1
|
Rahmani T, Bandini E, Schuster SA, Iterbeke L, Focant JF, Lynen F. Combining per-aqueous and chiral reversed phase separation modes towards an enhanced comprehensive 2-dimensional liquid chromatographic based chiral screening platform. J Chromatogr A 2025; 1748:465875. [PMID: 40112643 DOI: 10.1016/j.chroma.2025.465875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The differentiation of enantiomers in complex mixtures is crucial in various fields such as food science, pharmaceuticals, and environmental studies. While this is achievable in principle through comprehensive two-dimensional liquid chromatography (LC × LC), practical challenges emerge when the mobile phase used in the first dimension (1D) is too strong or incompatible with the one in the second dimension (2D), leading to peak broadening and reduced resolution. These drawbacks become particularly evident when analyzing a diverse range of chiral compounds. In order to obtain timely elution of such compounds, typically spanning a range of hydrophobicity, the use of gradients (in both dimensions) is inevitable. This in turn leads to changing mobile phase compositions transferred from 1D to 2D, and hence to variations in the effectiveness of the modulation process. Lowering of the eluotropic strength of the mobile phase used in 1D allows to mitigate such problems. In this study, a novel achiral × chiral platform for fully automated screening of chiral compounds was developed. In the 1D of this platform, reversed HILIC (or per-aqueous liquid chromatography (PALC)) was employed, utilizing a commercially available HILIC column, which ensures robust and reproducible results with a water-rich mobile phase. In 2D, chiral chromatography with a broad range of gradients was utilized. Moreover, the impact of varying concentrations of organic solvent transferred to the 2D on enantioseparation was investigated. The water-rich mobile phase in the 1D facilitates the complete refocusing of organic solutes before entering the second dimension, preventing the loss of resolution in the 2D. This also allows for longer sampling times, consequently longer 2D running times, reducing the need for ultra-fast columns in the 2D. Furthermore, it enables the application of various mobile phase compositions in the 2D. Finally, this tool was successfully used to analyze compounds in urine and plasma matrices.
Collapse
Affiliation(s)
- Turaj Rahmani
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Elena Bandini
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | | | - Lander Iterbeke
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Jean-François Focant
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Frédéric Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium.
| |
Collapse
|
2
|
Sajeevan J SJ, Wahab MF, Aslani S, Armstrong DW. Selectivity modulation and its prediction in cyclofructan-6 phase for chaotropic ions. Anal Chim Acta 2025; 1347:343788. [PMID: 40024662 DOI: 10.1016/j.aca.2025.343788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 02/08/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Modifying additives to alter the selectivity of a single stationary phase and solvent system is appealing in mixed-mode separations. Silica-bonded cyclofructan-6 uniquely binds with cations strongly in the presence of organic solvents and is hydrolytically stable. Perchlorate with inorganic and organic quaternary ammonium cations could adjust retention for molecules with carboxylic acids, sulfonic acids, and nitrogen-containing functional groups, which are common in pharmaceutically relevant molecules. Perchlorate salts of ammonium, lithium, tetrabutylammonium, and tetramethylammonium were assessed for their selectivity in acetonitrile-water eluent systems. RESULTS This study provides a mathematical route to accomplish complex selectivity alterations by simply varying the perchlorate counterions. Two predictive tests based on l2-norm and principal component analysis (PCA) were proposed to choose the most distinct perchlorate additive pair for 17 test probes in retention time-space. The l2-norm provides a faster approach to measure variation caused by eluent additives for probe analytes. Ammonium and tetrabutylammonium perchlorate salts showed the maximum "distance" between them. The eluent additives strongly affected the elution times of carboxylic and sulfonic acids, and neutrals were mildly altered. A concentration study on these two additives with probe analytes ruled out a simple ion exchange interaction and suggested a multimodal retention mechanism. All additives yielded high-efficiency separations expected of 2.7 μm core-shell particles. SIGNIFICANCE The proposed mathematical tests will assist chromatographers in selecting distinct eluent additives for different classes of separations during method development. The applicability of the eluent selection strategy has been shown with the separation of three different biologically important classes of molecules containing analytes like cocaine, amphetamine, tianeptine, serotonin, lorazepam, and 5-fluorouracil.
Collapse
Affiliation(s)
| | - M Farooq Wahab
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 76019, USA
| | - Saba Aslani
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 76019, USA.
| |
Collapse
|
3
|
D'Atri V, Barrientos RC, Losacco GL, Rudaz S, Delobel A, Regalado EL, Guillarme D. Trends in Pharmaceutical Analysis: The Evolving Role of Liquid Chromatography. Anal Chem 2025; 97:4706-4727. [PMID: 40008977 DOI: 10.1021/acs.analchem.4c06662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gioacchino Luca Losacco
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Arnaud Delobel
- Quality Assistance S.A., Technnoparc de Thudinie 2, 6536 Donstiennes, Belgium
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
4
|
Guo Y, Baran D, Ryan L. Quantitative Assessment of Retention Mechanisms for Ionized Compounds in Hydrophilic Interaction Chromatography (HILIC). Anal Chem 2025; 97:4057-4065. [PMID: 39950616 DOI: 10.1021/acs.analchem.4c05880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The retention mechanisms for polar compounds in HILIC are only qualitatively understood to include hydrophilic partitioning, surface adsorption, and electrostatic interactions if both the analytes and stationary phases are charged. However, the main retention mechanism may be different for different compounds under different chromatographic conditions, and it is difficult to identify the main retention mechanism based on the existing knowledge and methods. We previously developed a methodology to quantitatively determine the retention contributions of hydrophilic partitioning and surface adsorption for nonionized compounds in HILIC. In this study, the methodology has been expanded to include the retention contribution of electrostatic interactions for the ionized compounds on charged stationary phases. When electrostatic interactions are sufficiently shielded at high salt concentrations, the partitioning coefficient of ionized compounds is determined using the same method for nonionized compounds. Then, the retention contributed by partitioning and adsorption is calculated. The retention contribution by electrostatic interactions (both attractive and repulsive) is determined by subtracting the retention contributed by partitioning and adsorption from the observed retention at each salt concentration. This is the first study that evaluated the retention contributions of hydrophilic partitioning, surface adsorption, and electrostatic interactions for ionized compounds. Quantitative information on retention mechanisms will be helpful to better understand selectivity in HILIC and facilitate the development of retention models.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, 230 Park Ave., Florham Park, New Jersey 07932, United States
| | - Dominik Baran
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, 230 Park Ave., Florham Park, New Jersey 07932, United States
| | - Lindsey Ryan
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, 230 Park Ave., Florham Park, New Jersey 07932, United States
| |
Collapse
|
5
|
Strani L, Benedetti B, Cocchi M, Durante C, Perra G, Pietropaolo M, Pellacani S, Tanzilli D. Optimization of an analytical method based on the use of zwitterionic- phosphorylcholine -HILIC column for the determination of multiple polar emerging contaminants in reclaimed water. J Chromatogr A 2025; 1741:465605. [PMID: 39721400 DOI: 10.1016/j.chroma.2024.465605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The aim of this study was to optimize a Liquid Chromatography Mass Spectrometry (LC-MS) method using a zwitterionic phosphorylcholine HILIC column for the determination of several Persistent and Mobile Organic Contaminants (PMOC) in wastewater samples. An experimental design approach was implemented to both better understand the retention mechanisms of several polar compounds and to find the optimal operating conditions for their detection and quantification. Eleven PMOCs, with logDpH=7 ranging from -5.27 to 0.24, were considered, including pesticides, artificial sweeteners, pharmaceuticals, and central nervous system stimulants. Key chromatographic variables-such as the initial percentage of the organic mobile phase, temperature, flow rate, gradient time, acid percentage, and the type and concentration of two different salts- were studied to assess their influence on peak areas, retention times and separation efficiency. The results indicated buffer type, flow rate, and initial percentage of organic mobile phase as the most influential factors affecting retention, though the effects were closely related to the chemical and physicochemical properties of the analytes. The optimized instrumental method demonstrated acceptable figures of merit, with recoveries ranging from 49 % to 100 % for all analytes (except taurine, which may require a different experimental preprocessing step). The method also showed satisfactory precision (repeatability of the entire experimental procedure), in terms of Relative Standard Deviation (RSD %), which was <10 % for all analytes. The developed method was successfully applied to the analysis of reclaimed water samples collected in six wastewater treatment plants in two regions of northern Italy. All target ECs were detected and quantified, except for clenbuterol, terbutaline, acesulfame K and 2,4-dichlorophenoxyacetic acid, which were below the detection limit.
Collapse
Affiliation(s)
- Lorenzo Strani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Marina Cocchi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Caterina Durante
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| | - Guido Perra
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Mattia Pietropaolo
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Samuele Pellacani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Daniele Tanzilli
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; LASIRE, University of Lille, Cité Scientifique, Villeneuve-d'Ascq, 59650, France
| |
Collapse
|
6
|
Wei B, Dai L, Zhang K. Applications of hydrophilic interaction and mixed-mode liquid chromatography in pharmaceutical analysis. J Chromatogr A 2025; 1739:465524. [PMID: 39613506 DOI: 10.1016/j.chroma.2024.465524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Hydrophilic Interaction Liquid Chromatography (HILIC) and Mixed-Mode Chromatography (MMC) excel in separating polar, hydrophilic, and charged analytes due to unique hydrophilic or mixed-mode retention mechanisms. They represent a complementary approach to the widely used Reversed Phase Liquid Chromatography (RPLC). Often, where RPLC struggles, HILIC and MMC thrive. The applications of HILIC and MMC in pharmaceutical analysis are expanding rapidly across a variety of drug modalities. This article reviews advances in the applications of HILIC and MMC in seven major areas of pharmaceutical analysis: synthetic small molecules, counterions and salts, lipids and surfactants, carbohydrates, amino acids and peptides, proteins, and nucleic acids in the past two decades. We aim to provide comprehensive information and strategic guidance to facilitate future research, development and applications in these areas.
Collapse
Affiliation(s)
- Bingchuan Wei
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lulu Dai
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
7
|
Rozans SJ, Wu Y, Moghaddam AS, Pashuck ET. A Streamlined High-Throughput LC-MS Assay for Quantifying Peptide Degradation in Cell Culture. J Biomed Mater Res A 2025; 113:e37864. [PMID: 39806927 PMCID: PMC11913071 DOI: 10.1002/jbm.a.37864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Peptides are widely used in biomaterials due to their ease of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell-secreted enzymes, which creates the possibility of utilizing cell-secreted enzymes for tuning cell-material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies. Liquid chromatography-mass spectrometry (LC-MS) is a widely used, powerful methodology that can separate complex mixtures of molecules and quantify numerous analytes within a single run. There are several challenges in using LC-MS for the multiplexed quantification of cell-induced peptide degradation, including the need for nondegradable internal standards and the identification of optimal sample storage conditions. Another problem is that cell culture media and biological samples typically contain both proteins and lipids that can accumulate on chromatography columns and degrade their performance. Removing these constituents can be expensive, time-consuming, and increases sample variability. However, loading unpurified samples onto the column without removing lipids and proteins will foul the column. Here, we show that directly injecting complex, unpurified samples onto the LC-MS without any purification enables rapid and accurate quantification of peptide concentration and that hundreds of LC-MS runs can be done on a single column without significantly diminishing the ability to quantify the degradation of peptide libraries. To understand how repeated injections degrade column performance, a model library was injected into the LC-MS hundreds of times. It was then determined that column failure is evident when hydrophilic peptides are no longer retained on the column and that failure can be easily identified by using standard peptide mixtures for column benchmarking. In total, this work introduces a simple and effective method for simultaneously quantifying the degradation of dozens of peptides in cell culture. By providing a streamlined and cost-effective method for the direct quantification of peptide degradation in complex biological samples, this work enables more efficient assessment of peptide stability and functionality, facilitating the development of advanced biomaterials and peptide-based therapies.
Collapse
Affiliation(s)
- Samuel J Rozans
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Yingjie Wu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | - E Thomas Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
8
|
Bartlett MG. Current state of hydrophilic interaction liquid chromatography of oligonucleotides. J Chromatogr A 2024; 1736:465378. [PMID: 39293276 DOI: 10.1016/j.chroma.2024.465378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
There has been a significant increase in the use of hydrophilic interaction liquid chromatography (HILIC) to separate oligonucleotides. This rise in the use of HILIC has correlated to the increasing success of oligonucleotides as therapeutic treatments and reagents in biomedical research. As more scientists need to routinely analyze oligonucleotides in addition to small molecules, peptides, and proteins using the same analytical instruments, it becomes difficult to use traditional types of analyses such as ion-pair reversed-phase chromatography. This increased use has led to new approaches that have improved the utility of HILIC to the point where it has become a legitimate alternative approach to ion-pair reversed-phase chromatography. This review highlights recent advances in HILIC separations of oligonucleotides with a focus on the underlying mechanisms of action. While HILIC has made significant gains in performance, there still remain challenges, which if properly addressed will continue to propel this approach forward.
Collapse
Affiliation(s)
- Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Neale Q, Yeung D, Spicer V, Perreault H, Krokhin O. Peptide retention time prediction for electrostatic repulsion-hydrophilic interaction chromatography. J Chromatogr A 2024; 1736:465414. [PMID: 39378622 DOI: 10.1016/j.chroma.2024.465414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Electrostatic Repulsion-Hydrophilic Interaction Chromatography (ERLIC) is one of the legacy separation tools developed by Dr. Andrew Alpert and has been used for developing unique separation methods of hydrophilic compounds, including peptides. In the past it has been studied using designed peptide libraries to elucidate major features of its separation mechanism, while comprehensive peptide retention modeling for ERLIC is still lacking. In this work we employed a proteomics-derived ∼170,000 peptide retention datasets to evaluate major ERLIC retention features using the framework of our Sequence-Specific Retention Calculator model. The separation conditions were adjusted to obtain a wider proteome coverage, particularly for non-modified peptides, resulting in a superior separation orthogonality for a 2D LC combination with reversed-phase C18 LC-MS in the second dimension. The SSRCalc ERLIC model presents a consistent theme with the existing ERLIC retention mechanism, reflecting a dependence on peptide orientation and the position of charged and hydrophilic residues across the peptide backbone. R2 values of 0.935 and 0.955 accuracy were demonstrated for the standard interpretable SSRCalc model and machine learning algorithm, respectively. The effects of various PTMs on peptide retention were evaluated in this study, covering spontaneous (oxidation, deamidation) and enzymatic (N-terminal acetylation, phosphorylation, glycosylation) modifications.
Collapse
Affiliation(s)
- Quinn Neale
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, MB R3E 3P4, Canada
| | - Darien Yeung
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, MB R3E 3P4, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Victor Spicer
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, MB R3E 3P4, Canada
| | - Helene Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Oleg Krokhin
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, MB R3E 3P4, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
10
|
Rozans SJ, Moghaddam AS, Pashuck ET. A Streamlined High-Throughput LC-MS Assay for Quantifying Peptide Degradation in Cell Culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617883. [PMID: 39463983 PMCID: PMC11507709 DOI: 10.1101/2024.10.11.617883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Peptides are widely used in biomaterials due to their easy of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell-secreted enzymes, which creates the possibility of utilizing cell-secreted enzymes for tuning cell-material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies. Liquid chromatography-mass spectrometry (LC-MS) is a widely used, powerful methodology that can separate complex mixtures of molecules and quantify numerous analytes within a single run. There are several challenges in using LC-MS for the multiplexed quantification of cell-induced peptide degradation, including the need for non-degradable internal standards and the identification of optimal sample storage conditions. Another problem is that cell culture media and biological samples typically contain both proteins and lipids that can accumulate on chromatography columns and degrade their performance. However, removing these constituents can be expensive, time consuming, and increases sample variability. Here we show that directly injecting samples onto the LC-MS without any purification enables rapid and accurate quantification of peptide concentration, and that hundreds of LC-MS runs can be done on a single column without a significantly diminish the ability to quantify the degradation of peptide libraries. We also show that column failure is evident when hydrophilic peptides fail to be retained on the column, and this can be easily identified using standard peptide mixtures for column benchmarking. In total, this work introduces a simple and effective method for simultaneously quantifying the degradation of dozens of peptides in cell culture. By providing a streamlined and cost-effective method for the direct quantification of peptide degradation in complex biological samples, this work enables more efficient assessment of peptide stability and functionality, facilitating the development of advanced biomaterials and peptide-based therapies.
Collapse
Affiliation(s)
- Samuel J Rozans
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA, 18015
| | | | - E Thomas Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA, 18015
| |
Collapse
|
11
|
Serafimov K, Knappe C, Li F, Sievers-Engler A, Lämmerhofer M. Solving the retention time repeatability problem of hydrophilic interaction liquid chromatography. J Chromatogr A 2024; 1730:465060. [PMID: 38861823 DOI: 10.1016/j.chroma.2024.465060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Hydrophilic interaction (liquid) chromatography (HILIC) has become the first choice LC mode for the separation of hydrophilic analytes. Numerous studies reported the poor retention time repeatability of HILIC. The problem was often ascribed to slow equilibration and insufficient re-equilibration time to establish the sensitive semi-immobilized water layer at the interface of the polar stationary phase and the bulk mobile phase. In this study, we compare retention time repeatability in HILIC for borosilicate glass and PFA (co-polymer of tetrafluoroethylene and perfluoroalkoxyethylene) solvent bottles. During this study, we observed peak patterns shifting towards higher retention times (for metabolites and peptides) and lower retention times (oligonucleotide sample) with ongoing analysis time when standard borosilicate glass bottles were used as solvent reservoirs. It was hypothesized that release of ions (sodium, potassium, borate, etc.) from the borosilicate glass bottles leads to alterations (thickness and electrostatic screening effects) in the semi-immobilized water layer which is adsorbed to the polar stationary phase surface under acetonitrile-rich eluents in HILIC with concomitant shifts in retention. When PFA solvent bottles were employed instead of borosilicate glass, retention time repeatability was greatly improved and changed from average 8.4 % RSD for the tested metabolites with borosilicate glass bottles to 0.14 % RSD for the PFA solvent bottles (30 injections over 12 h). Similar improvements were observed for peptides and oligonucleotides. This simple solution to the retention time repeatability problem in HILIC might contribute to a better acceptance of HILIC, especially in fields like targeted and untargeted metabolomics, peptide and oligonucleotide analysis.
Collapse
Affiliation(s)
- Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Cornelius Knappe
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Feiyang Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Adrian Sievers-Engler
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
12
|
Lardeux H, Stavenhagen K, Paris C, Dueholm R, Kurek C, De Maria L, Gnerlich F, Leek T, Czechtizky W, Guillarme D, Jora M. Unravelling the Link between Oligonucleotide Structure and Diastereomer Separation in Hydrophilic Interaction Chromatography. Anal Chem 2024; 96:9994-10002. [PMID: 38855895 PMCID: PMC11190878 DOI: 10.1021/acs.analchem.4c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Therapeutic oligonucleotides (ONs) commonly incorporate phosphorothioate (PS) modifications. These introduce chiral centers and generate ON diastereomers. The increasing number of ONs undergoing clinical trials and reaching the market has led to a growing interest to better characterize the ON diastereomer composition, especially for small interfering ribonucleic acids (siRNAs). In this study, and for the first time, we identify higher-order structures as the major cause of ON diastereomer separation in hydrophilic interaction chromatography (HILIC). We have used conformational predictions and melting profiles of several representative full-length ONs to first analyze ON folding and then run mass spectrometry and HILIC to underpin the link between their folding and diastereomer separation. On top, we show how one can either enhance or suppress diastereomer separation depending on chromatographic settings, such as column temperature, pore size, stationary phase, mobile-phase ionic strength, and organic modifier. This work will significantly facilitate future HILIC-based characterization of PS-containing ONs; e.g., enabling monitoring of batch-to-batch diastereomer distributions in full-length siRNAs, a complex task that is now for the first time shown as possible on this delicate class of therapeutic double-stranded ONs.
Collapse
Affiliation(s)
- Honorine Lardeux
- School
of Pharmaceutical Sciences, University of
Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Kathrin Stavenhagen
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Clément Paris
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Rikke Dueholm
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Camille Kurek
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Leonardo De Maria
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Felix Gnerlich
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Tomas Leek
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Werngard Czechtizky
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of
Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Manasses Jora
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| |
Collapse
|
13
|
Cheng XD, Zhang Z, Dai XX, Li YP. Retention behavior of nucleosides and nucleobases on a 3 μm undecylenic acid-functionalized silica column in per aqueous liquid chromatography and hydrophilic interaction liquid chromatography separation modes. J Chromatogr A 2024; 1721:464833. [PMID: 38555828 DOI: 10.1016/j.chroma.2024.464833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
A 3 μm undecylenic acid-functionalized stationary phase (UAS) was prepared for the separation of nucleosides and nucleobases using per aqueous liquid chromatography (PALC) and hydrophilic interaction liquid chromatography (HILIC). The retention behaviors of nucleosides and nucleobases in PALC and HILIC modes were explored by adjusting parameters such as water content, buffer concentration, pH of the mobile phase and column temperature. The experimental data and separation chromatogram demonstrated that PALC could provide retention comparable to that of HILIC for nucleosides and nucleobases. Comparative studies using diluted adenosine solutions evaluated theoretical plates and peak shape for the same retention factors (between 0.25 and 5.0) in PALC and HILIC. There was no buffer component in the mobile phases used to operate the comparisons. HILIC mode is more efficient for adenosine than PALC mode at low retention factors. It's the exact opposite phenomenon for high retention factors. It is proposed that the mass transfer of adenosine between the UAS, the water-rich layer and the ACN-rich mobile phase in HILIC is relatively slow. Given the significant use of toxic ACN in HILIC, PALC emerges as a safer and more effective alternative for separating nucleosides and nucleobases.
Collapse
Affiliation(s)
- Xiao-Dong Cheng
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Zheng Zhang
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan 430015, China; Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Xue-Xin Dai
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Yun-Ping Li
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China
| |
Collapse
|
14
|
Dörfel D, Rohn S, Jantzen E. Electrostatic Repulsion Hydrophilic Interaction Liquid Chromatography (ERLIC) for the Quantitative Analysis of Polyamines. J Chromatogr A 2024; 1720:464820. [PMID: 38507872 DOI: 10.1016/j.chroma.2024.464820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Highly polar low molecular weight organic molecules are still very challenging to analyze by liquid chromatography. Yet, with the steadily increasing application of metabolomics and similar approaches in chemical analysis, separating polar compounds might be even more important. However, almost all established liquid chromatography techniques (i.e., normal and reversed phase, hydrophilic interaction liquid chromatography (HILIC), ion chromatography) struggle with either carry-over, low sensitivity, or a lack of retention. For improving these shortcomings, electrostatic repulsion hydrophilic interaction chromatography (ERLIC) might be an alternative. By combining a HILIC mobile phase, that is highly organic with a low water content, and an ion exchange column, a distinct layer system develops. When the analyte's charge is of the same direction as the stationary phase, retention and elution are determined by two antagonistic forces: electrostatic repulsion and hydrophilicity. One prominent group of challenging polar analytes are the polyamines cadaverine, putrescine, spermidine, and spermine. Carrying charges from +2 to +4 at physiological pH, these compounds are essential cell constituents and found in all living organisms. However, they are still notoriously challenging to analyze via the established liquid chromatography methods. In the present work, an ERLIC tandem mass spectrometry method has been exemplarily developed, optimized, and validated for the quantitative determination of cadaverine, putrescine, spermidine, and spermine. This method enables symmetrical peak shapes and good separation of analytes with different charges while simultaneously selectively detecting the co-eluting diamines by MS/MS. Furthermore, high linearity (R > 0.998) and sensitivity (LODs ≤ 2 ng/mL) have been proven. Thus, ERLIC may be interesting for both targeted and untargeted analysis approaches of highly charged low molecular weight organic molecules.
Collapse
Affiliation(s)
- Dominik Dörfel
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany; Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav Meyer Allee 25, 13355 Berlin, Germany.
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav Meyer Allee 25, 13355 Berlin, Germany
| | - Eckard Jantzen
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany
| |
Collapse
|
15
|
Yang Y, Li Y, Long Z, Han L, Quan K, Chen J, Liu X, Qiu H. A C4-modified bipyridinium multi-mode stationary phase for reversed phase, hydrophilic interaction and ion exchange chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6286-6293. [PMID: 37965679 DOI: 10.1039/d3ay01796f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A novel C4-modified bipyridinium stationary phase (Sil-DPC4) was prepared and characterized by elemental analysis (EA) and Fourier transform infrared spectrometry (FT-IR) and further investigated for multi-mode liquid chromatography. The chromatographic performances of Sil-DPC4 were evaluated by reversed-phase chromatography using polycyclic aromatic hydrocarbons (PAHs), phenylamines and phenols, hydrophilic interaction chromatography using nucleosides and nucleobases, and ion exchange chromatography using inorganic ions and organic ions. The effects of the acetonitrile content, salt concentration and pH value of the mobile phase on the retention of Sil-DPC4 were also investigated. Sil-DPC4 showed multiple retention mechanisms including π-π, hydrophobic and electrostatic interactions for PAHs, phenylamines and phenols compared with a dipyridine modified silica stationary phase (Sil-DP) and C18 in RPLC, faster separation for nucleosides and nucleobases compared with Sil-DP, and higher hydrophilicity than HILIC in HILIC, and stronger retention and better separation ability for inorganic ions and organic ions in comparison to Sil-DP in IEC. Besides, Sil-DPC4 was used successfully to detect iodide in artificial seawater and had the potential to analyze radionuclide iodine-131 in seawater. In conclusion, multiple retention mechanisms of Sil-DPC4 could make it have potential applications in complex samples.
Collapse
Affiliation(s)
- Yali Yang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yan Li
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi 830000, China
| | - Zelong Long
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi 830000, China
| | - Lingling Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
16
|
Delafield DG, Miles HN, Ricke WA, Li L. Inclusion of Porous Graphitic Carbon Chromatography Yields Greater Protein Identification and Compartment and Process Coverage and Enables More Reflective Protein-Level Label-Free Quantitation. J Proteome Res 2023; 22:3508-3518. [PMID: 37815119 PMCID: PMC10732698 DOI: 10.1021/acs.jproteome.3c00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The ubiquity of mass spectrometry-based bottom-up proteomic analyses as a component of biological investigation mandates the validation of methodologies that increase acquisition efficiency, improve sample coverage, and enhance profiling depth. Chromatographic separation is often ignored as an area of potential improvement, with most analyses relying on traditional reversed-phase liquid chromatography (RPLC); this consistent reliance on a single chromatographic paradigm fundamentally limits our view of the observable proteome. Herein, we build upon early reports and validate porous graphitic carbon chromatography (PGC) as a facile means to substantially enhance proteomic coverage without changes to sample preparation, instrument configuration, or acquisition methods. Analysis of offline fractionated cell line digests using both separations revealed an increase in peptide and protein identifications by 43% and 24%, respectively. Increased identifications provided more comprehensive coverage of cellular components and biological processes independent of protein abundance, highlighting the substantial quantity of proteomic information that may go undetected in standard analyses. We further utilize these data to reveal that label-free quantitative analyses using RPLC separations alone may not be reflective of actual protein constituency. Together, these data highlight the value and comprehension offered through PGC-MS proteomic analyses. RAW proteomic data have been uploaded to the MassIVE repository with the primary accession code MSV000091495.
Collapse
Affiliation(s)
- Daniel G. Delafield
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Hannah N. Miles
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
| | - William A. Ricke
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- George M. O’Brien Urology Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
17
|
Cai T, Sun X, Chen J, Qiu H. Tetraethylenepentamine-derived carbon dots and tetraethylenepentamine co-immobilized silica stationary phase for hydrophilic interaction chromatography. J Chromatogr A 2023; 1707:464325. [PMID: 37639850 DOI: 10.1016/j.chroma.2023.464325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
In this work, tetraethylenepentamine (TEPA) was used as precursor and reaction medium to prepare tetraethylenepentamine-functionalized carbon dots (TEPACDs), the resultant mixture was subsequently silanized and then grafted on the surface of bare silica. The obtained tetraethylenepentamine-functionalized carbon dots and tetraethylenepentamine co-modified silica stationary phase (Sil-TEPA/CDs) was characterized by multiple ways, such as Fourier transformed infrared spectroscopy (FTIR), elemental analysis and transmission electron microscope, which revealed the successful preparation of the mixed stationary phase and higher density of functional groups on co-modified stationary phase than precursor single-modified stationary phase. The synergistic effect of TEPACDs and TEPA was proved by comparing the separation performance of Sil-TEPA/CDs and Sil-TEPA toward amino acids, nucleosides, and nucleobases, which distinctly enhanced the selectivity of Sil-TEPA/CDs. Thus, 12 nucleosides and nucleobases and 11 amino acids was nicely separated on Sil-TEPA/CDs. By study the influences of the changes of mobile phase composition, mobile phase buffer concentration and buffer pH on the retention behaviors of Sil-TEPA and Sil-TEPA/CDs, it was found that both hydrophilic partitioning and adsorption of analytes on Sil-TEPA/CDs were enhanced benefit from the co-existence of TEPA and TEPACDs, which provided the analytes better separation performance. By comparing the column quality of Sil-TEPA/CDs with four commercially available columns, Sil-TEPA/CDs exhibited the best peak asymmetry of 0.98, and second best column efficiency of 43895 m-1 using guanosine as analyte. The RSD (n = 9) of the retention times of five selected analytes on Sil-TEPA/CDs were within 0.30-0.61% during 40 h of continuously elution, which implied excellent stability of prepared packing material.
Collapse
Affiliation(s)
- Tianpei Cai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, China
| | - Xiaoyu Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Guo Y, Baran D. Hydrophilic Partitioning or Surface Adsorption? A Quantitative Assessment of Retention Mechanisms for Hydrophilic Interaction Chromatography (HILIC). Molecules 2023; 28:6459. [PMID: 37764235 PMCID: PMC10535837 DOI: 10.3390/molecules28186459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Retention mechanisms in HILIC have been investigated and reported in literature. However, the current understanding of retention mechanisms is qualitative and lacks quantitative details. Previously, mechanism elucidation was based on indirect evidence, and unambiguous assignment of retention mechanisms has not been reported based on direct data. This study aims to quantitatively determine the contributions of two major retention mechanisms in HILIC, hydrophilic partitioning and surface adsorption to the overall retention of neutral compounds. Using the methodologies we developed previously, the phase ratio for adsorbed water layer and distribution coefficients were measured and used to calculate the retention factors contributed by hydrophilic partitioning. The methodology allows the determination of the contribution of surface adsorption simultaneously. The evaluation of five test compounds demonstrates that the retention may be controlled by hydrophilic partitioning, surface adsorption or both depending on compound characteristics. Quantitative assessment of retention mechanisms also makes it possible to better understand the effect of acetonitrile on retention in HILIC.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, Florham Park, NJ 07932, USA
| | | |
Collapse
|
19
|
Cheng XD, Zhang Z, Li YP. A facile approach to undecylenic acid-functionalized stationary phases for per aqueous liquid chromatography. Anal Chim Acta 2023; 1265:341337. [PMID: 37230580 DOI: 10.1016/j.aca.2023.341337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Green chromatography techniques using low-toxic mobile phase are getting increasingly attention in recent years. The core is developing stationary phases that possess adequate retention and separation under the mobile phase of high content water. Using thiol-ene click chemistry, an undecylenic acid-bonded silica stationary phase (UAS) was prepared in a facile manner. Elemental analysis (EA), solid-state 13C NMR spectroscopy and Fourier transform infrared spectrometry (FT-IR) confirmed the successful preparation of UAS. The synthesized UAS was employed for per aqueous liquid chromatography (PALC), which uses little organic solvent during separation. Due to the hydrophilic carboxy, thioether group and hydrophobic alkyl chains of the UAS, various categories of compounds (including nucleobases, nucleosides, organic acids and basic compounds) with different properties can achieve enhanced separation under the mobile phase of high content water compared with commercial C18 and silica stationary phases. Overall, our present UAS stationary phase shows excellent separation ability toward highly polar compounds and meets the requirements of green chromatography.
Collapse
Affiliation(s)
- Xiao-Dong Cheng
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China.
| | - Zheng Zhang
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, 430015, China; Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yun-Ping Li
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China
| |
Collapse
|
20
|
Prieto-Blanco MC, Planas-Franco A, Muniategui-Lorenzo S, González-Castro MJ. Mixed-mode chromatography of mixed functionalized analytes as the homologues of benzalkonium chloride. Application to pharmaceutical formulations. Talanta 2023; 255:124228. [PMID: 36587429 DOI: 10.1016/j.talanta.2022.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
In this work, a retention behavior based on mixed-mode reversed-phase (RP)/hydrophilic interaction liquid chromatography (HILIC) was observed for benzalkonium chloride (BAK) using a core-shell column functionalized with biphenyl groups. Although in the literature, the U-shaped retention was reported for polar compounds in mixed functionalized phases, in the present work, the behavior was dependent upon the chemical structure of the analyte with mixed functionality (ammonium group, a benzyl group and an alkyl chain) and on the high selectivity of the chromatographic column. The bimodal retention was observed for the four BAK homologues using a content of acetonitrile from 65 to 95% in the mobile phase. The data were adjusted to polynomial equations which allow for modeling and predicting the U-shaped retention. The salt concentration (50 and 100 mM), anion (formate and acetate) and cation (ammonium and triethylammonium) of the salt, pH (4 and 5) in the mobile phase were studied in order to understand their influence on the two retention modes. Significant electrostatic interactions were involved in the two retention modes, especially with a content of acetonitrile higher that 90%. Linear relationships between the retention factors of the four homologues were found in a wide range of %acetonitrile when the salt and triethylamine concentration, pH and nature of salt were changed. The differences found on the retention of the homologues, when increasing the alkyl chain length, were more significant in the RP mode due to predominant hydrophobic interactions. A pH decrease and a salt concentration increase caused a retention decrease for both modes. A decrease on of the retention was observed when acetate anion was replaced by formate anion. The different order of the polynomial equations according to the used mobile phase confirmed its relevant role in the interactions with the analytes and stationary phase. A mobile phase was selected (85% acetonitrile, pH 4 and 100 mM ammonium formate) for the BAK determination in cutaneous, otic and ophthalmic formulations with different active pharmaceutical ingredients and excipients. Low sample volume (500 μL) and short analysis time (<5 min) were some of the advantages of the proposed method. In addition, good analytical performance (R2 > 0.999, % RSD <4.5% for intra-day precision and <5.8% for inter-day precision, and recoveries in the 92-105% range) was obtained.
Collapse
Affiliation(s)
- María Carmen Prieto-Blanco
- Universidade da Coruña, Grupo QANAP, Instituto Universitario de Medio Ambiente (IUMA), Departamento de Química, Facultade de Ciencias, Zapateira, 15071, A Coruña, Spain.
| | - Angela Planas-Franco
- Universidade da Coruña, Grupo QANAP, Instituto Universitario de Medio Ambiente (IUMA), Departamento de Química, Facultade de Ciencias, Zapateira, 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- Universidade da Coruña, Grupo QANAP, Instituto Universitario de Medio Ambiente (IUMA), Departamento de Química, Facultade de Ciencias, Zapateira, 15071, A Coruña, Spain
| | - María José González-Castro
- Universidade da Coruña, Grupo QANAP, Instituto Universitario de Medio Ambiente (IUMA), Departamento de Química, Facultade de Ciencias, Zapateira, 15071, A Coruña, Spain
| |
Collapse
|
21
|
Cost-Effective Simultaneous Determination of τ- and π-Methylhistidine in Dairy Bovine Plasma from Large Cohort Studies Using Hydrophilic Interaction Ultra-High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. SEPARATIONS 2023. [DOI: 10.3390/separations10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The isomeric metabolites τ- and π-methylhistidine (formerly referred to as 3- and 1-methylhistidine) are known biomarkers for muscle protein breakdown and meat protein intake, frequently used in studies involving humans and animals. In the present study, we report the development and validation of a simple HILIC-MS/MS method for individual determination of τ-MH and π-MH in a large cohort of blood plasma samples from dairy cows. Their separate determination was achieved mainly through a mass spectrometry fragment ion study, which revealed that the two isomers exhibited distinct mass spectrometric behaviors at different collision energies. Chromatographic conditions were optimised to achieve better separation, minimizing inter-channel interference to less than 1% in both directions. A simple and effective sample clean-up method facilitated low laboratory manual workload. The analytical method was validated for the determination of τ-MH and π-MH in bovine plasma within a concentration range of 80 to 1600 μg/L and provided good linearity (>0.99 for both curves) and precision (<10%). Overall, the developed method enabled the determination of the two isomers in an efficient and economic-friendly manner suitable for large cohort bovine studies (involving hundreds to thousands of samples) mainly to provide data for statistical use.
Collapse
|
22
|
Evaluation of Hold-Up Volume Determination Methods and Markers in Hydrophilic Interaction Liquid Chromatography. Molecules 2023; 28:molecules28031372. [PMID: 36771038 PMCID: PMC9920175 DOI: 10.3390/molecules28031372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Common methods for hold-up time and volume determination in Reversed-Phase Liquid Chromatography (RPLC) have been tested for Hydrophilic Interaction Liquid Chromatography (HILIC). A zwitterionic ZIC-HILIC column has been used for the testing. The pycnometric determination method, based on differences in column weight when filled with water or organic solvent, provides the overall volume of solvent inside the column. This includes the volume of eluent semi-sorbed on the packing of the column, which acts as the main stationary phase. The homologous series approach, based on the retention behavior of homologues in relation to their molecular volume, allows the determination of accurate hold-up volumes. However, the application of this method is time-consuming. In some cases, large neutral markers with poor dipolarity/polarizability and hydrogen bonding interactions can be used as hold-up volume markers. This is the case of dodecylbenzene and nonadecane-2-one in clearly HILIC behaving chromatographic systems, the use of decanophenone as a marker can be even extended to the boundary between HILIC and RPLC. The elution volume of the marker remains nearly unaffected by the concentration of ammonium acetate in the mobile phase up to 20 mM. The injection of pure solvents to produce minor base-line disturbance as hold-up markers is strongly discouraged, since solvent peaks are complex to interpret and depend on the ionic strength of the eluent.
Collapse
|
23
|
Delafield DG, Miles HN, Ricke WA, Li L. Higher Temperature Porous Graphitic Carbon Separations Differentially Impact Distinct Glycopeptide Classes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:64-74. [PMID: 36450095 PMCID: PMC9812930 DOI: 10.1021/jasms.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mass spectrometry-based discovery glycoproteomics is highly dependent on the use of chromatography paradigms amenable to analyte retention and separation. When compared against established stationary phases such as reversed-phase and hydrophilic interaction liquid chromatography, reports utilizing porous graphitic carbon have detailed its numerous advantages. Recent efforts have highlighted the utility in porous graphitic carbon in high-throughput glycoproteomics, principally through enhanced profiling depth and liquid-phase resolution at higher column temperatures. However, increasing column temperature has been shown to impart disparaging effects in glycopeptide identification. Herein we further elucidate this trend, describing qualitative and semiquantitative effects of increased column temperature on glycopeptide identification rates, signal intensity, resolution, and spectral count linear response. Through analysis of enriched bovine and human glycopeptides, species with high mannose and sialylated glycans were shown to most significantly benefit and suffer from high column temperatures, respectively. These results provide insight as to how porous graphitic carbon separations may be appropriately leveraged for glycopeptide identification while raising concerns over quantitative and semiquantitative label-free comparisons as the temperature changes. RAW MS glycoproteomic data are available via ProteomeXchange with identifier PXD034354.
Collapse
Affiliation(s)
- Daniel G. Delafield
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Hannah N. Miles
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
| | - William A. Ricke
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
- George M. O’Brien Urology Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
| |
Collapse
|
24
|
Yang SH, Choi H. Simultaneous determination of nereistoxin insecticides in foods of animal origins by combining pH-dependent reversible partitioning with hydrophilic interaction chromatography-mass spectrometry. Sci Rep 2022; 12:10208. [PMID: 35715575 PMCID: PMC9205972 DOI: 10.1038/s41598-022-14520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Although nereistoxin insecticides (NIs) are banned for animal husbandry operations, they are still used because of their high insecticidal activities. Therefore, a reliable residue analysis method for the simultaneous detection of cartap, bensultap, thiocyclam, and nereistoxin in foods of animal origins, including beef, pork, chicken, milk, and eggs, was developed using hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-LC-MS/MS). The NIs were extracted with an acidic cysteine and formate buffer solution and hydrolyzed to nereistoxin. The molarity and pH of the buffer were optimized at 20 mM and 3, respectively, to keep the pH of the extracts at 4-5. pH-dependent acid-base partitioning coupled with salting-out-assisted liquid-liquid extraction using acetonitrile was performed for purification and for the direct introduction of the extracts to LC. The optimal pH values were 5 and 9 for the acid-base partitioning. Nereistoxin quantitation was achieved with consistent column retention (RSD < 0.6%) and a high degree of separation (N > 106). The matrix-dependent method limit of quantitation was 2 μg nereistoxin/kg, and the calibration curve showed good linearity (R2 > 0.998). The recovery efficiencies were in the range of 89.2-109.9% with relative standard deviations less than 10%, and matrix effects did not exceed ± 10%, which satisfied the criteria outlined in the European SANTE/12682/2019 guidelines.
Collapse
Affiliation(s)
- Seung-Hyun Yang
- Department of Life and Environmental Sciences, Wonkwang University, Iksan, 54538, Republic of Korea.,Institute of Life Science and Natural Resources, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hoon Choi
- Department of Life and Environmental Sciences, Wonkwang University, Iksan, 54538, Republic of Korea. .,Institute of Life Science and Natural Resources, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
25
|
Redan BW, Morrissey TR, Rolfe CA, Aguilar VL, Skinner GE, Reddy NR. Rapid detection and quantitation of dipicolinic acid from Clostridium botulinum spores using mixed-mode liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2022; 414:2767-2774. [PMID: 35106614 PMCID: PMC9109463 DOI: 10.1007/s00216-022-03926-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
Abstract
Analysis of the dipicolinic acid (DPA) released from Clostridium botulinum spores during thermal processing is crucial to obtaining a mechanistic understanding of the factors involved in spore heat resistance and related food safety applications. Here, we developed a novel mixed-mode liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detection of the DPA released from C. botulinum type A, nonproteolytic types B and F strains, and nonpathogenic surrogate Clostridium sporogenes PA3679 spores. DPA was retained on a mixed-mode C18/anion exchange column and was detected using electrospray ionization (ESI) positive mode within a 4-min analysis time. The intraday and interday precision (%CV) was 1.94-3.46% and 4.04-8.28%, respectively. Matrix effects were minimal across proteolytic type A Giorgio-A, nonproteolytic types QC-B and 202-F, and C. sporogenes PA3679 spore suspensions (90.1-114% of spiked DPA concentrations). DPA recovery in carrot juice and beef broth ranged from 105 to 118%, indicating limited matrix effects of these food products. Experiments that assessed the DPA released from Giorgio-A spores over the course of a 5-min thermal treatment at 108 °C found a significant correlation (R = 0.907; P < 0.05) between the log reduction of spores and amount of DPA released. This mixed-mode LC-MS/MS method provides a means for rapid detection of DPA released from C. botulinum spores during thermal processing and has the potential to be used for experiments in the field of food safety that assess the thermal resistance characteristics of various C. botulinum spore types.
Collapse
Affiliation(s)
- Benjamin W Redan
- Division of Food Processing Science and Technology, Office of Food Safety, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL, USA.
| | - Travis R Morrissey
- Division of Food Processing Science and Technology, Office of Food Safety, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL, USA
| | - Catherine A Rolfe
- Division of Food Processing Science and Technology, Office of Food Safety, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL, USA
| | - Viviana L Aguilar
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, IL, USA
| | - Guy E Skinner
- Multi-Component Foods, Food Process Evaluation Team, Office of Food Safety, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, MD, USA
| | - N Rukma Reddy
- Division of Food Processing Science and Technology, Office of Food Safety, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL, USA
| |
Collapse
|
26
|
Hosseinkhani F, Huang L, Dubbelman AC, Guled F, Harms AC, Hankemeier T. Systematic Evaluation of HILIC Stationary Phases for Global Metabolomics of Human Plasma. Metabolites 2022; 12:metabo12020165. [PMID: 35208239 PMCID: PMC8875576 DOI: 10.3390/metabo12020165] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Polar hydrophilic metabolites have been identified as important actors in many biochemical pathways. Despite continuous improvement and refinement of hydrophilic interaction liquid chromatography (HILIC) platforms, its application in global polar metabolomics has been underutilized. In this study, we aimed to systematically evaluate polar stationary phases for untargeted metabolomics by using HILIC columns (neutral and zwitterionic) that have been exploited widely in targeted approaches. To do so, high-resolution mass spectrometry was applied to thoroughly investigate selectivity, repeatability and matrix effect at three pH conditions for 9 classes of polar compounds using 54 authentic standards and plasma matrix. The column performance for utilization in untargeted metabolomics was assessed using plasma samples with diverse phenotypes. Our results indicate that the ZIC-c HILIC column operated at neutral pH exhibited several advantages, including superior performance for different classes of compounds, better isomer separation, repeatability and high metabolic coverage. Regardless of the column type, the retention of inorganic ions in plasma leads to extensive adduct formation and co-elution with analytes, which results in ion-suppression as part of the overall plasma matrix effect. In ZIC-c HILIC, the sodium chloride ion effect was particularly observed for amino acids and amine classes. Successful performance of HILIC for separation of plasma samples with different phenotypes highlights this mode of separation as a valuable approach in global profiling of plasma sample and discovering the metabolic changes associated with health and disease.
Collapse
|
27
|
Guo Y. A Survey of Polar Stationary Phases for Hydrophilic Interaction Chromatography and Recent Progress in Understanding Retention and Selectivity. Biomed Chromatogr 2022; 36:e5332. [PMID: 35001408 DOI: 10.1002/bmc.5332] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
Various polar stationary phases have become available for hydrophilic interaction chromatography (HILIC) and help drive continuous applications in biomedical, environmental and pharmaceutical areas in the past decade. Although the stationary phases for HILIC have been reviewed previously, it is an appropriate time to take another look at the progresses during the past five years. The current review provides an overview of the polar stationary phases commercially available for HILIC applications in an effort to assist scientists in selecting suitable columns. New types of stationary phase that were published in literature in the past five years are summarized and discussed. The trend in stationary phase research and development is also highlighted. Of particular interest is the experimental evidence for direct interactions of polar analytes with the ligands of the stationary phases under HILIC conditions. In addition, two different approaches have been developed to delineate the relative significance of the partitioning and adsorption mechanisms in HILIC, representing an important advancement in our understanding of the retention mechanisms in HILIC.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, New Jersey, USA
| |
Collapse
|
28
|
Impact of HILIC Amino-Based Column Equilibration Conditions on the Analysis of Chitooligosaccharides. Chromatographia 2022. [DOI: 10.1007/s10337-021-04109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Relative significance of hydrophilic partitioning and surface adsorption to the retention of polar compounds in hydrophilic interaction chromatography. Anal Chim Acta 2021; 1184:339025. [PMID: 34625265 DOI: 10.1016/j.aca.2021.339025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022]
Abstract
It is commonly acknowledged that the retention of non-ionized polar analytes on polar stationary phases is governed by hydrophilic partitioning and surface adsorption. However, it has been difficult to evaluate whether partitioning or adsorption is the dominant mechanism for a specific polar compound on a polar stationary phase. We have developed a simple method based on the thermodynamic principle of partitioning to quantitatively investigate the retention contributed by the partitioning or adsorption mechanism. By varying phase ratio through changing salt concentration in the mobile phase, we were able to determine the distribution coefficients of cytosine between the adsorbed water layer and the mobile phase containing various levels of acetonitrile. The retention factors of cytosine attributed to partitioning and adsorption were quantitatively determined. The results demonstrate that the dominant retention mechanism for cytosine is hydrophilic partitioning on ZIC-HILIC, XBridge Amide and LUNA-HILIC columns.
Collapse
|
30
|
Guerreiro F, Swedrowska M, Patel R, Flórez-Fernández N, Torres MD, Rosa da Costa AM, Forbes B, Grenha A. Engineering of konjac glucomannan into respirable microparticles for delivery of antitubercular drugs. Int J Pharm 2021; 604:120731. [PMID: 34029661 DOI: 10.1016/j.ijpharm.2021.120731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 11/25/2022]
Abstract
Few medically-approved excipients are available for formulation strategies to endow microcarriers with improved performance in lung drug targeting. Konjac glucomannan (KGM) is a novel, biocompatible material, comprising mannose units potentially inducing macrophage uptake for the treatment of macrophage-mediated diseases. This work investigated spray-dried KGM microparticles as inhalable carriers of model antitubercular drugs, isoniazid (INH) and rifabutin (RFB). The polymer was characterised and different polymer/drug ratios tested in the production of microparticles for which respirability was assessed in vitro. The swelling of KGM microparticles and release of drugs in simulated lung fluid were characterised and the biodegradability in presence of β-mannosidase, a lung hydrolase, determined. KGM microparticles were drug loaded with 66-91% association efficiency and had aerodynamic diameter around 3 µm, which enables deep lung penetration. The microparticles swelled upon liquid contact by 40-50% but underwent size reduction (>62% in 90 min) in presence of β-mannosidase, indicating biodegradability. Finally, drug release was tested showing slower release of RFB compared with INH but complete release of both within 24 h. This work identifies KGM as a biodegradable polymer of natural origin that can be engineered to encapsulate and release drugs in respirable microparticles with physical and chemical macrophage-targeting properties.
Collapse
Affiliation(s)
- Filipa Guerreiro
- Centre for Marine Sciences (CCMar), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Magda Swedrowska
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK.
| | - Roshnee Patel
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK.
| | - Noelia Flórez-Fernández
- Centre for Marine Sciences (CCMar), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Department of Chemical Engineering, University of Vigo, Faculty of Sciences, As Lagoas, Ourense 32004, Spain.
| | - María Dolores Torres
- Department of Chemical Engineering, University of Vigo, Faculty of Sciences, As Lagoas, Ourense 32004, Spain.
| | - Ana M Rosa da Costa
- Algarve Chemistry Research Centre (CIQA), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
| | - Ben Forbes
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK.
| | - Ana Grenha
- Centre for Marine Sciences (CCMar), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal.
| |
Collapse
|
31
|
Grybinik S, Dousa M, Bosakova Z. Separation of pharmaceutically active compounds by multimodal chromatography with ultraviolet detection. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sofiya Grybinik
- Department of Analytical Chemistry Faculty of Science Charles University Prague 2 Czech Republic
| | | | - Zuzana Bosakova
- Department of Analytical Chemistry Faculty of Science Charles University Prague 2 Czech Republic
| |
Collapse
|
32
|
Binh VN, Hue VTP, Ha PTT. Peak shape enhancement using diethylamine in hydrophilic liquid interaction chromatography: Application in simultaneous determination of methionine and paracetamol. J Pharm Biomed Anal 2021; 203:114214. [PMID: 34153937 DOI: 10.1016/j.jpba.2021.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/20/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022]
Abstract
Methionine (MET) is combined with paracetamol (PAR) in a pain relief soft capsule in order to prevent the haematologic damage of paracetamol. A hydrophillic liquid chromatographic (HILIC) method was developed for simultaneous determination of PAR and MET in the combined formulation. Various analytical conditions were investigated, and the final method was chosen using silica column (150 × 4,6 mm; 5 μm), mobile phase of acetonitrile - aqueous solution of 10 mM formic acid 5 mM diethylamine (60:40, v/v), UV detection at 254 nm for PAR and 210 nm for MET. The method was validated according to ICH guidelines in terms of selectivity, linearity, accuracy, precision and robustness. The method was successfully applied for quantitation of both compounds in soft capsule preparations bought from the market. Notably, in this study, a novel approach was proposed to improve peak shape of amino acid - a problem often observed in HILIC. The addition of diethylamine to mobile phase shortened the retention time of MET and significantly improved peak shape on both silica and cyano columns, due to electrostatic interaction competition and silanol end-capping effect. The result of this research demonstrated the advantages of HILIC in simultaneous analysis of a polar compound amino acid, especially in combination with a less polar substance. The use of diethylamine as a mobile phase modifier to enhance peak shape is a new suggestion that can be used in further studies on amino acid analysis by HILIC.
Collapse
Affiliation(s)
- Vu Ngan Binh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam
| | - Vu Thi Phuong Hue
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam
| | - Pham Thi Thanh Ha
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam.
| |
Collapse
|
33
|
Nuckowski Ł, Dzieszkowski K, Rafiński Z, Studzińska S. Application of Magnetic Nanoparticles Coated with Crosslinked Zwitterionic Poly(ionic liquid)s for the Extraction of Oligonucleotides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3146. [PMID: 34201146 PMCID: PMC8226603 DOI: 10.3390/ma14123146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles coated with zwitterionic poly(ionic liquid)s were applied for dispersive solid-phase extraction of oligonucleotides. The materials were synthesized by miniemulsion copolymerization of ionic liquids and divinylbenzene on magnetic nanoparticles. The functional monomers contain a positively charged imidazolium ring and one of the anionic groups: derivatives of acetate, malonate, or butyl sulfonate ions. Adsorption of unmodified DNA oligonucleotide on obtained materials was possible in ion-exchange (IE) and hydrophilic interactions (HI) mode. The adsorption in IE was possible at low pH and was almost complete. The adsorption in HI mode required the usage of appropriate addition of organic solvent but did not provide full adsorption. Studies on the desorption of the analytes included determining the impact of ammonium acetate concentration and pH and organic solvents addition on the recovery. The material containing acetic fragments as an anionic group was selected for the final procedure with the use of 10 mM ammonium acetate (pH = 9.5)/methanol (50/50, v/v) as an elution solution. The magnetic dispersive solid-phase extraction procedure was tested for the oligonucleotides with various modifications and lengths. Moreover, it was applied to extract DNA oligonucleotide and its synthetic metabolites from enriched human plasma without any pre-purification, with recoveries greater than 80%.
Collapse
Affiliation(s)
- Łukasz Nuckowski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland;
| | - Krzysztof Dzieszkowski
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; (K.D.); (Z.R.)
| | - Zbigniew Rafiński
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; (K.D.); (Z.R.)
| | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland;
| |
Collapse
|
34
|
González-Rubio S, Ballesteros-Gómez A, Carreras D, Muñoz G, Rubio S. A comprehensive study on the performance of different retention mechanisms in sport drug testing by liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122821. [PMID: 34229166 DOI: 10.1016/j.jchromb.2021.122821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/27/2022]
Abstract
Anti-doping substances listed by the World Anti-Doping Agency (WADA) include hundreds of compounds of very different physico-chemical properties. Anti-doping control laboratories need to screen all these substances in the so-called Initial Testing Procedures (ITPs) what is very challenging from an analytical point of view. ITPs are mostly based on reversed-phase (RP) liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) using C18 columns, which feature poor retention and peak tailing for polar and basic compounds, respectively. While studies on this field dealing with the comparison of stationary phases are focused on certain chemical classes, this research provides a wide multi-target approach. For this purpose, a representative group of 93 anti-doping agents (log P from -2.4 to 9.2) included in ten different classes of prohibited substances was selected. A comprehensive study on the performance of six columns and four eluents on different separation parameters (retention factors, asymmetry factors, co-elutions, total run times) and matrix effects (signal enhancement or suppression) was performed for LC-MS/MS-based ITPs. Columns working in both RP [C18, C8, phenyl hexyl (PH), pentafluorophenyl (PFP) and mixed-mode hydrophilic/RP (HILIC-RP)) and hydrophilic (HILIC)] modes were investigated. Eluents contained methanol or acetonitrile as organic modifiers, with or without the addition of ammonium acetate. The best column-mobile phase binomial for ITPs was PFP using water-methanol (0.1% formic acid) as eluent, while HILIC was the best option for highly polar non-aromatic anti-doping agents, which were poorly addressed by PFP. Excellent good peak shapes and relative acceptable matrix interferences were obtained for HILIC-RP, which was tested for the first time for the analysis of anti-doping agents, although the number of compounds eluting too fast was too high. On the whole, the alkyl phase C18 showed the worst performance and although C8 and PH were better, their performance did not surpass that of PFP. Possible retention mechanisms underlying separation in the different stationary phases were discussed. This research provides valuable information to anti-doping control labs for improving LC-MS/MS-based ITPs and it proposes PFP as a suitable alternative to the already established C18.
Collapse
Affiliation(s)
- Soledad González-Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071 Córdoba, Spain
| | - Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071 Córdoba, Spain.
| | - Daniel Carreras
- Anti-doping Control Laboratory, Spanish Agency of Health Protection in Sport (AEPSAD), Spain
| | - Gloria Muñoz
- Anti-doping Control Laboratory, Spanish Agency of Health Protection in Sport (AEPSAD), Spain
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
35
|
Cui Y, Tabang DN, Zhang Z, Ma M, Alpert AJ, Li L. Counterion Optimization Dramatically Improves Selectivity for Phosphopeptides and Glycopeptides in Electrostatic Repulsion-Hydrophilic Interaction Chromatography. Anal Chem 2021; 93:7908-7916. [PMID: 34042420 DOI: 10.1021/acs.analchem.1c00615] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A well-hydrated counterion can selectively and dramatically increase retention of a charged analyte in hydrophilic interaction chromatography. The effect is enhanced if the column is charged, as in electrostatic repulsion-hydrophilic interaction chromatography (ERLIC). This combination was exploited in proteomics for the isolation of peptides with certain post-translational modifications (PTMs). The best salt additive examined was magnesium trifluoroacetate. The well-hydrated Mg+2 ion promoted retention of peptides with functional groups that retained negative charge at low pH, while the poorly hydrated trifluoroacetate counterion tuned down the retention due to the basic residues. The result was an enhancement in selectivity ranging from 6- to 66-fold. These conditions were applied to a tryptic digest of mouse cortex. Gradient elution produced fractions enriched in peptides with phosphate, mannose-6-phosphate, and N- and O-linked glycans. The numbers of such peptides identified either equaled or exceeded the numbers afforded by the best alternative methods. This method is a productive and convenient way to isolate peptides simultaneously that contain a number of different PTMs, facilitating study of proteins with "crosstalk" modifications. The fractions from the ERLIC column were desalted prior to C-18-reversed phase liquid chromatography-tandem mass spectrometry analysis. Between 47-100% of the peptides with more than one phosphate or sialyl residue or with a mannose-6 phosphate group were not retained by a C-18 cartridge but were retained by a cartridge of porous graphitic carbon. This finding implies that the abundance of such peptides may have been significantly underestimated in some past studies.
Collapse
Affiliation(s)
- Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dylan Nicholas Tabang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zishan Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Andrew J Alpert
- PolyLC Inc., 9151 Rumsey Road, ste. 180, Columbia, Maryland 21045, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| |
Collapse
|
36
|
Abbas NS, Mohamed YAS, Derayea SM, Omar MA, Saleh GA. Simple TLC-spectrodensitometric method for studying lipophilicity and quantitative analysis of hypoglycemic drugs in their binary mixture. Biomed Chromatogr 2021; 35:e5154. [PMID: 33955025 DOI: 10.1002/bmc.5154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022]
Abstract
A selective and simple salting-out-assisted thin-layer chromatographic methodology was developed for the simultaneous determination of two oral hypoglycemic drugs, dapagliflozin (DAPA) and metformin (MET) in their pure forms, tablets and spiked human plasma samples. Silica gel 60 F254 plates were used in the separation of the two drugs using a mobile phase consisting of 0.5 m (NH4 )2 SO4 and methanol (3:7, v/v). The plates were scanned in the reflectance mode at λmax = 237 nm. The obtained retardation factor (Rf ) values for DAPA and MET were 0.77 ± 0.02 and 0.25 ± 0.02, respectively. The thin-layer chromatography method was validated according to International Conference on Harmonization guidelines. The peak areas were linearly increased with the increases in concentrations of 45-1,000 and 50-1,500 ng/band for DAPA and MET, respectively. Moreover, the method was applied to estimate the molecular lipophilicity parameters of DAPA and MET via retention data. The suggested method was efficiently utilized for the analysis of DAPA and MET in pharmaceutical tablets and plasma samples with recoveries 98.4-100.4 and RSDs in the ranges of 1.4-2.6 and 2.2-3.0% for DAPA and MET, respectively.
Collapse
Affiliation(s)
- Noha S Abbas
- Ministry of Health and Population, Assiut, Egypt
| | - Yahya Abduh Salim Mohamed
- Department of Medicinal and Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sana'a University, 464414, Yemen
| | - Sayed M Derayea
- Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, 61519, Egypt
| | - Mahmoud A Omar
- Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, 61519, Egypt.,Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Gamal A Saleh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
37
|
Kwiezinski C, Weller C, van Pinxteren D, Brüggemann M, Mertes S, Stratmann F, Herrmann H. Determination of highly polar compounds in atmospheric aerosol particles at ultra-trace levels using ion chromatography Orbitrap mass spectrometry. J Sep Sci 2021; 44:2343-2357. [PMID: 33822470 DOI: 10.1002/jssc.202001048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/05/2021] [Accepted: 04/02/2021] [Indexed: 11/09/2022]
Abstract
A method using ion chromatography coupled to high-resolution Orbitrap mass spectrometry was developed to quantify highly-polar organic compounds in aqueous filter extracts of atmospheric particles. In total, 43 compounds, including short-chain carboxylic acids, terpene-derived acids, organosulfates, and inorganic anions were separated within 33 min by a KOH gradient. Ionization by electrospray was maximized by adding 100 µL min-1 isopropanol as post-column solvent and optimizing the ion source settings. Detection limits (S/N ≥ 3) were in the range of 0.075-25 μg L-1 and better than previously reported for 22 compounds. Recoveries of extraction typically range from 85 to 117%. The developed method was applied to three ambient samples, including two arctic flight samples, and one sample from Melpitz, a continental backround research site. A total of 32 different compounds were identified for all samples. From the arctic flight samples, organic tracers could be quantified for the first time with concentrations ranging from 0.1 to 17.8 ng m-3 . Due to the minimal sample preparation, the beneficial figures of merit, and the broad range of accessible compounds, including very polar ones, the new method offers advantages over existing ones and enables a detailed analysis of organic marker compounds in atmospheric aerosol particles.
Collapse
Affiliation(s)
- Carlo Kwiezinski
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | | | - Dominik van Pinxteren
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Martin Brüggemann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Stephan Mertes
- Experimental Aerosol and Cloud Microphysics Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Frank Stratmann
- Experimental Aerosol and Cloud Microphysics Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| |
Collapse
|
38
|
Kartsova LA, Somova VD, Bessonova EA. Determination of Zoledronic Acid and Creatinine by Hydrophilic Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821020106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Coradin M, Mendoza MR, Sidoli S, Alpert AJ, Lu C, Garcia BA. Bullet points to evaluate the performance of the middle-down proteomics workflow for histone modification analysis. Methods 2020; 184:86-92. [PMID: 32070774 PMCID: PMC7727281 DOI: 10.1016/j.ymeth.2020.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Middle-down proteomics has emerged as the method of choice to study combinatorial histone post translational modifications (PTMs). In the common bottom-up workflow, histones are digested into relatively short peptides (4-20 aa), separated using reversed-phase chromatography and analyzed using typical proteomics methods in mass spectrometry. In middle-down, histones are cleaved into longer polypeptides (50-60 aa) mostly corresponding to their N-terminal tails, resolved using weak cation exchange-hydrophilic interaction liquid chromatography (WCX-HILIC) and analyzed with less conventional mass spectrometry, i.e. using Electron Transfer Dissociation (ETD) for analyte fragmentation. Middle-down is not nearly as utilized as bottom-up for PTM analysis, partially due to its limited reproducibility and robustness. This has also limited the establishment of rigorous benchmarks to discriminate good vs poor quality experiments. Here, we describe critical aspects of the middle-down workflow to assist the user in evaluating the presence of biased and misleading results. Specifically, we tested the use of porous graphitic carbon (PGC) during the desalting step, demonstrating that desalting using only C18 material leads to sample loss. We also tested different salts in the WCX-HILIC buffers for their effect on retention, selectivity, and reproducibility of analysis of variants of histone tail fragments, in particular replacing ammonium ion with ethylenediammonium ion in buffer A. These substitutions had marked effects on selectivity and retention. Our results provide a streamlined way to evaluate middle-down performance to identify and quantify combinatorial histone PTMs.
Collapse
Affiliation(s)
- Mariel Coradin
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Congcong Lu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Redón L, Subirats X, Rosés M. HILIC characterization: Estimation of phase volumes and composition for a zwitterionic column. Anal Chim Acta 2020; 1130:39-48. [DOI: 10.1016/j.aca.2020.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 12/23/2022]
|
41
|
Crha T, Pazourek J. Rapid HPLC Method for Determination of Isomaltulose in the Presence of Glucose, Sucrose, and Maltodextrins in Dietary Supplements. Foods 2020; 9:foods9091164. [PMID: 32846904 PMCID: PMC7555359 DOI: 10.3390/foods9091164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
This paper presents a rapid HPLC method for the separation of isomaltulose (also known as Palatinose) from other common edible carbohydrates such as sucrose, glucose, and maltodextrins, which are commonly present in food and dietary supplements. This method was applied to determine isomaltulose in selected food supplements for special diets and athletic performance. Due to the selectivity of the separation system, this method can also be used for rapid profiling analysis of mono-, di-, and oligosaccharides in food.
Collapse
|
42
|
Ferri M, Bäurer S, Carotti A, Wolter M, Alshaar B, Theiner J, Ikegami T, West C, Lämmerhofer M. Fragment-based Design of Zwitterionic, Strong Cation- and Weak Anion-Exchange Type Mixed-mode Liquid Chromatography Ligands and their Chromatographic Exploration. J Chromatogr A 2020; 1621:461075. [DOI: 10.1016/j.chroma.2020.461075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
|
43
|
Taniguchi A, Tamura S, Ikegami T. The relationship between polymer structures on silica particles and the separation characteristics of the corresponding columns for hydrophilic interaction chromatography. J Chromatogr A 2020; 1618:460837. [DOI: 10.1016/j.chroma.2019.460837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 11/26/2022]
|
44
|
van der Burgt YEM, Siliakus KM, Cobbaert CM, Ruhaak LR. HILIC-MRM-MS for Linkage-Specific Separation of Sialylated Glycopeptides to Quantify Prostate-Specific Antigen Proteoforms. J Proteome Res 2020; 19:2708-2716. [PMID: 32142289 PMCID: PMC8280738 DOI: 10.1021/acs.jproteome.0c00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Elevated serum prostate-specific
antigen (PSA) levels in body fluids
may indicate prostate cancer (PCa), but it is noted that the clinical
performance is rather poor. Specificity and sensitivity values of
20 and 94% at a cutoff value of 4.1 ng/mL, respectively, result in
overdiagnosis and unnecessary interventions. Previous exploratory
studies have indicated that the glycosylation of PSA potentially leads
to improved PCa diagnosis based on qualitative analyses. However,
the applied methods are not suited for a quantitative evaluation or
implementation in a medical laboratory. Therefore, in this proof-of-principle
study, we have evaluated the use of hydrophilic interaction liquid
chromatography (HILIC) in combination with targeted quantitative mass
spectrometry for the sialic acid linkage-specific analysis of PSA
glyco-proteoforms based on either trypsin or ArgC peptides. The efficiency
of PSA proteolysis was optimized as well as the glycopeptide separation
conditions (buffer type, strength, and pH). The HILIC-based analysis
of PSA glyco-proteoforms presented here has the potential for the
clinical validation of patient cohorts. The method shows the feasibility
of the use of a HILIC stationary phase for the separation of isomeric
glycopeptides to detect specific glyco-proteoforms. This is the first
step toward the development and evaluation of PSA glyco-proteoforms
for use in a clinical chemistry setting aiming for improved PCa diagnosis
or screening.
Collapse
Affiliation(s)
- Yuri E M van der Burgt
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Kasper M Siliakus
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
45
|
Fu X, Cebo M, Ikegami T, Lämmerhofer M. Separation of carbohydrate isomers and anomers on poly-N-(1H-tetrazole-5-yl)-methacrylamide-bonded stationary phase by hydrophilic interaction chromatography as well as determination of anomer interconversion energy barriers. J Chromatogr A 2020; 1620:460981. [PMID: 32115232 DOI: 10.1016/j.chroma.2020.460981] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/31/2022]
Abstract
A new commercially available HPLC column, poly-N-(1H-tetrazole-5-yl)-methacrylamide-bonded stationary phase (Daicel DCpak PTZ), was systematically evaluated for its carbohydrate isomer separation capability by hydrophilic interaction liquid chromatography (HILIC) with charged aerosol detection (CAD) or (tandem) mass spectrometry. Reducing sugars tend to split into two anomer peaks which makes carbohydrate isomer separations in non-derivatized form even more complicated. For practical purposes anomer separations are therefore ideally suppressed which can be accomplished by using high temperature or high pH that are both associated with fast interconversion kinetics leading to peak coalescence, or on the other hand by conditions with low chromatographic anomer selectivity. Four major hexoses (glucose, mannose, galactose, fructose), five main pentoses (ribose, ribulose, xylose, xylulose, arabinose) and five most important disaccharides (maltose, cellobiose, lactose, sucrose, trehalose) were analyzed as single carbohydrate standards by isocratic HILIC with 0.1% (v/v) formic acid and 2 mM ammonium acetate at various temperatures to study anomer interconversion equilibria in a pH-dependent manner. Rate constants of forward (α→β) and backward (β→α) anomerization and corresponding energy barriers were calculated. The energy barriers of anomerisation were in the range of around 83-91 kJ mol-1 at 298 K and the difference between forward (α→β) and backward reaction (β→α) was typically between 1-3 kJ mol-1. The systematic studies finally allowed to pick conditions for the simultaneous analysis of all 14 carbohydrates by HILIC-ESI-MS(/MS) with PTZ in gradient elution mode. A combination of carbohydrate isomer-selective LC (with PTZ), tandem MS (with carbohydrate group-selective MS1 and some species-specific SRM transitions) and a simple deconvolution strategy allowed the determination of all carbohydrates of the complex test mixture except for the disaccharide pair lactose and maltose (which can be determined as sum). Consequently, the proposed method represents a successful step towards a global glycometabolomics profiling method of mono- and disaccharides by HILIC-ESI-MS/MS.
Collapse
Affiliation(s)
- Xiaoqing Fu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Malgorzata Cebo
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tohru Ikegami
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Department of Materials Synthesis, Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
46
|
Schulze B, Bader T, Seitz W, Winzenbacher R. Column bleed in the analysis of highly polar substances: an overlooked aspect in HRMS. Anal Bioanal Chem 2020; 412:4837-4847. [DOI: 10.1007/s00216-020-02387-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
|
47
|
Khanal DD, Thakur N, Wahab MF, Armstrong DW. Enhancing the selectivity of polar hydrophilic analytes with a low concentration of barium ions in the mobile phase using geopolymers and silica supports. Talanta 2020; 207:120339. [PMID: 31594594 DOI: 10.1016/j.talanta.2019.120339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/18/2022]
Abstract
Charged analytes such as organic sulfonic acids, sulfates, carboxylates, and phosphates are often analyzed by hydrophilic interaction liquid chromatography (HILIC). In many cases, these analytes do not show any selectivity and elute near the dead time using the conventional acetonitrile-ammonium acetate buffers. In this work, we introduce a powerful selectivity enhancing technique by using a trace amount of Ba2+ ion in the mobile phase as a general approach for HILIC with UV-Vis detection. Silica and a newly developed material called geopolymers are used as stationary phases. Geopolymers are X-ray amorphous aluminosilicate inorganic polymers with cation exchange properties. Barium exchanged geopolymers (Ba-NM-GP) are synthesized from metakaolin based geopolymer. Thorough characterization of Ba-NM-GP is reported using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Brunauer-Emmett-Teller (BET) surface area analyzer and laser diffraction particle size distribution analyzer for the determination of their shape, size, porosity, surface area and particle size distribution respectively. It is demonstrated that in the absence of Ba2+, baseline separations of sulfonates, carboxylates, and phosphates is not possible, whereas, in the presence of Ba2+ in the mobile phase, these analytes are easily separated. Barium perchlorate is suggested as an additive for it is UV transparent, and it has practically an unlimited solubility in acetonitrile.
Collapse
Affiliation(s)
- Durga D Khanal
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Texas, 76019, USA
| | - Nimisha Thakur
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Texas, 76019, USA
| | - M Farooq Wahab
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Texas, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Texas, 76019, USA.
| |
Collapse
|
48
|
Fu X, Cebo M, Ikegami T, Lämmerhofer M. Retention characteristics of poly(N-(1H-tetrazole-5-yl)-methacrylamide)-bonded stationary phase in hydrophilic interaction chromatography. J Chromatogr A 2020; 1609:460500. [DOI: 10.1016/j.chroma.2019.460500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
|
49
|
Sonnenberg RA, Naz S, Cougnaud L, Vuckovic D. Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma. J Chromatogr A 2019; 1608:460419. [DOI: 10.1016/j.chroma.2019.460419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023]
|
50
|
Cui Y, Yang K, Tabang DN, Huang J, Tang W, Li L. Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2491-2501. [PMID: 31286442 PMCID: PMC6917886 DOI: 10.1007/s13361-019-02230-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 05/30/2023]
Abstract
Simultaneous enrichment of glyco- and phosphopeptides will benefit the studies of biological processes regulated by these posttranslational modifications (PTMs). It will also reveal potential crosstalk between these two ubiquitous PTMs. Unlike custom-designed multifunctional solid phase extraction (SPE) materials, operating strong anion exchange (SAX) resin in electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) mode provides a readily available strategy to analytical labs for enrichment of these PTMs for subsequent mass spectrometry (MS)-based characterization. However, the choice of mobile phase has largely relied on empirical rules from hydrophilic interaction chromatography (HILIC) or ion-exchange chromatography (IEX) without further optimization and adjustments. In this study, ten mobile phase compositions of ERLIC were systematically compared; the impact of multiple factors including organic phase proportion, ion pairing reagent, pH, and salt on the retention of glycosylated and phosphorylated peptides was evaluated. This study demonstrated good enrichment of glyco- and phosphopeptides from the nonmodified peptides in a complex tryptic digest. Moreover, the enriched glyco- and phosphopeptides elute in different fractions by orthogonal retention mechanisms of hydrophilic interaction and electrostatic interaction in ERLIC, maximizing the LC-MS identification of each PTM. The optimized mobile phase can be adapted to the ERLIC HPLC system, where the high resolution in separating multiple PTMs will benefit large-scale MS-based PTM profiling and in-depth characterization.
Collapse
Affiliation(s)
- Yusi Cui
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Ka Yang
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | | | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | - Weiping Tang
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|