1
|
Palacios G, Diaz-Solano R, Valladares B, Dorta-Guerra R, Carmelo E. Evolving immunometabolic response to the early Leishmania infantum infection in the spleen of BALB/c mice described by gene expression profiling. Acta Trop 2023; 247:107005. [PMID: 37619900 DOI: 10.1016/j.actatropica.2023.107005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Transcriptional analysis is a useful approximation towards the identification of global changes in host-pathogen interaction, in order to elucidate tissue-specific immune responses that drive the immunopathology of the disease. For this purpose, expression of 223 genes involved in innate and adaptive immune response, lipid metabolism, prostaglandin synthesis, C-type lectin receptors and MAPK signaling pathway, among other processes, were analyzed during the early infection in spleens of BALB/c mice infected by Leishmania infantum. Our results highlight the activation of immune responses in spleen tissue as early as 1 day p.i., but a mixed pro-inflammatory and regulatory response at day 10 p.i., failing to induce an effective response towards control of Leishmania infection in the spleen. This ineffective response is coupled to downregulation of metabolic markers relevant for pathways related to icosanoid biosynthesis, adipocytokine signaling or HIF-1 signaling, among others. Interestingly, the over-representation of processes related to immune response, revealed Il21 as a potential early biomarker of L. infantum infection in the spleen. These results provide insights into the relationships between immune and metabolic responses at transcriptional level during the first days of infection in the L. infantum-BALB/c experimental model, revealing the deregulation of many important pathways and processes crucial for parasitic control in infected tissues.
Collapse
Affiliation(s)
- Génesis Palacios
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n (Tenerife), La Laguna 38200, Spain
| | - Raquel Diaz-Solano
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n (Tenerife), La Laguna 38200, Spain
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n (Tenerife), La Laguna 38200, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, (Tenerife), La Laguna 38200, Spain
| | - Roberto Dorta-Guerra
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n (Tenerife), La Laguna 38200, Spain; Departamento de Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de La Laguna, (Tenerife), La Laguna 38200, Spain
| | - Emma Carmelo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n (Tenerife), La Laguna 38200, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, (Tenerife), La Laguna 38200, Spain.
| |
Collapse
|
2
|
Ganley M, Holz LE, Minnell JJ, de Menezes MN, Burn OK, Poa KCY, Draper SL, English K, Chan STS, Anderson RJ, Compton BJ, Marshall AJ, Cozijnsen A, Chua YC, Ge Z, Farrand KJ, Mamum JC, Xu C, Cockburn IA, Yui K, Bertolino P, Gras S, Le Nours J, Rossjohn J, Fernandez-Ruiz D, McFadden GI, Ackerley DF, Painter GF, Hermans IF, Heath WR. mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat Immunol 2023; 24:1487-1498. [PMID: 37474653 DOI: 10.1038/s41590-023-01562-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.
Collapse
Affiliation(s)
- Mitch Ganley
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Lauren E Holz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - Maria N de Menezes
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Kean Chan Yew Poa
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kieran English
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Susanna T S Chan
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Andrew J Marshall
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Anton Cozijnsen
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Yu Cheng Chua
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Zhengyu Ge
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - John C Mamum
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Calvin Xu
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katsuyuki Yui
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Patrick Bertolino
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey I McFadden
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - David F Ackerley
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Ian F Hermans
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| | - William R Heath
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Rego N, Libisch MG, Rovira C, Tosar JP, Robello C. Comparative microRNA profiling of Trypanosoma cruzi infected human cells. Front Cell Infect Microbiol 2023; 13:1187375. [PMID: 37424776 PMCID: PMC10322668 DOI: 10.3389/fcimb.2023.1187375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Trypanosoma cruzi, the causative agent of Chagas disease, can infect almost any nucleated cell in the mammalian host. Although previous studies have described the transcriptomic changes that occur in host cells during parasite infection, the understanding of the role of post-transcriptional regulation in this process is limited. MicroRNAs, a class of short non-coding RNAs, are key players in regulating gene expression at the post-transcriptional level, and their involvement in the host-T. cruzi interplay is a growing area of research. However, to our knowledge, there are no comparative studies on the microRNA changes that occur in different cell types in response to T. cruzi infection. Methods and results Here we investigated microRNA changes in epithelial cells, cardiomyocytes and macrophages infected with T. cruzi for 24 hours, using small RNA sequencing followed by careful bioinformatics analysis. We show that, although microRNAs are highly cell type-specific, a signature of three microRNAs -miR-146a, miR-708 and miR-1246, emerges as consistently responsive to T. cruzi infection across representative human cell types. T. cruzi lacks canonical microRNA-induced silencing mechanisms and we confirm that it does not produce any small RNA that mimics known host microRNAs. We found that macrophages show a broad response to parasite infection, while microRNA changes in epithelial and cardiomyocytes are modest. Complementary data indicated that cardiomyocyte response may be greater at early time points of infection. Conclusions Our findings emphasize the significance of considering microRNA changes at the cellular level and complement previous studies conducted at higher organizational levels, such as heart samples. While miR-146a has been previously implicated in T. cruzi infection, similarly to its involvement in many other immunological responses, miR-1246 and miR-708 are demonstrated here for the first time. Given their expression in multiple cell types, we anticipate our work as a starting point for future investigations into their role in the post-transcriptional regulation of T. cruzi infected cells and their potential as biomarkers for Chagas disease.
Collapse
Affiliation(s)
- Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Juan Pablo Tosar
- Laboratorio de Genómica Funcional, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Tans R, Dey S, Dey NS, Cao JH, Paul PS, Calder G, O’Toole P, Kaye PM, Heeren RMA. Mass spectrometry imaging identifies altered hepatic lipid signatures during experimental Leishmania donovani infection. Front Immunol 2022; 13:862104. [PMID: 36003389 PMCID: PMC9394181 DOI: 10.3389/fimmu.2022.862104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Spatial analysis of lipids in inflammatory microenvironments is key to understand the pathogenesis of infectious disease. Granulomatous inflammation is a hallmark of leishmaniasis and changes in host and parasite lipid metabolism have been observed at the bulk tissue level in various infection models. Here, mass spectrometry imaging (MSI) is applied to spatially map hepatic lipid composition following infection with Leishmania donovani, an experimental mouse model of visceral leishmaniasis. Methods Livers from naïve and L. donovani-infected C57BL/6 mice were harvested at 14- and 20-days post-infection (n=5 per time point). 12 µm transverse sections were cut and covered with norhamane, prior to lipid analysis using MALDI-MSI. MALDI-MSI was performed in negative mode on a Rapiflex (Bruker Daltonics) at 5 and 50 µm spatial resolution and data-dependent analysis (DDA) on an Orbitrap-Elite (Thermo-Scientific) at 50 µm spatial resolution for structural identification analysis of lipids. Results Aberrant lipid abundances were observed in a heterogeneous distribution across infected mouse livers compared to naïve mouse liver. Distinctive localized correlated lipid masses were found in granulomas and surrounding parenchymal tissue. Structural identification revealed 40 different lipids common to naïve and d14/d20 infected mouse livers, whereas 15 identified lipids were only detected in infected mouse livers. For pathology-guided MSI imaging, we deduced lipids from manually annotated granulomatous and parenchyma regions of interests (ROIs), identifying 34 lipids that showed significantly different intensities between parenchyma and granulomas across all infected livers. Discussion Our results identify specific lipids that spatially correlate to the major histopathological feature of Leishmania donovani infection in the liver, viz. hepatic granulomas. In addition, we identified a three-fold increase in the number of unique phosphatidylglycerols (PGs) in infected liver tissue and provide direct evidence that arachidonic acid-containing phospholipids are localized with hepatic granulomas. These phospholipids may serve as important precursors for downstream oxylipin generation with consequences for the regulation of the inflammatory cascade. This study provides the first description of the use of MSI to define spatial-temporal lipid changes at local sites of infection induced by Leishmania donovani in mice.
Collapse
Affiliation(s)
- Roel Tans
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Shoumit Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Nidhi Sharma Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Jian-Hua Cao
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Prasanjit S. Paul
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Grant Calder
- Department of Biology, University of York, York, United Kingdom
| | - Peter O’Toole
- Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
- *Correspondence: Paul M. Kaye, ; Ron M. A. Heeren,
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
- *Correspondence: Paul M. Kaye, ; Ron M. A. Heeren,
| |
Collapse
|
5
|
Salloum T, Tokajian S, Hirt RP. Advances in Understanding Leishmania Pathobiology: What Does RNA-Seq Tell Us? Front Cell Dev Biol 2021; 9:702240. [PMID: 34540827 PMCID: PMC8440825 DOI: 10.3389/fcell.2021.702240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by a protozoa parasite from over 20 Leishmania species. The clinical manifestations and the outcome of the disease vary greatly. Global RNA sequencing (RNA-Seq) analyses emerged as a powerful technique to profile the changes in the transcriptome that occur in the Leishmania parasites and their infected host cells as the parasites progresses through their life cycle. Following the bite of a sandfly vector, Leishmania are transmitted to a mammalian host where neutrophils and macrophages are key cells mediating the interactions with the parasites and result in either the elimination the infection or contributing to its proliferation. This review focuses on RNA-Seq based transcriptomics analyses and summarizes the main findings derived from this technology. In doing so, we will highlight caveats in our understanding of the parasite's pathobiology and suggest novel directions for research, including integrating more recent data highlighting the role of the bacterial members of the sandfly gut microbiota and the mammalian host skin microbiota in their potential role in influencing the quantitative and qualitative aspects of leishmaniasis pathology.
Collapse
Affiliation(s)
- Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Robert P. Hirt
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Tans R, Dey S, Dey NS, Calder G, O’Toole P, Kaye PM, Heeren RMA. Spatially Resolved Immunometabolism to Understand Infectious Disease Progression. Front Microbiol 2021; 12:709728. [PMID: 34489899 PMCID: PMC8418271 DOI: 10.3389/fmicb.2021.709728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Infectious diseases, including those of viral, bacterial, fungal, and parasitic origin are often characterized by focal inflammation occurring in one or more distinct tissues. Tissue-specific outcomes of infection are also evident in many infectious diseases, suggesting that the local microenvironment may instruct complex and diverse innate and adaptive cellular responses resulting in locally distinct molecular signatures. In turn, these molecular signatures may both drive and be responsive to local metabolic changes in immune as well as non-immune cells, ultimately shaping the outcome of infection. Given the spatial complexity of immune and inflammatory responses during infection, it is evident that understanding the spatial organization of transcripts, proteins, lipids, and metabolites is pivotal to delineating the underlying regulation of local immunity. Molecular imaging techniques like mass spectrometry imaging and spatially resolved, highly multiplexed immunohistochemistry and transcriptomics can define detailed metabolic signatures at the microenvironmental level. Moreover, a successful complementation of these two imaging techniques would allow multi-omics analyses of inflammatory microenvironments to facilitate understanding of disease pathogenesis and identify novel targets for therapeutic intervention. Here, we describe strategies for downstream data analysis of spatially resolved multi-omics data and, using leishmaniasis as an exemplar, describe how such analysis can be applied in a disease-specific context.
Collapse
Affiliation(s)
- Roel Tans
- Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, Netherlands
| | - Shoumit Dey
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Nidhi Sharma Dey
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Grant Calder
- Department of Biology, University of York, York, United Kingdom
| | - Peter O’Toole
- Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Ron M. A. Heeren
- Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Palacios G, Diaz-Solano R, Valladares B, Dorta-Guerra R, Carmelo E. Early Transcriptional Liver Signatures in Experimental Visceral Leishmaniasis. Int J Mol Sci 2021; 22:7161. [PMID: 34281214 PMCID: PMC8267970 DOI: 10.3390/ijms22137161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
Transcriptional analysis of complex biological scenarios has been used extensively, even though sometimes the results of such analysis may prove imprecise or difficult to interpret due to an overwhelming amount of information. In this study, a large-scale real-time qPCR experiment was coupled to multivariate statistical analysis in order to describe the main immunological events underlying the early L. infantum infection in livers of BALB/c mice. High-throughput qPCR was used to evaluate the expression of 223 genes related to immunological response and metabolism 1, 3, 5, and 10 days post infection. This integrative analysis showed strikingly different gene signatures at 1 and 10 days post infection, revealing the progression of infection in the experimental model based on the upregulation of particular immunological response patterns and mediators. The gene signature 1 day post infection was not only characterized by the upregulation of mediators involved in interferon signaling and cell chemotaxis, but also the upregulation of some inhibitory markers. In contrast, at 10 days post infection, the upregulation of many inflammatory and Th1 markers characterized a more defined gene signature with the upregulation of mediators in the IL-12 signaling pathway. Our results reveal a significant connection between the expression of innate immune response and metabolic and inhibitory markers in early L. infantum infection of the liver.
Collapse
Affiliation(s)
- Génesis Palacios
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUESTPC), Universidad de la Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38200 La Laguna (Tenerife), Spain; (G.P.); (R.D.-S.); (B.V.); (R.D.-G.)
| | - Raquel Diaz-Solano
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUESTPC), Universidad de la Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38200 La Laguna (Tenerife), Spain; (G.P.); (R.D.-S.); (B.V.); (R.D.-G.)
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUESTPC), Universidad de la Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38200 La Laguna (Tenerife), Spain; (G.P.); (R.D.-S.); (B.V.); (R.D.-G.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38200 La Laguna (Tenerife), Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET)
| | - Roberto Dorta-Guerra
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUESTPC), Universidad de la Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38200 La Laguna (Tenerife), Spain; (G.P.); (R.D.-S.); (B.V.); (R.D.-G.)
- Departamento de Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de La Laguna, 38200 La Laguna (Tenerife), Spain
| | - Emma Carmelo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUESTPC), Universidad de la Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38200 La Laguna (Tenerife), Spain; (G.P.); (R.D.-S.); (B.V.); (R.D.-G.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38200 La Laguna (Tenerife), Spain
- Departamento de Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de La Laguna, 38200 La Laguna (Tenerife), Spain
| |
Collapse
|
8
|
Zayats R, Uzonna JE, Murooka TT. Visualizing the In Vivo Dynamics of Anti- Leishmania Immunity: Discoveries and Challenges. Front Immunol 2021; 12:671582. [PMID: 34093571 PMCID: PMC8172142 DOI: 10.3389/fimmu.2021.671582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
Intravital microscopy, such as 2-photon microscopy, is now a mainstay in immunological research to visually characterize immune cell dynamics during homeostasis and pathogen infections. This approach has been especially beneficial in describing the complex process of host immune responses to parasitic infections in vivo, such as Leishmania. Human-parasite co-evolution has endowed parasites with multiple strategies to subvert host immunity in order to establish chronic infections and ensure human-to-human transmission. While much focus has been placed on viral and bacterial infections, intravital microscopy studies during parasitic infections have been comparatively sparse. In this review, we will discuss how in vivo microscopy has provided important insights into the generation of innate and adaptive immunity in various organs during parasitic infections, with a primary focus on Leishmania. We highlight how microscopy-based approaches may be key to providing mechanistic insights into Leishmania persistence in vivo and to devise strategies for better parasite control.
Collapse
Affiliation(s)
- Romaniya Zayats
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Jude E. Uzonna
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas T. Murooka
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Poulaki A, Piperaki ET, Voulgarelis M. Effects of Visceralising Leishmania on the Spleen, Liver, and Bone Marrow: A Pathophysiological Perspective. Microorganisms 2021; 9:microorganisms9040759. [PMID: 33916346 PMCID: PMC8066032 DOI: 10.3390/microorganisms9040759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/29/2023] Open
Abstract
The leishmaniases constitute a group of parasitic diseases caused by species of the protozoan genus Leishmania. In humans it can present different clinical manifestations and are usually classified as cutaneous, mucocutaneous, and visceral (VL). Although the full range of parasite—host interactions remains unclear, recent advances are improving our comprehension of VL pathophysiology. In this review we explore the differences in VL immunobiology between the liver and the spleen, leading to contrasting infection outcomes in the two organs, specifically clearance of the parasite in the liver and failure of the spleen to contain the infection. Based on parasite biology and the mammalian immune response, we describe how hypoxia-inducible factor 1 (HIF1) and the PI3K/Akt pathway function as major determinants of the observed immune failure. We also summarize existing knowledge on pancytopenia in VL, as a direct effect of the parasite on bone marrow health and regenerative capacity. Finally, we speculate on the possible effect that manipulation by the parasite of the PI3K/Akt/HIF1 axis may have on the myelodysplastic (MDS) features observed in VL.
Collapse
Affiliation(s)
- Aikaterini Poulaki
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Evangelia-Theophano Piperaki
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Correspondence: (E.-T.P.); (M.V.); Tel.: +30-210-7462136 (E.-T.P.); +30-210-7462647 (M.V.)
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
- Correspondence: (E.-T.P.); (M.V.); Tel.: +30-210-7462136 (E.-T.P.); +30-210-7462647 (M.V.)
| |
Collapse
|
10
|
McCall LI. Quo vadis? Central Rules of Pathogen and Disease Tropism. Front Cell Infect Microbiol 2021; 11:640987. [PMID: 33718287 PMCID: PMC7947345 DOI: 10.3389/fcimb.2021.640987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding why certain people get sick and die while others recover or never become ill is a fundamental question in biomedical research. A key determinant of this process is pathogen and disease tropism: the locations that become infected (pathogen tropism), and the locations that become damaged (disease tropism). Identifying the factors that regulate tropism is essential to understand disease processes, but also to drive the development of new interventions. This review intersects research from across infectious diseases to define the central mediators of disease and pathogen tropism. This review also highlights methods of study, and translational implications. Overall, tropism is a central but under-appreciated aspect of infection pathogenesis which should be at the forefront when considering the development of new methods of intervention.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
11
|
Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X 2020; 2:100041. [PMID: 33604563 PMCID: PMC7885870 DOI: 10.1016/j.cytox.2020.100041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmania are protozoan parasites that predominantly reside in myeloid cells within their mammalian hosts. Monocytes and macrophages play a central role in the pathogenesis of all forms of leishmaniasis, including cutaneous and visceral leishmaniasis. The present review will highlight the diverse roles of macrophages in leishmaniasis as initial replicative niche, antimicrobial effectors, immunoregulators and as safe hideaway for parasites persisting after clinical cure. These multiplex activities are either ascribed to defined subpopulations of macrophages (e.g., Ly6ChighCCR2+ inflammatory monocytes/monocyte-derived dendritic cells) or result from different activation statuses of tissue macrophages (e.g., macrophages carrying markers of of classical [M1] or alternative activation [M2]). The latter are shaped by immune- and stromal cell-derived cytokines (e.g., IFN-γ, IL-4, IL-10, TGF-β), micro milieu factors (e.g., hypoxia, tonicity, amino acid availability), host cell-derived enzymes, secretory products and metabolites (e.g., heme oxygenase-1, arginase 1, indoleamine 2,3-dioxygenase, NOS2/NO, NOX2/ROS, lipids) as well as by parasite products (e.g., leishmanolysin/gp63, lipophosphoglycan). Exciting avenues of current research address the transcriptional, epigenetic and translational reprogramming of macrophages in a Leishmania species- and tissue context-dependent manner.
Collapse
Key Words
- (L)CL, (localized) cutaneous leishmaniasis
- AHR, aryl hydrocarbon receptor
- AMP, antimicrobial peptide
- Arg, arginase
- Arginase
- CAMP, cathelicidin-type antimicrobial peptide
- CR, complement receptor
- DC, dendritic cells
- DCL, diffuse cutaneous leishmaniasis
- HO-1, heme oxygenase 1
- Hypoxia
- IDO, indoleamine-2,3-dioxygenase
- IFN, interferon
- IFNAR, type I IFN (IFN-α/β) receptor
- IL, interleukin
- Interferon-α/β
- Interferon-γ
- JAK, Janus kinase
- LPG, lipophosphoglycan
- LRV1, Leishmania RNA virus 1
- Leishmaniasis
- Macrophages
- Metabolism
- NCX1, Na+/Ca2+ exchanger 1
- NFAT5, nuclear factor of activated T cells 5
- NK cell, natural killer cell
- NO, nitric oxide
- NOS2 (iNOS), type 2 (or inducible) nitric oxide synthase
- NOX2, NADPH oxidase 2 (gp91 or cytochrome b558 β-subunit of Phox)
- Nitric oxide
- OXPHOS, mitochondrial oxidative phosphorylation
- PKDL, post kala-azar dermal leishmaniasis
- Phagocyte NADPH oxidase
- Phox, phagocyte NADPH oxidase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOCS, suppressor of cytokine signaling
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-beta
- TLR, toll-like receptor
- Th1 (Th2), type 1 (type2) T helper cell
- Tonicity
- VL, visceral leishmaniasis
- mTOR, mammalian/mechanistic target of rapamycin
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
12
|
Saunders EC, McConville MJ. Immunometabolism of Leishmania granulomas. Immunol Cell Biol 2020; 98:832-844. [PMID: 32780446 DOI: 10.1111/imcb.12394] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Leishmania are parasitic protists that cause a spectrum of diseases in humans characterized by the formation of granulomatous lesions in the skin or other tissues, such as liver and spleen. The extent to which Leishmania granulomas constrain or promote parasite growth is critically dependent on the host T-helper type 1/T-helper type 2 immune response and the localized functional polarization of infected and noninfected macrophages toward a classically (M1) or alternatively (M2) activated phenotype. Recent studies have shown that metabolic reprograming of M1 and M2 macrophages underpins the capacity of these cells to act as permissive or nonpermissive host reservoirs, respectively. In this review, we highlight the metabolic requirements of Leishmania amastigotes and the evidence that these parasites induce and/or exploit metabolic reprogramming of macrophage metabolism. We also focus on recent studies highlighting the role of key macrophage metabolic signaling pathways, such as mechanistic target of rapamycin, adenosine monophosphate-activated protein kinase and peroxisome proliferator receptor gamma in regulating the pathological progression of Leishmania granulomas. These studies highlight the intimate connectivity between Leishmania and host cell metabolism, the need to investigate these interactions in vivo and the potential to exploit host cell metabolic signaling pathways in developing new host-directed therapies.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
13
|
Saviola AJ, Negrão F, Yates JR. Proteomics of Select Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:315-336. [PMID: 32109150 DOI: 10.1146/annurev-anchem-091619-093003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Technological advances in mass spectrometry have enabled the extensive identification, characterization, and quantification of proteins in any biological system. In disease processes proteins are often altered in response to external stimuli; therefore, proteomics, the large-scale study of proteins and their functions, represents an invaluable tool for understanding the molecular basis of disease. This review highlights the use of mass spectrometry-based proteomics to study the pathogenesis, etiology, and pathology of several neglected tropical diseases (NTDs), a diverse group of disabling diseases primarily associated with poverty in tropical and subtropical regions of the world. While numerous NTDs have been the subject of proteomic studies, this review focuses on Buruli ulcer, dengue, leishmaniasis, and snakebite envenoming. The proteomic studies highlighted provide substantial information on the pathogenic mechanisms driving these diseases; they also identify molecular targets for drug discovery and development and uncover promising biomarkers that can assist in early diagnosis.
Collapse
Affiliation(s)
- Anthony J Saviola
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Fernanda Negrão
- Department of Biosciences and Technology of Bioactive Products, Institute of Biology, University of Campinas, São Paulo 13083-862, Brazil
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| |
Collapse
|
14
|
De Niz M, Carvalho T, Penha-Gonçalves C, Agop-Nersesian C. Intravital imaging of host-parasite interactions in organs of the thoracic and abdominopelvic cavities. Cell Microbiol 2020; 22:e13201. [PMID: 32149435 DOI: 10.1111/cmi.13201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Infections with protozoan and helminthic parasites affect multiple organs in the mammalian host. Imaging pathogens in their natural environment takes a more holistic view on biomedical aspects of parasitic infections. Here, we focus on selected organs of the thoracic and abdominopelvic cavities most commonly affected by parasites. Parasitic infections of these organs are often associated with severe medical complications or have health implications beyond the infected individual. Intravital imaging has provided a more dynamic picture of the host-parasite interplay and contributed not only to our understanding of the various disease pathologies, but has also provided fundamental insight into the biology of the parasites.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
15
|
Negrão F, Diedrich JK, Giorgio S, Eberlin MN, Yates JR. Tandem Mass Tag Proteomic Analysis of in Vitro and in Vivo Models of Cutaneous Leishmaniasis Reveals Parasite-Specific and Nonspecific Modulation of Proteins in the Host. ACS Infect Dis 2019; 5:2136-2147. [PMID: 31600437 DOI: 10.1021/acsinfecdis.9b00275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cutaneous leishmaniasis, the most common form of leishmaniasis, is endemic in several regions of the world, and if not treated properly, it can cause disfiguring scars on the skin. Leishmania spp. infection causes an inflammatory response in its host, and it modulates the host metabolism differently depending on the Leishmania species. Since Leishmania spp. has begun to develop resistance against current therapies, we believe efforts to identify new possibilities for treatment are critical for future control of the disease. Proteomics approaches such as isobaric labeling yield accurate relative quantification of protein abundances and, when combined with chemometrics/statistical analysis, provide robust information about protein modulation across biological conditions. Using a mass spectrometry-based proteomics approach and tandem mass tag labeling, we have investigated protein modulation in murine macrophages (in vitro model) and skin biopsies after exposure to Leishmania spp. (in vivo murine model). Infections induced by L. amazonensis (endemic in the New World) and L. major (endemic in the Old World) were compared to an inflammation model to search for Leishmania-specific and nonspecific protein modulation in the host. After protein extracts obtained from in vitro and in vivo experiments were digested, the resulting peptides were labeled with isobaric tags and analyzed by liquid chromatography-MS (LC-MS). Several proteins that were found to be changed upon infection with Leishmania spp. provide interesting candidates for further investigation into disease mechanism and development of possible immunotherapies.
Collapse
Affiliation(s)
- Fernanda Negrão
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
- Department of Animal Biology, Institute of Biology, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil
| | - Jolene K. Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
| | - Selma Giorgio
- Department of Animal Biology, Institute of Biology, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil
| | - Marcos N. Eberlin
- School of Engineering, Mackenzie Presbyterian University, Rua da Consolação, 930, São Paulo, São Paulo 01302-907, Brazil
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Handschuh J, Amore J, Müller AJ. From the Cradle to the Grave of an Infection: Host-Pathogen Interaction Visualized by Intravital Microscopy. Cytometry A 2019; 97:458-470. [PMID: 31777152 DOI: 10.1002/cyto.a.23938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/12/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
During infections, interactions between host immune cells and the pathogen occur in distinct anatomical locations and along defined time scales. This can best be assessed in the physiological context of an infection in the living tissue. Consequently, intravital imaging has enabled us to dissect the critical phases and events throughout an infection in real time in living tissues. Specifically, advances in visualizing specific cell types and individual pathogens permitted tracking the early events of tissue invasion of the pathogen, cellular interactions involved in the induction of the immune response as well the events implicated in clearance of the infection. In this respect, two vantage points have evolved since the initial employment of this technique in the field of infection biology. On the one hand, strategies acquired by the pathogen to establish within the host and circumvent or evade the immune defenses have been elucidated. On the other hand, analyzing infections from the immune system's perspective has led to insights into the dynamic cellular interactions that are involved in the initial recognition of the pathogen, immune induction as well as effector function delivery and immunopathology. Furthermore, an increasing interest in probing functional parameters in vivo has emerged, such as the analysis of pathogen reactivity to stress conditions imposed by the host organism in order to mediate clearance upon pathogen encounter. Here, we give an overview on recent intravital microscopy findings of host-pathogen interactions along the course of an infection, from both the immune system's and pathogen's perspectives. We also discuss recent developments and future perspectives in extracting intravital information beyond the localization of pathogens and their interaction with immune cells. Such reporter systems on the pathogen's physiological state and immune cell functions may prove useful in dissecting the functional dynamics of host-pathogen interactions. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Juliane Handschuh
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Jonas Amore
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| |
Collapse
|
17
|
Negrão F, Fernandez-Costa C, Zorgi N, Giorgio S, Nogueira Eberlin M, Yates JR. Label-Free Proteomic Analysis Reveals Parasite-Specific Protein Alterations in Macrophages Following Leishmania amazonensis, Leishmania major, or Leishmania infantum Infection. ACS Infect Dis 2019; 5:851-862. [PMID: 30978002 DOI: 10.1021/acsinfecdis.8b00338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Leishmania is an obligate intracellular parasite known to modulate the host cell to survive and proliferate. However, the complexity of host-parasite interactions remains unclear. Also, the outcome of the disease has been recognized to be species-specific and dependent on the host's immune responses. Proteomics has emerged as a powerful tool to investigate the host-pathogen interface, allowing us to deepen our knowledge about infectious diseases. Quantification of the relative amount of proteins in a sample can be achieved using label-free proteomics, and for the first time, we have used it to quantify Leishmania-specific protein alterations in macrophages. Protein extracts were obtained and digested, and peptides were identified and quantified using nano-LC coupled with tandem mass spectrometry analyses. Protein expression was validated by Western blot analysis. Integrated Proteomics Pipeline was used for peptide/protein identification and for quantification and data processing. Ingenuity Pathway Analysis was used for network analysis. In this work, we investigated how this intracellular parasite modulates protein expression on a host macrophage by comparing three different Leishmania species- L. amazonensis, one of the causative agents of cutaneous disease in the Amazon region; L. major, another causative agent of cutaneous leishmaniasis in Africa, the Middle East, China, and India; L. infantum, the causative agent of visceral leishmaniasis affecting humans and dogs in Latin America-and lipopolysaccharide stimulated macrophages as an in vitro inflammation model. Our results revealed that Leishmania infection downregulates apoptosis pathways while upregulating the activation of phagocytes/leukocytes and lipid accumulation.
Collapse
Affiliation(s)
- Fernanda Negrão
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
- Department of Animal Biology, Institute of Biology, Rua Monteiro Lobato, 255, Campinas, Sao Paulo 13083-862, Brazil
- Department of Organic Chemistry, Institute of Chemistry, UNICAMP, Rua Josué de Castro SN, Room A111, Campinas, Sao Paulo 13083-862, Brazil
| | - Carolina Fernandez-Costa
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
| | - Nahiara Zorgi
- Department of Animal Biology, Institute of Biology, Rua Monteiro Lobato, 255, Campinas, Sao Paulo 13083-862, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Institute of Biology, Rua Monteiro Lobato, 255, Campinas, Sao Paulo 13083-862, Brazil
| | - Marcos Nogueira Eberlin
- Department of Organic Chemistry, Institute of Chemistry, UNICAMP, Rua Josué de Castro SN, Room A111, Campinas, Sao Paulo 13083-862, Brazil
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Bagnall J, Boddington C, England H, Brignall R, Downton P, Alsoufi Z, Boyd J, Rowe W, Bennett A, Walker C, Adamson A, Patel NMX, O’Cualain R, Schmidt L, Spiller DG, Jackson DA, Müller W, Muldoon M, White MRH, Paszek P. Quantitative analysis of competitive cytokine signaling predicts tissue thresholds for the propagation of macrophage activation. Sci Signal 2018; 11:11/540/eaaf3998. [DOI: 10.1126/scisignal.aaf3998] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Moyo D, Beattie L, Andrews PS, Moore JWJ, Timmis J, Sawtell A, Hoehme S, Sampson AT, Kaye PM. Macrophage Transactivation for Chemokine Production Identified as a Negative Regulator of Granulomatous Inflammation Using Agent-Based Modeling. Front Immunol 2018; 9:637. [PMID: 29636754 PMCID: PMC5880939 DOI: 10.3389/fimmu.2018.00637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/14/2018] [Indexed: 01/22/2023] Open
Abstract
Cellular activation in trans by interferons, cytokines, and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and/or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling, and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani-infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation.
Collapse
Affiliation(s)
- Daniel Moyo
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom.,Department of Computer Science, University of York, York, United Kingdom
| | - Lynette Beattie
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Paul S Andrews
- Department of Electronics, University of York, York, United Kingdom.,SimOmics Ltd., York, United Kingdom
| | - John W J Moore
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Jon Timmis
- Department of Electronics, University of York, York, United Kingdom.,SimOmics Ltd., York, United Kingdom
| | - Amy Sawtell
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Stefan Hoehme
- Institute for Computer Science, University of Leipzig, Leipzig, Germany
| | - Adam T Sampson
- Division of Computing and Mathematics, Abertay University, Dundee, United Kingdom
| | - Paul M Kaye
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
20
|
Pharmacodynamics and Biodistribution of Single-Dose Liposomal Amphotericin B at Different Stages of Experimental Visceral Leishmaniasis. Antimicrob Agents Chemother 2017. [PMID: 28630200 PMCID: PMC5571318 DOI: 10.1128/aac.00497-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Visceral leishmaniasis is a neglected tropical disease that causes significant morbidity and mortality worldwide. Characterization of the pharmacokinetics and pharmacodynamics of antileishmanial drugs in preclinical models is important for drug development and use. Here we investigated the pharmacodynamics and drug distribution of liposomal amphotericin B (AmBisome) in Leishmania donovani-infected BALB/c mice at three different dose levels and two different time points after infection. We additionally compared drug levels in plasma, liver, and spleen in infected and uninfected BALB/c mice over time. At the highest administered dose of 10 mg/kg AmBisome, >90% parasite inhibition was observed within 2 days after drug administration, consistent with drug distribution from blood to tissue within 24 h and a fast rate of kill. Decreased drug potency was observed in the spleen when AmBisome was administered on day 35 after infection, compared to day 14 after infection. Amphotericin B concentrations and total drug amounts per organ were lower in liver and spleen when AmBisome was administered at the advanced stage of infection and compared to those in uninfected BALB/c mice. However, the magnitude of difference was lower when total drug amounts per organ were estimated. Differences were also noted in drug distribution to L. donovani-infected livers and spleens. Taken together, our data suggest that organ enlargement and other pathophysiological factors cause infection- and organ-specific drug distribution and elimination after administration of single-dose AmBisome to L. donovani-infected mice. Plasma drug levels were not reflective of changes in drug levels in tissues.
Collapse
|
21
|
Scharfstein J, Ramos PIP, Barral-Netto M. G Protein-Coupled Kinin Receptors and Immunity Against Pathogens. Adv Immunol 2017; 136:29-84. [PMID: 28950949 DOI: 10.1016/bs.ai.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For decades, immunologists have considered the complement system as a paradigm of a proteolytic cascade that, acting cooperatively with the immune system, enhances host defense against infectious organisms. In recent years, advances made in thrombosis research disclosed a functional link between activated neutrophils, monocytes, and platelet-driven thrombogenesis. Forging a physical barrier, the fibrin scaffolds generated by synergism between the extrinsic and intrinsic (contact) pathways of coagulation entrap microbes within microvessels, limiting the systemic spread of infection while enhancing the clearance of pathogens by activated leukocytes. Insight from mice models of thrombosis linked fibrin formation via the intrinsic pathway to the autoactivation of factor XII (FXII) by negatively charged "contact" substances, such as platelet-derived polyphosphates and DNA from neutrophil extracellular traps. Following cleavage by FXIIa, activated plasma kallikrein (PK) initiates inflammation by liberating the nonapeptide bradykinin (BK) from an internal domain of high molecular weight kininogen (HK). Acting as a paracrine mediator, BK induces vasodilation and increases microvascular permeability via activation of endothelial B2R, a constitutively expressed subtype of kinin receptor. During infection, neutrophil-driven extravasation of plasma fuels inflammation via extravascular activation of the kallikrein-kinin system (KKS). Whether liberated by plasma-borne PK, tissue kallikrein, and/or microbial-derived proteases, the short-lived kinins activate immature dendritic cells via B2R, thus linking the infection-associated innate immunity/inflammation to the adaptive arm of immunity. As inflammation persists, a GPI-linked carboxypeptidase M removes the C-terminal arginine from the primary kinin, converting the B2R agonist into a high-affinity ligand for B1R, a GPCR subtype that is transcriptionally upregulated in injured/inflamed tissues. As reviewed here, lessons taken from studies of kinin receptor function in experimental infections have shed light on the complex proteolytic circuits that, acting at the endothelial interface, reciprocally couple immunity to the proinflammatory KKS.
Collapse
Affiliation(s)
- Julio Scharfstein
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Center of Health Sciences (CCS), Cidade Universitária, Rio de Janeiro, Brazil.
| | - Pablo I P Ramos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | | |
Collapse
|
22
|
Abstract
Many major tropical diseases are caused by long-lived helminth parasites that are able to survive by modulation of the host immune system, including the innate compartment of myeloid cells. In particular, dendritic cells and macrophages show markedly altered phenotypes during parasite infections. In addition, many specialized subsets such as eosinophils and basophils expand dramatically in response to these pathogens. The changes in phenotype and function, and their effects on both immunity to infection and reactivity to bystander antigens such as allergens, are discussed.
Collapse
|
23
|
Messer JS. The cellular autophagy/apoptosis checkpoint during inflammation. Cell Mol Life Sci 2017; 74:1281-1296. [PMID: 27837217 PMCID: PMC11107496 DOI: 10.1007/s00018-016-2403-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022]
Abstract
Cell death is a major determinant of inflammatory disease severity. Whether cells live or die during inflammation largely depends on the relative success of the pro-survival process of autophagy versus the pro-death process of apoptosis. These processes interact and influence each other during inflammation and there is a checkpoint at which cells irrevocably commit to either one pathway or another. This review will discuss the concept of the autophagy/apoptosis checkpoint and its importance during inflammation, the mechanisms of inflammation leading up to the checkpoint, and how the checkpoint is regulated. Understanding these concepts is important since manipulation of the autophagy/apoptosis checkpoint represents a novel opportunity for treatment of inflammatory diseases caused by too much or too little cell death.
Collapse
Affiliation(s)
- Jeannette S Messer
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, 900 E. 57th Street, 9th Floor, Chicago, IL, 60637, USA.
| |
Collapse
|
24
|
Patino LH, Ramírez JD. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions. INFECTION GENETICS AND EVOLUTION 2017; 49:273-282. [PMID: 28179142 DOI: 10.1016/j.meegid.2017.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/31/2022]
Abstract
The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts.
Collapse
Affiliation(s)
- Luz Helena Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24# 63C-69, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24# 63C-69, Bogotá, Colombia.
| |
Collapse
|
25
|
In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice. Arch Toxicol 2016; 91:1335-1352. [PMID: 27999878 PMCID: PMC5316407 DOI: 10.1007/s00204-016-1906-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022]
Abstract
We describe a two-photon microscopy-based method to evaluate the in vivo systemic transport of compounds. This method comprises imaging of the intact liver, kidney and intestine, the main organs responsible for uptake and elimination of xenobiotics and endogenous molecules. The image quality of the acquired movies was sufficient to distinguish subcellular structures like organelles and vesicles. Quantification of the movement of fluorescent dextran and fluorescent cholic acid derivatives in different organs and their sub-compartments over time revealed significant dynamic differences. Calculated half-lives were similar in the capillaries of all investigated organs but differed in the specific sub-compartments, such as parenchymal cells and bile canaliculi of the liver, glomeruli, proximal and distal tubules of the kidney and lymph vessels (lacteals) of the small intestine. Moreover, tools to image immune cells, which can influence transport processes in inflamed tissues, are described. This powerful approach provides new possibilities for the analysis of compound transport in multiple organs and can support physiologically based pharmacokinetic modeling, in order to obtain more precise predictions at the whole body scale.
Collapse
|
26
|
Gardinassi LG, Garcia GR, Costa CHN, Costa Silva V, de Miranda Santos IKF. Blood Transcriptional Profiling Reveals Immunological Signatures of Distinct States of Infection of Humans with Leishmania infantum. PLoS Negl Trop Dis 2016; 10:e0005123. [PMID: 27828962 PMCID: PMC5102635 DOI: 10.1371/journal.pntd.0005123] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/23/2016] [Indexed: 12/04/2022] Open
Abstract
Visceral leishmaniasis (VL) can be lethal if untreated; however, the majority of human infections with the etiological agents are asymptomatic. Using Illumina Bead Chip microarray technology, we investigated the patterns of gene expression in blood of active VL patients, asymptomatic infected individuals, patients under remission of VL and controls. Computational analyses based on differential gene expression, gene set enrichment, weighted gene co-expression networks and cell deconvolution generated data demonstrating discriminative transcriptional signatures. VL patients exhibited transcriptional profiles associated with pathways and gene modules reflecting activation of T lymphocytes via MHC class I and type I interferon signaling, as well as an overall down regulation of pathways and gene modules related to myeloid cells, mainly due to differences in the relative proportions of monocytes and neutrophils. Patients under remission of VL presented heterogeneous transcriptional profiles associated with activation of T lymphocytes via MHC class I, type I interferon signaling and cell cycle and, importantly, transcriptional activity correlated with activation of Notch signaling pathway and gene modules that reflected increased proportions of B cells after treatment of disease. Asymptomatic and uninfected individuals presented similar gene expression profiles, nevertheless, asymptomatic individuals exhibited particularities which suggest an efficient regulation of lymphocyte activation and a strong association with a type I interferon response. Of note, we validated a set of target genes by RT-qPCR and demonstrate the robustness of expression data acquired by microarray analysis. In conclusion, this study profiles the immune response during distinct states of infection of humans with Leishmania infantum with a novel strategy that indicates the molecular pathways that contribute to the progression of the disease, while also providing insights into transcriptional activity that can drive protective mechanisms. Infections of humans with the protozoan parasites L. donvani and L. infantum can lead to the development of the disease visceral leishmaniasis, but also to an asymptomatic status. However, the mechanisms that result in these clinical outcomes after infection are poorly understood. In this study, we applied a data-driven approach to obtain insights into the immunological processes linked to the progression of the disease or to protective mechanisms. For this purpose, we evaluated the patterns of expression for genes that code proteins from the entire human genome in the peripheral blood from patients with visceral leishmaniasis, from individuals who remained asymptomatic after infections with L. infantum, from patients who were recovering from disease after treatment and from uninfected individuals. By employing computational analysis to evaluate the blood transcriptional activity of each group, we identified transcriptional signatures that correlate with previous findings obtained through different analytical methods. Moreover, our analyses uncovered hitherto unidentified molecular pathways and gene networks associated with the transcriptional profiles of individuals recovering from disease or that did not develop symptoms after infection. This suggests that activation of protective responses can be useful targets for the development of new therapies for visceral leishmaniasis.
Collapse
Affiliation(s)
- Luiz Gustavo Gardinassi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo Rocha Garcia
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Henrique Nery Costa
- Department of Community Medicine, Natan Portela Institute for Tropical Diseases, Federal University of Piauí, Teresina, Brazil
| | - Vladimir Costa Silva
- Department of Community Medicine, Natan Portela Institute for Tropical Diseases, Federal University of Piauí, Teresina, Brazil
| | | |
Collapse
|
27
|
Avraham R, Haseley N, Fan A, Bloom-Ackermann Z, Livny J, Hung DT. A highly multiplexed and sensitive RNA-seq protocol for simultaneous analysis of host and pathogen transcriptomes. Nat Protoc 2016; 11:1477-91. [DOI: 10.1038/nprot.2016.090] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Jain R, Tikoo S, Weninger W. Recent advances in microscopic techniques for visualizing leukocytes in vivo. F1000Res 2016; 5:F1000 Faculty Rev-915. [PMID: 27239292 PMCID: PMC4874443 DOI: 10.12688/f1000research.8127.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo.
Collapse
Affiliation(s)
- Rohit Jain
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Shweta Tikoo
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
29
|
de Freitas EO, Leoratti FMDS, Freire-de-Lima CG, Morrot A, Feijó DF. The Contribution of Immune Evasive Mechanisms to Parasite Persistence in Visceral Leishmaniasis. Front Immunol 2016; 7:153. [PMID: 27148272 PMCID: PMC4840207 DOI: 10.3389/fimmu.2016.00153] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/08/2016] [Indexed: 01/06/2023] Open
Abstract
Leishmania is a genus of protozoan parasites that give rise to a range of diseases called Leishmaniasis that affects annually an estimated 1.3 million people from 88 countries. Leishmania donovani and Leishmania (L.) infantum chagasi are responsible to cause the visceral leishmaniasis. The parasite can use assorted strategies to interfere with the host homeostasis to establish persistent infections that without treatment can be lethal. In this review, we highlight the mechanisms involved in the parasite subversion of the host protective immune response and how alterations of host tissue physiology and vascular remodeling during VL could affect the organ-specific immunity against Leishmania parasites.
Collapse
Affiliation(s)
| | | | | | - Alexandre Morrot
- Laboratorio de Biologia do Sistema Imune, Departmento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Daniel Ferreira Feijó
- Laboratório Integrado de Microbiologia e Imunoregulação, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ) , Salvador , Brazil
| |
Collapse
|
30
|
Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J. Regulation of immunity during visceral Leishmania infection. Parasit Vectors 2016; 9:118. [PMID: 26932389 PMCID: PMC4774109 DOI: 10.1186/s13071-016-1412-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/20/2016] [Indexed: 12/24/2022] Open
Abstract
Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.
Collapse
Affiliation(s)
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | | | - Ricardo Silvestre
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Jérôme Estaquier
- CNRS FR3636, Université Paris-Descartes, Paris, France. .,Centre de Recherche en Infectiologie, Université Laval, Québec, Canada.
| |
Collapse
|
31
|
Kaye PM, Beattie L. Lessons from other diseases: granulomatous inflammation in leishmaniasis. Semin Immunopathol 2015; 38:249-60. [PMID: 26678994 PMCID: PMC4779128 DOI: 10.1007/s00281-015-0548-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/02/2015] [Indexed: 11/16/2022]
Abstract
The Leishmania granuloma shares some, though not all, properties with that formed following mycobacterial infection. As a simplified, noncaseating granuloma composed of relatively few and largely mononuclear cell populations, it provides a tractable model system to investigate intra-granuloma cellular dynamics, immune regulation, and antimicrobial resistance. Here, the occurrence of granulomatous pathology across the spectrum of leishmaniasis, in humans and animal reservoir hosts, is first described. However, this review focuses on the process of hepatic granuloma formation as studied in rodent models of visceral leishmaniasis, starting from the initial infection of Kupffer cells to the involution of the granuloma after pathogen clearance. It describes how the application of intravital imaging and the use of computational modeling have changed some of our thoughts on granuloma function, and illustrates how host-directed therapies have been used to manipulate granuloma form and function for therapeutic benefit. Where appropriate, lessons that may be equally applicable across the spectrum of granulomatous diseases are highlighted.
Collapse
Affiliation(s)
- Paul M Kaye
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK.
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland, Australia, 4006
| |
Collapse
|
32
|
Mukhopadhyay D, Mukherjee S, Roy S, Dalton JE, Kundu S, Sarkar A, Das NK, Kaye PM, Chatterjee M. M2 Polarization of Monocytes-Macrophages Is a Hallmark of Indian Post Kala-Azar Dermal Leishmaniasis. PLoS Negl Trop Dis 2015; 9:e0004145. [PMID: 26496711 PMCID: PMC4619837 DOI: 10.1371/journal.pntd.0004145] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/16/2015] [Indexed: 01/30/2023] Open
Abstract
The high level of functional diversity and plasticity in monocytes/macrophages has been defined within in vitro systems as M1 (classically activated), M2 (alternatively activated) and deactivated macrophages, of which the latter two subtypes are associated with suppression of cell mediated immunity, that confers susceptibility to intracellular infection. Although the Leishmania parasite modulates macrophage functions to ensure its survival, what remains an unanswered yet pertinent question is whether these macrophages are deactivated or alternatively activated. This study aimed to characterize the functional plasticity and polarization of monocytes/macrophages and delineate their importance in the immunopathogenesis of Post kala-azar dermal leishmaniasis (PKDL), a chronic dermatosis of human leishmaniasis. Monocytes from PKDL patients showed a decreased expression of TLR-2/4, along with an attenuated generation of reactive oxidative/nitrosative species. At disease presentation, an increased mRNA expression of classical M2 markers CD206, ARG1 and PPARG in monocytes and lesional macrophages indicated M2 polarization of macrophages which was corroborated by increased expression of CD206 and arginase-1. Furthermore, altered vitamin D signaling was a key feature in PKDL, as disease presentation was associated with raised plasma levels of monohydroxylated vitamin D3 and vitamin D3- associated genes, features of M2 polarization. Taken together, in PKDL, monocyte/macrophage subsets appear to be alternatively activated, a phenotype that might sustain disease chronicity. Importantly, repolarization of these monocytes to M1 by antileishmanial drugs suggests that switching from M2 to M1 phenotype might represent a therapeutic opportunity, worthy of future pharmacological consideration. Monocyte/macrophage subsets following their polarization by the microenvironement serve as important immune sentinels that play a vital role in host defense and homeostasis. The polarization of macrophage function has been broadly classified as M1 (classical) and M2 (alternate) activation, wherein M1 polarised cells display a strong pro-inflammatory microbicidal response, while M2 polarization is linked to production of an anti-inflammatory milieu leading to tissue regeneration and wound healing. Data pertaining to macrophage polarization are primarily derived from murine models, but increasing evidence is highlighting the inadequacy of direct inter-species translation. In leishmaniasis, a protozoan infection caused by the genus Leishmania, manipulation of host macrophage function is central to pathogenesis. In this study we report that monocyte/macrophage subsets in Post kala-azar dermal leishmaniasis are polarized to an M2 phenotype. This study provides insights into systemic and local regulation of macrophage/ monocyte functions in this important human disease and highlights the influence of immunomodulatory anti-leishmanial chemotherapy on macrophage/monocyte polarization.
Collapse
Affiliation(s)
- Debanjan Mukhopadhyay
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Shibabrata Mukherjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Susmita Roy
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Jane E. Dalton
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Sunanda Kundu
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Avijit Sarkar
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Nilay K. Das
- Department of Dermatology, Calcutta Medical College, Kolkata, West Bengal, India
| | - Paul M. Kaye
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
- * E-mail: (PMK); (MC)
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
- * E-mail: (PMK); (MC)
| |
Collapse
|
33
|
Cantacessi C, Dantas-Torres F, Nolan MJ, Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol 2015; 31:100-8. [PMID: 25638444 PMCID: PMC4356521 DOI: 10.1016/j.pt.2014.12.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/31/2023]
Abstract
It has been nearly 10 years since the completion of the first entire genome sequence of a Leishmania parasite. Genomic and transcriptomic analyses have advanced our understanding of the biology of Leishmania, and shed new light on the complex interactions occurring within the parasite-host-vector triangle. Here, we review these advances and examine potential avenues for translation of these discoveries into treatment and control programs. In addition, we argue for a strong need to explore how disease in dogs relates to that in humans, and how an improved understanding in line with the 'One Health' concept may open new avenues for the control of these devastating diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Filipe Dantas-Torres
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fiocruz-PE, Brazil; Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| | - Matthew J Nolan
- Royal Veterinary College, University of London, North Mymms, UK
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| |
Collapse
|
34
|
Dalton JE, Glover AC, Hoodless L, Lim EK, Beattie L, Kirby A, Kaye PM. The neurotrophic receptor Ntrk2 directs lymphoid tissue neovascularization during Leishmania donovani infection. PLoS Pathog 2015; 11:e1004681. [PMID: 25710496 PMCID: PMC4339582 DOI: 10.1371/journal.ppat.1004681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/12/2015] [Indexed: 01/31/2023] Open
Abstract
The neurotrophic tyrosine kinase receptor type 2 (Ntrk2, also known as TrkB) and its ligands brain derived neurotrophic factor (Bdnf), neurotrophin-4 (NT-4/5), and neurotrophin-3 (NT-3) are known primarily for their multiple effects on neuronal differentiation and survival. Here, we provide evidence that Ntrk2 plays a role in the pathologic remodeling of the spleen that accompanies chronic infection. We show that in Leishmania donovani-infected mice, Ntrk2 is aberrantly expressed on splenic endothelial cells and that new maturing blood vessels within the white pulp are intimately associated with F4/80(hi)CD11b(lo)CD11c(+) macrophages that express Bdnf and NT-4/5 and have pro-angiogenic potential in vitro. Furthermore, administration of the small molecule Ntrk2 antagonist ANA-12 to infected mice significantly inhibited white pulp neovascularization but had no effect on red pulp vascular remodeling. We believe this to be the first evidence of the Ntrk2/neurotrophin pathway driving pathogen-induced vascular remodeling in lymphoid tissue. These studies highlight the therapeutic potential of modulating this pathway to inhibit pathological angiogenesis.
Collapse
Affiliation(s)
- Jane E. Dalton
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Amy C. Glover
- Jack Birch Unit, Department of Biology, University of York, York, United Kingdom
| | - Laura Hoodless
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Eng-Kiat Lim
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Lynette Beattie
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Alun Kirby
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Paul M. Kaye
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Ma F, Liu SY, Razani B, Arora N, Li B, Kagechika H, Tontonoz P, Núñez V, Ricote M, Cheng G. Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon. Nat Commun 2014; 5:5494. [PMID: 25417649 PMCID: PMC4380327 DOI: 10.1038/ncomms6494] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/07/2014] [Indexed: 12/23/2022] Open
Abstract
The retinoid X receptor α (RXRα), a key nuclear receptor in metabolic processes, is downregulated during host antiviral response. However, the roles of RXRα in host antiviral response are unknown. Here we show that RXRα overexpression or ligand activation increases host susceptibility to viral infections in vitro and in vivo, while Rxra-/- or antagonist treatment reduces infection by the same viruses. Consistent with these functional studies, ligand activation of RXR inhibits the expression of antiviral genes including type I interferon (IFN) and Rxra-/- macrophages produce more IFNβ than WT macrophages in response to polyI:C stimulation. Further results indicate that ligand activation of RXR suppresses the nuclear translocation of β-catenin, a co-activator of IFNβ enhanceosome. Thus, our studies have uncovered a novel RXR-dependent innate immune regulatory pathway, suggesting that the downregulation of RXR expression or RXR antagonist treatment benefits host antiviral response, whereas RXR agonist treatment may increase the risk of viral infections.
Collapse
Affiliation(s)
- Feng Ma
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Su-Yang Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Bahram Razani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Neda Arora
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Bing Li
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Peter Tontonoz
- 1] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA [2] Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095, USA
| | - Vanessa Núñez
- Cardiovascular Development and Repair Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Mercedes Ricote
- Cardiovascular Development and Repair Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|