1
|
Rao Z, Yan Y, Cai W, Wang R, Wang Z, Long F, Ma Y, Fu C. Achieving remarkable piezo-photocatalytic activity in Sr 2Bi 4Ti 5O 18/BiOCl sandwich ferroelectric heterojunction with continuous semi-coherent interfaces via selective etching of Aurivillius perovskite solid. J Colloid Interface Sci 2025; 694:137705. [PMID: 40315561 DOI: 10.1016/j.jcis.2025.137705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Constructing ferroelectric hetrojuction and utilizing its piezo-photocatalytic performances is a promising approach for environmental remediation and sustainable energy conversion. However, challenges such as electron-hole recombination and interfacial instability limit the performance of piezoelectric heterojunction photocatalysts. In this study, a novel sandwich-structured heterojunction with a lattice-matched interface constructed by Sr2Bi4Ti5O18 (SBTO) bismuth Aurivillius phase ferroelectric material and BiOCl (BOC) was developed via a selective etching strategy. This approach minimizes interfacial defects and stress, while ferroelectric polarization modulates charge distribution, enhancing redox activity. Finite element simulations and experimental results demonstrate that the SBTO/BOC heterojunction leverages intrinsic and interfacial electric fields to form dual electron transport pathways, significantly improving charge separation in both bulk and interface regions. The optimized SBTO/BOC heterojunction achieves a piezo-photocatalytic degradation rate of 0.285 min-1 for Rhodamine B, approximately twice that of Sr2Bi4Ti5O18 under piezo-photocatalysis (0.147 min-1) and 13 times higher than photocatalysis alone (0.022 min-1). The heterostructure also efficiently degrades dyes, antibiotics, and Cr(VI), offering a robust design for high-performance piezo-photocatalytic systems.
Collapse
Affiliation(s)
- Zeping Rao
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Yan Yan
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Wei Cai
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, PR China; Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, PR China.
| | - Rong Wang
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Zhenhua Wang
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, PR China; Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, PR China
| | - Fei Long
- The 26th Institute of China Electronic Technology Group Corporation, Chongqing 400060, PR China
| | - Yilong Ma
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, PR China; School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Chunlin Fu
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, PR China; Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, PR China.
| |
Collapse
|
2
|
Yuan L, Zhang H, Yu H, Xu R, Zhang W, Zhang Y, Hua M, Lv L, Pan B. Machine Learning Reveals Key Adsorption Mechanisms for Oxyanions Based on Combination of Experimental and Published Literature Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:11401-11413. [PMID: 40435361 DOI: 10.1021/acs.est.5c03992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The development of new adsorbents for water treatment often involves complex adsorption mechanisms, whose individual contributions are unclear, thereby limiting the understanding of adsorption driving forces, making it difficult to achieve precise design of adsorbents. Machine learning (ML) has been used to uncover the impacts of these mechanisms through feature engineering, but progress is limited by the data quality for training. Herein, we developed a universal ML strategy for precisely predicting the adsorption capacity of polymers for oxyanions and identifying the adsorption driving force based on the combination of experimental and published literature data. The adsorption mechanism was explored through classification of RDkit descriptors with different SHAP importance values, and electrostatic interaction was found to be the driving force in the oxyanion adsorption process, which was further verified by theoretical calculations, adsorption experiments, and effective targeted adsorbent design. In comparison, analysis relying on a separate literature data source led to decreased model performance, some biased conclusions, and invalid targeted adsorbent design. Overall, this study proposed a strategy for data set optimization as well as dominant mechanism identification, which could shed light on better treatment of oxyanions in wastewater.
Collapse
Affiliation(s)
- Ling Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Han Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rongming Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yanyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Akintayo DC, Yusuf TL, Mabuba N. Chalcogenide Materials in Water Purification: Advances in Adsorptive and Photocatalytic Removal of Organic Pollutants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501378. [PMID: 40434237 DOI: 10.1002/smll.202501378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/09/2025] [Indexed: 05/29/2025]
Abstract
Chalcogenide-based materials, known for their unique physicochemical properties, emerge as promising solutions for the removal of hazardous organic pollutants, such as dyes, pharmaceuticals, pesticides, and herbicides, from water and wastewater. This review examines the latest developments in the synthesis, structural optimization, and application of chalcogenide materials for environmental remediation. The past decade has witnessed remarkable advances in controlling the composition and structure of chalcogenide materials at the atomic level. The development of precise synthetic methods enables the creation of complex hierarchical structures, heterojunctions, and hybrid materials, leading to significant improvements in photocatalytic efficiency, stability, and selectivity for various environmental applications. Key emphasis is placed on adsorption and photocatalysis as green technologies, offering efficient pathways for pollutant removal. Mechanistic insights into the interactions between chalcogenide materials and contaminants are explored, providing a comprehensive understanding of their performance. Furthermore, challenges such as toxicity, scalability, and operational stability are discussed alongside future prospects for integrating these materials into industrial-scale water treatment systems. This review aims to inspire continued innovation in sustainable water purification technologies using chalcogenides.
Collapse
Affiliation(s)
- Damilola Caleb Akintayo
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Tunde Lewis Yusuf
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Nonhlangabezo Mabuba
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
- Center for Nanomaterials Science Research, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| |
Collapse
|
4
|
Huang Kong ED, Lai CW, Juan JC, Pang YL, Khe CS, Badruddin IA, Gapsari F, Anam K. Recent advances in titanium dioxide bio-derived carbon photocatalysts for organic pollutant degradation in wastewater. iScience 2025; 28:112368. [PMID: 40352735 PMCID: PMC12063124 DOI: 10.1016/j.isci.2025.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Water pollution from organic pollutants such as dyes and pharmaceuticals poses severe threats to ecosystems and human health, demanding effective remediation strategies. Conventional water treatment methods fall short in eliminating these contaminants, prompting interest in photocatalysis, which uses light energy to degrade pollutants into harmless substances such as carbon dioxide and water. This sustainable approach offers efficient pollutant removal with recyclable photocatalysts but faces challenges such as rapid charge recombination and limited electron-hole migration. Research aims to enhance photocatalytic efficiency under UV, visible, and solar light through metal doping and binary oxide systems, particularly titanium dioxide, which improves charge carrier migration and delays recombination. Coupling titanium dioxide with bio-derived carbon shows promise in enhancing electron-hole separation and visible light absorption. This review explores advances in photocatalyst synthesis, degradation mechanisms, adsorption reactions, and economic value of bioderived photocatalysts, emphasizing the potential of photocatalysis for efficient wastewater treatment.
Collapse
Affiliation(s)
- Ethan Dern Huang Kong
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, MT Haryono 167, Malang 65145, Indonesia
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor 43000, Malaysia
| | - Cheng Seong Khe
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Femiana Gapsari
- Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, MT Haryono 167, Malang 65145, Indonesia
| | - Khairul Anam
- Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, MT Haryono 167, Malang 65145, Indonesia
| |
Collapse
|
5
|
Cruz-Quesada G, García-Ruíz C, López-Ramón MV, Fernández-Poyatos MDP, Velo-Gala I. Carbon-based metal oxide nanocomposites for water treatment by photocatalytic processes. ENVIRONMENTAL RESEARCH 2025; 279:121724. [PMID: 40311908 DOI: 10.1016/j.envres.2025.121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
The increasing contamination of water by emerging contaminants and the need for more efficient and sustainable treatment methods have prompted the exploration of advanced materials and technologies, with a particular focus on photocatalysis. Carbon-based metal oxide nanocomposites are a promising solution for the treatment of polluted water. This paper aims to review the current state of research on the application of these nanocomposites as photocatalysts for complete water treatment, describing breakthroughs in contaminant removal from 2019 through 2024 and milestones in water disinfection from 2016 through 2024. It includes discussion on the utilization of nanocomposites of Metal Oxides (MOs) with carbon materials to improve photocatalytic efficiency and addresses the advantages and drawbacks of these materials, including electron-hole recombination and agglomeration. The review focuses on the photocatalytic mechanisms of these nanocomposites and highlights the importance of heterostructures formed between metal oxides and carbon materials (e.g., graphene, carbon nanotubes, and carbon quantum dots), which enhance light absorption and hydroxyl radical generation, thereby increasing the efficiency of pollutant degradation and water disinfection. The review describes the properties of different MOs (n-type and p-type), exploring synergies between MOs and carbon materials and discussing the benefits and challenges of their application in wastewater treatment and pathogen inactivation. The review ends with a scientometric analysis of research trends in this field.
Collapse
Affiliation(s)
- Guillermo Cruz-Quesada
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaén, Jaén, 23071, Spain
| | - Cristian García-Ruíz
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaén, Jaén, 23071, Spain
| | - María Victoria López-Ramón
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaén, Jaén, 23071, Spain
| | | | - Inmaculada Velo-Gala
- Department of Inorganic Chemistry, Faculty of Farmacy, University of Granada, Granada, 18011, Spain.
| |
Collapse
|
6
|
Liu Q, Deng W, Zhang H, Fang J, Xie Y, Liu C, Han X, Xu X, Zhou Z. Enhanced Photocatalytic Activity of CQDs-Modified Layered g-C 3N 4/Flower-like ZnO Heterojunction for Efficient Degradation of Ciprofloxacin. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:550. [PMID: 40214594 PMCID: PMC11990431 DOI: 10.3390/nano15070550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Photocatalytic degradation has the advantages of high efficiency and stability compared with traditional antibiotic treatment. Therefore, the development of efficient and stable photocatalysts is essential for antibiotic degradation in water treatment. In this study, layered g-C3N4/flower-like ZnO heterojunction loaded with different amounts of CQDs (Cx%CNZO (x = 1, 2, 3, 4)) were precisely synthesized at room temperature. The as-prepared photocatalyst showed enhanced performance in degrading ciprofloxacin (CIP). The heterojunction with CQDs loaded at 3 wt% (C3%CNZO) achieved a 91.0% removal rate of CIP at 120 min under a sunlight simulator illumination, and the photodegradation reaction data were consistent with the first-order kinetic model. In addition, cycling experiments confirmed that the C3%CNZO heterojunction had good reusability and photocatalytic stability after four cycles. According to the experimental results, superoxide radical (•O2-) was the main active species involved in CIP degradation. Furthermore, C3%CNZO was found to conform to a type II electron transfer pathway. Finally, the possible degradation pathways of CIP were analyzed. This work may provide an effective strategy for the removal of various antibiotics in water treatment.
Collapse
Affiliation(s)
- Qing Liu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (Q.L.); (W.D.); (H.Z.); (J.F.); (Y.X.); (C.L.); (X.H.); (Z.Z.)
| | - Wei Deng
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (Q.L.); (W.D.); (H.Z.); (J.F.); (Y.X.); (C.L.); (X.H.); (Z.Z.)
| | - Hai Zhang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (Q.L.); (W.D.); (H.Z.); (J.F.); (Y.X.); (C.L.); (X.H.); (Z.Z.)
| | - Jiajun Fang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (Q.L.); (W.D.); (H.Z.); (J.F.); (Y.X.); (C.L.); (X.H.); (Z.Z.)
| | - Yushi Xie
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (Q.L.); (W.D.); (H.Z.); (J.F.); (Y.X.); (C.L.); (X.H.); (Z.Z.)
| | - Congwen Liu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (Q.L.); (W.D.); (H.Z.); (J.F.); (Y.X.); (C.L.); (X.H.); (Z.Z.)
| | - Xiaochen Han
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (Q.L.); (W.D.); (H.Z.); (J.F.); (Y.X.); (C.L.); (X.H.); (Z.Z.)
| | - Xiaoling Xu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (Q.L.); (W.D.); (H.Z.); (J.F.); (Y.X.); (C.L.); (X.H.); (Z.Z.)
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China
| | - Zuowan Zhou
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (Q.L.); (W.D.); (H.Z.); (J.F.); (Y.X.); (C.L.); (X.H.); (Z.Z.)
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China
| |
Collapse
|
7
|
Liu Z, Chen L, Song Y, Zhong Y, Chen Z, Zhang X, Wang X. Highly efficient PMS activation by synergistic effects of FeS 2/CoS 2 for rapid diuron degradation: Advanced oxidation and mechanism. ENVIRONMENTAL RESEARCH 2025; 270:121015. [PMID: 39892807 DOI: 10.1016/j.envres.2025.121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Diuron is an organic pollutant (herbicide). For the first time, a solvothermal method was used to prepare FeS2/CoS2 catalysts to activate peroxymonosulfate (PMS) for the degradation of diuron. The material characteristics of FeS2/CoS2-3 before and after use were analyzed. The study tested the impact of various factors on the degradation efficiency of diuron in solution. The electron transport phenomenon between FeS2 and CoS2 enhanced the activation efficiency of PMS and increased the degradation rate of diuron. After 8 h of dynamic cycling, FeS2/CoS2-3 could still activate PMS to efficiently degrade diuron. Singlet oxygen (1O2) plays an important role in the degradation of diuron in the presence of hydroxyl radical (OH•), sulfate radical (SO4•-), superoxide radical (O2•-), and high-valent metals. FeS2/CoS2-3 also effectively degraded methylene blue, neutral red, and sulfamethoxazole, and its degradation of diuron in various environments remained effective. The electrostatic potential, molecular bond energy, and frontier molecular orbitals of the diuron molecule were studied for the first time. A variety of potential degradation pathways for diuron were investigated, and the biotoxicity of the resulting intermediates was simulated and assessed. In addition, the primary mechanism by which FeS2/CoS2-3 activates PMS to degrade diuron has been proposed.
Collapse
Affiliation(s)
- Zhechen Liu
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Long Chen
- College of Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yaru Song
- College of Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yuan Zhong
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhangjing Chen
- Department of Sustainable Biomaterials, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Xiaotao Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot, 010018, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrub, Hohhot, 010018, China.
| | - Ximing Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot, 010018, China.
| |
Collapse
|
8
|
Xiang H, Yang Z, Liu X, Lu F, Zhao F, Chai L. Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications. Adv Colloid Interface Sci 2025; 338:103403. [PMID: 39862803 DOI: 10.1016/j.cis.2025.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater. Despite the growing interest in adsorption-based REEs separation, comprehensive reviews of both traditional and novel adsorbents toward REEs recovery remain limited. This review aims to provide a thorough analysis of various adsorbents for the recovery of REEs. The types of adsorbents examined include activated carbons, functionalized silica nanoparticles, and microbial synthetic adsorbents, with a detailed evaluation of their adsorption capacities, selectivity, and regeneration potential. This study focuses on the mechanisms of REEs adsorption, including electrostatic interactions, ion exchange, surface complexation, and surface precipitation, highlighting how surface modifications can enhance REEs recovery efficiency. Future efforts in designing high-performance adsorbents should prioritize the optimization of the density of functional groups to enhance both selectivity and adsorption capacity, while also maintaining a balance between overall capacity, cost, and reusability. The incorporation of covalently bonded functional groups onto mechanically robust adsorbents can significantly strengthen chemical interactions with REEs and improve the structural stability of the adsorbents during reuse. Additionally, the development of materials with high specific surface areas and well-defined porous structures is benifitial to facilitating mass transfer of REEs and maximizing adsorption efficiency. Ultimately, the advancement of the design of efficient, highly selective and recyclable adsorbents is critical for addressing the growing demand for REEs across diverse industrial applications.
Collapse
Affiliation(s)
- Hongrui Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoyun Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Feiyu Lu
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
9
|
Kamel AH, Abd-Rabboh HSM, Abd El-Fattah A, Boudghene Stambouli G, Adeida L. Metal oxides and their composites for the remediation of organic pesticides: advanced photocatalytic and adsorptive solutions. RSC Adv 2025; 15:6875-6901. [PMID: 40035006 PMCID: PMC11873794 DOI: 10.1039/d4ra08149h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/22/2024] [Indexed: 03/05/2025] Open
Abstract
Metal oxide nanoparticles and their composites have garnered significant attention in water treatment and environmental cleanup due to their unique physicochemical properties. These materials exhibit distinct crystalline structures, tunable morphologies, large surface areas, versatile surface chemistry, and widespread availability. These features make nanostructured metal oxides and their composites highly effective for the selective removal of organic pollutants from the environment, either by adsorption or photodegradation. This article focuses on recent advances, challenges, and opportunities in the use of metal oxides and their composites for the targeted removal of organic contaminants, including insecticides, phenolic compounds, organic dyes, and similar pollutants. The discussion encompasses a broad range of metal oxides and their composites, highlighting their diverse structural, crystallographic, and morphological characteristics that influence their adsorption and photocatalytic performance. Emphasis is placed on the photocatalytic and adsorptive capabilities of these materials, including their photo-stimulation properties and mechanisms. Metal oxides are highlighted as outstanding photocatalysts due to their high photodegradation efficiency, cost-effective synthesis methods, and optimized bandgap engineering. This review serves as a valuable resource for researchers exploring the photocatalytic and adsorptive applications of metal oxide-based materials, particularly in the remediation of hazardous organic pollutants such as pesticides.
Collapse
Affiliation(s)
- Ayman H Kamel
- Department of Chemistry, College of Science, University of Bahrain Zallaq P. O. Box 32038 Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Ahmed Abd El-Fattah
- Department of Chemistry, College of Science, University of Bahrain Zallaq P. O. Box 32038 Bahrain
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University Alexandria 21526 Egypt
| | - Ghizlene Boudghene Stambouli
- Department of Chemistry, College of Science, University of Bahrain Zallaq P. O. Box 32038 Bahrain
- Department of Chemistry, Inorganic Chemistry and Environment Laboratory, University of Tlemcen P. O. Box 119 13000 Tlemcen Algeria
| | - Lina Adeida
- Department of Chemistry, College of Science, University of Bahrain Zallaq P. O. Box 32038 Bahrain
- Department of Chemistry, Inorganic Chemistry and Environment Laboratory, University of Tlemcen P. O. Box 119 13000 Tlemcen Algeria
| |
Collapse
|
10
|
Roy N, T N, Paira P, Chakrabarty R. Selenium-based nanomaterials: green and conventional synthesis methods, applications, and advances in dye degradation. RSC Adv 2025; 15:3008-3025. [PMID: 39882004 PMCID: PMC11778245 DOI: 10.1039/d4ra07604d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
The rapidly expanding industrialization and global increase in economic activities have drawn attention to the concerning accumulation of waste. The textile industry plays a significant role in environmental pollution, especially in and water pollution. Harmful dyes used during the fabrication process are mixed with water bodies through sewage or wastewater ejected from industrial factories. These toxic dyes are not only applied in textile industries but also used in other industries like pharmaceutical companies and rubber manufacturing. Therefore, scientists have adopted alternative techniques for the degradation of organic dyes because of eliminating the drawbacks from the traditionally used techniques. Catalytic degradation of organic dyes with the help of a safe and easy nanocatalyst is one of the best alternatives. Accordingly, the use of biomaterials or waste materials offers an easy, cost-effective and eco-friendly approach for the synthesis of such nanocatalysts. Several nanocatalysts have been used for the degradation of dyes present in industrial wastewater. The well-known semi-conductor selenium has several important properties, viz., optoelectronic, photovoltaic, thermoconductivity, and anisotropy, and has drawn significant research attention for its catalytic application in dye degradation. Considering all these points, selenium nanoparticles synthesized via green techniques provide the best possible alternative catalyst for the degradation of organic dyes in industrial wastewater. The current review covers various aspects of the biosynthesis of selenium nanoparticles; their application as a catalyst for the degradation of harmful organic dyes, viz., methylene blue, methyl orange, rhodamine B, alizarin S, malachite green, sunset yellow, fuchsin, safranin T, Congo red, and bromothymol blue; and their mechanism for the degradation process. This review will also shed light on the importance of using green chemistry towards the synthesis of selenium nanoparticles and different biosynthesis procedures and explores all aspects of the interesting catalytic activity towards the dye degradation mechanism. Hence this article will be beneficial to both industrialists and acdemicians bridging the gap between industrial and academic sceintists.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore Tamil Nadu India
| | - Nivedya T
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore Tamil Nadu India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore Tamil Nadu India
| | - Rinku Chakrabarty
- Department of Chemistry, Alipurduar University Alipurduar West Bengal India
| |
Collapse
|
11
|
Hussein SA, Taha GM, Adam FA, Moghazy MA. Three different methods for ZnO-RGO nanocomposite synthesis and its adsorption capacity for methylene blue dye removal in a comparative study. BMC Chem 2025; 19:18. [PMID: 39827167 PMCID: PMC11743050 DOI: 10.1186/s13065-025-01381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Water is one of the vital needs of life. However, due to rapid industrialization, urbanization and lack of awareness, the world population now facing the threat of water shortage. To ensure that future living conditions are preserved, it is crucial to reduce water pollution and protect the ecosystem. Zinc oxide- reduced graphene oxide (ZnO-RGO) nanocomposite is used in this study as an adsorbent for the adsorption of methylene blue (MB) dye from an aqueous solution. An easy strategy was used for the synthesis of reduced graphene oxide nanoparticles (RGO), Zinc oxide nanoparticles (ZnO) and ZnO-RGO nanocomposite. The synthesis of reduced graphene oxide (RGO) was accomplished through the exothermic reaction of a modified Hummer's method. In a novel approach, zinc oxide nanoparticles (ZnO NPs) were synthesized using the green Leidenfrost technique. This study presents a comparative investigation of ZnO-RGO nanocomposite synthesis employing both green and chemical methods. Three distinct approaches were utilized to prepare the ZnO-RGO nanocomposite: (1) the innovative Leidenfrost green method for composite A1, (2) a chemical precipitation method for composite A2, and (3) a physical mixing sonication method for composite A3. This research marks the first application of the Leidenfrost technique in the synthesis of ZnO-RGO nanocomposites, contributing to the growing body of knowledge in this field. X-ray diffraction (XRD), Burnauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), Zeta potential, transmittance electron microscope (TEM) and scanning electron microscope (SEM) analyses are conducted for synthesized sample characterization. Comparing the XRD patterns of the three synthesis methods, it is notable that the intensity peaks of composite A3 were the highest when ZnO was synthesized using a green method, indicating a higher degree of crystallinity. FTIR analysis approves that combining ZnO with RGO affects the functional groups of the three nanocomposite surfaces. The SEM analysis shows ZnO NPs and RGO sheets are incorporated together. In the case of A1 composite sharp angles make a flower shape was observed due to the unique synthesizing method. The surface area for A2 composite is the highest (7.29 m2/g) compared with A1 (2.91 m2/g) and A3(1.90 m2/g). A comparison study is made among the three nanocomposites for MB dye removal. The effect of adsorbent dose, pH, contact time and initial dye concentration on dye adsorption has been studied. The results show that A1 and A2 nanocomposites removed 85.5 and 87.5% of MB at the optimum adsorbent dose of 0.15 g/100 ml at pH8 and A3 removed 95% of MB at the optimum dose of 0.1 g/100 ml at pH 2. All three composites exhibited adherence to the Langmuir isotherm model, with correlation coefficients (R2) of 0.9858, 0.9904, and 0.9959 for A1, A2, and A3, respectively. Kinetic study results demonstrated that the pseudo-second-order model best described the adsorption process for all three composites, yielding R2 values of 0.9998, 0.9988, and 1.0000 for A1, A2, and A3, respectively. The A3 nanocomposite shows the highest adsorption capacity (104.5 mg/g) compared to the other composites (87.7 and 97.5 mg/g for A1 and A2, respectively). Desorption experiments revealed that the dye removal percentages varied with the ratio of the ethanol-water mixture used. Absolute ethanol achieved a 90% removal compared with 1:1 and 1:2 aqueous ethanol solutions (87.5% and 80%, respectively).
Collapse
Affiliation(s)
- Safaa A Hussein
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Gharib M Taha
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - F A Adam
- Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Marwa A Moghazy
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| |
Collapse
|
12
|
Bayça F. Effective removal of rhodamine B dyestuff using colemanite as an adsorbent: Isotherm, kinetic, thermodynamic analysis and mechanism. Heliyon 2025; 11:e40743. [PMID: 39790878 PMCID: PMC11714409 DOI: 10.1016/j.heliyon.2024.e40743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
Removal of Rhodamine B (RhB) from aqueous solutions was performed by the batch adsorption process. Colemanite was characterized as an adsorbent by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF). The effects of contact time, the effect of the initial concentration of the dye, the amount of adsorbent and temperature parameters on the removal of RhB were investigated. Equilibrium adsorption data of RhB on colemanite were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. It was found that the isotherm that showed the highest correlation with experimental data was the Langmuir isotherm. Using the Langmuir isotherm, the theoretical adsorption capacity was calculated as 42.02 mg/g. Adsorption kinetics were analyzed with Pseudo-First-Order, Pseudo-Second-Order and Intraparticle diffusion models. As a result of the calculations, it was determined that the most appropriate kinetic model was the Pseudo-Second-Order kinetic model. Thermodynamic studies have shown that adsorption is a physical, non-spontaneous, exothermic process in which randomness at the solid-liquid interface decreases. According to the results obtained, it can be said that colemanite can be used as a suitable adsorbent in the removal of Rhodamine B dye from wastewater.
Collapse
Affiliation(s)
- Feray Bayça
- Alanya Alaaddin Keykubat University, Rafet Kayis Engineering Faculty, Department of Engineering Basic Science, 07450, Alanya, Antalya, Turkiye
| |
Collapse
|
13
|
Zhou Z, Garg S, Miller CJ, Fu QL, Kinsela AS, Payne TE, Waite TD. Transformation of Natural Organic Matter in Simulated Abiotic Redox Dynamic Environments: Impact on Fe Cycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21604-21616. [PMID: 39587095 DOI: 10.1021/acs.est.4c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Redox fluctuations within redox dynamic environments influence the redox state of natural organic matter (NOM) and its interaction with redox-active elements, such as iron. In this work, we investigate the changes in the molecular composition of NOM during redox fluctuations as well as the impact of these changes on the Fe-NOM interaction employing Suwannee River Dissolved Organic Matter (SRDOM) as a representative NOM. Characterization of SRDOM using X-ray photoelectron spectroscopy and Fourier transform infrared spectrometry showed that irreversible changes occurred following electrochemical reduction and reoxidation of SRDOM in air. Changes in the redox state of SRDOM impacted its interaction with iron with higher rates of Fe(III) reduction in the presence of reduced and reoxidized SRDOM than in the presence of the original SRDOM. The increased rate of Fe(III) reduction in the presence of reduced SRDOM was due to the formation of reduced organic moieties on SRDOM reduction. The Fe(II) oxidation rate also increased in the presence of reduced SRDOM due to the formation of redox-active moieties that were capable of oxidizing Fe(II). Overall, our study provides useful insights into the changes in SRDOM that may occur in redox dynamic environments and the associated impact of these changes on Fe transformations.
Collapse
Affiliation(s)
- Ziqi Zhou
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christopher J Miller
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Andrew S Kinsela
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Timothy E Payne
- Australian Nuclear Science and Technology Organization, Menai, New South Wales 2234, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Fauzi AAB, Chitraningrum N, Budiman I, Subyakto S, Widyaningrum BA, Maheswari CS, Jalil ABA, Hassan NSB, Hata T, Azami MSBM. A state-of-the-art review on lignocellulosic biomass-derived activated carbon for adsorption and photocatalytic degradation of pollutants: a property and mechanistic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64453-64475. [PMID: 39576437 DOI: 10.1007/s11356-024-35589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/14/2024] [Indexed: 12/08/2024]
Abstract
A promising water treatment method involves using biomass-derived activated carbon (AC) to remove emerging pollutants from wastewater due to its adsorption capacity, cost-effectiveness, and sustainability. Notwithstanding, the existing literature lacks comprehensive studies that specifically focus on removing contaminants in water by comparing the effectiveness of adsorption and photocatalytic degradation methods. Additionally, there is not much emphasis on analyzing the combined processes of adsorption-photocatalytic degradation utilizing AC. Herein, this paper investigates the intricacies of adsorption-photocatalytic degradation mechanisms and contributing variables in the enhancement of performances using biomass-derived AC. Furthermore, this review paper presents a comprehensive examination of different biomass sources employed in the synthesis of AC. It also discusses the diverse techniques utilized for the fabrication of AC, including physical and chemical activation methods. Finally, the shortcomings and future prospects of biomass-derived AC have been addressed. This study offers significant insights for the development of future biomass-derived AC, with the goal of improving their efficiency and expanding their uses in wastewater treatment.
Collapse
Affiliation(s)
- Anees Ameera Binti Fauzi
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia
| | - Nidya Chitraningrum
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia.
| | - Ismail Budiman
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia
| | - Subyakto Subyakto
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia
| | - Bernadeta Ayu Widyaningrum
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia
| | - Cinnathambi Subramani Maheswari
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia
| | - Aishah Binti Abd Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Nurul Sahida Binti Hassan
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Toshimitsu Hata
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho Uji, Kyoto, Kyoto, 611-0011, Japan
| | | |
Collapse
|
15
|
Dilika MD, Fanta GM, Tański T. Green Synthesis of Titanium Dioxide Nanoparticles Using Maerua oblongifolia Root Bark Extract: Photocatalytic Degradation and Antibacterial Activities. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5835. [PMID: 39685271 DOI: 10.3390/ma17235835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
The root bark extract of the Maerua oblongifolia plant in the green synthesis of titanium dioxide nanoparticles (TiO2 NPs) for photocatalytic degradation of toxic pollutants and antibacterial activities was implemented in this study. The root bark extract served as a novel capping and reducing agent for the first time. Characterization of the TiO2 NPs was conducted by using visual observation, ultraviolet visible spectrometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques, confirming their successful synthesis. The TiO2 NPs exhibited maximum absorbance at 323 nm and an average particle size of 19.58 nm; the conjugations and existences of Ti-O and OH vibrational bands were revealed by the FTIR spectrum. The photocatalytic activities of the TiO2 NPs were investigated by using solar irradiation as an energy source for aqueous solutions of methyl orange (MO) and methylene blue (MB) dyes. The TiO2 NPs showed strong photocatalytic activities by degrading 97.23% MB and 91.8% MO under optimized conditions. Degradation behavior was investigated by isotherms and kinetics models, with the Langmuir isotherms (R2: 0.996, 0.979) and Langmuir-Hinshelwood (R2: 0.998, 0.997) highest correlation coefficients for MB and MO, respectively. Moreover, the antibacterial efficacy of the green-synthesized TiO2 NPs and the results indicated higher antibacterial activities on Gram-negative bacteria (27 ± 0.52).
Collapse
Affiliation(s)
- Mamo Dikamu Dilika
- Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arba Minch P.O. Box 21, Ethiopia
| | - Gada Muleta Fanta
- Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arba Minch P.O. Box 21, Ethiopia
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia
| | - Tomasz Tański
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
16
|
Rao Z, Cai W, Yan Y, Huang R, Wang F, Wang Z, Gao R, Chen G, Deng X, Lei X, Fu C. Hierarchical Ordered Mesoporous Sr 2Bi 4Ti 5O 18 Microflowers with Rich Oxygen Vacancies In Situ Assembled by Nanosheets for Piezo-Photocatalysis. Inorg Chem 2024; 63:22101-22117. [PMID: 39486040 DOI: 10.1021/acs.inorgchem.4c03520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The Aurivillius phase layered perovskite ferroelectric material Sr2Bi4Ti5O18 (SBTO) exhibits spontaneous polarization and piezoelectric properties, which confer significant potential for piezo-photocatalysis. Its ability to enhance electron-hole separation while providing excellent fatigue resistance positions it as a promising candidate in this field. Defects were introduced to improve the structural polarization and photoelectrochemical properties of SBTO. SBTO nanocrystals, featuring a mixed structure of hierarchically ordered mesoporous microflowers and nanosheets, were successfully synthesized via the hydrothermal method. The SBTO sample synthesized at a lower hydrothermal temperature displayed optimal oxygen vacancy concentration and exhibited superior piezoelectric-photo synergistic degradation activity for organic pollutants. Additionally, corona polarization increases the macroscopic polarization of the SBTO photocatalyst, promoting the separation of photogenerated carriers. Finite element simulations confirmed that a single flower-like SBTO structure generates a higher piezoelectric potential compared to a sheet-like morphology. In conclusion, integrating self-assembled hierarchical structure design, ferroelectric polarization, and defect engineering forms an effective strategy for achieving high-performance SBTO-based layered perovskite piezo-photocatalysts.
Collapse
Affiliation(s)
- Zeping Rao
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Wei Cai
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Yan Yan
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Rui Huang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Fengqi Wang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu 610299, P. R. China
| | - Zhenhua Wang
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Rongli Gao
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Gang Chen
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Xiaoling Deng
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Xiang Lei
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Chunlin Fu
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| |
Collapse
|
17
|
Geetha T, Smitha JK, Sebastian M, Litty MI, Joseph B, Joseph J, Nisha T. Synthesis and characterization of nano iron oxide biochar composite for efficient removal of crystal violet from water. Heliyon 2024; 10:e39450. [PMID: 39553590 PMCID: PMC11565452 DOI: 10.1016/j.heliyon.2024.e39450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
In the present study, Coconut Husk Biochar (CHB) was synthesize from widely available, locally sourced agro waste, coconut husk and characterized using different techniques like scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). CHB was tested for its ability to adsorb crystal violet (CV), a commonly used cationic dye, from water. It was capable of adsorbing more than 98 % of CV from water and follows Freundlich isotherm model with pseudo second order kinetics though the overall process was unfavourable. Moreover, separation of CHB from water after adsorption is a cumbersome process. Thus, unmodified CHB is not suitable for use as an adsorbent for CV. Magnetic nano iron oxide Biochar Composite (MBC) was synthesized by deposition of nano iron oxide (Fe3O4) onto its surface by co-precipitation method and characterized using SEM, XRD and FTIR. SEM analysis provided visual evidence of this deposition which was further confirmed by XRD and FTIR analysis. MBC was also effective in adsorbing more than 90 % of CV from aqueous solution though a decrease in adsorption capacity was observed. Adsorption data followed Langmuir isotherm model and pseudo second order kinetics. MBC is superparamagnetic and is strongly attracted to a small bar magnet, facilitating easy removal from water after CV adsorption.
Collapse
Affiliation(s)
- T. Geetha
- Dept. of Chemistry, Vimala College (Autonomous), Thrissur, Kerala, 680009, India
| | - John K. Smitha
- Dept. of Soil Science and Agricultural Chemistry, Kerala Agriculture University, Thrissur, Kerala, 680656, India
| | - Manju Sebastian
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| | | | - Bincy Joseph
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| | - Jincy Joseph
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| | - T.S. Nisha
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| |
Collapse
|
18
|
Zhang X, Sathiyaseelan A, Zhang L, Lu Y, Jin T, Wang MH. Zirconium and cerium dioxide fabricated activated carbon-based nanocomposites for enhanced adsorption and photocatalytic removal of methylene blue and tetracycline hydrochloride. ENVIRONMENTAL RESEARCH 2024; 261:119720. [PMID: 39096986 DOI: 10.1016/j.envres.2024.119720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Activated carbon (AC) is a porous, amorphous form of carbon known for its strong adsorption capacity, making it highly effective for use in wastewater treatment. In this investigation, AC-based nanocomposites (NCs) loaded with zirconium dioxide and cerium dioxide nanoparticles (ZrO2/CeO2 NPs) were successfully synthesized for the effective elimination of methylene blue (MB) and tetracycline hydrochloride (TCH). The AC-ZrO2/CeO2 NCs have a size of 231.83 nm, a zeta potential of -20.07 mV, and a PDI value of 0.160. The adsorption capacities of AC-ZrO2/CeO2 NCs for MB and TCH were proved in agreement with the Langmuir isotherm and pseudo 1st order kinetic model, respectively. The maximum adsorption capacities were determined to be 75.54 mg/g for MB and 26.75 mg/g for TCH. Notably, AC-ZrO2/CeO2 NCs exhibited superior photocatalytic degradation efficiency for MB and TCH under sunlight irradiation with removal efficiencies reaching up to 97.91% and 82.40% within 90 min, respectively. The t1/2 for the photo-degradation process of MB and TCH were 11.55 min and 44.37 min. Analysis of active species trapping confirmed the involvement of hole (h+), superoxide anion (•O2-), and hydroxyl radical (•OH) in the degradation mechanism. Furthermore, the residual solution post-contaminant removal exhibited minimal toxicity towards Artemia salina and NIH3T3 cells. Importantly, the NCs did not exhibit antibacterial activity against tested pathogens post-absorption/degradation of TCH. Thus, AC-ZrO2/CeO2 NCs could be a promising nanomaterial for wastewater treatment applications.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Tieyan Jin
- College of Food Science and Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
19
|
Gungure AS, Jule LT, Nagaprasad N, Ramaswamy K. Studying the properties of green synthesized silver oxide nanoparticles in the application of organic dye degradation under visible light. Sci Rep 2024; 14:26967. [PMID: 39505895 PMCID: PMC11541536 DOI: 10.1038/s41598-024-75614-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
In present study the green synthesis of silver oxide nanoparticles has been effectively achieved using novel plant extract Phragmanthera Macrosolen. This method provides sustainable alternative for nanoparticle synthesis, demonstrating the potential of Phragmanthera Macrosolen as a reducing and stabilizing agent in the production of Ag2O NPs. The synthesized nanoparticles were characterized for their structural, morphological, and optical properties, confirming their successful formation and potential applications in various fields. The effects of different pH values and annealing temperature of the samples on the properties of Ag2O NPs formations, as well as photo-catalytic activities towards Toluidine Blue dye degradations, were studied. Powder XRD reveals that the crystallite natures of Ag2O NPs a long with crystalline size ranges from 25.85 to 35.90 nm. FIB-SEM and HR-TEM images displayed that the Ag2O NPs as spherical shapes. UV-vis spectroscopy displayed that Ag2O NPs belong to a direct-band gap of 2.1-2.6 eV. FTIR- study shown that the green synthesized Ag2O NPs may be steadied via the interfaces of -OH as well as C = O groups in the carbohydrate, flavonoid, tannin, as well as phenolic acid existing in P. macrosolen L. leaf. The chemical states, electron-hole recombinations and purity of Ag and O in the synthesized Ag2O NPs were confirmed through X-ray Photoelectron Spectroscopy (XPS) and PL analysis respectively. Fascinatingly, the synthesized Ag2O NPs at pH 12 displayed high photo-catalytic degradations for TB dyes. The photo-catalytic degradations of the TB dyes were monitored spectro-photo-metrically in wave-length ranges of 200-900 nm, as well as high efficiency (98.50%) with half-life of 9.5798 min and kinetic rate constant of 0.07234 min-1, was obtained after 45 min of reactions. From this study, it can be concluded that Ag2O NPs synthesized from Phragmanthera Macrosolen aqueous extract are promising in the remediation of environmental pollution and water treatment. In this light, the study reports that Phragmanthera Macrosolen green synthesis of Ag2O NPs can effectively address environmental pollution in cost-effective, eco-friendly, and sustainable ways.
Collapse
Affiliation(s)
- Abel Saka Gungure
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, India
- College of Natural and Computational Science, Department of Physics, Dambi Dollo University, Dembi Dolo, Ethiopia
| | - Leta Tesfaye Jule
- College of Natural and Computational Science, Department of Physics, Dambi Dollo University, Dembi Dolo, Ethiopia.
| | - N Nagaprasad
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai, Tamil Nadu, 625 104, India
| | - Krishnaraj Ramaswamy
- Department of Mechanical Engineering, Dambi Dollo University, Dambi Dollo, Ethiopia.
- Center for global health research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
20
|
Hkiri K, Mohamed HEA, Abodouh MM, Maaza M. Experimental and theoretical insights into the adsorption mechanism of methylene blue on the (002) WO 3 surface. Sci Rep 2024; 14:26991. [PMID: 39506040 PMCID: PMC11541561 DOI: 10.1038/s41598-024-78491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
This work investigates the efficiency of green-synthesized WO3 nanoflakes for the removal of methylene blue dye. The synthesis of WO3 nanoflakes using Hyphaene thebaica fruit extract results in a material with a specific surface area of 13 m2/g and an average pore size of 19.3 nm. A combined theoretical and experimental study exhibits a complete understanding of the MB adsorption mechanism onto WO3 nanoflakes. Adsorption studies revealed a maximum methylene blue adsorption capacity of 78.14 mg/g. The pseudo-second-order model was the best to describe the adsorption kinetics with a correlation coefficient (R2) of 0.99, suggesting chemisorption. The intra-particle diffusion study supported a two-stage process involving surface adsorption and intra-particle diffusion. Molecular dynamic simulations confirmes the electrostatic attraction mechanism between MB and the (002) WO3 surface, with the most favorable adsorption energy calculated as -0.68 eV. The electrokinetic study confirmed that the WO3 nanoflakes have a strongly negative zeta potential of -31.5 mV and a uniform particle size of around 510 nm. The analysis of adsorption isotherms exhibits a complex adsorption mechanism between WO3 and MB, involving both electrostatic attraction and physical adsorption. The WO3 nanoflakes maintained 90% of their adsorption efficiency after five cycles, according to the reusability tests.
Collapse
Affiliation(s)
- Khaoula Hkiri
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate studies, University of South Africa, Pretoria, South Africa
| | - Hamza Elsayed Ahmed Mohamed
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate studies, University of South Africa, Pretoria, South Africa.
| | - Mohamed Mahrous Abodouh
- Energy Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo (AUC), New Cairo, 11835, Egypt
- UNESCO UNISA Africa Chair in Nanosciences & nanotechnology, Pretoria, South Africa
| | - Malik Maaza
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate studies, University of South Africa, Pretoria, South Africa
| |
Collapse
|
21
|
Garg B, Hait P, Basu S. Unlocking solar energy's potential: Dual photocatalytic activities of g-C 3N 4/Sb 2S 3 for hydrogen evolution and tetracycline degradation in sunlight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122403. [PMID: 39244933 DOI: 10.1016/j.jenvman.2024.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
This study focuses on developing a g-C3N4/Sb2S3 heterojunction photocatalyst with different g-C3N4 to Sb2S3 weight ratios (1:1, 1:3, and 3:1) for degrading tetracycline (TC) pollutants. The 1:3 ratio (13 GS) exhibited optimal photocatalytic performance, achieving 99% TC degradation under sunlight within 120 min, compared to 78.4% under visible light and 38% under UV light. The 13 GS catalyst demonstrated strong reusability, maintaining 80% degradation efficiency after six cycles. Scavenger experiments identified hydroxyl radicals as crucial for TC degradation, with DMSO reducing activity by 30%. The photocatalyst also showed high hydrogen production with an apparent quantum efficiency (AQE) of 19.8% under standard conditions, and improved AQE in acidic (23%) and basic (22.7%) conditions, and with CH3OH (23.2%). This g-C3N4/Sb2S3 heterojunction offers a promising solution for degrading toxic contaminants and has the potential for solar-powered applications.
Collapse
Affiliation(s)
- Bhavika Garg
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India
| | - Pritam Hait
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India
| | - Soumen Basu
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India.
| |
Collapse
|
22
|
Liu Z, Zhong Y, Chen L, Chen Z, Ji X, Zhang X, Wang X. Co 3O 4/CuO@C catalyst based on cobalt-doped HKUST-1 as an efficient peroxymonosulfate activator for pendimethalin degradation: Catalysis and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135437. [PMID: 39121735 DOI: 10.1016/j.jhazmat.2024.135437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Pendimethalin (PM) is an organic pollutant (herbicide), and systematic studies on PM degradation are scarce. The efficient degradation of PM in water remains a challenge that requires to be addressed. Herein, for the first time, elemental Co was doped into HKUST-1 using a solvothermal method to generate Co3O4/CuO@C via pyrolysis. The as-prepared catalyst was used to activate peroxymonosulfate (PMS) for PM degradation, obtaining a PM degradation efficiency of 98.2 % after 30 min. The assessment of the effects of various factors on the degradation efficiency revealed that 1O2 dominated PM degradation, whereas the contribution of SO4•- was negligible. Although 3Co3O4/CuO@C exhibited a good degradation performance against other organic pollutants, its degradation performance in real water was poor. The carbon layer reduced metal-ion leaching (Co and Cu), and the synergistic interactions between Co3O4 and CuO promoted PMS activation. The roles of the components of 3Co3O4/CuO@C in PM degradation by activated PMS were investigated in the presence of CoIV and Co-OOSO3-. Two possible PM degradation pathways were systematically proposed, and the toxicity of the intermediates was analyzed. Finally, a mechanism for PM degradation by 3Co3O4/CuO@C-activated PMS was proposed.
Collapse
Affiliation(s)
- Zhechen Liu
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Zhong
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Long Chen
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhangjing Chen
- Department of Sustainable Biomaterials, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Xiang Ji
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaotao Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China.
| | - Ximing Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot 010018, China.
| |
Collapse
|
23
|
Mukherjee A, Dhak P, Mandal D, Dhak D. Solvothermal synthesis of 3D rod-shaped Ti/Al/Cr nano-oxide for photodegradation of wastewater micropollutants under sunlight: a green way to achieve SDG:6. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56901-56916. [PMID: 37812343 DOI: 10.1007/s11356-023-30112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Waterbodies are day-by-day polluted by the various colored micropollutants, e.g., azo dyes enriched (carcinogenic, non-biodegradable) colored wastewater from textile industries. Water pollution has become a serious global issue as ~ 25% of health diseases are prompted by pollution as reported by WHO. Around 1 billion people will face water scarcity by 2025 and this water crisis is also a prime focus to the UNs' sustainable development goal 6 (SDG6: clean water and sanitation). To prevent the water pollution caused by micropollutants, a mesoporous, 3D rod-like nano-oxide Ti/Al/Cr (abbreviated as TAC) has been synthesized via the solvothermal method. TAC degraded all classes of azo dyes (mono, di, tri, etc.) with > 90% efficiency under renewable energy source solar irradiation within the pH range 2-11. The detailed study was done on the photodegradation of carcinogenic di-azo dye Congo red (CR) which is banned in many countries. TAC showed 90.64 ± 2% degradation efficiency for CR at pH 7. The proposed photodegradation mechanism of CR was confirmed by the high-resolution liquid chromatography-mass spectroscopy (HRLC-MS) analysis obeying the Pirkanniemi path. The photodegradation obeyed the pseudo-1st-order kinetics and was reusable up to successive 5 cycles which can be an efficient tool to meet the UNs' SDG:6.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, Kolkata, 700091, India
| | - Debpriya Mandal
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Debasis Dhak
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India.
| |
Collapse
|
24
|
Bhushan D, Shoran S, Kumar R, Gupta R. Plant biomass-based nanoparticles for remediation of contaminants from water ecosystems: Recent trends, challenges, and future perspectives. CHEMOSPHERE 2024; 365:143340. [PMID: 39278321 DOI: 10.1016/j.chemosphere.2024.143340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Green nanomaterials can mitigate ecological concerns by minimizing the impact of toxic contaminants on human and environmental health. Biosynthesis seems to be drawing unequivocal attention as the traditional methods of producing nanoparticles through chemical and physical routes are not sustainable. In order to utilize plant biomass, the current review outlines a sustainable method for producing non-toxic plant biomass-based nanoparticles and discusses their applications as well as recent trends involved in the remediation of contaminants, like organic/inorganic pollutants, pharmaceuticals, and radioactive pollutants from aquatic ecosystems. Plant biomass-based nanoparticles have been synthesized using various vegetal components, such as leaves, roots, flowers, stems, seeds, tuber, and bark, for applications in water purification. Phyto-mediated green nanoparticles are effectively utilized to treat contaminated water and reduce harmful substances. Effectiveness of adsorption has also been studied using variable parameters, e.g., pH, initial contaminant concentration, contact time, adsorbent dose, and temperature. Removal of environmental contaminants through reduction, photocatalytic degradation, and surface adsorption mechanisms, such as physical adsorption, precipitation, complexation, and ion exchange, primarily due to varying pH solutions and complex functional groups. In the case of organic pollutants, most of the contaminants have been treated by catalytic reduction and photodegradation involving the formation of NaBH4, H2O2, or both. Whereas electrostatic interaction, metal complexation, H-bonding, π- π associations, and chelation along with reduction have played a major role in the adsorption of heavy metals, pharmaceuticals, radioactive, and other inorganic pollutants. This review also highlights several challenges, like particle size, toxicity, stability, functional groups, cost of nanoparticle production, nanomaterial dynamics, and biological interactions, along with renewability and recycling of nanoparticles. Lastly, this review concluded that plant-biomass-based nanoparticles provide a sustainable, eco-friendly remediation method, utilizing the unique properties of nanomaterials and minimizing chemical synthesis risks.
Collapse
Affiliation(s)
- Divya Bhushan
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Sachin Shoran
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Renuka Gupta
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India.
| |
Collapse
|
25
|
Al Miad A, Saikat SP, Alam MK, Sahadat Hossain M, Bahadur NM, Ahmed S. Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: a review. NANOSCALE ADVANCES 2024; 6:d4na00517a. [PMID: 39258117 PMCID: PMC11382149 DOI: 10.1039/d4na00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Photocatalytic degradation is a highly efficient technique for eliminating organic pollutants such as antibiotics, organic dyes, toluene, nitrobenzene, cyclohexane, and refinery oil from the environment. The effects of operating conditions, concentrations of contaminants and catalysts, and their impact on the rate of deterioration are the key focuses of this review. This method utilizes light-activated semiconductor catalysts to generate reactive oxygen species that break down contaminants. Modified photocatalysts, such as metal oxides, doped metal oxides, and composite materials, enhance the effectiveness of photocatalytic degradation by improving light absorption and charge separation. Furthermore, operational conditions such as pH, temperature, and light intensity also play a crucial role in enhancing the degradation process. The results indicated that both high pollutant and catalyst concentrations improve the degradation rate up to a threshold, beyond which no significant benefits are observed. The optimal operational conditions were found to significantly enhance photocatalytic efficiency, with a marked increase in degradation rates under ideal settings. Antibiotics and organic dyes generally follow intricate degradation pathways, resulting in the breakdown of these substances into smaller, less detrimental compounds. On the other hand, hydrocarbons such as toluene and cyclohexane, along with nitrobenzene, may necessitate many stages to achieve complete mineralization. Several factors that affect the efficiency of degradation are the characteristics of the photocatalyst, pollutant concentration, light intensity, and the existence of co-catalysts. This approach offers a sustainable alternative for minimizing the amount of organic pollutants present in the environment, contributing to cleaner air and water. Photocatalytic degradation hence holds tremendous potential for remediation of the environment.
Collapse
Affiliation(s)
- Abdullah Al Miad
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Shassatha Paul Saikat
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Md Kawcher Alam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Samina Ahmed
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| |
Collapse
|
26
|
Malitha MD, Molla MTH, Bashar MA, Chandra D, Ahsan MS. Fabrication of a reusable carbon quantum dots (CQDs) modified nanocomposite with enhanced visible light photocatalytic activity. Sci Rep 2024; 14:17976. [PMID: 39095409 PMCID: PMC11297338 DOI: 10.1038/s41598-024-66046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
In awareness of industrial dye wastewater, carbon quantum dots (CQDs) and cobalt zinc ferrite (CZF) nanocomposites were synthesised for the making of carbon quantum dots coated cobalt zinc ferrite (CZF@CQDs) nanophotocatalyst using oxidative polymerization reaction. The results of TEM, zeta potential value, and FTIR confirm highly dispersed 1-4 nm particles with the - 45.7 mV carboxylic functionalized surface of CQDs. The results of the synthesised CZF@CQDs photocatalyst showed an average particle size of ~ 15 nm according to TEM, SEM, and XRD. The photocatalyst showed a 1.20 eV band gap, which followed the perfect visible light irradiation. TGA and DTA revealed the good thermal stability of the nanophotocatalyst. VSM was carried out, and the saturation magnetisations for CZF and CZF@CQDs were 42.44 and 36.14 emu/g, respectively. A multipoint study determined the BET-specific surface area of the CZF@CQDs photocatalyst to be 149.87 m2/g. Under visible light irradiation, the final CZF@CQDs nanophotocatalyst demonstrated remarkable efficiency (~ 95% within 25 min) in the photocatalytic destruction of Reactive Blue 222 (RB 222) and Reactive Yellow 145 (RY 145) dyes, as well as mechanical stability and recyclability. Even after the recycling of the degradation study, the nanophotocatalyst efficiency (~ 82%, 7th cycles) was predominantly maintained. The effects of several parameters were also investigated, including initial dye concentration, nanophotocatalyst concentration, CQD content, initial pH of the dye solution, and reaction kinetics. Degradation study data follow the first-order reaction rate (R2 > 0.93). Finally, a simple and low-cost synthesis approach, rapid degradation, and outstanding stability of the CQD-coated CZF nanophotocatalyst should make it a potential photocatalyst for dye wastewater treatment.
Collapse
Affiliation(s)
- Md Dipu Malitha
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Tamzid Hossain Molla
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abul Bashar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Dipesh Chandra
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Shameem Ahsan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
27
|
Peng L, Benoît-Marquié F, Marty JD. Customizing Cerium Oxide Particle Synthesis with Hybrid Polyion Complex Templates for Enhanced Oxidation Performance in Photo-Fenton Processes. Chemistry 2024; 30:e202400731. [PMID: 38801720 DOI: 10.1002/chem.202400731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Hybrid poly-ion complexes were synthesized through the complexation of a double hydrophilic copolymer with Ce(III) ions. These colloids act as reservoirs for cerium ions, enabling the synthesis of cerium-based Prussian blue nanoparticles with a cubic structure, a narrow size distribution around 100 nm, and good colloidal stability in water. Upon high-temperature calcination, these nanoparticles are transformed into a cerium/iron-based metal oxide catalyst (CeO2/Fe2O3). The resultant composite catalyst demonstrates superior performance in the photo-Fenton oxidation of methylene blue pollutants, achieving a conversion efficiency that rivals other metal-based oxides and cerium-based catalysts.
Collapse
Affiliation(s)
- Liming Peng
- Laboratoire Softmat, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Florence Benoît-Marquié
- Laboratoire Softmat, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Jean-Daniel Marty
- Laboratoire Softmat, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| |
Collapse
|
28
|
Zhang M, Shi F, Chen Y, Yang C, Zhang X, Deng C, Sun N. Straightforward Creation of Multishell Hollow Hybrids for an Integrated Metabolic Monitoring System in Disease Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400941. [PMID: 38529737 DOI: 10.1002/smll.202400941] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Multidimensional metabolic analysis has become a new trend in establishing efficient disease monitoring systems, as the constraints associated with relying solely on a single dimension in refined monitoring are increasingly pronounced. Here, coordination polymers are employed as derivative precursors to create multishell hollow hybrids, developing an integrated metabolic monitoring system. Briefly, metabolic fingerprints are extracted from hundreds of serum samples and urine samples, encompassing not only membranous nephropathy but also related diseases, using high-throughput mass spectrometry. With optimized algorithm and initial feature selection, the established combined panel demonstrates enhanced accuracy in both subtype differentiation (over 98.1%) and prognostic monitoring (over 95.6%), even during double blind test. This surpasses the serum biomarker panel (≈90.7% for subtyping, ≈89.7% for prognosis) and urine biomarker panel (≈94.4% for subtyping, ≈76.5% for prognosis). Moreover, after attempting to further refine the marker panel, the blind test maintains equal sensitivity, specificity, and accuracy, showcasing a comprehensive improvement over the single-fluid approach. This underscores the remarkable effectiveness and superiority of the integrated strategy in discriminating between MN and other groups. This work has the potential to significantly advance diagnostic medicine, leading to the establishment of more effective strategies for patient management.
Collapse
Affiliation(s)
- Man Zhang
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Fangying Shi
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yijie Chen
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chenyu Yang
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Xiangmin Zhang
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chunhui Deng
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
29
|
Hwang IS, Mahadik MA, Anushkkaran P, Song MS, Jo YJ, Chae WS, Park JH, Choi SH, Jang JS. In-situ Hf/Zr co-doped Fe 2O 3 nanorod decorated with CuO x/CoO x: Enhanced photocatalytic performance for antibacterial and organic pollutants. CHEMOSPHERE 2024; 360:142450. [PMID: 38801902 DOI: 10.1016/j.chemosphere.2024.142450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Herein, we successfully synthesized Hf/Zr co-doping on Fe2O3 nanorod photocatalyst by a hydrothermal process and quenching methods. The synergistic roles of Hf and Zr double-doping on the bacteria inactivation test and decomposition of organic pollutants were investigated in detail for the 1 wt% CoOx loaded Hf/Zr-Fe2O3 NRs and CuOx/CoOx loaded Hf/Zr-Fe2O3 NRs photocatalyst. Initially, the rod-like porous morphology of the Hf/Zr-doped Fe2O3 NRs was produced via a hydrothermal method at various Hf co-doping (0, 2, 4, 7 and 10)%. Further, CoOx and CuOx loaded by a wet impregnation approach on the Hf/Zr-Fe2O3 NRs and a highly photoactive Hf(4)/Zr-Fe2O3 [CoOx/CuOx] NRs photocatalyst were developed. After the Hf(4)/Zr-Fe2O3 [CoOx/CuOx] NRs photocatalyst treatment, the Bio-TEM imagery of bacterial cells showed extensive morphological deviations in cell membranes. Hf(4)/Zr-Fe2O3 NR achieved 84.1% orange II degradation upon 3 h illumination, which is higher than that of Hf-Fe2O3 and Zr-Fe2O3 (68.7 and 73.5%, respectively). Additionally, the optimum sample, Hf(4)/Zr-Fe2O3 [CoOx/CuOx] photocatalyst, exhibited 95.5% orange II dye degradation after light radiation for 3 h. Optimized Hf(4)/Zr-Fe2O3 [CoOx/CuOx] catalysts exhibited 99.9% and 99.7% inactivation of E. coli and S. aureus with 120 min, respectively. Further, scavenger experiments revealed that the electrons are the primary responsible species for photocatalytic kinetics. This work will provide a rapid method for the development of high photocatalytic performance materials for bacterial disinfection and organic degradation.
Collapse
Affiliation(s)
- In-Seon Hwang
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Mahadeo A Mahadik
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea; School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Periyasamy Anushkkaran
- Department of Integrative Environmental Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Min Seok Song
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - You Jin Jo
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, Daegu, 41566, Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Sun Hee Choi
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Jum Suk Jang
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea; Department of Integrative Environmental Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
30
|
Marghade D, Shelare S, Prakash C, Soudagar MEM, Yunus Khan TM, Kalam MA. Innovations in metal-organic frameworks (MOFs): Pioneering adsorption approaches for persistent organic pollutant (POP) removal. ENVIRONMENTAL RESEARCH 2024; 258:119404. [PMID: 38880323 DOI: 10.1016/j.envres.2024.119404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Adsorption is a promising way to remove persistent organic pollutants (POPs), a major environmental issue. With their high porosity and vast surface areas, MOFs are suited for POP removal due to their excellent adsorption capabilities. This review addresses the intricate principles of MOF-mediated adsorption and helps to future attempts to mitigate organic water pollution. This review examines the complicated concepts of MOF-mediated adsorption, including MOF synthesis methodologies, adsorption mechanisms, and material tunability and adaptability. MOFs' ability to adsorb POPs via electrostatic forces, acid-base interactions, hydrogen bonds, and pi-pi interactions is elaborated. This review demonstrates its versatility in eliminating many types of contaminants. Functionalizing, adding metal nanoparticles, or changing MOFs after they are created can improve their performance and remove contaminants. This paper also discusses MOF-based pollutant removal issues and future prospects, including adsorption capacity, selectivity, scale-up for practical application, stability, and recovery. These obstacles can be overcome by rationally designing MOFs, developing composite materials, and improving material production and characterization. Overall, MOF technology research and innovation hold considerable promise for environmental pollution solutions and sustainable remediation. Desorption and regeneration in MOFs are also included in the review, along with methods for improving pollutant removal efficiency and sustainability. Case studies of effective MOF regeneration and scaling up for practical deployment are discussed, along with future ideas for addressing these hurdles.
Collapse
Affiliation(s)
- Deepali Marghade
- Department of Applied Chemistry, Priyadarshini College of Engineering, Nagpur, Maharashtra, India; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Sagar Shelare
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India; Department of Mechanical Engineering, Priyadarshini College of Engineering, Nagpur, Maharashtra, India.
| | - Chander Prakash
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Manzoore Elahi M Soudagar
- Faculty of Engineering, Lishui University, 323000, Lishui, Zhejiang, PR China; Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India.
| | - T M Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
| | - M A Kalam
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia.
| |
Collapse
|
31
|
Jeya Sri Lakshmi S, Joel C, Biju Bennie R, Nirmal Paul Raj A, Kumar YA, Khan MS. Synergistic adsorption and photocatalytic degradation of tetracycline using a Z-scheme kaolin/g-C 3N 4/MoO 3 nanocomposite: A sustainable approach for water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121086. [PMID: 38733841 DOI: 10.1016/j.jenvman.2024.121086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
This research focuses on the synthesis and application of a novel kaolin-supported g-C3N4/MoO3 nanocomposite for the degradation of tetracycline, an important antibiotic contaminant in water systems. The nanocomposite was prepared through a facile and environmentally friendly approach, leveraging the adsorption and photocatalytic properties of kaolin, g-C3N4 and MoO3 nanoparticles, respectively. Comprehensive characterization of the nanocomposite was conducted using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and optical spectra. The surface parameters were studied using N2 adsorption-desorption isotherm. The elemental composition was studied using X-ray photoelectron spectroscopy. The efficiency of the developed nanocomposite in tetracycline degradation was evaluated and the results revealed an efficient tetracycline degradation exhibiting the synergistic effects of adsorption and photocatalytic degradation in the removal process. The tetracycline degradation was achieved in 60 min. Kinetic studies and thermodynamic analyses provided insights into the degradation mechanism, suggesting potential applications for the nanocomposite in wastewater treatment. Additionally, the recyclability and stability of the nanocomposite were investigated, demonstrating its potential for sustainable and long-term application in water treatment.
Collapse
Affiliation(s)
- S Jeya Sri Lakshmi
- Department of Chemistry, St. John's College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli, 627002, Tamil Nadu, India; Department of Science and Humanities, SCAD College of Engineering and Technology, Cheranmahadevi, Tirunelveli, 627414, Tamil Nadu, India
| | - C Joel
- Department of Chemistry, St. John's College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli, 627002, Tamil Nadu, India.
| | - R Biju Bennie
- Department of Chemistry, St. John's College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli, 627002, Tamil Nadu, India
| | - A Nirmal Paul Raj
- Department of Chemistry, St. John's College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli, 627002, Tamil Nadu, India
| | - Yedluri Anil Kumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Wu J, Shao G, Wu X, Cui S, Shen X. Ag-Incorporated Cr-Doped BaTiO 3 Aerogel toward Enhanced Photocatalytic Degradation of Methyl Orange. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:848. [PMID: 38786804 PMCID: PMC11123771 DOI: 10.3390/nano14100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
A novel Cr-doped BaTiO3 aerogel was successfully synthesized using a co-gelation technique that involves two metallic alkoxides and a supercritical drying method. This freshly prepared aerogel has a high specific surface area of over 100 m2/g and exhibits improved responsiveness to the simulated sunlight spectrum. Methyl orange (MO) was chosen as the simulated pollutant, and the results reveal that the Cr-doped BaTiO3 aerogel, when modified with the noble metal silver (Ag), achieves a pollutant removal rate approximately 3.2 times higher than that of the commercially available P25, reaching up to 92% within 60 min. The excellent photocatalytic performance of the Ag-modified Cr-doped BaTiO3 aerogel can be primarily attributed to its extensive specific surface area and three-dimensional porous architecture. Furthermore, the incorporation of Ag nanoparticles effectively suppresses the recombination of photo-generated electrons and holes. Stability and reusability tests have confirmed the reliability of the Ag-modified Cr-doped BaTiO3 aerogel. Therefore, this material emerges as a highly promising candidate for the treatment of textile wastewater.
Collapse
Affiliation(s)
- Jun Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (J.W.); (X.W.); (S.C.)
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Gaofeng Shao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (J.W.); (X.W.); (S.C.)
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Sheng Cui
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (J.W.); (X.W.); (S.C.)
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (J.W.); (X.W.); (S.C.)
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
33
|
Kusior A, Michalec K, Micek-Ilnicka A, Radecka M. Unraveling the Impact of Adsorbed Molecules on Photocatalytic Processes: Advancements in Understanding Facet-Controlled Semiconductor Photocatalysts. Molecules 2024; 29:2290. [PMID: 38792151 PMCID: PMC11124397 DOI: 10.3390/molecules29102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
This work aims to demonstrate that the Fe2O3 nanocrystals' adsorptive and photocatalytic properties can be adjusted by exposing the crystal facets that are functionalized. To this end, cube- and disc-like structures were synthesized using a metal ion-mediated hydrothermal route. Thereafter, some of the samples were annealed at 500 °C for 3 h. Our paper combines the experimental part with theoretical calculations of the obtained materials' band edge positions. The results reveal that-aside from hematite-the as-synthesized discs also contain γ-FeOOH and β-Fe2O3 phases, which transform into α-Fe2O3 during annealing. The hydrodynamic diameter, zeta potential, and adsorption kinetics measurements show that the cube-like samples exhibit the highest affinity for cationic, whereas the discs have an affinity for anionic dye. Measurements of the wall zeta potential also reveal that annealing the discs modifies their surface state and ability to adsorb molecules. Photocatalytic tests show that the as-synthesized powders have better photocatalytic performance toward methylene blue decomposition than the annealed ones. The observed small changes in the concentration of the MO during illumination result from the energy band structure of the cube-like crystal orientation.
Collapse
Affiliation(s)
- Anna Kusior
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland; (K.M.); (M.R.)
| | - Kinga Michalec
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland; (K.M.); (M.R.)
| | - Anna Micek-Ilnicka
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland;
| | - Marta Radecka
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland; (K.M.); (M.R.)
| |
Collapse
|
34
|
Kaur M. Imine-Decorated Copper-Based Metal-Organic Framework for the Photodegradation of Methylene Blue. J Fluoresc 2024; 34:1119-1129. [PMID: 37486559 DOI: 10.1007/s10895-023-03346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
A low cost imine-decorated linker, 4,4'-(hydrazine-1,2-diylidenedimethylylidene)dibenzoic acid was utilized for the preparation of copper-based metal-organic framework (MOF) denoted as Cu-L via a solvothermal technique. The synthesized MOF material has been fully characterized by different analytical techniques such as Fourier-transform infrared (FT-IR) spectroscopy, powder X-Ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDX), nitrogen adsorption-desorption isotherm analysis, and thermogravimetric analysis (TGA). It has been found that the coordination of Cu2+ with L considerably reduced the band gap of the L of nearly about 1 eV, which is approximately 26% decline in total. Notably, a narrow band gap of the photocatalyst is an essential requirement for the proficient photodegradation of organic contaminants. An excellent optical properties and narrow band gap of (2.8 eV) of Cu-L ensure their suitability as a photocatalyst for the degradation of methylene blue (MB) dye. In the presence of Cu-L photocatalyst, 84.22% degradation of MB dye was observed after 150 min under sunlight exposure. It is the first time that imine-functionalized MOF was utilized for the degradation of MB dye under sunlight irradiation. For understanding the photodegradation of MB dye by the Cu-L photocatalyst, all the plausible mechanistic studies have been carried out in detail. Both theoretical (with the help of density functional theory (DFT) calculations) as well as experimental studies have been conducted to justify the possible mechanisms for the photodegradation of MB dye by Cu-L. The current work may open a new opportunity to construct a cheap MOF-based photocatalysts for fast degradation of dye contaminants.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India.
| |
Collapse
|
35
|
Alizadeh M, Dorranian D, Sari AH. Comparison of the antimicrobial photocatalytic activities of SiO 2 and Au@SiO 2 nanostructures in water decontamination. Microsc Res Tech 2024; 87:896-907. [PMID: 38149754 DOI: 10.1002/jemt.24486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Photocatalytic disinfection of Escherichia coli suspension by silicon dioxide nanoparticles and silicon dioxide/gold nanocomposite in a batch reactor is investigated experimentally and results are compared. Silica nanoparticles were synthesized by Stöber method and pulsed laser ablation method was employed to prepare gold nanoparticles in distilled water. Composition of two nanoparticles species was carried out, using the second harmonic pulse of Nd:YAG laser, whose wavelength is in the absorption spectra of gold nanoparticles. Results confirm a decrease in the bandgap energy of silica nanoparticles after composition. Escherichia coli were selected as an indicator of the microbial water contamination. Disk diffusion method was used to evaluate the antimicrobial potential of SiO2 and Au@SiO2 nanostructures. Photocatalytic activities of both nanostructures were examined in dark, and under the irradiation of UV and visible light. In all conditions, the performance of Au@SiO2 nanocomposites was higher than SiO2 nanoparticles. In dark condition the higher biocidal nature and activity of Au nanoparticles and for the case of UV radiation, decreasing the bandgap energy and recombination rate of SiO2 nanoparticles after composition with Au increased the efficiency. For the case of visible light radiation, surface plasmon resonances effects, and local heat of Au nanoparticles were responsible for increasing the efficiency. RESEARCH HIGHLIGHTS: Doping large bandgap semiconductors nanostructures, such as silica with metal nanoparticles, such as gold will improve their photocatalytic activity to work in visible light. In this mechanism, gold nanoparticles act as effective traps to prevent the recombination of photogenerated electron-hole pairs. Other mechanisms, such as Schottky barrier formation, surface plasmon resonance absorption of gold nanoparticles, and biocidal nature of the gold nanoparticles are effective in increasing the efficiency of Au doped silica nanostructures.
Collapse
Affiliation(s)
- Mahsa Alizadeh
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Davoud Dorranian
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Sari
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
36
|
El-Shafie AS, El-Azazy M. Crosslinked chitosan-montmorillonite composite and its magnetized counterpart for the removal of basic fuchsin from wastewater: Parametric optimization using Box-Behnken design. Int J Biol Macromol 2024; 263:130224. [PMID: 38387636 DOI: 10.1016/j.ijbiomac.2024.130224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Treating wastewater polluted with organic dyestuffs is still a challenge. In that vein, facile synthesis of a structurally simple composite of chitosan with montmorillonite (CS-MMT) using glutaraldehyde as a crosslinker and the magnetized analogue (MAG@CS-MMT) was proposed as versatile adsorbents for the cationic dye, basic Fuchsin (FUS). Statistical modeling of the adsorption process was mediated using Box-Behnken (BB) design and by varying the composite dose, pH, [FUS], and contact time. Characterization of both composites showed an enhancement of surface features upon magnetization, substantiating a better FUS removal of the MAG@CS-MMT (%R = 98.43 %) compared to CS-MMT (%R = 68.02 %). The surface area analysis demonstrates that MAG@CS-MMT possesses a higher surface area, measuring 41.54 m2/g, and the surface analysis of the magnetized nanocomposite, conducted using FT-IR and Raman spectroscopies, proved the presence of FeO peaks. In the same context, adsorption of FUS onto MAG@CS-MMT fitted-well to the Langmuir isotherm model and the maximum adsorption capacities (qm) were 53.11 mg/g for CS-MMT and 88.34 mg/g for MAG@CS-MMT. Kinetics investigation shows that experimental data fitted well to the pseudo-second order (PSO) model. Regeneration study reveals that MAG@CS-MMT can be recovered effectively for repeated use with a high adsorption efficiency for FUS.
Collapse
Affiliation(s)
- Ahmed S El-Shafie
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
37
|
Ali M, Swami P, Kumar A, Guin D, Tripathi CSP. Enhanced photocatalytic degradation of Rhodamine B using gold nanoparticles decorated on BaTiO 3 with surface plasmon resonance enhancement. ANAL SCI 2024; 40:643-654. [PMID: 38246929 DOI: 10.1007/s44211-023-00496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
This study focused on synthesizing and applying gold nanoparticle (Au NP) decorated barium titanate (BaTiO3) nanoparticles for photocatalytic purposes. BaTiO3 NPs were synthesized using a facile hydrothermal method. Various techniques were employed to characterize the structure and morphological characteristics of the prepared materials. The photocatalytic degradation of Rhodamine B over the Au NPs-modified BaTiO3 photocatalysts was studied. Trapping experiments were conducted using different scavengers to elucidate the degradation mechanism and the involvement of photogenerated species. The incorporation of an appropriate amount of Au NPs into the composites resulted in a significant improvement in photocatalytic activity, attributed to the combined effect of Schottky junction at the interface and the surface plasmon resonance of Au NPs.
Collapse
Affiliation(s)
- Mohd Ali
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Payal Swami
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ashish Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Debanjan Guin
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | | |
Collapse
|
38
|
Liu S, Zhan J, Cai B. Recent advances in photoelectrochemical platforms based on porous materials for environmental pollutant detection. RSC Adv 2024; 14:7940-7963. [PMID: 38454947 PMCID: PMC10915833 DOI: 10.1039/d4ra00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Human health and ecology are seriously threatened by harmful environmental contaminants. It is essential to develop efficient and simple methods for their detection. Environmental pollutants can be detected using photoelectrochemical (PEC) detection technologies. The key ingredient in the PEC sensing system is the photoactive material. Due to the unique characteristics, such as a large surface area, enhanced exposure of active sites, and effective mass capture and diffusion, porous materials have been regarded as ideal sensing materials for the construction of PEC sensors. Extensive efforts have been devoted to the development and modification of PEC sensors based on porous materials. However, a review of the relationship between detection performance and the structure of porous materials is still lacking. In this work, we present an overview of PEC sensors based on porous materials. A number of typical porous materials are introduced separately, and their applications in PEC detection of different types of environmental pollutants are also discussed. More importantly, special attention has been paid to how the porous material's structure affects aspects like sensitivity, selectivity, and detection limits of the associated PEC sensor. In addition, future research perspectives in the area of PEC sensors based on porous materials are presented.
Collapse
Affiliation(s)
- Shiben Liu
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| |
Collapse
|
39
|
Weng XC, Ajmal M, Shehzad H, Chen J, Farooqi ZH, Liu Z, Sharif A, Ahmed E, Zhou L, Xu L, Ouyang J, Irfan A, Chaudhry AR, Begum R, Shaukat S. Tungsten oxide encapsulated phosphate-rich porous alginate composites for efficient U(VI) capture: Insights into synthesis, adsorption kinetics and thermodynamics. Int J Biol Macromol 2024; 261:129962. [PMID: 38316322 DOI: 10.1016/j.ijbiomac.2024.129962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
In this work, novel monoclinic tungsten oxide (WO3)-encapsulated phosphate-rich porous sodium alginate (PASA) microspherical hydrogel beads were prepared for efficient U(VI) capture. These macroporous and hollow beads were systematically characterized through XRD, FTIR, EDX-mapping, and SEM-EDS techniques. The O and P atoms in the PO and monoclinic WO3 offered inner-spherical complexation with U(VI). The in situ growth of WO3 played a significant role inside the phosphate-rich biopolymeric network to improve its chemical stability, specific surface area, adsorption capacity, and sorption rate. The phytic acid (PA) served for heteroatom doping and crosslinking. The encapsulated WO3 mass ratio was optimized in different composites, and WO3/PASA3 (the microspherical beads with a mass ratio of 30.0 % w/w) exhibited remarkable maximum sorption capacity qm (336.42 mg/g) computed through the best-fit Langmuir model (R2 ≈ 0.99) and rapid sorption equilibrium, teq (150 min). The isothermal sorption studies were conducted at different temperatures (298, 303, and 308 K) and thermodynamic parameters concluded that the process of U(VI) sorption using WO3/PASA3 is endothermic and feasible having ΔHo (8.19 kJ/mol), ΔGo (-20.75, -21.38, and - 21.86 kJ/mol) and proceeds with a minute increase in randomness ΔSo (0.09 kJ/mol.K). Tungsten oxide (WO3)-encapsulated phosphate-rich porous microspherical beads could be promising material for uranium removal.
Collapse
Affiliation(s)
- Xu Chen Weng
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China; State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Muhammad Ajmal
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore 54770, Pakistan
| | - Hamza Shehzad
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China; State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Jiaai Chen
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zhirong Liu
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China; State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Ahsan Sharif
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ejaz Ahmed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Limin Zhou
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Li Xu
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Jinbo Ouyang
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, Bisha 61922, P.O. Box 551, Saudi Arabia
| | - Robina Begum
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore 54770, Pakistan
| | - Saadia Shaukat
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| |
Collapse
|
40
|
Zango ZU, Lawal MA, Usman F, Sulieman A, Akhdar H, Eisa MH, Aldaghri O, Ibnaouf KH, Lim JW, Khoo KS, Cheng YW. Promoting the suitability of graphitic carbon nitride and metal oxide nanoparticles: A review of sulfonamides photocatalytic degradation. CHEMOSPHERE 2024; 351:141218. [PMID: 38266876 DOI: 10.1016/j.chemosphere.2024.141218] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-C3N4) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-C3N4 are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | | | - Fahad Usman
- Engineering Unit, Department of Mathematics, Connecticut State Community College Norwalk, Connecticut State Colleges and Universities (CSCU), United States
| | - Abdelmoneim Sulieman
- Department of Radiology and Medical Imaging, Prince Sattam bin Abdulaziz University, PO Box 422, Alkharj, 11942, Kingdom of Saudi Arabia
| | - Hanan Akhdar
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia.
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Yoke Wang Cheng
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore, Singapore
| |
Collapse
|
41
|
Maldonado-Carmona N, Piccirillo G, Godard J, Heuzé K, Genin E, Villandier N, Calvete MJF, Leroy-Lhez S. Bio-based matrix photocatalysts for photodegradation of antibiotics. Photochem Photobiol Sci 2024; 23:587-627. [PMID: 38400987 DOI: 10.1007/s43630-024-00536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/26/2024]
Abstract
Antibiotics development during the last century permitted unprecedent medical advances. However, it is undeniable that there has been an abuse and misuse of antimicrobials in medicine and cosmetics, food production and food processing, in the last decades. The pay toll for human development and consumism is the emergence of extended antimicrobial resistance and omnipresent contamination of the biosphere. The One Health concept recognizes the interconnection of human, environmental and animal health, being impossible alter one without affecting the others. In this context, antibiotic decontamination from water-sources is of upmost importance, with new and more efficient strategies needed. In this framework, light-driven antibiotic degradation has gained interest in the last few years, strongly relying in semiconductor photocatalysts. To improve the semiconductor properties (i.e., efficiency, recovery, bandgap width, dispersibility, wavelength excitation, etc.), bio-based supporting material as photocatalysts matrices have been thoroughly studied, exploring synergetic effects as operating parameters that could improve the photodegradation of antibiotics. The present work describes some of the most relevant advances of the last 5 years on photodegradation of antibiotics and other antimicrobial molecules. It presents the conjugation of semiconductor photocatalysts to different organic scaffolds (biochar and biopolymers), then to describe hybrid systems based on g-C3N4 and finally addressing the emerging use of organic photocatalysts. These systems were developed for the degradation of several antibiotics and antimicrobials, and tested under different conditions, which are analyzed and thoroughly discussed along the work.
Collapse
Affiliation(s)
- Nidia Maldonado-Carmona
- Centre National de la Recherche Scientifique, Laboratoire Jean Perrin, Sorbonne Université, Paris, France.
| | - Giusi Piccirillo
- Department of Chemistry, CQC-IMS, Rua Larga, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Jérémy Godard
- Univ. Limoges, LABCiS, UR 22722, 87000, Limoges, France
| | - Karine Heuzé
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400, Talence, France
| | - Emilie Genin
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400, Talence, France
| | | | - Mário J F Calvete
- Department of Chemistry, CQC-IMS, Rua Larga, University of Coimbra, 3004-535, Coimbra, Portugal
| | | |
Collapse
|
42
|
Rashid R, Shafiq I, Gilani MRHS, Maaz M, Akhter P, Hussain M, Jeong KE, Kwon EE, Bae S, Park YK. Advancements in TiO 2-based photocatalysis for environmental remediation: Strategies for enhancing visible-light-driven activity. CHEMOSPHERE 2024; 349:140703. [PMID: 37992908 DOI: 10.1016/j.chemosphere.2023.140703] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Researchers have focused on efficient techniques for degrading hazardous organic pollutants due to their negative impacts on ecological systems, necessitating immediate remediation. Specifically, TiO2-based photocatalysts, a wide-bandgap semiconductor material, have been extensively studied for their application in environmental remediation. However, the extensive band gap energy and speedy reattachment of electron (e-) and hole (h+) pairs in bare TiO2 are considered major disadvantages for photocatalysis. This review extensively focuses on the combination of semiconducting photocatalysts for commercial outcomes to develop efficient heterojunctions with high photocatalytic activity by minimizing the e-/h+ recombination rate. The improved activity of these heterojunctions is due to their greater surface area, rich active sites, narrow band gap, and high light-harvesting tendency. In this context, strategies for increasing visible light activity, including doping with metals and non-metals, surface modifications, morphology control, composite formation, heterojunction formation, bandgap engineering, surface plasmon resonance, and optimizing reaction conditions are discussed. Furthermore, this review critically assesses the latest developments in TiO2 photocatalysts for the efficient decomposition of various organic contaminants from wastewater, such as pharmaceutical waste, dyes, pesticides, aromatic hydrocarbons, and halo compounds. This review implies that doping is an effective, economical, and simple process for TiO2 nanostructures and that a heterogeneous photocatalytic mechanism is an eco-friendly substitute for the removal of various pollutants. This review provides valuable insights for researchers involved in the development of efficient photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Ruhma Rashid
- Institute of Chemical Science, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | | | - Muhammad Maaz
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| | - Kwang-Eun Jeong
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sungjun Bae
- Department of Civil & Environmental Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504, Republic of Korea.
| |
Collapse
|
43
|
Li X, Xu L, Gao J, Yan M, Bi H, Wang Q. Surface modification of chitin nanofibers with dopamine as efficient nanosorbents for enhanced removal of dye pollution and metal ions. Int J Biol Macromol 2023; 253:127113. [PMID: 37774823 DOI: 10.1016/j.ijbiomac.2023.127113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
The development of environmentally friendly and low-cost adsorbents with high adsorption capacity remains a challenge. Herein, chitin nanofiber-polydopamine composite materials (CNDA) have been obtained by surface modification of chitin nanofiber using dopamine. According to the results of transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), and X-ray photoelectron spectrometer (XPS), polydopamine have been successfully coated on the surface of chitin nanofiber (ChNF). The ability to remove methylene blue (MB) has been analyzed via standard adsorption experiments, indicating that the maximum adsorption capacity (qmax) can reach 196.6 mg/g at MB initial concentration of 50 mg/L. Most importantly, the adsorption kinetics, isotherm, and thermodynamics were used to investigate the MB adsorption mechanism on composites. This indicated that the polydopamine on the surface of chitin nanofiber (ChNF) plays an important role in the MB dye adsorption. Moreover, the removal ability of CNDA to metal ions has also been investigated, indicating high capacities for Fe3+, Mn2+, Cu2+, and Ni2+. Based on their biodegradability and good adsorption capacity, the CNDA composite material can be considered a promising adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Xiaomeng Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Lina Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Jianliang Gao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Manqing Yan
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Qiyang Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
44
|
Guerrero JD, Marchesini FA, Ulla MA, Gutierrez LB. Effect of biocomposite production factors on the development of an eco-friendly chitosan/alginate-based adsorbent with enhanced copper removal efficiency. Int J Biol Macromol 2023; 253:126416. [PMID: 37633556 DOI: 10.1016/j.ijbiomac.2023.126416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Nowadays, wastewater treatment is a critical concern, particularly regarding the removal of heavy metals through adsorption methods. Extensive research has been conducted on obtaining high-yield and environmentally friendly adsorbents. Natural polymer adsorbents especially have shown promise in ion and organic molecule adsorption. To enhance the practical applicability of adsorbents, the combination of biopolymers to form biocomposites is a promising alternative. In this study, adsorbents based on a 1:1 wt./wt. of chitosan (CS) and alginate (SA) were prepared. The influence of the regeneration route and drying conditions on the copper adsorption capacity was investigated, along with reaction parameters such as contact time, adsorbent particle size, and pH. The highest adsorption capacity was observed in the composite material obtained through a one-pot regeneration process and freeze-dried. The CSAR3L sample exhibited a remarkable adsorption capacity of 288 mg Cu(II)/g after 360 min at 25 °C. The synergistic effect between the CS and SA precursors was confirmed by analyzing the individual precursors and their mechanical mixture. The initial adsorption rates at pH 6 followed the order: CSAR3-L > Bk-CSR3L > Bk-SAR3L + Bk-CSR3L > Bk-SAR3L. The physicochemical and morphological properties of the materials were studied by FTIR, XRD, DLS, XPS, optical microscopy, EDS-SEM, elemental chemical analysis, and TGA-DTG. The utilization of different drying methods resulted in the formation of calcium carbonate crystalline phases in the as-prepared materials, thus creating substantial adsorption active sites. After the adsorption process, hydroxylated copper sulfate phases and a significant decrease in calcium concentration were observed, indicating that an ion exchange adsorption mechanism occurred. The analysis of adsorption kinetics and the shape of the adsorption isotherms, in agreement with the characterization results, suggested the presence of multiple active sites and the formation of a chemisorption monolayer.
Collapse
Affiliation(s)
- Jhonnys D Guerrero
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina
| | - Fernanda A Marchesini
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina
| | - María A Ulla
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina
| | - Laura B Gutierrez
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina.
| |
Collapse
|
45
|
Turkyilmaz M, Kucukcongar S. A comparison of endosulfan removal by photocatalysis process under UV-A and visible light irradiation: optimization, degradation byproducts and reuse. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:355-371. [PMID: 37869590 PMCID: PMC10584801 DOI: 10.1007/s40201-023-00864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/22/2023] [Indexed: 10/24/2023]
Abstract
In this study, the removal efficiency of endosulfan as a persistent organic pollutant and formation of its metabolites were investigated using Ag/TiO2/Fe3O4 photocatalyst under visible and UV-A light. Light intensity, catalyst amount, initial endosulfan concentration, initial pH and time were determined as controllable factors for Taguchi experimental design. The highest removal efficiencies of endosulfan were achieved as 86.14% and 85.46% for visible and UV-A light sources, respectively. According to the greatest best criterion, the level at which the highest S/N ratio was obtained for each parameter was accepted as the optimum value. As a result of the validation experiments, 94.2% and 91.9% efficiency were obtained for visible and UV-A light, respectively. The metabolite formations of endosulfan (endosulfan sulfate, ether, and lactone) remained below 7% in all experiments on a concentration basis. In the reuse experiments of the magnetically recovered photocatalyst, high removal efficiency of around 80% was obtained after four cycles. The removal efficiencies were found to be 86.7% and 84.8%, for real samples taken from the drinking water treatment plant inlet and the spring water network injected with endosulfan under optimal photocatalysis experimental conditions, respectively. It has been shown that nitrate and sulfate anions, which are in significant concentrations in raw water samples, have very little effects on endosulfan removal. The overall results showed that the Ag/TiO2/Fe3O4 photocatalyst was produced successfully, the catalyst was highly effective in the mineralization of endosulfan in synthetic and real water samples under UV and visible light, and effective yields could be obtained even with reuse. Supplementary information The online version contains supplementary material available at 10.1007/s40201-023-00864-z.
Collapse
Affiliation(s)
- Mehmet Turkyilmaz
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey
| | - Sezen Kucukcongar
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey
| |
Collapse
|
46
|
Zhu W, Xia Z, Shi B, Lü C. Two-Dimensional Cu-Porphyrin Metal-Organic Framework Nanosheet-Supported Flaky TiO 2 as an Efficient Visible-Light-Driven Photocatalyst for Dye Degradation and Cr(VI) Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15665-15675. [PMID: 37898919 DOI: 10.1021/acs.langmuir.3c02148] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
A series of 2D M(Cu, Zn, Co, and Mn)-TCPP MOFs/TiO2 binary nanocomposites (TCPP = tetrakis(4-carboxyphenyl)porphyrin) were constructed by solvothermal in situ loading of flaky TiO2 on the surface of 2D metal-organic frameworks (MOFs). The influence of different coordination metals on the catalytic activity was studied, and it was found that the 2D Cu-TCPP MOFs/TiO2 nanocomposite exhibited the best photo-Fenton performance. The superior property can be attributed to the high absorption coefficient and ultrathin two-dimensional structure of the 2D Cu-TCPP MOFs nanosheets. Meanwhile, the 2D Cu-TCPP MOFs/TiO2 II heterostructure can effectively promote the separation and transfer of photoformed carriers. Moreover, under visible irradiation, the optimized 2D Cu-TCPP MOFs/TiO2 composite can convert 99.9% of Cr(VI) to Cr(III) within 60 min with methanol as the hole scavenger at pH 3.14. Also, the photocatalytic performance of 2D Cu-TCPP MOFs/TiO2 was maintained after five reaction cycles. Furthermore, the proposed visible-light-driven photocatalysis mechanism of the 2D Cu-MOFs/TiO2 composite was reasonably derived according to experimental results. This study demonstrates the potential of building efficient TiO2-based visible light photocatalysts with 2D metal-porphyrin MOFs.
Collapse
Affiliation(s)
- Wenjing Zhu
- School of Materials Science and Technology, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Zhinan Xia
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Bingfeng Shi
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
47
|
Matei E, Șăulean AA, Râpă M, Constandache A, Predescu AM, Coman G, Berbecaru AC, Predescu C. ZnO nanostructured matrix as nexus catalysts for the removal of emerging pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114779-114821. [PMID: 37919505 PMCID: PMC10682326 DOI: 10.1007/s11356-023-30713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Water pollution stands as a pressing global environmental concern, elevating the significance of innovative, dependable, and sustainable solutions. This study represents an extensive review of the use of photocatalytic zinc oxide nanoparticles (ZnO NPs) for the removal of emerging pollutants from water and wastewater. The study examines ZnO NPs' different preparation methods, including physical, chemical, and green synthesis, and emphasizes on advantages, disadvantages, preparation factors, and investigation methods for the structural and morphological properties. ZnO NPs demonstrate remarkable properties as photocatalysts; however, their small dimensions pose an issue, leading to potential post-use environmental losses. A strategy to overcome this challenge is scaling up ZnO NP matrices for enhanced stability and efficiency. The paper introduces novel ZnO NP composites, by incorporating supports like carbon and clay that serve as photocatalysts in the removal of emerging pollutants from water and wastewater. In essence, this research underscores the urgency of finding innovative, efficient, and eco-friendly solutions for the removal of emerging pollutants from wastewater and highlights the high removal efficiencies obtained when using ZnO NPs obtained from green synthesis as a photocatalyst. Future research should be developed on the cost-benefit analysis regarding the preparation methods, treatment processes, and value-added product regeneration efficiency.
Collapse
Affiliation(s)
- Ecaterina Matei
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Andreea Șăulean
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania.
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Alexandra Constandache
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andra Mihaela Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - George Coman
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andrei Constantin Berbecaru
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| |
Collapse
|
48
|
Zhang Y, Li K, Zang M, Cheng Y, Qi H. Graphene-based photocatalysts for degradation of organic pollution. CHEMOSPHERE 2023; 341:140038. [PMID: 37660797 DOI: 10.1016/j.chemosphere.2023.140038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Compared with the traditional wastewater treatment technology, semiconductor photocatalysis is a rapidly emerging environment-friendly and efficient Advanced Oxidation Process for degradation of refractory organic contaminants. Single-component semiconductor photocatalysts exhibit poor photocatalytic performance and cannot meet the requirements of wastewater treatment. The combination of semiconductor photocatalysts and Graphene can effectively improve the photocatalytic activity and stability of semiconductor photocatalysts. This review focuses on the synergistic effect of several types of semiconductors with Graphene for photocatalytic degradation of organic pollutants. After a brief introduction of the photodegradation mechanism of semiconductor materials and the basic description of Graphene, the synthesis, characterization and degradation performance of various Graphene-based semiconductor photocatalysts are emphatically introduced.
Collapse
Affiliation(s)
- Yuxi Zhang
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Kuangjun Li
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Meng Zang
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Yuanyuan Cheng
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Hongbin Qi
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
49
|
Montes E, Guzmán-Olguín JC, Falcony Guajardo C, Guzmán Mendoza J. Phase stabilization and optical response in the ultraviolet range, due to terbium concentration in hafnium oxide nanoparticles. Appl Radiat Isot 2023; 200:110963. [PMID: 37549614 DOI: 10.1016/j.apradiso.2023.110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
This work reports the influence of terbium trivalent ions on growing kinetics and the phase in hafnium oxide nanoparticles, as well as response to radiation in the range from 256 to 286. The nanoparticles were obtained by the hydrothermal route maintaining the temperature constant and varying the reaction time and the terbium concentration. The results show a gradual change in the phase with the concentration of terbium trivalent ions, going from the monoclinic phase, present at low concentrations, to the tetragonal phase, which appears from dopant concentrations greater than 5% at., increasing in amount with concentration of dopant. These phases appear as two perfectly defined morphologies. Furthermore, there is a significant change in radiative lifetimes when the tetragonal phase appears.
Collapse
Affiliation(s)
- E Montes
- Universidad de Guanajuato, Campus León, División de Ciencias e Ingenierías, Loma del Bosque 103, Colonia Lomas del Campestre, 37150, León, Gto, Mexico
| | - J C Guzmán-Olguín
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Calzada Legaria 694, Col. Irrigación, Alcaldía Miguel Hidalgo, 04510, Cd. de México, Mexico
| | - C Falcony Guajardo
- Departamento de Física, CINVESTAV del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000, Cd. de México, Mexico
| | - J Guzmán Mendoza
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Calzada Legaria 694, Col. Irrigación, Alcaldía Miguel Hidalgo, 04510, Cd. de México, Mexico.
| |
Collapse
|
50
|
Kadian A, Manikandan V, Dev K, Kumar V, Yang CJ, Lin BH, Chen CL, Dong CL, Asokan K, Annapoorni S. Probing size-dependent defects in zinc oxide using synchrotron techniques: impact on photocatalytic efficiency. Phys Chem Chem Phys 2023; 25:25639-25653. [PMID: 37721171 DOI: 10.1039/d3cp02923a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
In the present study, synchrotron-based X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and X-ray excited optical luminescence (XEOL) have been used to investigate the induced defect states in metal oxide nanomaterials. Specifically, two synthesis approaches have been followed to develop unique nano-sized peanut-shaped (N-ZnO) nanostructures and micron-sized hexagonal rods (M-ZnO). XANES analysis at the Zn K-edge revealed the presence of defect states with a divalent oxidation state of zinc (Zn2+) in a tetrahedral structure. Furthermore, XAS measurements performed at the Zn L3,2-edge and O K-edge confirm higher oxygen-related defects in M-ZnO, while N-ZnO appeared to have a higher concentration of surface defects due to size confinement. Moreover, the in-line XEOL and time dependent-XEOL measurements exposed the radiative excitonic recombination phenomena occurring in the band-tailing region as a function of absorption length, X-ray energy excitation, and time. Based on the chronology developed in the defect state improvement, a possible energy band diagram is proposed to accurately locate the defect states in the two systems. Furthermore, the increased absorption intensity at the Zn L3,2-edge and the O K-edge under the UV lamp suggests delayed recombination of electrons and holes, highlighting their potential use as photo catalysts. The photocatalytic activity degrading the rhodamine B dye established M-ZnO as a superior catalyst with a rapid degradation rate and significant mineralization. Overall, this work provides valuable insights into ZnO defect states and provides a foundation for efficient advanced materials for environmental or other optoelectronic applications.
Collapse
Affiliation(s)
- Ankit Kadian
- Department of Physics and Astrophysics, University of Delhi, Delhi - 110007, India.
| | - V Manikandan
- Department of Physics and Astrophysics, University of Delhi, Delhi - 110007, India.
| | - Kapil Dev
- Department of Physics and Astrophysics, University of Delhi, Delhi - 110007, India.
| | - Vishnu Kumar
- New Chemistry Unit, JNCASR, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Cheng-Jie Yang
- Department of Physics, Tamkang University, Tamsui 251301, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - C L Chen
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - C L Dong
- Department of Physics, Tamkang University, Tamsui 251301, Taiwan
| | - K Asokan
- Department of Physics & Centre for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - S Annapoorni
- Department of Physics and Astrophysics, University of Delhi, Delhi - 110007, India.
| |
Collapse
|