1
|
Kim HM, Kim CY. Identification of Lignans. Methods Mol Biol 2025; 2895:165-176. [PMID: 39885030 DOI: 10.1007/978-1-0716-4350-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Lignans have garnered significant interest in various fields of pharmaceuticals, nutrition, and pesticides due to their diverse biological activities. This chapter primarily focuses on the extraction and purification methods of lignans from Schisandra, followed by an extensive examination of qualitative and quantitative analytical techniques, including thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Additionally, methods for structural analysis using nuclear magnetic resonance (NMR) are briefly summarized. The chapter also details approaches for determining the relative and absolute composition of lignan compounds, with illustrative examples provided.
Collapse
Affiliation(s)
- Hye Mi Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences and Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Chul Young Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences and Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Kim Y, Kim HW, Sung J, Kim Y. Optimal extraction conditions and quantification of lignan phytoestrogens in cereal grains using targeted LC-MS/MS. Front Nutr 2024; 11:1409309. [PMID: 38933882 PMCID: PMC11201688 DOI: 10.3389/fnut.2024.1409309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Lignans are phytoestrogens found in various forms such as glycosides, ester-linked oligomers, and aglycones in a variety of foods, including soy products, legumes, grains, nuts, vegetables, and fruits. This study aimed to optimize the extraction of lignans from cereal grains using response surface methodology (RSM). Lignans, including secoisolariciresinol (Seco), matairesinol (Mat), pinoresinol (Pin), lariciresinol (Lar), and syringaresinol (Syr), were quantified using high-performance liquid chromatography-tandem mass spectrometry. A Box-Behnken design was employed to determine the optimal values for three extraction parameters: temperature (X1: 20°C-60°C), methanol concentration (X2: 60%-100%), and extraction time (X3: 30-90 min). The highest lignan contents were obtained at X1 = 44.24°C, X2 = 84.64%, and X3 = 53.63 min. To apply these experimental conditions to the actual experiment, the optimal conditions were slightly adjusted to X1 = 40°C, X2 = 80%, and X3 = 60 min. The predicted results closely matched the experimental results obtained using the modified optimal extraction conditions. The highest lignan content found in barley sprouts (85.930 μg/100 g), however, most grains exhibited relatively low concentrations of lignans. These findings provide valuable insights into the lignan content of grains and contribute to the generation of reliable data in this field.
Collapse
Affiliation(s)
- Yoonjeong Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, Republic of Korea
| | - Heon-Woong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jeehye Sung
- Department of Food Science and Biotechnology, Andong National University, Andong, Republic of Korea
| | - Younghwa Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, Republic of Korea
- Food and Life Science Research Institute, Kyungsung University, Busan, Republic of Korea
| |
Collapse
|
3
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
4
|
Falev DI, Voronov IS, Onuchina AA, Faleva AV, Ul’yanovskii NV, Kosyakov DS. Analysis of Softwood Lignans by Comprehensive Two-Dimensional Liquid Chromatography. Molecules 2023; 28:8114. [PMID: 38138599 PMCID: PMC10745517 DOI: 10.3390/molecules28248114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Lignans constitute a large group of phenolic plant secondary metabolites possessing high bioactivity. Their accurate determination in plant extracts with a complex chemical composition is challenging and requires advanced separation techniques. In the present study, a new approach to the determination of lignans in coniferous knotwood extracts as the promising industrial-scale source of such compounds based on comprehensive two-dimensional liquid chromatography separation and UV spectrophotometric detection is proposed. First and second-dimension column screening showed that the best results can be obtained using a combination of non-polar and polar hydroxy group embedded octadecyl stationary phases with moderate (~40%) "orthogonality". The optimization of LC × LC separation conditions allowed for the development of a new method for the quantification of the five lignans (secoisolariciresinol, matairesinol, pinoresinol, 7-hydroxymatairesinol, and nortrachelogenin) in knotwood extracts with limits of quantification in the range of 0.27-0.95 mg L-1 and a linear concentration range covering at least two orders of magnitude. Testing the developed method on coniferous (larch, fir, spruce, and pine) knotwood extracts demonstrated the high selectivity of the analysis and the advantages of LC × LC in the separation and accurate quantification of the compounds co-eluting in one-dimensional HPLC.
Collapse
Affiliation(s)
- Danil I. Falev
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (I.S.V.); (A.A.O.); (A.V.F.); (D.S.K.)
| | | | | | | | - Nikolay V. Ul’yanovskii
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (I.S.V.); (A.A.O.); (A.V.F.); (D.S.K.)
| | | |
Collapse
|
5
|
Li J, Ma X, Luo L, Tang D, Zhang L. The What and Who of Dietary Lignans in Human Health: Special Attention to Estrogen Effects and Safety Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16419-16434. [PMID: 37870451 DOI: 10.1021/acs.jafc.3c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Lignans are a group of phenolic compounds found in plant-based diets. The human body can obtain lignans through diet, which are then metabolized into enterolignans. The enterolignans have been linked to several health benefits, including anticancer, anti-inflammatory, antioxidant effects, and estrogen effects. This review explores the relationship between the estrogenic effects of lignans and health. This review not only considers the estrogen-like activity of lignans but also discusses the safe dosage of lignans at different life stages. In addition, this review also identified other types of bioactive compounds that can act synergistically with lignans to promote health. Studies have shown that lignan administration during pregnancy and lactation reduces the risk of breast cancer in offspring. Further studies are needed to investigate the estrogenic safety effects of lignan on pregnant women and children. Whether lignans combine with other nutrients in complex food substrates to produce synergistic effects remains to be investigated. This review provides a basis for future studies on the safe dose of lignan and recommended dietary intake of lignan. We believe that the acquired as discussed here has implications for developing dietary therapies that can promote host nutrition and modulate estrogenic diseases.
Collapse
Affiliation(s)
- Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaoyang Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Lianzhong Luo
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China
| | - Danqing Tang
- The School of Foreign Languages of Jimei University, Xiamen 361021, China
| | - Lingyu Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
6
|
Hadipour E, Emami SA, Tayarani‐Najaran N, Tayarani‐Najaran Z. Effects of sesame ( Sesamum indicum L.) and bioactive compounds (sesamin and sesamolin) on inflammation and atherosclerosis: A review. Food Sci Nutr 2023; 11:3729-3757. [PMID: 37457142 PMCID: PMC10345702 DOI: 10.1002/fsn3.3407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 07/18/2023] Open
Abstract
Inflammation, oxidative stress, obesity, infection, hyperlipidemia, hypertension, and diabetes are the main causes of atherosclerosis, which in the long term lead to hardening of the arteries. In the current study, we reviewed recent findings of the mechanism of sesame and its active compounds of sesamin and sesamolin regulates on atherosclerosis. Sesame can decrease the lipid peroxidation and affect the enzymes, which control the balance of oxidative status in the body. Besides modulating the inflammatory cytokines, sesame regulates the main mediators of the signaling pathways in the process of inflammation, such as prostaglandin E2 (PGE2), nuclear factor kappa light-chain enhancer of activated B cells (NF-kB) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Sesame decreases the growth of different pathogens. It fights against obesity and helps to reduce weight, body mass index (BMI), waist circumference, and lipid count of serum and liver. In addition to lowering fasting blood sugar (FBS), it decreases the hemoglobin A1c (HbA1c) and glucose levels and improves insulin function. With high content of linoleic acid, α-linolenic acid, and total polyunsaturated fatty acid (PUFA), sesame efficiently controls the blood plasma lipids and changes the lipid profile. In the case of hypertension, it maintains the health of endothelium through multiple mechanisms and conserves the response of the arteries to vasodilation. PUFA in sesame suppresses blood clotting and fibrinogen activity. All the mentioned properties combat atherosclerosis and hardening of blood vessels, which are detailed in the present review for sesame.
Collapse
Affiliation(s)
- Elham Hadipour
- Department of Biology, Faculty of ScienceUniversity of GuilanRashtIran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Niloufar Tayarani‐Najaran
- Department of Dental Prosthesis, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Zahra Tayarani‐Najaran
- Targeted Drug Delivery Research CenterPharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
7
|
Baldi S, Tristán Asensi M, Pallecchi M, Sofi F, Bartolucci G, Amedei A. Interplay between Lignans and Gut Microbiota: Nutritional, Functional and Methodological Aspects. Molecules 2023; 28:343. [PMID: 36615537 PMCID: PMC9822457 DOI: 10.3390/molecules28010343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Lignans are non-flavonoid polyphenols present in a wide range of foods frequently consumed in the Western world, such as seeds, vegetables and fruits, and beverages such as coffee, tea and wine. In particular, the human gut microbiota (GM) can convert dietary lignans into biologically active compounds, especially enterolignans (i.e., enterolactone and enterodiol), which play anti-inflammatory and anti-oxidant roles, act as estrogen receptor activators and modulate gene expression and/or enzyme activity. Interestingly, recent evidence documenting those dietary interventions involving foods enriched in lignans have shown beneficial and protective effects on various human pathologies, including colorectal and breast cancer and cardiovascular diseases. However, considering that more factors (e.g., diet, food transit time and intestinal redox state) can modulate the lignans bioactivation by GM, there are usually remarkable inter-individual differences in urine, fecal and blood concentrations of enterolignans; hence, precise and validated analytical methods, especially gas/liquid chromatography coupled to mass spectrometry, are needed for their accurate quantification. Therefore, this review aims to summarize the beneficial roles of enterolignans, their interaction with GM and the new methodological approaches developed for their evaluation in different biological samples, since they could be considered future promising nutraceuticals for the prevention of human chronic disorders.
Collapse
Affiliation(s)
- Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marta Tristán Asensi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Clinical Nutrition, Careggi University Hospital, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
8
|
Comparison of the Content of Extractives in the Bark of the Trunk and the Bark of the Branches of Silver Fir ( Abies alba Mill.). MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010225. [PMID: 36615418 PMCID: PMC9822207 DOI: 10.3390/molecules28010225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
The main objective of our study was to investigate the possible differences in the chemical composition of extractives from the bark of silver fir (Abies alba) with respect to the location of the bark sample on the tree, viz. differences in extract composition between stem bark and branch bark samples. Extractives in the bark samples from branches, depending on the distance of the sample from the trunk, were also analysed, and the stem bark samples were analysed with respect to their inner and outer parts. The results of the chemical analysis of extractives were supported by information about their antifungal and antioxidant effects. After felling and sampling silver fir trees, the collected bark samples were ground and freeze-dried. Extraction of bark samples was followed by a system of accelerated extraction using only water as a solvent. The extracts were analysed chemically using gravimetry, spectrophotometry and chromatography. Free-radical-scavenging activity was measured using the DPPH method, and the antifungal effect towards three moulds and three wood-decaying fungi was investigated with antifungal assay using the agar well diffusion method. It was found that the moisture content in bark samples decreased intensively just after the bark samples were peeled off the stem. Detailed chromatographic analysis showed that the bark extracts contained 14 compounds, among which phenolic acids, flavonoids and lignans were found to be the characteristic ones. The content of hydrophilic extractives in the branch bark samples decreased with increasing distance of the sample location from the tree stem. The largest amounts of phenolic extractives were measured in stem bark, followed by branch bark sampled at the point at which the branch entered the tree. Analysis of the separated parts of the bark showed that the outer layers of stem bark contained larger amounts of phenolic extractives, as well catechin and epicatechin, compared to the inner layers. Concentrated extracts of branch bark showed the largest free-radical-scavenging activity among the investigated samples, while strong antifungal effects of the bark extract were not found.
Collapse
|
9
|
Hu Y, Tse TJ, Shim YY, Purdy SK, Kim YJ, Meda V, Reaney MJT. A review of flaxseed lignan and the extraction and refinement of secoisolariciresinol diglucoside. Crit Rev Food Sci Nutr 2022; 64:5057-5072. [PMID: 36448088 DOI: 10.1080/10408398.2022.2148627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Lignan is a class of diphenolic compounds that arise from the condensation of two phenylpropanoid moieties. Oilseed and cereal crops (e.g., flaxseed, sesame seed, wheat, barley, oats, rye, etc.) are major sources of plant lignan. Methods for commercial isolation of the lignan secoisolariciresinol diglucoside (SDG) are not well reported, as most publications describing the detection, extraction, and enrichment of SDG use methods that have not been optimized for commercial scale lignan recovery. Simply scaling up laboratory methods would require expensive infrastructure to achieve a marketable yield and reproducible product quality. Therefore, establishing standard protocols to produce SDG and its derivatives on an industrial scale is critical to decrease lignan cost and increase market opportunities. This review summarizes the human health benefits of flaxseed lignan consumption, lignan physicochemical properties, and mammalian lignan metabolism, and describes methods for detecting, extracting, and enriching flaxseed lignan. Refining and optimization of these methods could lead to the development of inexpensive lignan sources for application as an ingredient in medicines, dietary supplements, and other healthy ingredients.
Collapse
Affiliation(s)
- Yingxue Hu
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Timothy J Tse
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Sarah K Purdy
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Venkatesh Meda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Mueed A, Ibrahim M, Shibli S, Madjirebaye P, Deng Z, Jahangir M. The fate of flaxseed-lignans after oral administration: A comprehensive review on its bioavailability, pharmacokinetics, and food design strategies for optimal application. Crit Rev Food Sci Nutr 2022; 64:4312-4330. [PMID: 36345888 DOI: 10.1080/10408398.2022.2140643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lignans are one of the most important and abundant phytochemicals found in flaxseed-diets. These have shown to possess several health-benefits, including anticancer, antioxidant, neuroprotective, cardioprotective, and estrogenic-properties etc. The potential of lignans health-promoting effects are circumscribed due to their poor-bioavailability resulting from their bound structure. Recent studies have demonstrated that various food design strategies can enhance the release of bound-lignans from agro-industrial residues, resulting in a higher bioaccessibility and bioavailability. This review focuses primarily on the bioavailability of flaxseed lignans, key factors affecting it and their pharmacokinetics, different strategies to improve the contents of lignans, their release and delivery. Present study will help to deepen our understanding of the applications of lignans and their dietary-supplements in the prevention and treatment of diseases. Several absorption issues of lignans have been observed such as impaired-bioavailability and variability in pharmacokinetics and pharmacodynamics. Therefore, the development of novel strategies for optimizing lignan bioavailability is critical to ensure its successful application, such as the delivery of lignans to biological targets via "targeted designs." In addition, some detailed examination is required to identify and understand the basis of variation in lignans bioavailability caused by interactions with the gastrointestinal system.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Muhammad Ibrahim
- Department of Forestry, Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Philippe Madjirebaye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
11
|
Wyse J, Latif S, Gurusinghe S, McCormick J, Weston LA, Stephen CP. Phytoestrogens: A Review of Their Impacts on Reproductive Physiology and Other Effects upon Grazing Livestock. Animals (Basel) 2022; 12:ani12192709. [PMID: 36230450 PMCID: PMC9559698 DOI: 10.3390/ani12192709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Legume crops and pastures have a high economic value in Australia. However, legume species commonly used for grazing enterprises have been identified to produce high concentrations of phytoestrogens. These compounds are heterocyclic phenolic, and are similar in structure to the mammalian estrogen, 17β-estradiol. The biological activity of the various phytoestrogen types; isoflavones, lignans and coumestans, are species-specific, although at concentrations of 25 mg/kg of dry matter each of the phytoestrogen types affect reproductive functions in grazing livestock. The impacts upon fertility in grazing livestock such as cattle and sheep, vary greatly over length of exposure time, age and health of animal and the stress stimuli the plant is exposed to. More recently, research into the other effects that phytoestrogens may have upon metabolism, immune capacity and growth and performance of grazing livestock has been conducted. Potential new benefits for using these phytoestrogens, such as daidzein and genistein, have been identified by observing the stimulation of production in lymphocytes and other antibody cells. Numerous isoflavones have also been recognized to promote protein synthesis, increase the lean meat ratio, and increase weight gain in cattle and sheep. In Australia, the high economic value of legumes as pasture crops in sheep and cattle production enterprises requires proactive management strategies to mitigate risk associated with potential loss of fertility associated with inclusion of pasture legumes as forages for grazing livestock.
Collapse
Affiliation(s)
- Jessica Wyse
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: (J.W.); (C.P.S.)
| | - Sajid Latif
- National Life Sciences Research Hub, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Saliya Gurusinghe
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Jeffrey McCormick
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Leslie A. Weston
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Cyril P. Stephen
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: (J.W.); (C.P.S.)
| |
Collapse
|
12
|
Ravetti Duran R, Muhr L, Barth D. A model for purification of by-products in wood extracts based on frontal chromatography. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Patyra A, Kołtun-Jasion M, Jakubiak O, Kiss AK. Extraction Techniques and Analytical Methods for Isolation and Characterization of Lignans. PLANTS 2022; 11:plants11172323. [PMID: 36079704 PMCID: PMC9460740 DOI: 10.3390/plants11172323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Lignans are a group of natural polyphenols present in medicinal plants and in plants which are a part of the human diet for which more and more pharmacological activities, such as antimicrobial, anti-inflammatory, hypoglycemic, and cytoprotective, are being reported. However, it is their cytotoxic activities that are best understood and which have shed light on this group. Two anticancer drugs, etoposide, and teniposide, were derived from a potent cytotoxic agent—podophyllotoxin from the roots of Podophyllum peltatum. The evidence from clinical and observational studies suggests that human microbiota metabolites (enterolactone, enterodiol) of dietary lignans (secoisolariciresinol, pinoresinol, lariciresinol, matairesinol, syringaresinol, medioresinol, and sesamin) are associated with a reduced risk of some hormone-dependent cancers. The biological in vitro, pharmacological in vivo investigations, and clinical studies demand significant amounts of pure compounds, as well as the use of well-defined and standardized extracts. That is why proper extract preparation, optimization of lignan extraction, and identification are crucial steps in the development of lignan use in medicine. This review focuses on lignan extraction, purification, fractionation, separation, and isolation methods, as well as on chromatographic, spectrometric, and spectroscopic techniques for their qualitative and quantitative analysis.
Collapse
Affiliation(s)
- Andrzej Patyra
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
- Correspondence: (A.P.); (A.K.K.); Tel.: +48-662-11-77-90 (A.P.); +48-511-13-98-03 (A.K.K.)
| | - Małgorzata Kołtun-Jasion
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Oktawia Jakubiak
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Karolina Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence: (A.P.); (A.K.K.); Tel.: +48-662-11-77-90 (A.P.); +48-511-13-98-03 (A.K.K.)
| |
Collapse
|
14
|
Ražná K, Harenčár Ľ, Kučka M. The Involvement of microRNAs in Plant Lignan Biosynthesis—Current View. Cells 2022; 11:cells11142151. [PMID: 35883592 PMCID: PMC9323225 DOI: 10.3390/cells11142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Lignans, as secondary metabolites synthesized within a phenylpropanoid pathway, play various roles in plants, including their involvement in growth and plant defense processes. The health and nutritional benefits of lignans are unquestionable, and many studies have been devoted to these attributes. Although the regulatory role of miRNAs in the biosynthesis of secondary metabolites has been widely reported, there is no systematic review available on the miRNA-based regulatory mechanism of lignans biosynthesis. However, the genetic background of lignan biosynthesis in plants is well characterized. We attempted to put together a regulatory mosaic based on current knowledge describing miRNA-mediated regulation of genes, enzymes, or transcription factors involved in this biosynthesis process. At the same time, we would like to underline the fact that further research is necessary to improve our understanding of the miRNAs regulating plant lignan biosynthesis by exploitation of current approaches for functional identification of miRNAs.
Collapse
|
15
|
Tse TJ, Guo Y, Shim YY, Purdy SK, Kim JH, Cho JY, Alcorn J, Reaney MJT. Availability of bioactive flax lignan from foods and supplements. Crit Rev Food Sci Nutr 2022; 63:9843-9858. [PMID: 35532015 DOI: 10.1080/10408398.2022.2072807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hyperlipidemia, high levels of blood lipids including cholesterol and triglycerides, is a major risk factor for cardiovascular disease. Traditional treatments of hyperlipidemia often include lifestyle changes and pharmacotherapy. Recently, flaxseed has been approved as a nutrient that lowers blood lipids. Several metabolites of flaxseed lignan secoisolariciresinol diglucoside (SDG), have been identified that reduce blood lipids. SDG is present in flaxseed hull as an ester-linked copolymer with 3-hydroxy-3-methylglutaric acid (HMGA). However, purification processes involved in hydrolysis of the copolymer and enriching SDG are often expensive. The natural copolymer of SDG with HMGA (SDG polymer) is a source of bioactive compounds useful in prophylaxis of hypercholesterolemia. After consumption of the lignan copolymer, SDG and HMGA are released in the stomach and small intestines. SDG is metabolized to secoisolariciresinol, enterolactone and enterodiol, the bioactive forms of mammalian lignans. These metabolites are then distributed throughout the body where they accumulate in the liver, kidney, skin, other tissues, and organs. Successively, these metabolites reduce blood lipids including cholesterol, triglycerides, low density lipoprotein cholesterol, and lipid peroxidation products. In this review, the metabolism and efficacies of flaxseed-derived enriched SDG and SDG polymer will be discussed.
Collapse
Affiliation(s)
- Timothy J Tse
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yajia Guo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Youn Young Shim
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc., Saskatoon, Saskatchewan, Canada
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Sarah K Purdy
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Martin J T Reaney
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc., Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangdong, China
| |
Collapse
|
16
|
Humar M, Vek V, Oven P, Lesar B, Kržišnik D, Keržič E, Hočevar M, Brus R. Durability and Moisture Dynamics of Douglas-Fir Wood From Slovenia. FRONTIERS IN PLANT SCIENCE 2022; 13:860734. [PMID: 35422821 PMCID: PMC9002177 DOI: 10.3389/fpls.2022.860734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Wood in outdoor applications is subject to various decomposition factors. Wood degradation can be prevented by construction details, biocide protection of wood, wood modification or selection of naturally durable species. Unfortunately, most species in Europe do not have naturally durable wood. Imported tree species represent a new pool from which we can draw wood species with better natural durability and better resilience towards climate change. The performance of wood when used outdoors depends on the biologically active compounds (extractives) and the water exclusion efficacy. Considering decay, presence of biologically active compounds and water exclusion efficacy, we can estimate the density, modulus of elasticity, extractive content and resistance dose, which reflects the material properties of wood. Recently, the most commonly used model for this purpose is Meyer-Veltrup. Literature data indicate that the durability of the wood from native and new sites is not always comparable, so it is necessary to determine the resistance of non-native wood species from new sites. This paper presents original data on the wood's overall durability from American Douglas fir (Pseudotsuga menziesii) grown in Slovenia. Experimental data show that the mature heartwood of Douglas fir is more durable than the wood of European larch (Larix decidua). Durability can be attributed to good water exclusion efficacy and inherent durability. Inherent durability is primarily the result of the high content of extractives. Based on the results, it can be concluded that American Douglas fir grown in Central Europe has a high potential for outdoor use.
Collapse
|
17
|
Nagy NE, Norli HR, Fongen M, Østby RB, Heldal IM, Davik J, Hietala AM. Patterns and roles of lignan and terpenoid accumulation in the reaction zone compartmentalizing pathogen-infected heartwood of Norway spruce. PLANTA 2022; 255:63. [PMID: 35142905 PMCID: PMC8831285 DOI: 10.1007/s00425-022-03842-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/25/2022] [Indexed: 05/17/2023]
Abstract
Lignan impregnation of the reaction zone wood protects against oxidative degradation by fungi. Traumatic resin canals may play roles in the underlying signal transduction, synthesis, and translocation of defense compounds. Tree defense against xylem pathogens involves both constitutive and induced phenylpropanoids and terpenoids. The induced defenses include compartmentalization of compromised wood with a reaction zone (RZ) characterized by polyphenol deposition, whereas the role of terpenoids has remained poorly understood. To further elucidate the tree-pathogen interaction, we profiled spatial patterns in lignan (low-molecular-weight polyphenols) and terpenoid content in Norway spruce (Picea abies) trees showing heartwood colonization by the pathogenic white-rot fungus Heterobasidion parviporum. There was pronounced variation in the amount and composition of lignans between different xylem tissue zones of diseased and healthy trees. Intact RZ at basal stem regions, where colonization is the oldest, showed the highest level and diversity of these compounds. The antioxidant properties of lignans obviously hinder oxidative degradation of wood: RZ with lignans removed by extraction showed significantly higher mass loss than unextracted RZ when subjected to Fenton degradation. The reduced diversity and amount of lignans in pathogen-compromised RZ and decaying heartwood in comparison to intact RZ and healthy heartwood suggest that α-conindendrin isomer is an intermediate metabolite in lignan decomposition by H. parviporum. Diterpenes and diterpene alcohols constituted above 90% of the terpenes detected in sapwood of healthy and diseased trees. A significant finding was that traumatic resin canals, predominated by monoterpenes, were commonly associated with RZ. The findings clarify the roles and fate of lignan during wood decay and raise questions about the potential roles of terpenoids in signal transduction, synthesis, and translocation of defense compounds upon wood compartmentalization against decay fungi.
Collapse
Affiliation(s)
| | - Hans Ragnar Norli
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Monica Fongen
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Runa Berg Østby
- Faculty of Health, Welfare and Organisation, Østfold University College, P.B. 700, 1757, Halden, Norway
| | - Inger M Heldal
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Jahn Davik
- Norwegian Institute of Bioeconomy Research, P.B. 115, 1431, Ås, Norway
| | - Ari M Hietala
- Norwegian Institute of Bioeconomy Research, P.B. 2609, 7734, Steinkjer, Norway.
| |
Collapse
|
18
|
Rugolo M, Bravo-Arrepol G, Cajas-Madriaga D, Rajchenberg M, Becerra J. Biotransformation of Araucaria araucana lignans: solid-state fermentation with a naturally occurring Pleurotus ostreatus strain. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The effects of a naturally occurring Patagonian strain of the white-rot fungus Pleurotus ostreatus on Araucaria araucana wood lignans was evaluated. Lignans of colonized and non-colonized wood shavings and the activity of fungal ligninolytic enzymes were studied. Lignans were identified using gas chromatography with a mass spectrometry detector. Only eudesmin lignan resisted biological degradation. The highest laccase activity was 0.111 ± 0.067 IU.g-1 dry matter substrate, which was reached after 60 days, whereas the highest manganese peroxidase (MnP) activity was 0.220 ± 0.109 IU.g-1 dry matter substrate, which was reached after 25 days, when the fungus was grown in a solid-state culture on wood shavings. The degradation properties of this fungal strain may be useful for not only treating resinous wastes from the regional forest industry to produce biofuels but also improving paper production. Moreover, the capacity of this white-rot fungus to grow on resinous A. araucana materials as substrate suggests the possibility of using the wood shavings or sawdust of this and other conifers as a food source to culture P. ostreatus, an edible mushroom.
Collapse
Affiliation(s)
- Maximiliano Rugolo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Secretaría de Ciencia, Tecnología e Innovación Productiva del Chubut, Argentina
| | | | | | - Mario Rajchenberg
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | |
Collapse
|
19
|
Vidkjær NH, Schmidt S, Hu H, Bodawatta KH, Beemelmanns C, Poulsen M. Species- and Caste-Specific Gut Metabolomes in Fungus-Farming Termites. Metabolites 2021; 11:metabo11120839. [PMID: 34940597 PMCID: PMC8707012 DOI: 10.3390/metabo11120839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Fungus-farming termites host gut microbial communities that contribute to the pre-digestion of plant biomass for manuring the fungal mutualist, and potentially to the production of defensive compounds that suppress antagonists. Termite colonies are characterized by complex division of labor and differences in diet between termite size (minor and major) and morphological (worker and soldier) castes, and this extends to the composition of their gut microbial communities. We hypothesized that gut metabolomes should mirror these differences and tested this through untargeted LC-MS/MS analyses of three South African species of fungus-farming termites. We found distinct metabolomes between species and across castes, especially between soldiers and workers. Primary metabolites dominate the metabolomes and the high number of overlapping features with the mutualistic fungus and plant material show distinct impacts of diet and the environment. The identification of a few bioactive compounds of likely microbial origin underlines the potential for compound discovery among the many unannotated features. Our untargeted approach provides a first glimpse into the complex gut metabolomes and our dereplication suggests the presence of bioactive compounds with potential defensive roles to be targeted in future studies.
Collapse
Affiliation(s)
- Nanna Hjort Vidkjær
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (S.S.); (H.H.)
- Correspondence: (N.H.V.); (M.P.); Tel.: +45-353-324-41 (N.H.V.); +45-353-303-77 (M.P.)
| | - Suzanne Schmidt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (S.S.); (H.H.)
| | - Haofu Hu
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (S.S.); (H.H.)
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark;
| | - Kasun H. Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark;
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany;
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (S.S.); (H.H.)
- Correspondence: (N.H.V.); (M.P.); Tel.: +45-353-324-41 (N.H.V.); +45-353-303-77 (M.P.)
| |
Collapse
|
20
|
Wood Extractives of Silver Fir and Their Antioxidant and Antifungal Properties. Molecules 2021; 26:molecules26216412. [PMID: 34770820 PMCID: PMC8587478 DOI: 10.3390/molecules26216412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
The chemical composition of extractives in the sapwood (SW), heartwood (HW), knotwood (KW), and branchwood (BW of silver fir (Abies alba Mill.) was analyzed, and their antifungal and antioxidant properties were studied. In addition, the variability of extractives content in a centripetal direction, i.e., from the periphery of the stem towards the pith, was investigated. The extracts were analyzed chemically with gravimetry, spectrophotometry, and chromatography. The antifungal and antioxidative properties of the extracts were evaluated by the agar well diffusion method and the diphenyl picrylhydrazyl radical scavenging method. Average amounts of hydrophilic extractives were higher in KW (up to 210.4 mg/g) and BW (148.6 mg/g) than in HW (34.1 mg/g) and SW (14.8 mg/g). Extractives identified included lignans (isolariciresinol, lariciresinol, secoisolariciresinol, pinoresinol, matairesinol) phenolic acids (homovanillic acid, coumaric acid, ferulic acid), and flavonoids epicatechin, taxifolin, quercetin). Secoisolariciresinol was confirmed to be the predominant compound in the KW (29.8 mg/g) and BW (37.6 mg/g) extracts. The largest amount of phenolic compounds was extracted from parts of knots (281.7 mg/g) embedded in the sapwood and from parts of branches (258.9 mg/g) adjacent to the stem. HW contained more lignans in its older sections. Hydrophilic extracts from knots and branches inhibited the growth of wood-decaying fungi and molds. KW and BW extracts were better free radical scavengers than HW extracts. The results of the biological activity tests suggest that the protective function of phenolic extracts in silver fir wood can also be explained by their antioxidative properties. The results of this study describe BW as a potential source of phenolic extractives in silver fir.
Collapse
|
21
|
Pérez-Saucedo MR, Jiménez-Ruiz EI, Rodríguez-Carpena JG, Ragazzo-Sánchez JA, Ulloa JA, Ramírez-Ramírez JC, Gastón-Peña CR, Bautista-Rosales PU. Properties of the avocado oil extracted using centrifugation and ultrasound-assisted methods. Food Sci Biotechnol 2021; 30:1051-1061. [PMID: 34471559 PMCID: PMC8364595 DOI: 10.1007/s10068-021-00940-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022] Open
Abstract
The aim of this work was to evaluate the technologies effect of cold extraction by centrifugation (CE) and ultrasound-assisted (US-CE) methods without adding water, on the avocado oil yield, nutritional composition, physicochemical characteristics, oxidative stability (oxidation temperature and time, besides activation energy) and accelerated shelf life regarding hexane extraction (control). The US-CE improved the physicochemical properties such as acidity, peroxides, and iodine indexes regarding CE and Control. US-CE improved the yield, nutritional quality of fatty acids, oxidative stability, shelf life, and ω-6/ω-3 ratio regarding CE. Furthermore, US-CE improved the ratio yield/time extraction of the oil and increased the oxidation temperature regarding control. The main advantage of oils extracted using CE and US-CE concerning control was higher oxidative stability. The most representative polyunsaturated fatty acids identified in all treatments were γ-linolenic and conjugated α-linolenic acids. α-linolenic acid was only detected in US-CE and control. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-00940-w.
Collapse
Affiliation(s)
- M. R. Pérez-Saucedo
- Doctoral Program in Agricultural Biological Sciences, Autonomous University of Nayarit, km 9 on the Tepic-Compostela Highway, 63780 Xalisco, Nayarit Mexico
- Food Technology Unit, Autonomous University of Nayarit, Amado Nervo Culture City, 63190 Tepic, Nayarit Mexico
| | - E. I. Jiménez-Ruiz
- Doctoral Program in Agricultural Biological Sciences, Autonomous University of Nayarit, km 9 on the Tepic-Compostela Highway, 63780 Xalisco, Nayarit Mexico
- Food Technology Unit, Autonomous University of Nayarit, Amado Nervo Culture City, 63190 Tepic, Nayarit Mexico
| | - J. G. Rodríguez-Carpena
- Doctoral Program in Agricultural Biological Sciences, Autonomous University of Nayarit, km 9 on the Tepic-Compostela Highway, 63780 Xalisco, Nayarit Mexico
- Academic Unit of Veterinary Medicine and Zootechnics, Autonomous University of Nayarit, km 3.5 on the Compostela-Chapalilla Highway, 63700 Compostela, Nayarit Mexico
| | - J. A. Ragazzo-Sánchez
- Integral Laboratory of Food Research, National Technological of Mexico/Technological Institute of Tepic, 2595 Technological Avenue, Tepic, Nayarit 63175 México
| | - J. A. Ulloa
- Doctoral Program in Agricultural Biological Sciences, Autonomous University of Nayarit, km 9 on the Tepic-Compostela Highway, 63780 Xalisco, Nayarit Mexico
- Food Technology Unit, Autonomous University of Nayarit, Amado Nervo Culture City, 63190 Tepic, Nayarit Mexico
| | - J. C. Ramírez-Ramírez
- Academic Unit of Veterinary Medicine and Zootechnics, Autonomous University of Nayarit, km 3.5 on the Compostela-Chapalilla Highway, 63700 Compostela, Nayarit Mexico
| | - C. R. Gastón-Peña
- Cuban Institute for Research On Sugar Cane Derivates, 804 White Way and Central Highway, St. Michael of Census, La Havana, Cuba
| | - P. U. Bautista-Rosales
- Doctoral Program in Agricultural Biological Sciences, Autonomous University of Nayarit, km 9 on the Tepic-Compostela Highway, 63780 Xalisco, Nayarit Mexico
- Food Technology Unit, Autonomous University of Nayarit, Amado Nervo Culture City, 63190 Tepic, Nayarit Mexico
| |
Collapse
|
22
|
Effect of Seasonal Storage on Single-Stem Bark Extractives of Norway Spruce (Picea abies). FORESTS 2021. [DOI: 10.3390/f12060736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing the net value of forestry side-streams has both ecological as well as economic benefits for emerging biorefining industries. Spruce bark represents one of the nature’s abundant sources of valuable extractives. In this study, the impact of storage on the quality and quantity of Norway spruce (Picea abies) extractives was examined as a function of storage time, environmental conditions and season (i.e., winter or summer). The bark from stored spruce saw logs was extracted with an accelerated solvent extractor (ASE) at 120 °C with hexane and water. The produced extracts were analysed qualitatively and quantitatively by gas chromatography with a flame ionisation detector (GC-FID) and high-performance liquid chromatography (HPLC) methods. The total amount of phenolics in the water extracts was evaluated by the Folin–Ciocalteu method, while the carbohydrate and lignin content of the extractive-free bark was estimated by acidic hydrolysis and acidic methanolysis. According to the results, storage season and temperature dramatically influenced both the chemical composition and degradation rate of bark extractives. After a storage period of 24 weeks, the winter-stored saw log bark retained 22% more hydrophilic extractives than the summer-stored bark. Lipophilic extractives, however, were 14% higher during the summer. Notably, the average amount of monomeric stilbenoids was 61% higher during the winter storage period. The initial total phenolic content in the water extracts was significantly higher during winter, but the degradation rate was about equal during winter and summer. The amount of cellulose in dry bark decreased from 17% to 11% and from 13% to 6% during winter and summer, respectively. By contrast, hemicelluloses increased from 17% to 26% and 15% to 30% during winter and summer, respectively. Overall, it was demonstrated that the seasonal factors of storage greatly affected the degradation rate of valuable spruce bark extractives, which should be considered in the planning stages of the raw materials procurement chain.
Collapse
|
23
|
Herrera R, Hemming J, Smeds A, Gordobil O, Willför S, Labidi J. Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative-Qualitative Analysis and Chromatographic Purification. Biomolecules 2020; 10:E1363. [PMID: 32987840 PMCID: PMC7600730 DOI: 10.3390/biom10101363] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Hazelnut (HS) and walnut (WS) shells, an abundant by-product of the processing industries of these edible nuts, are traditionally considered as a low-value waste. However, they are a source of valuable compounds with an interesting chemical profile for the chemical and pharmaceutical sectors. In this study, the lipophilic and hydrophilic extracts present in HS and WS were quantified and identified, then the polar fractions were chromatographically separated, and their antioxidant capacity was studied. The experimental work includes the isolation of crude lipophilic and hydrophilic extracts by an accelerated extraction process, chromatographic analysis (gas chromatography-flame ionization (GC-FID), GC-mass spectroscopy (GC-MS), high-performance size-exclusion chromatography (HPSEC), thin-layer chromatography (TLC)), and quantification of the components. In addition, a thorough compositional characterization of the subgroups obtained by flash chromatography and their antioxidant capacity was carried out. The gravimetric concentrations showed different lipophilic/hydrophilic ratios (0.70 for HS and 0.23 for WS), indicating a higher proportion of polar compounds in WS than in HS. Moreover, the lipophilic extracts were principally composed of short-chain fatty acids (stearic, palmitic, and oleic acid), triglycerides, and sterols. The polar fractions were screened by thin-layer chromatography and then separated by flash chromatography, obtaining fractions free of fatty acids and sugar derivatives (97:3 in HS and 95:5 in WS), and mixtures richer in phenolic compounds and flavonoids such as guaiacyl derivatives, quercetin, pinobanksin, and catechin. The most polar fractions presented a higher antioxidant capacity than that of the crude extracts.
Collapse
Affiliation(s)
- René Herrera
- Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 San Sebastián, Spain;
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia;
| | - Jarl Hemming
- Chemistry and Chemical Engineering Department, Åbo Akademi University, Process Chemistry Centre, Porthansgatan 3, FI-20500 Åbo, Finland; (J.H.); (A.S.); (S.W.)
| | - Annika Smeds
- Chemistry and Chemical Engineering Department, Åbo Akademi University, Process Chemistry Centre, Porthansgatan 3, FI-20500 Åbo, Finland; (J.H.); (A.S.); (S.W.)
| | | | - Stefan Willför
- Chemistry and Chemical Engineering Department, Åbo Akademi University, Process Chemistry Centre, Porthansgatan 3, FI-20500 Åbo, Finland; (J.H.); (A.S.); (S.W.)
| | - Jalel Labidi
- Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 San Sebastián, Spain;
| |
Collapse
|
24
|
Sanches Silva A, Reboredo-Rodríguez P, Sanchez-Machado DI, López-Cervantes J, Barreca D, Pittala V, Samec D, Orhan IE, Gulcan HO, Forbes-Hernandez TY, Battino M, Nabavi SF, Devi KP, Nabavi SM. Evaluation of the status quo of polyphenols analysis: Part II-Analysis methods and food processing effects. Compr Rev Food Sci Food Saf 2020; 19:3219-3240. [PMID: 33337047 DOI: 10.1111/1541-4337.12626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022]
Abstract
Nowadays due to the concern with the environmental impact of analytical techniques and in order to reduce the ecological footprint there is a tendency to use more efficient and faster procedures that use a smaller amount of organic solvents. Polyphenols have been widely studied in plant-based matrices due to their wide and potent biological properties; however there are no standardized procedures both for sample preparation and analysis of these compounds. The second of a two-part review will carry out a critical review of the extraction procedures and analytical methods applied to polyphenols and their selection criteria over a wide range of factors in relation to commerce-associated, environmental, and economic factors. It is foreseen that in the future the analysis of polyphenols in plant-based matrices includes the use of techniques that allow the simultaneous determination of different subclasses of polyphenols using fast, sophisticated, and automated techniques that allow the minimal consumption of solvents.
Collapse
Affiliation(s)
- Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, Vila do Conde, Portugal.,Center for Study in Animal Science (CECA), University of Oporto, Oporto, Portugal
| | - Patricia Reboredo-Rodríguez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, Ourense, E32004, Spain
| | | | | | - Davide Barreca
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Messina, Italy
| | - Valeria Pittala
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Catania, Italy
| | - Dunja Samec
- Department of Molecular Biology, Institute 'Ruđer Bošković', Zagreb, Croatia
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - H Ozan Gulcan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Gazimagusa, The Northern Cyprus via Mersin, Turkey
| | - Tamara Y Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain.,College of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Silva AS, Reboredo-Rodríguez P, Süntar I, Sureda A, Belwal T, Loizzo MR, Tundis R, Sobarzo-Sanchez E, Rastrelli L, Forbes-Hernandez TY, Battino M, Filosa R, Daglia M, Nabavi SF, Nabavi SM. Evaluation of the status quo of polyphenols analysis: Part I-phytochemistry, bioactivity, interactions, and industrial uses. Compr Rev Food Sci Food Saf 2020; 19:3191-3218. [PMID: 33337062 DOI: 10.1111/1541-4337.12629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/11/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Phytochemicals, especially polyphenols, are gaining more attention from both the scientific community and food, pharmaceutical, and cosmetics industries due to their implications in human health. In this line, lately new applications have emerged, and of great importance is the selection of accurate and reliable analytical methods for better evaluation of the quality of the end-products, which depends on diverse process variables as well as on the matrices and on the physicochemical properties of different polyphenols. The first of a two-part review on polyphenols will address the phytochemistry and biological activities of different classes of polyphenols including flavonoids, lignans and flavanolignans, stilbenoids, tannins, curcuminoids, and coumarins. Moreover, the possible interactions of polyphenols and current and potential industrial applications of polyphenols are discussed.
Collapse
Affiliation(s)
- Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, Vila do Conde, Portugal.,Center for Study in Animal Science (CECA), University of Oporto, Oporto, Portugal
| | - Patricia Reboredo-Rodríguez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, Ourense, E32004, Spain
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain.,Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Luca Rastrelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA, Italy.,Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Tamara Y Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain.,Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy.,International Research Center for Food Nutrition & Safety, Jiangsu University, Zhengjiang, China
| | - Rosanna Filosa
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Maria Daglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Pritsas A, Tomou EM, Tsitsigianni E, Papaemmanouil CD, Diamantis DA, Chatzopoulou P, Tzakos AG, Skaltsa H. Valorisation of stachysetin from cultivated Stachys iva Griseb. as anti-diabetic agent: a multi-spectroscopic and molecular docking approach. J Biomol Struct Dyn 2020; 39:6452-6466. [PMID: 32731792 DOI: 10.1080/07391102.2020.1799864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stachys species are considered as important medicinal plants with numerous health benefit effects. In continuation of our research on the Greek Stachys species, the chemical profile of the aerial parts of cultivated S. iva Griseb. has been explored. The NMR profiles of the plant extract/infusion were used to guide the isolation process, leading to the targeted isolation of seventeen known compounds. The rare acylated flavonoid, stachysetin, was isolated for the third time from plant species in the international literature. Identification of the characteristic signals of stachysetin in the 1D 1H-NMR spectrum of the crude extract was presented. In order to evaluate the potential of the identified chemical space in Stachys to bear possible bioactivity against diabetes, we performed an in silico screening against 17 proteins implicated in diabetes, as also ligand based similarity metrics against established anti-diabetic drugs. The results capitalized the anti-diabetic potency of stachysetin. Its binding profile to the major drug carrier plasma protein serum albumin was also explored along with its photophysical properties suggesting that stachysetin could be recognized and delivered in plasma through serum albumin and also could be tracked through near-infrared imaging. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aristeidis Pritsas
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Ekaterina-Michaela Tomou
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Eleni Tsitsigianni
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Christina D Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Dimitrios A Diamantis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Paschalina Chatzopoulou
- Hellenic Agricultural Organization DEMETER, Institute of Breeding and Plant Genetic Resources, IBPGR, Department of Medicinal and Aromatic Plants, Thessaloniki, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Helen Skaltsa
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| |
Collapse
|
27
|
Chhillar H, Chopra P, Ashfaq MA. Lignans from linseed ( Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect. Crit Rev Food Sci Nutr 2020; 61:2719-2741. [PMID: 32619358 DOI: 10.1080/10408398.2020.1784840] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lignans are complex diphenolic compounds representing phytoestrogens and occur widely across the plant kingdom. Formed by the coupling of two coniferyl alcohol residues, lignans constitute major plant "specialized metabolites" with exceptional biological attributes that aid in plant defence and provide health benefits in humans by reducing the risk of ailments such as cancer, diabetes etc. Linseed (Linum usitatissimum L.) is one of the richest sources of lignans followed by cereals and legumes. Among the various types of lignans, secoisolariciresinol diglucoside (SDG) is considered as the essential and nutrient rich lignan in linseed. Lignans exhibit established antimitotic, antiviral and anti-tumor properties that contribute to their medicinal value. The present review seeks to provide a holistic view of research in the past and present times revolving around lignans from linseed and its allied species. This review attempts to elucidate sources, structures and functional properties of lignans, along with detailed biosynthetic mechanisms operating in plants. It summarizes various methods for the determination of lignan content in plants. Biotechnological interventions (in planta and in vitro) aimed at enriching lignan content and adoption of integrative approaches that might further enhance lignan content and medicinal and nutraceutical value of Linum spp. have also been discussed.
Collapse
Affiliation(s)
- Himanshu Chhillar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Priyanka Chopra
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Ashraf Ashfaq
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
28
|
Füchtner S, Brock-Nannestad T, Smeds A, Fredriksson M, Pilgård A, Thygesen LG. Hydrophobic and Hydrophilic Extractives in Norway Spruce and Kurile Larch and Their Role in Brown-Rot Degradation. FRONTIERS IN PLANT SCIENCE 2020; 11:855. [PMID: 32695126 PMCID: PMC7339921 DOI: 10.3389/fpls.2020.00855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/27/2020] [Indexed: 05/06/2023]
Abstract
Extractives found in the heartwood of a moderately durable conifer (Larix gmelinii var. japonica) were compared with those found in a non-durable one (Picea abies). We identified and quantified heartwood extractives by extraction with solvents of different polarities and gas chromatography with mass spectral detection (GC-MS). Among the extracted compounds, there was a much higher amount of hydrophilic phenolics in larch (flavonoids) than in spruce (lignans). Both species had similar resin acid and fatty acid contents. The hydrophobic resin components are considered fungitoxic and the more hydrophilic components are known for their antioxidant activity. To ascertain the importance of the different classes of extractives, samples were partially extracted prior to subjection to the brown-rot fungus Rhodonia placenta for 2-8 weeks. Results indicated that the most important (but rather inefficient) defense in spruce came from the fungitoxic resin, while large amounts of flavonoids played a key role in larch defense. Possible moisture exclusion effects of larch extractives were quantified via the equilibrium moisture content of partially extracted samples, but were found to be too small to play any significant role in the defense against incipient brow-rot attack.
Collapse
Affiliation(s)
- Sophie Füchtner
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | | | - Annika Smeds
- Laboratory of Wood and Paper Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Maria Fredriksson
- Faculty of Engineering, Division of Building Materials, Lund University, Lund, Sweden
| | - Annica Pilgård
- Wood Research Munich, Technical University of Munich, Munich, Germany
- Research Institutes of Sweden (RISE), Gothenburg, Sweden
| | | |
Collapse
|
29
|
|
30
|
|
31
|
Lan P, Du M, Teng Y, Banwell MG, Nie H, Reaney MJT, Wang Y. Structural Modifications of a Flaxseed Lignan in Pursuit of Higher Liposolubility: Evaluation of the Antioxidant and Permeability Properties of the Resulting Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14152-14159. [PMID: 31747278 DOI: 10.1021/acs.jafc.9b06264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While lignans and their biogenetic precursors can have various health benefits, the poor liposolubilities of such phenolic systems have restricted their application as antioxidants in the food industry. The research reported here was aimed at addressing these matters through derivatizing certain forms of such compounds and then assessing their properties as potential nutraceuticals. In particular, crude flaxseed lignan was purified to afford secoisolariciresinol diglucoside (SDG, 1) that was then subjected to structural modification. By such means, the SDG long-chain fatty acid esters 4-9 and 11-13, the fully acetylated SDG 10, secoisolariciresinol (SECO, 2), and anhydrosecoisolariciresinol (ASECO, 14) were obtained. The antioxidant activities of these derivatives were determined while their permeability properties were evaluated. Such studies revealed that certain SDG derivatives possessing useful liposolubilities also retained their antioxidative properties, as well as being capable of permeating Caco-2 cell monolayers while being nontoxic to them. SDG fatty acid esters 4-9 and 11-13 could be developed into emulsifiers with enhanced health benefits, especially considering their improved antioxidative (ca. <11 000 μmol Trolox/g) and permeability properties. This study thus highlights strategies for the structural modification of SDG so as to generate derivatives with superior properties in terms of their utility in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | - Muxiang Du
- National R&D Center for Freshwater Fish Processing , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | | | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies , The Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | | | - Martin J T Reaney
- Department of Plant Sciences , University of Saskatchewan , 51 Campus Dr. , Saskatoon , Saskatchewan S7N 5A8 , Canada
| | | |
Collapse
|
32
|
Courbalay M, Villain-Gambier M, Klem A, Dumarcay S, Trebouet D. Fractionation of polyphenols from thermomechanical pulp mill process water by flotation and membrane integrated process. ENVIRONMENTAL TECHNOLOGY 2019; 40:3240-3251. [PMID: 29683398 DOI: 10.1080/09593330.2018.1468826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Fractionation of phenolic compounds in thermomechanical pulp mills was performed with a coupling of a prior treatment realized by flotation and a ceramic membrane process. Two lines of membranes filtration were tested. After a common 150 kDa clarification, 1 kDa filtration was performed with or without previous 5 kDa filtration. Flotation was shown to be inevitable to retain lipophilic compounds which cause severe membrane fouling. 150 kDa permeate flux was 20% higher when process water was firstly floated and was around 260 L h-1 m-2. 1 kDa membrane was fouled with 31% of irreversible fouling without previous 5 kDa filtration and phenolic compounds purity reached only 26% in this 1 kDa permeate. Phenolic compounds as lignin-like substances which might be attached to hemicelluloses were recovered in 5 kDa retentate. Retentate of 1 kDa might contain a major fraction of lignin derivatives with molecular weights around 1 kDa free or linked with phenolic acids. Permeate of 1 kDa contained 14% of phenolic compounds such as lignans and free phenolic acids purified at 50%.
Collapse
Affiliation(s)
- M Courbalay
- Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178 , Strasbourg Cedex 2 , France
- Laboratoire d'Etudes et de Recherche sur le Matériau Bois, EA 4370 USC INRA , Vandoeuvre lès Nancy , France
| | - M Villain-Gambier
- Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178 , Strasbourg Cedex 2 , France
| | - A Klem
- Norske Skog Golbey, Route Jean-Charles Pellerin , Golbey , France
| | - S Dumarcay
- Laboratoire d'Etudes et de Recherche sur le Matériau Bois, EA 4370 USC INRA , Vandoeuvre lès Nancy , France
| | - D Trebouet
- Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178 , Strasbourg Cedex 2 , France
| |
Collapse
|
33
|
Mikropoulou EV, Petrakis EA, Argyropoulou A, Mitakou S, Halabalaki M, Skaltsounis LA. Quantification of bioactive lignans in sesame seeds using HPTLC densitometry: Comparative evaluation by HPLC-PDA. Food Chem 2019; 288:1-7. [DOI: 10.1016/j.foodchem.2019.02.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 11/24/2022]
|
34
|
Angeloni S, Navarini L, Khamitova G, Sagratini G, Vittori S, Caprioli G. Quantification of lignans in 30 ground coffee samples and evaluation of theirs extraction yield in espresso coffee by HPLC-MS/MS triple quadrupole. Int J Food Sci Nutr 2019; 71:193-200. [PMID: 31170854 DOI: 10.1080/09637486.2019.1624693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lignans are a class of polyphenols considered to be phytoestrogens because of their oestrogenic/antiestrogenic activities and their plant origin. Few works have reported on the content of lignans in ground coffee, and most of them analysed a small number of samples. Hence, our aim was to quantify the content of three lignans, secoisolariciresinol, lariciresinol and matairesinol, in ground coffee by using high-performance liquid chromatography tandem mass spectrometry. Evaluation of acidic hydrolysis, methanolic extractions, and enzymatic digestions as extraction methods indicated that enzymatic digestion with Taka-diastase 2% was the best. When this method was applied to 30 different ground coffees, we found that SECO was the highest concentration lignan (84.4-257.8 μg kg-1), followed by LARI (26.1-91.5 μg kg-1). Moreover, comparison of lignan extraction yield in espresso coffee and ground coffee showed that these molecules seem to be completely extracted during espresso coffee percolation, since the extraction yield average was 95.2%.
Collapse
Affiliation(s)
- Simone Angeloni
- School of Pharmacy, University of Camerino, Camerino, Italy.,International Hub for Coffee Research and Innovation, Belforte del Chienti (MC), Italy
| | | | - Gulzhan Khamitova
- School of Pharmacy, University of Camerino, Camerino, Italy.,International Hub for Coffee Research and Innovation, Belforte del Chienti (MC), Italy
| | | | - Sauro Vittori
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | |
Collapse
|
35
|
Ji J, Liu Y, Shi L, Wang N, Wang X. Effect of roasting treatment on the chemical composition of sesame oil. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Oliveira MGD, Almeida PHD, Oliveira TL, Silva LDS, Carvalho FSD, Alves SF, Borges LL, Santos PAD, Silva VBD, Paula JRD. HPLC-PDA method validated for the determination of hibalactone in Hydrocotyle umbellata subterraneous parts and its ultrasound-assisted extraction optimization. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Dietary Lignans: Definition, Description and Research Trends in Databases Development. Molecules 2018; 23:molecules23123251. [PMID: 30544820 PMCID: PMC6321438 DOI: 10.3390/molecules23123251] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/12/2023] Open
Abstract
The study aims to communicate the current status regarding the development and management of the databases on dietary lignans; within the phytochemicals, the class of the lignan compounds is of increasing interest because of their potential beneficial properties, i.e., anticancerogenic, antioxidant, estrogenic, and antiestrogenic activities. Furthermore, an introductory overview of the main characteristics of the lignans is described here. In addition to the importance of the general databases, the role and function of a food composition database is explained. The occurrence of lignans in food groups is described; the initial construction of the first lignan databases and their inclusion in harmonized databases at national and/or European level is presented. In this context, some examples of utilization of specific databases to evaluate the intake of lignans are reported and described.
Collapse
|
38
|
Sesamin and sesamolin reduce amyloid-β toxicity in a transgenic Caenorhabditis elegans. Biomed Pharmacother 2018; 107:656-664. [DOI: 10.1016/j.biopha.2018.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
|
39
|
Angeloni S, Navarini L, Sagratini G, Torregiani E, Vittori S, Caprioli G. Development of an extraction method for the quantification of lignans in espresso coffee by using HPLC-MS/MS triple quadrupole. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:842-848. [PMID: 29925121 DOI: 10.1002/jms.4251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/27/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
Lignans are polyphenolic compounds that are considered phytoestrogens for their plant origins, and they possess different biological activities. Three different extraction methods, ie, "dilute and shoot", acidic hydrolysis, and enzymatic digestion, have been compared for extracting lignans (secoisolariciresinol (SECO), matairesinol (MAT), and lariciresinol (LARI)) from espresso coffee (EC) by using high-performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). The best recovery values (SECO: 97%, LARI: 98%, and MAT: 93%) were obtained by using enzymatic hydrolysis with Clara-Diastase at 10% (w/v), keeping the sample at 37°C for 3 hours. For this reason, this method has been chosen and then applied to quantify lignans in 9 different EC samples from 5 different geographical origins (Brazil, Colombia, El Salvador, Ethiopia, and India). Secoisolariciresinol and LARI were found in all EC samples from 27.9 to 52.0 μg L-1 and from 5.3 to 27.8 μg L-1 respectively, contrary to MAT that it was not possible to detect it in each type of coffee. This method confirms the high specificity and sensitivity of MS/MS system for detecting bioactives in complex matrix such as coffee.
Collapse
Affiliation(s)
- Simone Angeloni
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032, Camerino, Italy
| | | | - Gianni Sagratini
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032, Camerino, Italy
| | - Elisabetta Torregiani
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032, Camerino, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032, Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
40
|
Interlaboratory Coverage Test on Plant Food Bioactive Compounds and their Metabolites by Mass Spectrometry-Based Untargeted Metabolomics. Metabolites 2018; 8:metabo8030046. [PMID: 30149593 PMCID: PMC6161174 DOI: 10.3390/metabo8030046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022] Open
Abstract
Bioactive compounds present in plant-based foods, and their metabolites derived from gut microbiota and endogenous metabolism, represent thousands of chemical structures of potential interest for human nutrition and health. State-of-the-art analytical methodologies, including untargeted metabolomics based on high-resolution mass spectrometry, are required for the profiling of these compounds in complex matrices, including plant food materials and biofluids. The aim of this project was to compare the analytical coverage of untargeted metabolomics methods independently developed and employed in various European platforms. In total, 56 chemical standards representing the most common classes of bioactive compounds spread over a wide chemical space were selected and analyzed by the participating platforms (n = 13) using their preferred untargeted method. The results were used to define analytical criteria for a successful analysis of plant food bioactives. Furthermore, they will serve as a basis for an optimized consensus method.
Collapse
|
41
|
Chen J, Chen Y, Tian J, Ge H, Liang X, Xiao J, Lin H. Simultaneous determination of four sesame lignans and conversion in Monascus aged vinegar using HPLC method. Food Chem 2018; 256:133-139. [PMID: 29606429 DOI: 10.1016/j.foodchem.2018.02.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/21/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
A simple, accurate and specific high-performance liquid chromatography (HPLC) method has been developed and validated for simultaneous determination of sesamol, sesamin, asarinin and sesamolin in Monascus aged vinegar. The effects of acid hydrolysis and four heating treatments on the components content in Monascus aged vinegar were discussed. The results showed that the isomerisation of sesamin to asarinin, and decomposition of sesamolin to sesamol significantly increased, regardless of heating or acid hydrolysis. Thermal processes and acid hydrolysis increased the content of sesamol and asarinin, respectively, but severe thermal processes resulted in the loss of total sesame lignans. Sesamol and asarinin reached the highest (2.720 ± 0.202 μg/mL and 2.064 ± 0.075 μg/mL) for autoclaving (125 °C, 15 min) and acid hydrolysis (25 °C, 15 min, nature pH), respectively. Therefore, autoclaving and acid hydrolysis were considered as the optimal way to obtain higher content of sesamol and asarinin.
Collapse
Affiliation(s)
- Jicheng Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yazhen Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingjing Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huifang Ge
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
42
|
Yashin AY, Yashunskii DB, Vedenin AN, Nifant’ev NE, Nemzer BV, Yashin YI. Chromatographic Determination of Lignans (Antioxidants) in Food Products. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s106193481805012x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Inhibition of Cytochrome P450 Activities by Extracts of Hyptis verticillata Jacq.: Assessment for Potential HERB-Drug Interactions. Molecules 2018; 23:molecules23020430. [PMID: 29462868 PMCID: PMC6017200 DOI: 10.3390/molecules23020430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 11/21/2022] Open
Abstract
Understanding the potential for adverse drug reactions (ADRs), from herb-drug interactions, is a key aspect of medicinal plant safety, with particular relevance for public health in countries where medicinal plant use is highly prevalent. We undertook an in-depth assessment of extracts of Hyptis verticillata Jacq., via its impact on activities of key cytochrome P450 (CYP) enzymes (CYPs 1A1, 1A2, 1B1, 3A4 and 2D6), its antioxidant properties (determined by DPPH assays) and chemical characterisation (using LC-MS). The dried plant aqueous extract demonstrated potent inhibition of the activities of CYPs 1A1 (7.6 µg/mL), 1A2 (1.9 µg/mL), 1B1 (9.4 µg/mL) and 3A4 (6.8 µg/mL). Further analysis of other crude extracts demonstrated potent inhibition of CYP1A2 activity for a dried plant ethanol extract (1.5 µg/mL), fresh plant ethanol extract (3.9 µg/mL), and moderate activity for a fresh plant aqueous extract (27.8 µg/mL). All four extracts demonstrated strong antioxidant activity, compared to the positive control (ascorbic acid, 1.3 µg/mL), with the dried plant ethanol extract being the most potent (1.6 µg/mL). Analysis of the dried plant aqueous extract confirmed the identity of seven phytochemicals, five lignans and two triterpenes. Individual screening of these phytochemicals against the activity of CYP1A2 identified yatein as a moderate inhibitor (71.9 μM), likely to contribute to the plant extract’s potent bioactivity. Further analysis on the impact of this plant on key drug metabolizing enzymes in vivo appears warranted for likely ADRs, as well as furthering development as a potential chemopreventive agent.
Collapse
|
44
|
Guo X, Zhang T, Shi L, Gong M, Jin J, Zhang Y, Liu R, Chang M, Jin Q, Wang X. The relationship between lipid phytochemicals, obesity and its related chronic diseases. Food Funct 2018; 9:6048-6062. [DOI: 10.1039/c8fo01026a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on phytochemicals in oils, and summarizes the mechanisms of the anti-obesity effects of these compounds in in vitro studies, animal models, and human trials.
Collapse
|
45
|
Jiang J, Dong H, Wang T, Zhao R, Mu Y, Geng Y, Zheng Z, Wang X. A Strategy for Preparative Separation of 10 Lignans from Justicia procumbens L. by High-Speed Counter-Current Chromatography. Molecules 2017; 22:molecules22122024. [PMID: 29168751 PMCID: PMC6149811 DOI: 10.3390/molecules22122024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022] Open
Abstract
Ten compounds, including three lignan glycosides and seven lignans, were purified from Justicia procumbens L. in 8 h using an efficient strategy based on high-speed counter-current chromatography (HSCCC). The two-phase solvent system composed of petroleum–ethyl acetate–methanol–H2O (1:0.7:1:0.7, v/v) was firstly employed to separate the crude extract (320 mg), from which 19.3 mg of justicidin B (f), 10.8 mg of justicidin A (g), 13.9 mg of 6′-hydroxyjusticidin C (h), 7.7 mg of justicidin E (i), 6.3 mg of lignan J1 (j) were obtained with 91.3 mg of enriched mixture of compounds a–e. The enriched mixture (91.3 mg) was further separated using the solvent system consisting of petroleum–ethyl acetate–methanol–H2O (3:3.8:3:3.8, v/v), yielding 12.1 mg of procumbenoside E (a); 7.6 mg of diphyllin-1-O-β-d-apiofuranoside (b); 7.4 mg of diphyllin (c); 8.3 mg of 6′-hydroxy justicidin B (d); and 7.9 mg of diphyllin acetyl apioside (e). The purities of the 10 components were all above 94%, and their structures were identified by NMR and ESI-MS spectra. The results demonstrated that the strategy based on HSCCC for the separation of lignans and their glycosides was efficient and rapid.
Collapse
Affiliation(s)
- Jiaojiao Jiang
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Hongjing Dong
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Tao Wang
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Ruixuan Zhao
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Yan Mu
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Yanling Geng
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Zhenjia Zheng
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Xiao Wang
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
46
|
Pereira RG, Nakamura RN, Rodrigues MVN, Osorio-Tobón JF, Garcia VL, Martinez J. Supercritical fluid extraction of phyllanthin and niranthin from Phyllanthus amarus Schum. & Thonn. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
|
48
|
UHPLC-ESI-QTOF-MS screening of lignans and other phenolics in dry seeds for human consumption. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
49
|
Koistinen VM, Hanhineva K. Mass spectrometry-based analysis of whole-grain phytochemicals. Crit Rev Food Sci Nutr 2017; 57:1688-1709. [PMID: 26167744 DOI: 10.1080/10408398.2015.1016477] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Whole grains are a rich source of several classes of phytochemicals, such as alkylresorcinols, benzoxazinoids, flavonoids, lignans, and phytosterols. A high intake of whole grains has been linked to a reduced risk of some major noncommunicable diseases, and it has been postulated that a complex mixture of phytochemicals works in synergy to generate beneficial health effects. Mass spectrometry, especially when coupled with liquid chromatography, is a widely used method for the analysis of phytochemicals owing to its high sensitivity and dynamic range. In this review, the current knowledge of the mass spectral properties of the most important classes of phytochemicals found in cereals of common wheat, barley, oats, and rye is discussed.
Collapse
Affiliation(s)
- Ville Mikael Koistinen
- a Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Kuopio , Finland
| | - Kati Hanhineva
- a Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
50
|
|