1
|
Roche B, Claudi B, Cunrath O, Bleck CKE, Antelo-Varela M, Li J, Bumann D. A Salmonella subset exploits erythrophagocytosis to subvert SLC11A1-imposed iron deprivation. Cell Host Microbe 2025; 33:632-642.e4. [PMID: 40373749 DOI: 10.1016/j.chom.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025]
Abstract
Solute carrier family 11 member 1 (SLC11A1) is critical for host resistance to diverse intracellular pathogens. During infection, SLC11A1 limits Salmonella's access to iron, zinc, and magnesium, but only magnesium deprivation significantly impairs Salmonella replication. To understand the unexpected minor impact of iron, we determined Salmonella's iron access in infected SLC11A1-deficient and normal mice. Using reporter strains and mass spectrometry of Salmonella purified from the spleen, we found that SLC11A1 caused growth-restricting iron deprivation in a subset of Salmonella. Volume electron microscopy revealed that another Salmonella subset circumvented iron restriction by targeting iron-rich endosomes in macrophages degrading red blood cells (erythrophagocytosis). These iron-replete bacteria dominated overall Salmonella growth, masking the effects of the other Salmonella subset's iron deprivation. Thus, SLC11A1 effectively sequesters iron, but heterogeneous Salmonella populations partially bypass this nutritional immunity by targeting iron-rich tissue microenvironments.
Collapse
Affiliation(s)
- Béatrice Roche
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS, 67084 Strasbourg, France
| | | | - Olivier Cunrath
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Biotechnologie et signalisation cellulaire, Université de Strasbourg, 67412 Illkirch, France
| | - Christopher K E Bleck
- Biozentrum, University of Basel, 4056 Basel, Switzerland; HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - Jiagui Li
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
2
|
Fanous J, Claudi B, Tripathi V, Li J, Goormaghtigh F, Bumann D. Limited impact of Salmonella stress and persisters on antibiotic clearance. Nature 2025; 639:181-189. [PMID: 39910302 PMCID: PMC11882453 DOI: 10.1038/s41586-024-08506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/10/2024] [Indexed: 02/07/2025]
Abstract
Antimicrobial compounds are essential for controlling bacterial infections. Stress-induced bacterial tolerance and persisters can undermine antimicrobial activities under laboratory conditions, but their quantitative effects under physiological conditions remain unclear1,2. Here we determined constraints on clearance of Salmonella by antimicrobials in infected mice and tissue-mimicking chemostats. The antibiotics enrofloxacin and ceftriaxone exhibited poor anti-Salmonella activity under both conditions, primarily owing to severe nutrient starvation, which restricted Salmonella replication3-5. Other infection-associated conditions, such as acidic pH, glucose, oxidative stress, nitrosative stress, antimicrobial peptides, osmolarity, oxygen limitation, carbon dioxide and carbonate, as well as drug efflux, toxin-antitoxin modules and cell size had limited effects. A subset of resilient Salmonella appeared as a key obstacle for clearance by enrofloxacin, based on the biphasic decline of Salmonella colony-forming units. However, these data were misleading, because colony formation was confounded by extensive post-exposure killing. More accurate single-cell, real-time assays showed uniformly slow damage, indicating high resilience across the entire Salmonella population. The resulting extensive survival of bulk bacteria minimized the effect of hyper-resilient persisters. Thus, starvation-induced general resilience of Salmonella was the main cause of poor antibiotic clearance. These findings highlight the importance of quantifying antibiotic activity with real-time, single-cell assays under physiological conditions.
Collapse
Affiliation(s)
| | | | | | - Jiagui Li
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Salina EG, Martini BA, Sorokin VV, Mulyukin AL. Fate of in vitro cultured Mycobacterium abscessus populations when exposed to moxifloxacin. Front Microbiol 2024; 15:1494147. [PMID: 39669783 PMCID: PMC11635960 DOI: 10.3389/fmicb.2024.1494147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Given the current need for predictive persisting model for Mycobacterium abscessus, we adopted a classical assay to study drug-tolerant bacterial persisters, focusing on the behavior of a small antibiotic-insensitive subpopulation during prolonged exposure to moxifloxacin. Our study showed a wide-ranging response of M. abscessus, depending on antibiotic concentration, growth stage of mycobacterial cultures, and the availability of potassium ions in the medium. Mid-logarithmic cultures, initially grown in either balanced or K+-free medium, contained small sup-populations capable of prolonged and stable survival in the presence of moxifloxacin. The response of these mid-log cultures to antibiotic exposure involved initial killing, followed by regrowth at 1-2 MBCs of moxifloxacin or a substantial reduction of the antibiotic-insensitive subpopulation to fewer than 102 CFU/mL at 16 MBCs. In stationary-phase cultures grown in a complete medium, a consistent number of viable cells was observed when exposed to a high dose of moxifloxacin. In contrast, antibiotic-insensitive subpopulations in stationary-phase M. abscessus cultures under potassium-deficient conditions experienced gradual killing across a wide range of moxifloxacin concentrations (1-16 MBCs). Studies on electron microscopy demonstrated that singular cells were rapidly destroyed after relatively short-term exposure to moxifloxacin, while cells in aggregates or clumps persisted longer, explaining the delayed biocidal effect. The small subpopulation that survived under intense moxifloxacin pressure was notably heterogeneous in cell morphology and fine structure, consisting of ovoid forms and cell-wall-deficient cells with reduced size. These findings suggest that the same antibiotic dose may have varying effects on M. abscessus cells, depending on their physiological state and abundance within infected cells or tissues. Taken together, our study may contribute to the development of strategies to combat recalcitrant survivor subpopulations.
Collapse
Affiliation(s)
- Elena G. Salina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Billy A. Martini
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V. Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey L. Mulyukin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Sherry J, Rego EH. Phenotypic Heterogeneity in Pathogens. Annu Rev Genet 2024; 58:183-209. [PMID: 39083846 DOI: 10.1146/annurev-genet-111523-102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Pathogen diversity within an infected organism has traditionally been explored through the lens of genetic heterogeneity. Hallmark studies have characterized how genetic diversity within pathogen subpopulations contributes to treatment escape and infectious disease progression. However, recent studies have begun to reveal the mechanisms by which phenotypic heterogeneity is established within genetically identical populations of invading pathogens. Furthermore, exciting new work highlights how these phenotypically heterogeneous subpopulations contribute to a pathogen population better equipped to handle the complex and fluctuating environment of a host organism. In this review, we focus on how bacterial pathogens, including Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa, and Mycobacterium tuberculosis, establish and maintain phenotypic heterogeneity, and we explore recent work demonstrating causative links between this heterogeneity and infection outcome.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| |
Collapse
|
5
|
Gory R, Personnic N, Blaha D. Unravelling the Roles of Bacterial Nanomachines Bistability in Pathogens' Life Cycle. Microorganisms 2024; 12:1930. [PMID: 39338604 PMCID: PMC11434070 DOI: 10.3390/microorganisms12091930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial nanomachines represent remarkable feats of evolutionary engineering, showcasing intricate molecular mechanisms that enable bacteria to perform a diverse array of functions essential to persist, thrive, and evolve within ecological and pathological niches. Injectosomes and bacterial flagella represent two categories of bacterial nanomachines that have been particularly well studied both at the molecular and functional levels. Among the diverse functionalities of these nanomachines, bistability emerges as a fascinating phenomenon, underscoring their dynamic and complex regulation as well as their contribution to shaping the bacterial community behavior during the infection process. In this review, we examine two closely related bacterial nanomachines, the type 3 secretion system, and the flagellum, to explore how the bistability of molecular-scale devices shapes the bacterial eco-pathological life cycle.
Collapse
Affiliation(s)
- Romain Gory
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| | - Nicolas Personnic
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| | - Didier Blaha
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
6
|
Parada-Kusz M, Clatworthy AE, Goering ER, Blackwood SM, Shigeta JY, Mashin E, Salm EJ, Choi C, Combs S, Lee JSW, Rodriguez-Osorio C, Clish C, Tomita S, Hung DT. 3-Hydroxykynurenine targets kainate receptors to promote defense against infection. Nat Chem Biol 2024:10.1038/s41589-024-01635-z. [PMID: 38898166 DOI: 10.1038/s41589-024-01635-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Bacterial infection involves a complex interaction between the pathogen and host where the outcome of infection is not solely determined by pathogen eradication. To identify small molecules that promote host survival by altering the host-pathogen dynamic, we conducted an in vivo chemical screen using zebrafish embryos and found that treatment with 3-hydroxykynurenine (3-HK) protects from lethal bacterial infection. 3-HK, a metabolite produced through host tryptophan metabolism, has no direct antibacterial activity but enhances host survival by restricting bacterial expansion in macrophages through a systemic mechanism that targets kainate-sensitive glutamate receptors. These findings reveal a new pathway by which tryptophan metabolism and kainate-sensitive glutamate receptors function and interact to modulate immunity, with important implications for the coordination between the immune and nervous systems in pathological conditions.
Collapse
Affiliation(s)
- Margarita Parada-Kusz
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Clatworthy
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Emily R Goering
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie M Blackwood
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Y Shigeta
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Elizabeth J Salm
- Department of Cellular and Molecular Physiology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Catherine Choi
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Senya Combs
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jenny S W Lee
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carlos Rodriguez-Osorio
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Deborah T Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Alonso-Roman R, Mosig AS, Figge MT, Papenfort K, Eggeling C, Schacher FH, Hube B, Gresnigt MS. Organ-on-chip models for infectious disease research. Nat Microbiol 2024; 9:891-904. [PMID: 38528150 DOI: 10.1038/s41564-024-01645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Research on microbial pathogens has traditionally relied on animal and cell culture models to mimic infection processes in the host. Over recent years, developments in microfluidics and bioengineering have led to organ-on-chip (OoC) technologies. These microfluidic systems create conditions that are more physiologically relevant and can be considered humanized in vitro models. Here we review various OoC models and how they have been applied for infectious disease research. We outline the properties that make them valuable tools in microbiology, such as dynamic microenvironments, vascularization, near-physiological tissue constitutions and partial integration of functional immune cells, as well as their limitations. Finally, we discuss the prospects for OoCs and their potential role in future infectious disease research.
Collapse
Affiliation(s)
- Raquel Alonso-Roman
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (Leibniz-HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Alexander S Mosig
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Applied Systems Biology Group, Leibniz-HKI, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Kai Papenfort
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Christian Eggeling
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Leibniz Center for Photonics in Infection Research e.V., Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
| | - Felix H Schacher
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (Leibniz-HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz-HKI, Jena, Germany
| |
Collapse
|
8
|
Walter ND, Ernest JP, Dide-Agossou C, Bauman AA, Ramey ME, Rossmassler K, Massoudi LM, Pauly S, Al Mubarak R, Voskuil MI, Kaya F, Sarathy JP, Zimmerman MD, Dartois V, Podell BK, Savic RM, Robertson GT. Lung microenvironments harbor Mycobacterium tuberculosis phenotypes with distinct treatment responses. Antimicrob Agents Chemother 2023; 67:e0028423. [PMID: 37565762 PMCID: PMC10508168 DOI: 10.1128/aac.00284-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023] Open
Abstract
Tuberculosis lung lesions are complex and harbor heterogeneous microenvironments that influence antibiotic effectiveness. Major strides have been made recently in understanding drug pharmacokinetics in pulmonary lesions, but the bacterial phenotypes that arise under these conditions and their contribution to drug tolerance are poorly understood. A pharmacodynamic marker called the RS ratio® quantifies ongoing rRNA synthesis based on the abundance of newly synthesized precursor rRNA relative to mature structural rRNA. Application of the RS ratio in the C3HeB/FeJ mouse model demonstrated that Mycobacterium tuberculosis populations residing in different tissue microenvironments are phenotypically distinct and respond differently to drug treatment with rifampin, isoniazid, or bedaquiline. This work provides a foundational basis required to address how anatomic and pathologic microenvironmental niches may contribute to long treatment duration and drug tolerance during the treatment of human tuberculosis.
Collapse
Affiliation(s)
- Nicholas D. Walter
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| | - Jackie P. Ernest
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allison A. Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Michelle E. Ramey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lisa M. Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Samantha Pauly
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Martin I. Voskuil
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Firat Kaya
- Center for Discovery and Innovation, Nutley, New Jersey, USA
| | | | | | | | - Brendan K. Podell
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Radojka M. Savic
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Gregory T. Robertson
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
9
|
Parada-Kusz M, Clatworthy AE, Goering ER, Blackwood SM, Salm EJ, Choi C, Combs S, Lee JSW, Rodriguez-Osorio C, Tomita S, Hung DT. A tryptophan metabolite modulates the host response to bacterial infection via kainate receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553532. [PMID: 37645903 PMCID: PMC10462041 DOI: 10.1101/2023.08.16.553532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Bacterial infection involves a complex interaction between the pathogen and host where the outcome of infection is not solely determined by pathogen eradication. To identify small molecules that promote host survival by altering the host-pathogen dynamic, we conducted an in vivo chemical screen using zebrafish embryos and found that treatment with 3-hydroxy-kynurenine protects from lethal gram-negative bacterial infection. 3-hydroxy-kynurenine, a metabolite produced through host tryptophan metabolism, has no direct antibacterial activity but enhances host survival by restricting bacterial expansion in macrophages by targeting kainate-sensitive glutamate receptors. These findings reveal new mechanisms by which tryptophan metabolism and kainate-sensitive glutamate receptors function and interact to modulate immunity, with significant implications for the coordination between the immune and nervous systems in pathological conditions.
Collapse
Affiliation(s)
- Margarita Parada-Kusz
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School; Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Anne E. Clatworthy
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School; Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Emily R. Goering
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School; Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Stephanie M. Blackwood
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Elizabeth J. Salm
- Department of Cellular and Molecular Physiology and Neuroscience, Yale School of Medicine; New Haven, Connecticut, USA
| | - Catherine Choi
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Senya Combs
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Jenny S. W. Lee
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Carlos Rodriguez-Osorio
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School; Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology and Neuroscience, Yale School of Medicine; New Haven, Connecticut, USA
| | - Deborah T. Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School; Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Personnic N, Doublet P, Jarraud S. Intracellular persister: A stealth agent recalcitrant to antibiotics. Front Cell Infect Microbiol 2023; 13:1141868. [PMID: 37065203 PMCID: PMC10102521 DOI: 10.3389/fcimb.2023.1141868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
The bulk of bacteria transiently evading appropriate antibiotic regimes and recovered from non-resolutive infections are commonly refer to as persisters. In this mini-review, we discuss how antibiotic persisters stem from the interplay between the pathogen and the cellular defenses mechanisms and its underlying heterogeneity.
Collapse
Affiliation(s)
- Nicolas Personnic
- CIRI, Centre International de Recherche en Infectiologie, CNRS UMR 5308, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, Lyon, France
- *Correspondence: Nicolas Personnic,
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, CNRS UMR 5308, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Group Legionella Pathogenesis, Lyon, France
| | - Sophie Jarraud
- CIRI, Centre International de Recherche en Infectiologie, CNRS UMR 5308, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Group Legionella Pathogenesis, Lyon, France
- National Reference Centre for Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
11
|
Anderson E, Nair B, Nizet V, Kumar G. Man vs Microbes - The Race of the Century. J Med Microbiol 2023; 72. [PMID: 36748622 DOI: 10.1099/jmm.0.001646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The complexity of the antimicrobial resistance (AMR) crisis and its global impact on healthcare invokes an urgent need to understand the underlying forces and to conceive and implement innovative solutions. Beyond focusing on a traditional pathogen-centric approach to antibiotic discovery yielding diminishing returns, future therapeutic interventions can expand to focus more comprehensively on host-pathogen interactions. In this manner, increasing the resiliency of our innate immune system or attenuating the virulence mechanisms of the pathogens can be explored to improve therapeutic outcomes. Key pathogen survival strategies such as tolerance, persistence, aggregation, and biofilm formation can be considered and interrupted to sensitize pathogens for more efficient immune clearance. Understanding the evolution and emergence of so-called 'super clones' that drive AMR spread with rapid clonotyping assays may guide more precise antibiotic regimens. Innovative alternatives to classical antibiotics such as bacteriophage therapy, novel engineered peptide antibiotics, ionophores, nanomedicines, and repurposing drugs from other domains of medicine to boost innate immunity are beginning to be successfully implemented to combat AMR. Policy changes supporting shorter durations of antibiotic treatment, greater antibiotic stewardship, and increased surveillance measures can enhance patient safety and enable implementation of the next generation of targeted prevention and control programmes at a global level.
Collapse
Affiliation(s)
- Ericka Anderson
- Collaborative to Halt Antibiotic Resistant Microbes (CHARM), Department of Pediatrics University of California San Diego, La Jolla, CA, USA
| | - Bipin Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Victor Nizet
- Collaborative to Halt Antibiotic Resistant Microbes (CHARM), Department of Pediatrics University of California San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego, La Jolla, CA, USA
| | - Geetha Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
12
|
Avital G, Kuperwaser F, Pountain AW, Lacey KA, Zwack EE, Podkowik M, Shopsin B, Torres VJ, Yanai I. The tempo and mode of gene regulatory programs during bacterial infection. Cell Rep 2022; 41:111477. [PMID: 36223751 PMCID: PMC9741813 DOI: 10.1016/j.celrep.2022.111477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 06/10/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022] Open
Abstract
Innate immune recognition of bacterial pathogens is a key determinant of the ensuing systemic response, and host or pathogen heterogeneity in this early interaction can impact the course of infection. To gain insight into host response heterogeneity, we investigate macrophage inflammatory dynamics using primary human macrophages infected with Group B Streptococcus. Transcriptomic analysis reveals discrete cellular states within responding macrophages, one of which consists of four sub-states, reflecting inflammatory activation. Infection with six additional bacterial species-Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, Yersinia pseudotuberculosis, Shigella flexneri, and Salmonella enterica-recapitulates these states, though at different frequencies. We show that modulating the duration of infection and the presence of a toxin impacts inflammatory trajectory dynamics. We provide evidence for this trajectory in infected macrophages in an in vivo model of Staphylococcus aureus infection. Our cell-state analysis defines a framework for understanding inflammatory activation dynamics in response to bacterial infection.
Collapse
Affiliation(s)
- Gal Avital
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA,These authors contributed equally
| | - Felicia Kuperwaser
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA,These authors contributed equally
| | - Andrew W. Pountain
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Keenan A. Lacey
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin E. Zwack
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA,Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA,Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA,Lead contact,Correspondence:
| |
Collapse
|
13
|
A Live Cell Imaging Microfluidic Model for Studying Extravasation of Bloodborne Bacterial Pathogens. Cell Microbiol 2022. [DOI: 10.1155/2022/3130361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria that migrate (extravasate) out of the bloodstream during vascular dissemination can cause secondary infections in many tissues and organs, including the brain, heart, liver, joints, and bone with clinically serious and sometimes fatal outcomes. The mechanisms by which bacteria extravasate through endothelial barriers in the face of blood flow-induced shear stress are poorly understood, in part because individual bacteria are rarely observed traversing endothelia in vivo, and in vitro model systems inadequately mimic the vascular environment. To enable the study of bacterial extravasation mechanisms, we developed a transmembrane microfluidics device mimicking human blood vessels. Fast, quantitative, three-dimensional live cell imaging in this system permitted single-cell resolution measurement of the Lyme disease bacterium Borrelia burgdorferi transmigrating through monolayers of primary human endothelial cells under physiological shear stress. This cost-effective, flexible method was 10,000 times more sensitive than conventional plate reader-based methods for measuring transendothelial migration. Validation studies confirmed that B. burgdorferi transmigrate actively and strikingly do so at similar rates under static and physiological flow conditions. This method has significant potential for future studies of B. burgdorferi extravasation mechanisms, as well as the transendothelial migration mechanisms of other disseminating bloodborne pathogens.
Collapse
|
14
|
Tans R, Dey S, Dey NS, Cao JH, Paul PS, Calder G, O’Toole P, Kaye PM, Heeren RMA. Mass spectrometry imaging identifies altered hepatic lipid signatures during experimental Leishmania donovani infection. Front Immunol 2022; 13:862104. [PMID: 36003389 PMCID: PMC9394181 DOI: 10.3389/fimmu.2022.862104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Spatial analysis of lipids in inflammatory microenvironments is key to understand the pathogenesis of infectious disease. Granulomatous inflammation is a hallmark of leishmaniasis and changes in host and parasite lipid metabolism have been observed at the bulk tissue level in various infection models. Here, mass spectrometry imaging (MSI) is applied to spatially map hepatic lipid composition following infection with Leishmania donovani, an experimental mouse model of visceral leishmaniasis. Methods Livers from naïve and L. donovani-infected C57BL/6 mice were harvested at 14- and 20-days post-infection (n=5 per time point). 12 µm transverse sections were cut and covered with norhamane, prior to lipid analysis using MALDI-MSI. MALDI-MSI was performed in negative mode on a Rapiflex (Bruker Daltonics) at 5 and 50 µm spatial resolution and data-dependent analysis (DDA) on an Orbitrap-Elite (Thermo-Scientific) at 50 µm spatial resolution for structural identification analysis of lipids. Results Aberrant lipid abundances were observed in a heterogeneous distribution across infected mouse livers compared to naïve mouse liver. Distinctive localized correlated lipid masses were found in granulomas and surrounding parenchymal tissue. Structural identification revealed 40 different lipids common to naïve and d14/d20 infected mouse livers, whereas 15 identified lipids were only detected in infected mouse livers. For pathology-guided MSI imaging, we deduced lipids from manually annotated granulomatous and parenchyma regions of interests (ROIs), identifying 34 lipids that showed significantly different intensities between parenchyma and granulomas across all infected livers. Discussion Our results identify specific lipids that spatially correlate to the major histopathological feature of Leishmania donovani infection in the liver, viz. hepatic granulomas. In addition, we identified a three-fold increase in the number of unique phosphatidylglycerols (PGs) in infected liver tissue and provide direct evidence that arachidonic acid-containing phospholipids are localized with hepatic granulomas. These phospholipids may serve as important precursors for downstream oxylipin generation with consequences for the regulation of the inflammatory cascade. This study provides the first description of the use of MSI to define spatial-temporal lipid changes at local sites of infection induced by Leishmania donovani in mice.
Collapse
Affiliation(s)
- Roel Tans
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Shoumit Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Nidhi Sharma Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Jian-Hua Cao
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Prasanjit S. Paul
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Grant Calder
- Department of Biology, University of York, York, United Kingdom
| | - Peter O’Toole
- Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
- *Correspondence: Paul M. Kaye, ; Ron M. A. Heeren,
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
- *Correspondence: Paul M. Kaye, ; Ron M. A. Heeren,
| |
Collapse
|
15
|
Chung CH, Chandrasekaran S. A flux-based machine learning model to simulate the impact of pathogen metabolic heterogeneity on drug interactions. PNAS NEXUS 2022; 1:pgac132. [PMID: 36016709 PMCID: PMC9396445 DOI: 10.1093/pnasnexus/pgac132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Drug combinations are a promising strategy to counter antibiotic resistance. However, current experimental and computational approaches do not account for the entire complexity involved in combination therapy design, such as the effect of pathogen metabolic heterogeneity, changes in the growth environment, drug treatment order, and time interval. To address these limitations, we present a comprehensive approach that uses genome-scale metabolic modeling and machine learning to guide combination therapy design. Our mechanistic approach (a) accommodates diverse data types, (b) accounts for time- and order-specific interactions, and (c) accurately predicts drug interactions in various growth conditions and their robustness to pathogen metabolic heterogeneity. Our approach achieved high accuracy (area under the receiver operating curve (AUROC) = 0.83 for synergy, AUROC = 0.98 for antagonism) in predicting drug interactions for Escherichia coli cultured in 57 metabolic conditions based on experimental validation. The entropy in bacterial metabolic response was predictive of combination therapy outcomes across time scales and growth conditions. Simulation of metabolic heterogeneity using population FBA identified two subpopulations of E. coli cells defined by the levels of three proteins (eno, fadB, and fabD) in glycolysis and lipid metabolism that influence cell tolerance to a broad range of antibiotic combinations. Analysis of the vast landscape of condition-specific drug interactions revealed a set of 24 robustly synergistic drug combinations with potential for clinical use.
Collapse
Affiliation(s)
- Carolina H Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Du W, Zhao Y, Wang C, Dong Y, Qu X, Liu Z, Li K, Che N. Spatial bacterial subpopulations of a human lung lobe and their potential impact on the progression of pulmonary tuberculosis. Microb Pathog 2022; 169:105656. [PMID: 35777521 DOI: 10.1016/j.micpath.2022.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Better understanding the spatial variation in resident pulmonary bacteria can help to link the disease severity of pulmonary tuberculosis (TB) with lung bacteriomes. This study aimed to investigate bacterial compositions in subniches of a lung lobe from pulmonary TB patient with two separate visible lesions. There were no significant differences between the bacterial compositions in normal tissue and TB lesions, but the bacterial compositions of the two TB lesions differed significantly (P = 0.009). Interestingly, 52 OTUs (relative abundance >1%) that specifically inhabiting certain lung niches were observed and they were affiliated with five phyla. Specific OTUs affiliated with Firmicutes mainly inhabited normal tissues. The dominant phylum in the lung subniches was Proteobacteria, with a relative abundance between 67.03% and 99.99%. Ralstonia, Achromobacter, and Pseudomonas were the most abundant genera, collectively accounting for 34.02% of total bacterial species. A total of 667 of the 700 bacterial connections in a co-correlation network of 145 OTUs (Operational Taxonomic Unit) were positive, indicating a cooperative relationship between bacterial members. Using PICRUSt tool, we do predict bacterial MetaCyc functions responsible for lipid synthesis and heme biosynthesis across the lung lobe that are essential for generation of caseous necrosis and TB disease pathology. MetaCyc pathways responsible for the degradation of aromatic biogenic amines, sulfur oxidation, and denitrification were all related to M.tb growth status, and they were significantly enriched in the lesion with necrosis than that with inflammation. These results open a new insight for us to comprehend the spatial profile of bacteriomes in a pulmonary TB human lung lobe, and shed light on the design of future diagnosis and treatment for pulmonary TB disease.
Collapse
Affiliation(s)
- Weili Du
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Yingli Zhao
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Chong Wang
- Minimally Invasive Treatment Center, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Yujie Dong
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Xiaodie Qu
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Zichen Liu
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Kun Li
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China.
| |
Collapse
|
17
|
Wang W, Ning Y, Wang Y, Deng G, Pace S, Barth SA, Menge C, Zhang K, Dai Y, Cai Y, Chen X, Werz O. Mycobacterium tuberculosis-Induced Upregulation of the COX-2/mPGES-1 Pathway in Human Macrophages Is Abrogated by Sulfasalazine. Front Immunol 2022; 13:849583. [PMID: 35663935 PMCID: PMC9160237 DOI: 10.3389/fimmu.2022.849583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Macrophages are the primary human host cells of intracellular Mycobacterium tuberculosis (M.tb) infection, where the magnitude of inflammatory reactions is crucial for determining the outcome of infection. Previously, we showed that the anti-inflammatory drug sulfasalazine (SASP) significantly reduced the M.tb bactericidal burden and histopathological inflammation in mice. Here, we asked which genes in human inflammatory macrophages are affected upon infection with M.tb and how would potential changes impact the functional state of macrophages. We used a flow cytometry sorting system which can distinguish the dead and alive states of M.tb harbored in human monocyte-derived macrophages (MDM). We found that the expression of cyclooxygenase-2 and microsomal prostaglandin E2 synthase (mPGES)-1 increased significantly in tagRFP+ MDM which were infected with alive M.tb. After exposure of polarized M1-MDM to M.tb (H37Rv strain)-conditioned medium (MTB-CM) or to the M.tb-derived 19-kD antigen, the production of PGE2 and pro-inflammatory cytokines increased 3- to 4-fold. Upon treatment of M1-MDM with SASP, the MTB-CM-induced expression of COX-2 and the release of COX products and cytokines decreased. Elevation of PGE2 in M1-MDM upon MTB-CM stimulation and modulation by SASP correlated with the activation of the NF-κB pathway. Together, infection of human macrophages by M.tb strongly induces COX-2 and mPGES-1 expression along with massive PGE2 formation which is abrogated by the anti-inflammatory drug SASP.
Collapse
Affiliation(s)
- Wenfei Wang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuping Ning
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yejun Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Guofang Deng
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Kehong Zhang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Youchao Dai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
18
|
The battle for oxygen during bacterial and fungal infections. Trends Microbiol 2022; 30:643-653. [DOI: 10.1016/j.tim.2022.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
|
19
|
Metal sequestration by S100 proteins in chemically diverse environments. Trends Microbiol 2022; 30:654-664. [DOI: 10.1016/j.tim.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
|
20
|
Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, Bumann D. Tissue compartmentalization enables Salmonella persistence during chemotherapy. Proc Natl Acad Sci U S A 2021; 118:e2113951118. [PMID: 34911764 PMCID: PMC8713819 DOI: 10.1073/pnas.2113951118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.
Collapse
Affiliation(s)
- Jiagui Li
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Joseph Fanous
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | - Dirk Bumann
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
21
|
Uropathogenic Escherichia coli Shows Antibiotic Tolerance and Growth Heterogeneity in an In Vitro Model of Intracellular Infection. Antimicrob Agents Chemother 2021; 65:e0146821. [PMID: 34570646 DOI: 10.1128/aac.01468-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC), the major causative agent of urinary tract infections, can invade different types of host cells. To compare the pharmacodynamic properties of antibiotics against intra- and extracellular UPEC, an in vitro model of intracellular infection was established in J774 mouse macrophages infected by the UPEC strain CFT073. We tested antibiotics commonly prescribed against urinary tract infections (gentamicin, ampicillin, nitrofurantoin, trimethoprim, sulfamethoxazole, and ciprofloxacin) and the investigational fluoroquinolone finafloxacin. The metabolic activity of individual bacteria was assessed by expressing the fluorescent reporter protein TIMERbac within CFT073. Concentration-response experiments revealed that all tested antibiotics were much less effective against intracellular bacteria than extracellular ones. Most antibiotics, except fluoroquinolones, were unable to reach a bactericidal effect intracellularly at clinically achievable concentrations. Ciprofloxacin and finafloxacin killed 99.9% of extracellular bacteria at concentrations around the MIC, while for intracellular bacteria, concentrations more than 100× over the MIC were required to achieve a bactericidal effect. Time-kill curves showed that finafloxacin was more rapidly bactericidal in acidic medium than at neutral pH, while the reverse observation was made for ciprofloxacin. Intracellularly, kill curves showed biphasic kinetics for both fluoroquinolones, suggesting the presence of drug-tolerant subpopulations. Flow cytometry analysis of TIMERbac fluorescence revealed a marked heterogeneity in intracellular growth of individual bacteria, suggesting that the presence of subpopulations reaching a state of metabolic dormancy was the main reason for increased antibiotic tolerance of intracellular UPEC.
Collapse
|
22
|
Verstraete L, Van den Bergh B, Verstraeten N, Michiels J. Ecology and evolution of antibiotic persistence. Trends Microbiol 2021; 30:466-479. [PMID: 34753652 DOI: 10.1016/j.tim.2021.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Bacteria have at their disposal a battery of strategies to withstand antibiotic stress. Among these, resistance is a well-known mechanism, yet bacteria can also survive antibiotic attack by adopting a tolerant phenotype. In the case of persistence, only a small fraction within an isogenic population switches to this antibiotic-tolerant state. Persistence depends on the ecological niche and the genetic background of the strains involved. Furthermore, it has been shown to be under direct and indirect evolutionary pressure. Persister cells play a role in chronic infections and the development of resistance, and therefore a better understanding of this phenotype could contribute to the development of effective antibacterial therapies. In the current review, we discuss how ecological and evolutionary forces shape persistence.
Collapse
Affiliation(s)
- L Verstraete
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - B Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - N Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - J Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.
| |
Collapse
|
23
|
Huang W, Wang D, Yao YF. Understanding the pathogenesis of infectious diseases by single-cell RNA sequencing. MICROBIAL CELL 2021; 8:208-222. [PMID: 34527720 PMCID: PMC8404151 DOI: 10.15698/mic2021.09.759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
Infections are highly orchestrated and dynamic processes, which involve both pathogen and host. Transcriptional profiling at the single-cell level enables the analysis of cell diversity, heterogeneity of the immune response, and detailed molecular mechanisms underlying infectious diseases caused by bacteria, viruses, fungi, and parasites. Herein, we highlight recent remarkable advances in single-cell RNA sequencing (scRNA-seq) technologies and their applications in the investigation of host-pathogen interactions, current challenges and potential prospects for disease treatment are discussed as well. We propose that with the aid of scRNA-seq, the mechanism of infectious diseases will be further revealed thus inspiring the development of novel interventions and therapies.
Collapse
Affiliation(s)
- Wanqiu Huang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai 200025, China
| |
Collapse
|
24
|
Impens F, Dussurget O. Three decades of listeriology through the prism of technological advances. Cell Microbiol 2021; 22:e13183. [PMID: 32185895 DOI: 10.1111/cmi.13183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Decades of breakthroughs resulting from cross feeding of microbiological research and technological innovation have promoted Listeria monocytogenes to the rank of model microorganism to study host-pathogen interactions. The extraordinary capacity of this bacterium to interfere with a vast array of host cellular processes uncovered new concepts in microbiology, cell biology and infection biology. Here, we review technological advances that revealed how bacteria and host interact in space and time at the molecular, cellular, tissue and whole body scales, ultimately revolutionising our understanding of Listeria pathogenesis. With the current bloom of multidisciplinary integrative approaches, Listeria entered a new microbiology era.
Collapse
Affiliation(s)
- Francis Impens
- Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department for Biomedical Medicine, Ghent University, Ghent, Belgium.,VIB Proteomics Core, VIB, Ghent, Belgium
| | - Olivier Dussurget
- Institut Pasteur, Unité de Recherche Yersinia, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
25
|
Identification of Metabolically Quiescent Leishmania mexicana Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. mBio 2021; 12:mBio.00129-21. [PMID: 33824211 PMCID: PMC8092208 DOI: 10.1128/mbio.00129-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Leishmania are sandfly-transmitted protists that induce granulomatous lesions in their mammalian host. Although infected host cells in these tissues can exist in different activation states, the extent to which intracellular parasites stages also exist in different growth or physiological states remains poorly defined. Here, we have mapped the spatial distribution of metabolically quiescent and active subpopulations of Leishmania mexicana in dermal granulomas in susceptible BALB/c mice, using in vivo heavy water labeling and ultra high-resolution imaging mass spectrometry. Quantitation of the rate of turnover of parasite and host-specific lipids at high spatial resolution, suggested that the granuloma core comprised mixed populations of metabolically active and quiescent parasites. Unexpectedly, a significant population of metabolically quiescent parasites was also identified in the surrounding collagen-rich, dermal mesothelium. Mesothelium-like tissues harboring quiescent parasites progressively replaced macrophage-rich granuloma tissues following treatment with the first-line drug, miltefosine. In contrast to the granulomatous tissue, neither the mesothelium nor newly deposited tissue sequestered miltefosine. These studies suggest that the presence of quiescent parasites in acute granulomatous tissues, together with the lack of miltefosine accumulation in cured lesion tissue, may contribute to drug failure and nonsterile cure.IMPORTANCE Many microbial pathogens switch between different growth and physiological states in vivo in order to adapt to local nutrient levels and host microbicidal responses. Heterogeneity in microbial growth and metabolism may also contribute to nongenetic mechanisms of drug resistance and drug failure. In this study, we have developed a new approach for measuring spatial heterogeneity in microbial metabolism in vivo using a combination of heavy water (2H2O) labeling and imaging mass spectrometry. Using this approach, we show that lesions contain a patchwork of metabolically distinct parasite populations, while the underlying dermal tissues contain a large population of metabolically quiescent parasites. Quiescent parasites also dominate drug-depleted tissues in healed animals, providing an explanation for failure of some first line drugs to completely eradicate parasites. This approach is broadly applicable to study the metabolic and growth dynamics in other host-pathogen interactions.
Collapse
|
26
|
Röder J, Felgner P, Hensel M. Comprehensive Single Cell Analyses of the Nutritional Environment of Intracellular Salmonella enterica. Front Cell Infect Microbiol 2021; 11:624650. [PMID: 33834004 PMCID: PMC8021861 DOI: 10.3389/fcimb.2021.624650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
The facultative intracellular pathogen Salmonella enterica Typhimurium (STM) resides in a specific membrane-bound compartment termed the Salmonella-containing vacuole (SCV). STM is able to obtain all nutrients required for rapid proliferation, although being separated from direct access to host cell metabolites. The formation of specific tubular membrane compartments, called Salmonella-induced filaments (SIFs) are known to provides bacterial nutrition by giving STM access to endocytosed material and enabling proliferation. Additionally, STM expresses a range of nutrient uptake system for growth in nutrient limited environments to overcome the nutrition depletion inside the host. By utilizing dual fluorescence reporters, we shed light on the nutritional environment of intracellular STM in various host cells and distinct intracellular niches. We showed that STM uses nutrients of the host cell and adapts uniquely to the different nutrient conditions. In addition, we provide further evidence for improved nutrient supply by SIF formation or presence in the cytosol of epithelial cells, and the correlation of nutrient supply to bacterial proliferation.
Collapse
Affiliation(s)
- Jennifer Röder
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Pascal Felgner
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs – Center of Cellular Nanoanalytics, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
27
|
Westermann AJ, Vogel J. Cross-species RNA-seq for deciphering host-microbe interactions. Nat Rev Genet 2021; 22:361-378. [PMID: 33597744 DOI: 10.1038/s41576-021-00326-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
The human body is constantly exposed to microorganisms, which entails manifold interactions between human cells and diverse commensal or pathogenic bacteria. The cellular states of the interacting cells are decisive for the outcome of these encounters such as whether bacterial virulence programmes and host defence or tolerance mechanisms are induced. This Review summarizes how next-generation RNA sequencing (RNA-seq) has become a primary technology to study host-microbe interactions with high resolution, improving our understanding of the physiological consequences and the mechanisms at play. We illustrate how the discriminatory power and sensitivity of RNA-seq helps to dissect increasingly complex cellular interactions in time and space down to the single-cell level. We also outline how future transcriptomics may answer currently open questions in host-microbe interactions and inform treatment schemes for microbial disorders.
Collapse
Affiliation(s)
- Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany. .,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany. .,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
28
|
Correlative light electron ion microscopy reveals in vivo localisation of bedaquiline in Mycobacterium tuberculosis-infected lungs. PLoS Biol 2020; 18:e3000879. [PMID: 33382684 PMCID: PMC7810513 DOI: 10.1371/journal.pbio.3000879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/15/2021] [Accepted: 12/22/2020] [Indexed: 12/26/2022] Open
Abstract
Correlative light, electron, and ion microscopy (CLEIM) offers huge potential to track the intracellular fate of antibiotics, with organelle-level resolution. However, a correlative approach that enables subcellular antibiotic visualisation in pathogen-infected tissue is lacking. Here, we developed correlative light, electron, and ion microscopy in tissue (CLEIMiT) and used it to identify the cell type–specific accumulation of an antibiotic in lung lesions of mice infected with Mycobacterium tuberculosis. Using CLEIMiT, we found that the anti-tuberculosis (TB) drug bedaquiline (BDQ) is localised not only in foamy macrophages in the lungs during infection but also accumulate in polymorphonuclear (PMN) cells. This study uses correlative light, electron and ion microscopy (CLEIM) in vivo to reveal the intracellular fate of an antibiotic in lung lesions of mice infected with Mycobacterium tuberculosis, with organelle-level resolution.
Collapse
|
29
|
Imdahl F, Saliba AE. Advances and challenges in single-cell RNA-seq of microbial communities. Curr Opin Microbiol 2020; 57:102-110. [PMID: 33160164 DOI: 10.1016/j.mib.2020.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022]
Abstract
Microbes have developed complex strategies to respond to their environment and escape the immune system by individualizing their behavior. While single-cell RNA sequencing has become instrumental for studying mammalian cells, its use with fungi, protozoa and bacteria is still in its infancy. In this review, we highlight the major progress towards mapping the molecular states of microbes at the single-cell level using genome-wide transcriptomics and describe how these technologies can be extended to probe thousands of species at high throughput. We envision that mammalian and microbial single-cell profiling could soon be integrated for the study of microbial communities in health and disease.
Collapse
Affiliation(s)
- Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany.
| |
Collapse
|
30
|
Luo G, Gao Q, Zhang S, Yan B. Probing infectious disease by single-cell RNA sequencing: Progresses and perspectives. Comput Struct Biotechnol J 2020; 18:2962-2971. [PMID: 33106757 PMCID: PMC7577221 DOI: 10.1016/j.csbj.2020.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The increasing application of single-cell RNA sequencing (scRNA-seq) technology in life science and biomedical research has significantly increased our understanding of the cellular heterogeneities in immunology, oncology and developmental biology. This review will summarize the development of various scRNA-seq technologies; primarily discussing the application of scRNA-seq on infectious diseases, and exploring the current development, challenges, and potential applications of scRNA-seq technology in the future.
Collapse
Key Words
- 3C, Chromosome Conformation Capture
- ACE2, Angiotensin-Converting Enzyme 2
- ARDS, acute respiratory distress syndrome
- ATAC-seq, Assay for Transposase-Accessible Chromatin using sequencing
- BCR, B cell receptor
- CEL-seq, Cell Expression by Linear amplification and Sequencing
- CLU, clusterin
- COVID-19, corona virus disease 2019
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats
- CytoSeq, gene expression cytometry
- DENV, dengue virus
- FACS, fluorescence-activated cell sorting
- GNLY, granulysin
- GO analysis, Gene Ontology analysis
- HIV, Human Immunodeficiency Virus
- IAV, Influenza A virus
- IGHV/HD/HJ/HC, Immune globulin heavy V/D/J/C/ region
- IGLV/LJ/LC, Immune globulin light V/J/C/ region
- ILC, Innate Lymphoid Cell
- Infectious diseases
- LIGER, Linked Inference of Genomics Experimental Relationships
- MAGIC, Markov Affinity-based Graph Imputation of Cells
- MARS-seq, Massively parallel single-cell RNA sequencing
- MATCHER, Manifold Alignment To CHaracterize Experimental Relationships
- MCMV, mouse cytomegalovirus
- MERFISH, Multiplexed, Error Robust Fluorescent In Situ Hybridization
- MLV, Moloney Murine Leukemia Virus
- MOFA, Multi-Omics Factor Analysis
- MOI, multiplicity of infection
- PBMCs, peripheral blood mononuclear cells
- PLAC8, placenta-associated 8
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SAVER, Single-cell Analysis Via Expression Recovery
- SPLit-seq, split pool ligation-based tranome sequencing
- STARTRAC, Single T-cell Analysis by RNA sequencing and TCR TRACking
- STRT-seq, Single-cell Tagged Reverse Transcription sequencing
- Single-cell RNA sequencing
- TCR, T cell receptor
- TSLP, thymic stromal lymphopoietin
- UMAP, Uniform Manifold Approximation and Projection
- UMI, Unique Molecular Identifier
- mcSCRB-seq, molecular crowding single-cell RNA barcoding and sequencing
- pDCs, plasmacytoid dendritic cells
- scRNA-seq, single cell RNA sequencing technology
- sci-RNA-seq, single-cell combinatorial indexing RNA sequencing
- seqFISH, sequential Fluorescent In Situ Hybridization
- smart-seq, switching mechanism at 5′ end of the RNA transcript sequencing
- t-SNE, t-Distributed stochastic neighbor embedding
Collapse
Affiliation(s)
- Geyang Luo
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center and Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qian Gao
- Shanghai Public Health Clinical Center and Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Rocha-Granados MC, Zenick B, Englander HE, Mok WWK. The social network: Impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cell Signal 2020; 75:109750. [PMID: 32846197 DOI: 10.1016/j.cellsig.2020.109750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Antibiotics have vastly improved our quality of life since their discovery and introduction into modern medicine. Yet, widespread use and misuse have compromised the efficacy of these compounds and put our ability to cure infectious diseases in jeopardy. To defend themselves against antibiotics, bacteria have evolved an arsenal of survival strategies. In addition to acquiring mutations and genetic determinants that confer antibiotic resistance, bacteria can respond to environmental cues and adopt reversible phenotypic changes that transiently enhance their ability to survive adverse conditions, including those brought on by antibiotics. These antibiotic tolerant and persistent bacteria, which are prevalent in biofilms and can survive antimicrobial therapy without inheriting resistance, are thought to underlie treatment failure and infection relapse. At infection sites, bacteria encounter a range of signals originating from host immunity and the local microbiota that can induce transcriptomic and metabolic reprogramming. In this review, we will focus on the impact of host factors and microbial interactions on antibiotic tolerance and persistence. We will also outline current efforts in leveraging the knowledge of host-microbe and microbe-microbe interactions in designing therapies that potentiate antibiotic activity and reduce the burden caused by recurrent infections.
Collapse
Affiliation(s)
| | - Blesing Zenick
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA
| | - Hanna E Englander
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA; Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269-3156, United States of America
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA.
| |
Collapse
|
32
|
Roche B, Bumann D. Single-cell reporters for pathogen responses to antimicrobial host attacks. Curr Opin Microbiol 2020; 59:16-23. [PMID: 32810800 DOI: 10.1016/j.mib.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
Host-pathogen interactions are often heterogeneous involving individual encounters between host and pathogen cells with diverse molecular mechanisms, response networks, and diverging outcomes. Single-cell reporters can identify the various types of interactions and participating pathogen subsets, help to unravel underlying molecular mechanism, and determine individual outcomes and their impact on disease progression. In this review, we discuss reporters-based on fluorescent proteins. We present different types of reporters and their experimental advantages and challenges, and describe how different strategies can interrogate exposure to antimicrobial host mechanism, pathogen response, inflicted damage, and impact on pathogen fitness at the single-cell level. We find many gaps in available tools but also exciting avenues to address these issues.
Collapse
Affiliation(s)
- Béatrice Roche
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| |
Collapse
|
33
|
Windels EM, Van den Bergh B, Michiels J. Bacteria under antibiotic attack: Different strategies for evolutionary adaptation. PLoS Pathog 2020; 16:e1008431. [PMID: 32379814 PMCID: PMC7205213 DOI: 10.1371/journal.ppat.1008431] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacteria are well known for their extremely high adaptability in stressful environments. The clinical relevance of this property is clearly illustrated by the ever-decreasing efficacy of antibiotic therapies. Frequent exposures to antibiotics favor bacterial strains that have acquired mechanisms to overcome drug inhibition and lethality. Many strains, including life-threatening pathogens, exhibit increased antibiotic resistance or tolerance, which considerably complicates clinical practice. Alarmingly, recent studies show that in addition to resistance, tolerance levels of bacterial populations are extremely flexible in an evolutionary context. Here, we summarize laboratory studies providing insight in the evolution of resistance and tolerance and shed light on how the treatment conditions could affect the direction of bacterial evolution under antibiotic stress.
Collapse
Affiliation(s)
- Etthel M. Windels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
34
|
Salmonella enterica Requires Lipid Metabolism Genes To Replicate in Proinflammatory Macrophages and Mice. Infect Immun 2019; 88:IAI.00776-19. [PMID: 31611277 DOI: 10.1128/iai.00776-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/28/2022] Open
Abstract
To survive and replicate during infection, pathogens utilize different carbon and energy sources depending on the nutritional landscape of their host microenvironment. Salmonella enterica serovar Typhimurium is an intracellular bacterial pathogen that occupies diverse cellular niches. While it is clear that Salmonella Typhimurium requires access to glucose during systemic infection, data on the need for lipid metabolism are mixed. We report that Salmonella Typhimurium strains lacking lipid metabolism genes were defective for systemic infection of mice. Bacterial lipid import, β-oxidation, and glyoxylate shunt genes were required for tissue colonization upon oral or intraperitoneal inoculation. In cultured macrophages, lipid import and β-oxidation genes were required for bacterial replication and/or survival only when the cell culture medium was supplemented with nonessential amino acids. Removal of glucose from tissue culture medium further enhanced these phenotypes and, in addition, conferred a requirement for glyoxylate shunt genes. We also observed that Salmonella Typhimurium needs lipid metabolism genes in proinflammatory but not anti-inflammatory macrophages. These results suggest that during systemic infection, the Salmonella Typhimurium that relies upon host lipids to replicate is within proinflammatory macrophages that have access to amino acids but not glucose. An improved understanding of the host microenvironments in which pathogens have specific metabolic requirements may facilitate the development of targeted approaches to treatment.
Collapse
|
35
|
Phenotypic Diversification of Microbial Pathogens—Cooperating and Preparing for the Future. J Mol Biol 2019; 431:4645-4655. [DOI: 10.1016/j.jmb.2019.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
|
36
|
Bumann D, Fanous J, Li J, Goormaghtigh F. Antibiotic chemotherapy against heterogeneous pathogen populations in complex host tissues. F1000Res 2019; 8. [PMID: 31737252 PMCID: PMC6807158 DOI: 10.12688/f1000research.19441.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Antibiotic chemotherapy effectively cures many infections caused by susceptible bacterial pathogens. However, in some cases, even extended treatment duration does not completely eradicate the pathogenic bacteria from host tissues. A common model for underlying mechanisms assumes the stochastic formation of bacterial persisters similar to observations in laboratory cultures. However, alternative explanations related to the complexity of infected host tissues could also be relevant. We discuss several of these aspects and emphasize the need for integrated analysis as a basis for new control strategies.
Collapse
Affiliation(s)
- Dirk Bumann
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Joseph Fanous
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Jiagui Li
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Frédéric Goormaghtigh
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| |
Collapse
|
37
|
Melnik AV, Vázquez-Baeza Y, Aksenov AA, Hyde E, McAvoy AC, Wang M, da Silva RR, Protsyuk I, Wu JV, Bouslimani A, Lim YW, Luzzatto-Knaan T, Comstock W, Quinn RA, Wong R, Humphrey G, Ackermann G, Spivey T, Brouha SS, Bandeira N, Lin GY, Rohwer F, Conrad DJ, Alexandrov T, Knight R, Dorrestein PC, Garg N. Molecular and Microbial Microenvironments in Chronically Diseased Lungs Associated with Cystic Fibrosis. mSystems 2019; 4:e00375-19. [PMID: 31551401 PMCID: PMC6759567 DOI: 10.1128/msystems.00375-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
To visualize the personalized distributions of pathogens and chemical environments, including microbial metabolites, pharmaceuticals, and their metabolic products, within and between human lungs afflicted with cystic fibrosis (CF), we generated three-dimensional (3D) microbiome and metabolome maps of six explanted lungs from three cystic fibrosis patients. These 3D spatial maps revealed that the chemical environments differ between patients and within the lungs of each patient. Although the microbial ecosystems of the patients were defined by the dominant pathogen, their chemical diversity was not. Additionally, the chemical diversity between locales in the lungs of the same individual sometimes exceeded interindividual variation. Thus, the chemistry and microbiome of the explanted lungs appear to be not only personalized but also regiospecific. Previously undescribed analogs of microbial quinolones and antibiotic metabolites were also detected. Furthermore, mapping the chemical and microbial distributions allowed visualization of microbial community interactions, such as increased production of quorum sensing quinolones in locations where Pseudomonas was in contact with Staphylococcus and Granulicatella, consistent with in vitro observations of bacteria isolated from these patients. Visualization of microbe-metabolite associations within a host organ in early-stage CF disease in animal models will help elucidate the complex interplay between the presence of a given microbial structure, antibiotics, metabolism of antibiotics, microbial virulence factors, and host responses.IMPORTANCE Microbial infections are now recognized to be polymicrobial and personalized in nature. Comprehensive analysis and understanding of the factors underlying the polymicrobial and personalized nature of infections remain limited, especially in the context of the host. By visualizing microbiomes and metabolomes of diseased human lungs, we reveal how different the chemical environments are between hosts that are dominated by the same pathogen and how community interactions shape the chemical environment or vice versa. We highlight that three-dimensional organ mapping methods represent hypothesis-building tools that allow us to design mechanistic studies aimed at addressing microbial responses to other microbes, the host, and pharmaceutical drugs.
Collapse
Affiliation(s)
- Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Yoshiki Vázquez-Baeza
- Jacobs School of Engineering, University of California, San Diego, La Jolla, California, USA
- UC San Diego Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Embriette Hyde
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Andrew C McAvoy
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mingxun Wang
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, California, USA
| | - Ricardo R da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Ivan Protsyuk
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jason V Wu
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Yan Wei Lim
- Biology Department, San Diego State University, San Diego, California, USA
| | - Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - William Comstock
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Robert A Quinn
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Richard Wong
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Greg Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Timothy Spivey
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Sharon S Brouha
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Nuno Bandeira
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, California, USA
| | - Grace Y Lin
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Forest Rohwer
- Biology Department, San Diego State University, San Diego, California, USA
| | - Douglas J Conrad
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Theodore Alexandrov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, California, USA
- UC San Diego Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis and Airways Disease Research, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
38
|
Shigella-mediated oxygen depletion is essential for intestinal mucosa colonization. Nat Microbiol 2019; 4:2001-2009. [PMID: 31383999 PMCID: PMC6817363 DOI: 10.1038/s41564-019-0525-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/25/2019] [Indexed: 01/11/2023]
Abstract
Pathogenic enterobacteria face various oxygen (O2) levels during intestinal colonization from the O2-deprived lumen to oxygenated tissues. Using Shigella flexneri as a model, we had previously demonstrated that epithelium invasion is promoted by O2 in a Type III secretion system (T3SS)-dependent manner1. However, subsequent pathogen adaptation to tissue oxygenation modulation remained unknown. Assessing single-cell distribution, together with tissue oxygenation, we demonstrate here that the colonic mucosa O2 is actively depleted by Shigella flexneri aerobic respiration, not host neutrophils, during infection, leading to the formation of hypoxic foci of infection. This process is promoted by T3SS inactivation in infected tissues, favoring colonizers over explorers. We identify the molecular mechanisms supporting infectious hypoxia induction, and we demonstrate here how enteropathogens optimize their colonization capacity in relation to their ability to manipulate tissue oxygenation during infection.
Collapse
|
39
|
mSphere of Influence: Clearing a Path for High-Resolution Visualization of Host-Pathogen Interactions In Vivo. mSphere 2019; 4:4/4/e00308-19. [PMID: 31292229 PMCID: PMC6620373 DOI: 10.1128/msphere.00308-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shumin Tan works in the field of Mycobacterium tuberculosis-host interactions. In this mSphere of Influence article, she reflects on how the paper "Single-cell phenotyping within transparent intact tissue through whole-body clearing" by B. Yang et al. (Cell 158:945-958, 2014, https://doi.org/10.1016/j.cell.2014.07.017) impacted her ideas on approaches to visualize and understand heterogeneous host-pathogen interactions in vivo in 3-dimensional space at the single-cell level, through the tractable and broadly compatible tissue optical clearing methods developed.
Collapse
|
40
|
Xu J, Preciado-Llanes L, Aulicino A, Decker CM, Depke M, Gesell Salazar M, Schmidt F, Simmons A, Huang WE. Single-Cell and Time-Resolved Profiling of Intracellular Salmonella Metabolism in Primary Human Cells. Anal Chem 2019; 91:7729-7737. [PMID: 31117406 PMCID: PMC7006958 DOI: 10.1021/acs.analchem.9b01010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
intracellular pathogen Salmonella enterica has evolved
an array of traits for propagation and invasion of the
intestinal layers. It remains largely elusive how Salmonella adjusts its metabolic states to survive inside immune host cells.
In this study, single-cell Raman biotechnology combined with deuterium
isotope probing (Raman-DIP) have been applied to reveal metabolic
changes of the typhoidal Salmonella Typhi Ty2, the
nontyphoidal Salmonella Typhimurium LT2, and a clinical
isolate Typhimurium D23580. By initially labeling the Salmonella strains with deuterium, we employed reverse labeling to track their
metabolic changes in the time-course infection of THP-1 cell line,
human monocyte-derived dendritic cells (MoDCs) and macrophages (Mf).
We found that, in comparison with a noninvasive serovar, the invasive Salmonella strains Ty2 and D23580 have downregulated metabolic
activity inside human macrophages and dendritic cells and used lipids
as alternative carbon source, perhaps a strategy to escape from the
host immune response. Proteomic analysis using high sensitivity mass
spectrometry validated the findings of Raman-DIP analysis.
Collapse
Affiliation(s)
- Jiabao Xu
- Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| | - Lorena Preciado-Llanes
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Anna Aulicino
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Christoph Martin Decker
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Maren Depke
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany.,Proteomics Core, Weill Cornel Medicine-Qatar , Education City , PO 24144 Doha , Qatar
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Wei E Huang
- Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| |
Collapse
|
41
|
Fung C, Tan S, Nakajima M, Skoog EC, Camarillo-Guerrero LF, Klein JA, Lawley TD, Solnick JV, Fukami T, Amieva MR. High-resolution mapping reveals that microniches in the gastric glands control Helicobacter pylori colonization of the stomach. PLoS Biol 2019; 17:e3000231. [PMID: 31048876 PMCID: PMC6497225 DOI: 10.1371/journal.pbio.3000231] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022] Open
Abstract
Lifelong infection of the gastric mucosa by Helicobacter pylori can lead to peptic ulcers and gastric cancer. However, how the bacteria maintain chronic colonization in the face of constant mucus and epithelial cell turnover in the stomach is unclear. Here, we present a new model of how H. pylori establish and persist in stomach, which involves the colonization of a specialized microenvironment, or microniche, deep in the gastric glands. Using quantitative three-dimensional (3D) confocal microscopy and passive CLARITY technique (PACT), which renders tissues optically transparent, we analyzed intact stomachs from mice infected with a mixture of isogenic, fluorescent H. pylori strains with unprecedented spatial resolution. We discovered that a small number of bacterial founders initially establish colonies deep in the gastric glands and then expand to colonize adjacent glands, forming clonal population islands that persist over time. Gland-associated populations do not intermix with free-swimming bacteria in the surface mucus, and they compete for space and prevent newcomers from establishing in the stomach. Furthermore, bacterial mutants deficient in gland colonization are outcompeted by wild-type (WT) bacteria. Finally, we found that host factors such as the age at infection and T-cell responses control bacterial density within the glands. Collectively, our results demonstrate that microniches in the gastric glands house a persistent H. pylori reservoir, which we propose replenishes the more transient bacterial populations in the superficial mucosa.
Collapse
Affiliation(s)
- Connie Fung
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mifuyu Nakajima
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Emma C Skoog
- Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
| | | | - Jessica A Klein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jay V Solnick
- Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
- Department of Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
- Department of Microbiology and Immunology, University of California, Davis School of Medicine, Davis, California, United States of America
| | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
42
|
Abstract
Host-pathogen interactions, particularly in the context of bacterial infections, are dynamic exchanges where transcriptional heterogeneity from both the host and the pathogen can lead to many diverse outcomes via distinct molecular pathways. Transcriptional profiling at the single-cell level, on a genome-wide scale, has enabled a greater appreciation of the cellular diversity in complex biological organisms and the myriad of host transcriptional states during infection. Here, we highlight recent reports of single-cell RNA sequencing within the context of host-pathogen interactions, describe current limitations for detecting and profiling the transcriptome of invading pathogens at the single-cell level, and suggest exciting future prospects for this technology in the study of infection. We propose that understanding infection as an integrated process between pathogen and host with resolution at the single-cell level will ultimately inform development of vaccines with greater productive and protective host immunity, enable the development of novel therapeutics that harness host mechanisms, and yield more accurate biomarkers to guide better diagnostics.
Collapse
Affiliation(s)
- Cristina Penaranda
- Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Deborah T. Hung
- Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
43
|
Bumann D. Salmonella Single-Cell Metabolism and Stress Responses in Complex Host Tissues. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0009-2019. [PMID: 30953427 PMCID: PMC11588158 DOI: 10.1128/microbiolspec.bai-0009-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/12/2023] Open
Abstract
Systemic Salmonella enterica infections are a major cause of mortality worldwide and are becoming increasingly untreatable. Recent single-cell data from a mouse model of typhoid fever show that the host immune system actually eradicates many Salmonella cells, while other Salmonella organisms thrive at the same time in the same tissue, causing lethal disease progression. The surviving Salmonella cells have highly heterogeneous metabolism, growth rates, and exposure to various stresses. Emerging evidence suggests that similarly heterogeneous host-pathogen encounters might be a key feature of many infectious diseases. This heterogeneity offers fascinating opportunities for research and application. If we understand the mechanisms that determine the disparate local outcomes, we might be able to develop entirely novel strategies for infection control by broadening successful host antimicrobial attacks and closing permissive niches in which pathogens can thrive. This review describes suitable technologies, a current working model of heterogeneous host-Salmonella interactions, the impact of diverse Salmonella subsets on antimicrobial chemotherapy, and major open questions and challenges.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
44
|
The Role of the Host in Driving Phenotypic Heterogeneity in Salmonella. Trends Microbiol 2019; 27:508-523. [PMID: 30755344 DOI: 10.1016/j.tim.2019.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
The complex infection environment within hosts exerts unique stresses across tissues and cell types, selecting for phenotypic heterogeneity in bacterial populations. Pathogens maintain variability during infection as a strategy to cope with fluctuating host immune conditions, leading to diversification of virulence phenotypes. Recent improvements in single-cell analyses have revealed that distinct bacterial subpopulations contribute unique colonization and growth strategies across infection sites. We discuss several examples of host-driven phenotypic heterogeneity in Salmonella populations throughout the course of infection, highlighting how variation in gene expression, growth rate, immune evasion, and metabolic activity contribute to overall bacterial success at the population level. We additionally focus our discussion on the implications of diversity within bacterial communities for antimicrobial efficacy.
Collapse
|
45
|
Windels EM, Michiels JE, Fauvart M, Wenseleers T, Van den Bergh B, Michiels J. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME JOURNAL 2019; 13:1239-1251. [PMID: 30647458 DOI: 10.1038/s41396-019-0344-9] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/09/2018] [Accepted: 12/23/2018] [Indexed: 02/08/2023]
Abstract
Persisters are transiently antibiotic-tolerant cells that complicate the treatment of bacterial infections. Both theory and experiments have suggested that persisters facilitate genetic resistance by constituting an evolutionary reservoir of viable cells. Here, we provide evidence for a strong positive correlation between persistence and the likelihood to become genetically resistant in natural and lab strains of E. coli. This correlation can be partly attributed to the increased availability of viable cells associated with persistence. However, our data additionally show that persistence is pleiotropically linked with mutation rates. Our theoretical model further demonstrates that increased survival and mutation rates jointly affect the likelihood of evolving clinical resistance. Overall, these results suggest that the battle against antibiotic resistance will benefit from incorporating anti-persister therapies.
Collapse
Affiliation(s)
- Etthel Martha Windels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Joran Elie Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,imec, Leuven, Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.,Douglas lab, Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.
| |
Collapse
|
46
|
Phenotypic heterogeneity: a bacterial virulence strategy. Microbes Infect 2018; 20:570-577. [DOI: 10.1016/j.micinf.2018.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 11/21/2022]
|
47
|
Martinecz A, Abel Zur Wiesch P. Estimating treatment prolongation for persistent infections. Pathog Dis 2018; 76:5068691. [PMID: 30107522 PMCID: PMC6134427 DOI: 10.1093/femspd/fty065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/08/2018] [Indexed: 11/12/2022] Open
Abstract
Treatment of infectious diseases is often long and requires patients to take drugs even after they have seemingly recovered. This is because of a phenomenon called persistence, which allows small fractions of the bacterial population to survive treatment despite being genetically susceptible. The surviving subpopulation is often below detection limit and therefore is empirically inaccessible but can cause treatment failure when treatment is terminated prematurely. Mathematical models could aid in predicting bacterial survival and thereby determine sufficient treatment length. However, the mechanisms of persistence are hotly debated, necessitating the development of multiple mechanistic models. Here we develop a generalized mathematical framework that can accommodate various persistence mechanisms from measurable heterogeneities in pathogen populations. It allows the estimation of the relative increase in treatment length necessary to eradicate persisters compared to the majority population. To simplify and generalize, we separate the model into two parts: the distribution of the molecular mechanism of persistence in the bacterial population (e.g. number of efflux pumps or target molecules, growth rates) and the elimination rate of single bacteria as a function of that phenotype. Thereby, we obtain an estimate of the required treatment length for each phenotypic subpopulation depending on its size and susceptibility.
Collapse
Affiliation(s)
- Antal Martinecz
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, P.O. Box 1137, Blindern, 0318 Oslo, Norway
| |
Collapse
|
48
|
Wang Z, Cumming BM, Mao C, Zhu Y, Lu P, Steyn AJC, Chen S, Hu Y. RbpA and σ B association regulates polyphosphate levels to modulate mycobacterial isoniazid-tolerance. Mol Microbiol 2018; 108:627-640. [PMID: 29575247 DOI: 10.1111/mmi.13952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
To facilitate survival under drug stresses, a small population of Mycobacterium tuberculosis can tolerate bactericidal concentrations of drugs without genetic mutations. These drug-tolerant mycobacteria can be induced by environmental stresses and contribute to recalcitrant infections. However, mechanisms underlying the development of drug-tolerant mycobacteria remain obscure. Herein, we characterized a regulatory pathway which is important for the tolerance to isoniazid (INH) in Mycobacterium smegmatis. We found that the RNA polymerase binding protein RbpA associates with the stress response sigma factor σB , to activate the transcription of ppk1, the gene encoding polyphosphate kinase. Subsequently, intracellular levels of inorganic polyphosphate increase to promote INH-tolerant mycobacteria. Interestingly, σB and ppk1 expression varied proportionately in mycobacterial populations and positively correlated with tolerance to INH in individual mycobacteria. Moreover, sigB and ppk1 transcription are both induced upon nutrient depletion, a condition that stimulates the formation of INH-tolerant mycobacteria. Over-expression of ppk1 in rbpA knockdown or sigB deleted strains successfully restored the number of INH-tolerant mycobacteria under both normal growth and nutrient starved conditions. These data suggest that RbpA and σB regulate ppk1 expression to control drug tolerance both during the logarithmic growth phase and under the nutrition starved conditions.
Collapse
Affiliation(s)
- Zhongwei Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Chunyou Mao
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Lu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yangbo Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
49
|
Barquist L, Westermann AJ, Vogel J. Molecular phenotyping of infection-associated small non-coding RNAs. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0081. [PMID: 27672158 DOI: 10.1098/rstb.2016.0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Infection is a complicated balance, with both pathogen and host struggling to tilt the result in their favour. Bacterial infection biology has relied on forward genetics for many of its advances, defining phenotype in terms of replication in model systems. However, many known virulence factors fail to produce robust phenotypes, particularly in the systems most amenable to genetic manipulation, such as cell-culture models. This has particularly been limiting for the study of the bacterial regulatory small RNAs (sRNAs) in infection. We argue that new sequencing-based technologies can work around this problem by providing a 'molecular phenotype', defined in terms of the specific transcriptional dysregulation in the infection system induced by gene deletion. We illustrate this using the example of our recent study of the PinT sRNA using dual RNA-seq, that is, simultaneous RNA sequencing of host and pathogen during infection. We additionally discuss how other high-throughput technologies, in particular genetic interaction mapping using transposon insertion sequencing, may be used to further dissect molecular phenotypes. We propose a strategy for how high-throughput technologies can be integrated in the study of non-coding regulators as well as bacterial virulence factors, enhancing our ability to rapidly generate hypotheses with regards to their function.This article is part of the themed issue 'The new bacteriology'.
Collapse
Affiliation(s)
- Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Alexander J Westermann
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
50
|
Garg N, Wang M, Hyde E, da Silva RR, Melnik AV, Protsyuk I, Bouslimani A, Lim YW, Wong R, Humphrey G, Ackermann G, Spivey T, Brouha SS, Bandeira N, Lin GY, Rohwer F, Conrad DJ, Alexandrov T, Knight R, Dorrestein PC. Three-Dimensional Microbiome and Metabolome Cartography of a Diseased Human Lung. Cell Host Microbe 2017; 22:705-716.e4. [PMID: 29056429 DOI: 10.1016/j.chom.2017.10.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Our understanding of the spatial variation in the chemical and microbial makeup of an entire human organ remains limited, in part due to the size and heterogeneity of human organs and the complexity of the associated metabolome and microbiome. To address this challenge, we developed a workflow to enable the cartography of metabolomic and microbiome data onto a three-dimensional (3D) organ reconstruction built off radiological images. This enabled the direct visualization of the microbial and chemical makeup of a human lung from a cystic fibrosis patient. We detected host-derived molecules, microbial metabolites, medications, and region-specific metabolism of medications and placed it in the context of microbial distributions in the lung. Our tool further created browsable maps of a 3D microbiome/metabolome reconstruction map on a radiological image of a human lung and forms an interactive resource for the scientific community.
Collapse
Affiliation(s)
- Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mingxun Wang
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Embriette Hyde
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ricardo R da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ivan Protsyuk
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yan Wei Lim
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Richard Wong
- Department of Pathology, University of California, San Diego Health, San Diego, CA 92103, USA
| | - Greg Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Timothy Spivey
- Department of Radiology, University of California, San Diego Health, San Diego, CA 92103, USA
| | - Sharon S Brouha
- Department of Radiology, University of California, San Diego Health, San Diego, CA 92103, USA
| | - Nuno Bandeira
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Grace Y Lin
- Department of Pathology, University of California, San Diego Health, San Diego, CA 92103, USA
| | - Forest Rohwer
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Douglas J Conrad
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Theodore Alexandrov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Rob Knight
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|