blesson
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sathish Kumar
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
44
|
Tan Y, Taibl KR, Dunlop AL, Barr DB, Panuwet P, Yakimavets V, Kannan K, Corwin EJ, Ryan PB, Eatman JA, Liang D, Eick SM. Association between a Mixture of Per- and Polyfluoroalkyl Substances (PFAS) and Inflammatory Biomarkers in the Atlanta African American Maternal-Child Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13419-13428. [PMID: 37649345 PMCID: PMC10900195 DOI: 10.1021/acs.est.3c04688] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been identified as environmental contributors to adverse birth outcomes. One potential mechanistic pathway could be through PFAS-related inflammation and cytokine production. Here, we examined associations between a PFAS mixture and inflammatory biomarkers during early and late pregnancy from participants enrolled in the Atlanta African American Maternal-Child Cohort (N = 425). Serum concentrations of multiple PFAS were detected in >90% samples at 8-14 weeks gestation. Serum concentrations of interferon-γ (IFN-γ), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) were measured at up to two time points (8-14 weeks and 24-30 weeks gestation). The effect of the PFAS mixture on each inflammatory biomarker was examined using quantile g-computation, Bayesian kernel machine regression (BKMR), Bayesian Weighted Sums (BWS), and weighted quantile sum (WQS) regression. Across all models, the PFAS mixture was associated with increased IFN-γ, IL-10, and TNF-α at both time points, with the strongest effects being observed at 24-30 weeks. Using quantile g-computation, increasing concentrations of a PFAS mixture were associated with a 29% (95% confidence interval = 18.0%, 40.7%) increase in TNF-α at 24-30 weeks. Similarly, using BWS, the PFAS mixture was associated with increased TNF-α at 24-30 weeks (summed effect = 0.29, 95% highest posterior density = 0.17, 0.41). The PFAS mixture was also positively associated with TNF-α at 24-30 weeks using BKMR [75th vs 50th percentile: 17.1% (95% credible interval = 7.7%, 27.4%)]. Meanwhile, PFOS was consistently the main drivers of overall mixture effect across four methods. Our findings indicated an increase in prenatal PFAS exposure is associated with an increase in multiple pro-inflammatory cytokines, potentially contributing to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Kaitlin R. Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, 10016, NY, USA
| | | | - P. Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Jasmin A. Eatman
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
45
|
Wielsøe M, Molina-Molina JM, Rodríguez-Carrillo A, Mustieles V, Olea N, Fernandez MF, Bonefeld-Jørgensen EC. Xeno-estrogenic activity of real-life mixtures of perfluoroalkylated substances in human placenta homogenates. Reprod Toxicol 2023; 120:108444. [PMID: 37473930 DOI: 10.1016/j.reprotox.2023.108444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Humans are simultaneously exposed to complex chemical mixtures, and its combined effect can affect human health. As part of the HBM4EU project, the actual mixture of perfluoroalkylated substances (PFAS) in 25 human placenta samples was extracted by chromatographic methods and assessed for xeno-estrogenic activity using two in-vitro bioassays: the estrogen receptor transactivity and the E-Screen assay. Most of the PFAS extracts displayed xeno-estrogenic activity, in one or both assays. The xeno-estrogenic activities in the two bioassays were not correlated, but both assays showed an overall negative correlation with placenta concentrations of single PFAS. Xeno-estrogenic activities were significantly related to maternal characteristics; being higher in young, smokers and primiparous women, but not with fetal growth (birth weight, birth length, head circumference, gestational age, placenta weight). The presented extraction method can be used to study the combined effect of real-life mixtures of PFAS in relation to health outcomes in large-scale human biomonitoring studies.
Collapse
Affiliation(s)
- Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, DK-8000 Aarhus, Denmark.
| | - Jose-Manuel Molina-Molina
- Center for Biomedical Research (CIBM) & Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain
| | - Andrea Rodríguez-Carrillo
- Center for Biomedical Research (CIBM) & Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM) & Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), E-28029, Spain
| | - Nicolas Olea
- Center for Biomedical Research (CIBM) & Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), E-28029, Spain
| | - Mariana F Fernandez
- Center for Biomedical Research (CIBM) & Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), E-28029, Spain
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, DK-8000 Aarhus, Denmark; Greenland Centre for Health Research, University of Greenland, Nuuk, GRL-3905 Nuussuaq, Greenland
| |
Collapse
|
46
|
Yadav P, Mishra JS, Kumar S. Elevated Maternal Testosterone Levels Alter PFOA Elimination and Tissue Distribution in Pregnant Rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND PUBLIC HEALTH 2023; 7:131-139. [PMID: 37654976 PMCID: PMC10470210 DOI: 10.26502/jesph.96120193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an enduring synthetic chemical that harms human health. Recent studies indicate heightened bioaccumulation of PFOA, particularly in pregnant women experiencing preeclampsia. Since plasma testosterone levels are elevated in pregnant women with preeclampsia, we hypothesized that hyperandrogenic conditions during pregnancy may hinder PFOA elimination and contribute to their higher body burden. Pregnant Sprague-Dawley rats were s/c injected with vehicle or testosterone propionate from gestational day (GD) 15 to 20 to increase plasma testosterone levels by 2-fold, similar to levels in preeclampsia. On GD 16, [14C]-PFOA (9.4 pmol/kg) was given intravenously, and subsequently, 14C radioactivity was measured in maternal blood, urine, feces, and tissues. PFOA was primarily eliminated through urine; however, less PFOA was excreted in urine of pregnant rats with elevated testosterone levels than controls. Fecal excretion of PFOA was minimal and did not significantly differ between groups. The total elimination of PFOA (urine plus feces) was significantly reduced by 12% in pregnant rats with elevated testosterone levels. In controls, PFOA distribution was highest in placenta, followed by the kidneys, liver, brain, heart, lungs, and spleen. Pregnant rats with elevated testosterone levels displayed 12% higher concentrations of PFOA in these tissues than controls. Furthermore, the renal expression of Oat2 and Oat3 was significantly decreased, while Oatp1 and Oat-k expression was significantly increased in pregnant rats with elevated testosterone levels than controls. In conclusion, elevated maternal testosterone levels decrease urinary elimination of PFOA, possibly through altered expression of renal transporters leading to increased tissue concentrations of PFOA in pregnant rats.
Collapse
Affiliation(s)
- Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
47
|
Mancinelli M, Martucci A, Salani GM, Bianchini G, Gigli L, Plaisier JR, Colombo F. High temperature behaviour of Ag-exchanged Y zeolites used for PFAS sequestration from water. Phys Chem Chem Phys 2023; 25:20066-20075. [PMID: 37462392 DOI: 10.1039/d3cp01584j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are anthropogenic compounds which have recently drawn great attention due to their high biological, chemical and physical stability and lipid/water repelling properties. The present work aims to provide for the first time insights on the thermal behaviour of Ag-exchanged Y zeolite loaded with perfluorooctanoic acid (PFOA, C8HF15O2) and perfluorooctane sulfonate (PFOS, C8HF17O3S) emphasizing the close link between crystal structure and desorption/dehydration processes. Elemental and isotopic abundance of carbon analysis, thermal analysis, and in situ high-temperature synchrotron X-ray powder diffraction were used to evaluate critically if the thermal regeneration affects the initial zeolites structural features. Rietveld refinements revealed that PFAS sites are emptied in the 550-650 °C temperature range, when the thermal degradation of PFOA and PFOS are reached. The crystallinity of the samples is not affected by the adsorption/desorption processes. Upon heating, the removal of both PFAS and coadsorbed water molecules induced a cation migration of the silver ions and changes of initial geometry of the framework. The dimensions of the channels remain comparable to those of the pristine materials thus suggesting the potential re-use of the samples in other adsorption PFAS cycles. Additionally, once regenerated and reloaded Ag-exchanged Y can re-adsorb PFAS in amounts comparable to that adsorbed in the first cycle with clear benefits on the costs of the whole water treatment process.
Collapse
Affiliation(s)
- Maura Mancinelli
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, I-44121, Ferrara, Italy.
| | - Annalisa Martucci
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, I-44121, Ferrara, Italy.
| | - Gian Marco Salani
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, I-44121, Ferrara, Italy.
| | - Gianluca Bianchini
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, I-44121, Ferrara, Italy.
| | - Lara Gigli
- Elettra-Sincrotrone Trieste S.C.p.A., Beamline, Strada Statale 14 - km 163, 5 in AREA Science Park, Basovizza, Trieste, Italy
| | - Jasper Rikkert Plaisier
- Elettra-Sincrotrone Trieste S.C.p.A., Beamline, Strada Statale 14 - km 163, 5 in AREA Science Park, Basovizza, Trieste, Italy
| | - Francesco Colombo
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, I-44121, Ferrara, Italy.
| |
Collapse
|
48
|
Yao W, Xu J, Tang W, Gao C, Tao L, Yu J, Lv J, Wang H, Fan Y, Xu DX, Huang Y. Developmental toxicity of perfluorohexane sulfonate at human relevant dose during pregnancy via disruption in placental lipid homeostasis. ENVIRONMENT INTERNATIONAL 2023; 177:108014. [PMID: 37315490 DOI: 10.1016/j.envint.2023.108014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Perfluorohexyl sulfonate (PFHxS) is the third most abundant per- and polyfluoroalkyl substances and its developmental toxicity remains very poorly understood. Here, pregnant mice exposed to PFHxS at human relevant dose showed increased fetal death incidence in the high-dose PFHxS-H group (P < 0.01). Body distribution analyses suggested that PFHxS crossed the placental barrier reaching the fetus in a dose-dependent manner. Histopathological data demonstrated impairment in the placenta with reduced blood sinus volume, placental labyrinth area as well as thickness of labyrinthine layer. Further lipidomic and transcriptomic data together showed that PFHxS exposure caused significant disruption in placental lipid homeostasis, including total lipid accumulation in the placenta, and dysregulation in phospholipid and glycerol lipid metabolism. Gene expression analyses uncovered elevation in key placental fatty acid transporters including fabp2, whereas protein expression showed transporter specific disruptions following exposure. Together, gestational exposure to human relevant level of PFHxS may increase the incidence of fetal deaths and caused placental dysplasia via disruption in lipid metabolism homeostasis. These findings raise the concern regarding the highly prevalent and persistent chemical towards early sensitive developing stages and provide basis for further understanding of its effects on lipid metabolism and underlying mechanisms.
Collapse
Affiliation(s)
- Wencong Yao
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jingjing Xu
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Weitian Tang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chang Gao
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jie Yu
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jia Lv
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yijun Fan
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
49
|
Zhuchen HY, Wang JY, Liu XS, Shi YW. Research Progress on Neurodevelopmental Toxicity in Offspring after Indirect Exposure to PFASs in Early Life. TOXICS 2023; 11:571. [PMID: 37505537 PMCID: PMC10386615 DOI: 10.3390/toxics11070571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widespread environmental pollutants. There is increasing evidence that PFASs have various adverse health effects, including renal toxicity, metabolic dysfunction, endocrine disruption, and developmental toxicity. PFASs have been found to accumulate in the placenta, and some PFASs can cross the placental barrier and subsequently accumulate in the fetus via the maternal-fetal circulation. An increasing number of studies have shown that early life exposure to PFASs can affect fetal neurodevelopment. This paper reviews the characteristics of indirect exposure to PFASs in early life, the effects on neurodevelopment in offspring, and the possible mechanisms of toxic effects.
Collapse
Affiliation(s)
- Huai-Yu Zhuchen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie-Yu Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Shan Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Guangzhou 510000, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
50
|
Groisman L, Berman T, Quinn A, Pariente G, Rorman E, Karakis I, Gat R, Sarov B, Novack L. Levels of PFAS concentrations in the placenta and pregnancy complications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115165. [PMID: 37348217 DOI: 10.1016/j.ecoenv.2023.115165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Recent research has raised concerns about the potential health effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) exposure, particularly during critical periods of development such as pregnancy. In this study, we sought to investigate the presence and potential impacts of PFAS in the placenta. METHODS We measured 13 PFAS compounds in placental tissue samples among 50 women who gave birth at a tertiary medical center in southern Israel. The sample comprised of 10 women with pregnancy-related complications (preterm birth, preeclampsia, gestational diabetes or small-for-gestational age) and 40 women without complications individually matched to cases by age. RESULTS For five (5) out of 13 PFAS compounds (Perfluorooctane Sulfonate (PFOS), perfluorooctanoic acid (PFOA), Perfluorohexanesulphonic acid (PFHxS), Perfluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDA)) median concentrations were lower or comparable to placental measurements in different international populations. Geometric mean was estimated at 0.09 ng/g (90%CI:0.07;0.10) for PFOA, 0.05 ng/g for PFNA (90%CI:0.04;0.07), 0.03 ng/g for PFDA (90%CI:0.01;0.03), 0.06 ng/g for PFHxS (90%CI:0.05;0.07), 0.23 ng/g for PFOS linear measurement (90%CI:0.20;0.26) and 0.25 ng/g (90%CI:0.22;0.30) for PFOS summed concentrations that included non-linear isomers. Composite outcome of pregnancy-related complications was associated with elevated PFOA placental concentrations at an odds ratio (OR)= 1.82 (90%CI:1.06;3.13) for an increase of one quintile of PFOA value and adjusted to maternal gravidity in a conditional logistic regression. CONCLUSION This pilot study indicates a widespread exposure to multiple PFAS compounds in placental tissue of pregnant women in Israel. These findings warrant further validation through comprehensive national human biomonitoring initiatives.
Collapse
Affiliation(s)
- Luda Groisman
- National Public Health Laboratory, Israel Ministry of Health, Tel Aviv, Israel
| | - Tamar Berman
- Department of Health Promotion, Tel Aviv University, Israel; Department of Environmental Health, Israel Ministry of Health, Israel, Tel Aviv University, Israel
| | - Anna Quinn
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel
| | - Gali Pariente
- The Division of Obstetrics and Gynecology, Soroka University Medical Center, Israel
| | - Efrat Rorman
- National Public Health Laboratory, Israel Ministry of Health, Tel Aviv, Israel
| | - Isabella Karakis
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel; Department of Environmental Epidemiology, Israel Ministry of Health, Israel
| | - Roni Gat
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel; Soroka University Medical Center, Negev Environmental Health Research Institute, Israel
| | - Batia Sarov
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel
| | - Lena Novack
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel; Soroka University Medical Center, Negev Environmental Health Research Institute, Israel.
| |
Collapse
|