1
|
Zio S, Tarnagda B, Tapsoba F, Zongo C, Savadogo A. Health interest of cholesterol and phytosterols and their contribution to one health approach: Review. Heliyon 2024; 10:e40132. [PMID: 39583830 PMCID: PMC11584608 DOI: 10.1016/j.heliyon.2024.e40132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Plants and animals are potential sources of food, particularly lipids. They are sources of nutrients for humans, and are used in various applications in food industries. Foods whose lipids consumed, have benefits for animal and human health. Sterols are among the compounds essential to the well-being of living beings. Phytosterols are derived from plants and algae, and zoosterols from animals dominated by cholesterol. Cholesterol is found in small quantities in some plant lipids. Also, cholesterol is produced by herbivorous insects by metabolizing phytosterols. Oilseeds and vegetable oils contain sterols and are the richest natural sources of phytosterols. Vegetables and fruit also contain small quantities. These compounds play an undeniable role in our diet. Foods, particularly vegetable oils, when produced, preserved and used according to established prescriptions, help to ensure consumer health and prevent certain pathologies. Sterols, and in particular phytosterols, play a number of roles in the pharmaceutical field (therapeutic steroids), nutrition (anti-cholesterol, anti-cancer properties). These natural molecules with their nutritional and therapeutic properties have a positive impact on human and animal health, and possibly on vegetative growth (development cycle of plants). The same is true for cholesterol, which has multiple functions in humans and animals. Also, a diet based on plants or their by-products with positive effects on human and animal health is closely in line with the objectives of the 'One health approach'. Indeed, sterols can have adverse effects on health when established standards are not respected. As a result, the health benefits of sterols (cholesterol and phytosterols) require particular attention, given their contribution to the public health problems facing our countries. The aim of the present research is to highlight the health benefits of cholesterol and phytosterols for living organisms, particularly humans, and their contribution to the One Health approach.
Collapse
Affiliation(s)
- Souleymane Zio
- Université Joseph KI-ZERBO, Laboratoire de Biochimie et d’Immunologie Appliquées, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Bakary Tarnagda
- Université Joseph KI-ZERBO, Laboratoire de Biochimie et d’Immunologie Appliquées, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Centre Universitaire de Banfora, Université Nazi BONI, 01 BP, Bobo Dioulasso 01, Burkina Faso
| | - François Tapsoba
- Université Joseph KI-ZERBO, Laboratoire de Biochimie et d’Immunologie Appliquées, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Cheikna Zongo
- Université Joseph KI-ZERBO, Laboratoire de Biochimie et d’Immunologie Appliquées, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Aly Savadogo
- Université Joseph KI-ZERBO, Laboratoire de Biochimie et d’Immunologie Appliquées, 03 BP 7021, Ouagadougou 03, Burkina Faso
| |
Collapse
|
2
|
Shi L, Li Y, Lin M, Liang Y, Zhang Z. Profiling the Bioactive Compounds in Broccoli Heads with Varying Organ Sizes and Growing Seasons. PLANTS (BASEL, SWITZERLAND) 2024; 13:1329. [PMID: 38794399 PMCID: PMC11125000 DOI: 10.3390/plants13101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Broccoli is a rich source of diverse bioactive compounds, but how their contents are influenced by different growing seasons and variations in broccoli head sizes remains elusive. To address this question, we quantified sixteen known bioactive compounds and seven minerals in broccoli with varying head sizes obtained in two different growing seasons. Our results suggest that the contents of vitamin C, total phenols, carotenoids, and glucoraphanin were significantly higher in samples from the summer-autumn season, showing increases of 157.46%, 34.74%, 51.80%, and 17.78%, respectively, compared with those from the winter-spring season. Moreover, chlorogenic acid is a phenolic compound with relatively high contents among the six detected, while beta-sitosterol is the sterol with relatively high contents. Further, principal component analysis was conducted to rank the comprehensive scores of the profiles of phenolic compounds, phytosterols, and minerals, demonstrating that the broccoli samples grown during the summer-autumn season achieved the highest composite scores. Our results indicate that broccoli heads from the summer-autumn season are richer in a combination of bioactive compounds and minerals than those from the winter-spring season based on the composite score. This study extends our understanding of the nutrition profiles in broccoli and also lays the foundation for breeding broccoli varieties with improved nutrition quality.
Collapse
Affiliation(s)
- Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| | - Yahui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| | - Menghua Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| | - Ying Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| |
Collapse
|
3
|
Mahdlou Z, Dehkharghani RA, Niazi A, Tamaddon A, Ebrahimi MT. Co-sonicated coacervation for high-efficiency green nanoencapsulation of phytosterols by colloidal non-biotoxic solid lipid nanoparticles. Sci Rep 2024; 14:4671. [PMID: 38409285 PMCID: PMC10897223 DOI: 10.1038/s41598-024-54178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Plant sterols are used as a supplement or an additive to reduce LDL cholesterol. The poor dispersibility and instability of phytosterols are the main limitations of their application. So, we tried to overcome these problems through nanoencapsulation of them with colloidal natural RSs (SLNs) using an effective approach to achieve higher efficiency and less intrinsic coagulation. Phytosterols extracted from flax seeds oil with caffeine by a new method were encapsulated with a stable colloid of sheep fat and ostrich oil (1:2), soy lecithin, and glucose through co-sonicated coacervation. Characterization of the obtained SLNs was conducted using FTIR, UV-Vis, SEM, DLS, and GC analysis. The three-factor three-level Behnken design (BBD) was used to prioritize the factors affecting the coacervation process to optimize particle size and loading capacity of SLNs. Operational conditions were examined, revealing that the size of SLNs was below 100 nm, with a phytosterols content (EE %) of 85.46% with high positive zeta potential. The nanocapsules' anti-microbial activity and drug-release behavior were then evaluated using the CFU count method and Beer-Lambert's law, respectively. The controlled release of nanocapsules (below 20%) at ambient temperature has been tested. The stability of nano-encapsulated phytosterols was investigated for six months. All results show that this green optimal coacervation is a better way than conventional methods to produce stable SLNs for the nanoencapsulation of phytosterols.
Collapse
Affiliation(s)
- Zolfaghar Mahdlou
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, P.O. Box 1465613111, Tehran, Iran
| | - Rahebeh Amiri Dehkharghani
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, P.O. Box 1465613111, Tehran, Iran.
| | - Ali Niazi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, P.O. Box 1465613111, Tehran, Iran.
| | - Atefeh Tamaddon
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, P.O. Box 1465613111, Tehran, Iran
| | - Maryam Tajabadi Ebrahimi
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Anggreini P, Kuncoro H, Sumiwi SA, Levita J. Molecular Docking Study of Phytosterols in Lygodium microphyllum Towards SIRT1 and AMPK, the in vitro Brine Shrimp Toxicity Test, and the Phenols and Sterols Levels in the Extract. J Exp Pharmacol 2023; 15:513-527. [PMID: 38148923 PMCID: PMC10751218 DOI: 10.2147/jep.s438435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
Background Lygodium microphyllum is a fern plant with various pharmacological activities, and phytosterols were reported contained in the n-hexane and ethyl acetate extract of this plant. Phytosterols are known to inhibit steatosis, oxidative stress, and inflammation. Sirtuin 1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK) are the key proteins that control lipogenesis. However, information about L. microphyllum on SIRT1 and AMPK is still lacking. Purpose This study aims to investigate the binding mode of phytosterols in L. microphyllum extract towards AMPK and SIRT1, and the toxicity of the extract against brine shrimp (Artemia salina) larvae, and to determine the phenols and sterols levels in the extract. Methods The molecular docking was performed towards SIRT1 and AMPK using AutoDock v4.2.6, the toxicity of the extract was assayed against brine shrimp (Artemia salina) larvae, and the phytosterols were analyzed by employing a thin layer chromatography densitometry, and the total phenols were by spectrophotometry. Results The molecular docking study revealed that β-sitosterol and stigmasterol could occupy the active allosteric-binding site of SIRT1 and AMPK by binding to important residues similar to the protein's activators. The cold extraction of the plant yields 15.86% w/w. Phytochemical screening revealed the presence of phenols, steroids, flavonoids, alkaloids, and saponins. The total phenols are equivalent to 126 mg gallic acid (GAE)/g dry extract, the total sterols are 954.04 µg/g, and the β-sitosterol level is 283.55 µg/g. The LC50 value of the extract towards A. salina larvae is 203.704 ppm. Conclusion Lygodium microphyllum extract may have the potential to be further explored for its pharmacology activities, particularly in the discovery of plant-based anti-dyslipidemic drug candidates. However, further studies are needed to confirm their roles in alleviating lipid disorders.
Collapse
Affiliation(s)
- Putri Anggreini
- Faculty of Pharmacy, Padjadjaran University, Sumedang, 46363, Indonesia
- Faculty of Pharmacy, Mulawarman University, Samarinda, 75119, Indonesia
| | - Hadi Kuncoro
- Faculty of Pharmacy, Mulawarman University, Samarinda, 75119, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, 46363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, 46363, Indonesia
| |
Collapse
|
5
|
Peng Z, Chen L, Wang M, Yue X, Wei H, Xu F, Hou W, Li Y. SREBP inhibitors: an updated patent review for 2008-present. Expert Opin Ther Pat 2023; 33:669-680. [PMID: 38054657 DOI: 10.1080/13543776.2023.2291393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Sterol regulatory element-binding proteins (SREBPs) are a family of membrane-binding transcription factors that activate genes encoding enzymes required for cholesterol and unsaturated fatty acid synthesis. Overactivation of SREBP is related to the occurrence and development of diabetes, nonalcoholic fatty liver, tumor, and other diseases. In the past period, many SREBP inhibitors have been found. AREAS COVERED This manuscript is a patent review of SREBP inhibitors. We searched 2008 to date for all data from the US patent database (https://www.uspto.gov/) and the European patent database (https://www.epo.org/) with 'SREBP' and 'inhibitor' as keywords and analyzed the search results. EXPERT OPINION Both synthetic and natural SREBP inhibitors have been reported. Despite the lack of cocrystal structure of SREBP inhibitor, the mechanisms of several compounds have been clarified. Importantly, some SREBP inhibitors have been proved to have good activity in preclinical studies. As the characteristics of lipid metabolism reprogramming in cardio-cerebrovascular diseases and tumors are gradually revealed, more and more attention will be focused on SREBP.
Collapse
Affiliation(s)
- Zhenyu Peng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leyuan Chen
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Manjiang Wang
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Xufan Yue
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huiqiang Wei
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Feifei Xu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Wenbin Hou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yiliang Li
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
6
|
Lôbo IMDB, Bordallo CDOS, Sacramento JM, Leite LDO, Santana PDS. Phytosterol supplementation in capsules or tablets as adjunctive treatment for hypercholesterolemia: A systematic review of randomized controlled trials. Clin Nutr ESPEN 2023; 57:718-729. [PMID: 37739728 DOI: 10.1016/j.clnesp.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND The exploration of lipid-lowering resources, such as phytosterols, for the complementary nutritional treatment of hypercholesterolemia is relevant to reduce cardiovascular risk. The use of phytosterols in capsules or tablets can bring advantages in the context of diet therapy, but such format is still less studied when compared to fortified foods. OBJECTIVE Systematically review randomized clinical trials on the effects of phytosterol supplementation, in capsules or tablets, on the lipid profile and its use in the treatment of hypercholesterolemia in adults. DESIGN A systematic review was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis, with a PROSPERO protocol registered under number CRD42021249539. The process was conducted by two independent reviewers. Only randomized clinical trials with phytosterol supplementation in adult individuals with hypercholesterolemia were included. The terms were searched in the databases: PubMed/MEDLINE, Cochrane Library/CENTRAL, Embase, LILACS and Web of Science, without restriction of time and language. The manual search was also performed through the list of references of articles included in this review. RESULTS The searches resulted in 977 articles. 22 articles were selected, whose full text was read, and according to the eligibility criteria 10 were incorporated into the review. The studies were separated into groups according to the association of the intervention with changes in lifestyle and the characteristics extracted from the studies were summarized and displayed in tables. Most studies have revealed a positive association between phytosterol supplementation and cholesterol reduction, despite the short duration of interventions. CONCLUSION The analyzed studies showed that phytosterol supplements can be useful to modulate the lipid profile, helping to reduce the plasma concentration of LDL cholesterol. However, more research with the aforementioned supplementation in such pharmaceutical formats should be encouraged.
Collapse
Affiliation(s)
- Izabele Maria de Barros Lôbo
- University of the State of Bahia, Department of Life Sciences - Campus I, Street Silveira Martins, 2555, Cabula, Salvador, Bahia, CEP: 41150-000, Brazil; Federal University of Bahia, School of Nutrition, Street Basilio da Gama, Canela, Salvador, Bahia, CEP: 40110-040, Brazil.
| | - Carine de Oliveira Souza Bordallo
- University of the State of Bahia, Department of Life Sciences - Campus I, Street Silveira Martins, 2555, Cabula, Salvador, Bahia, CEP: 41150-000, Brazil.
| | - Joselita Moura Sacramento
- University of the State of Bahia, Department of Life Sciences - Campus I, Street Silveira Martins, 2555, Cabula, Salvador, Bahia, CEP: 41150-000, Brazil.
| | - Luana de Oliveira Leite
- University of the State of Bahia, Department of Life Sciences - Campus I, Street Silveira Martins, 2555, Cabula, Salvador, Bahia, CEP: 41150-000, Brazil; Federal University of Bahia, School of Nutrition, Street Basilio da Gama, Canela, Salvador, Bahia, CEP: 40110-040, Brazil.
| | - Poliana da Silva Santana
- University of the State of Bahia, Department of Life Sciences - Campus I, Street Silveira Martins, 2555, Cabula, Salvador, Bahia, CEP: 41150-000, Brazil.
| |
Collapse
|
7
|
Saini RK, Ahn HY, Park GW, Shin JW, Lee JH, Yu JW, Song MH, Keum YS, Lee JH. Quantitative Profiling of Carotenoids, Tocopherols, Phytosterols, and Fatty Acids in the Flower Petals of Ten Marigold ( Tagetes spp. L.) Cultivars. Foods 2023; 12:3549. [PMID: 37835202 PMCID: PMC10572322 DOI: 10.3390/foods12193549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Marigold (Tagetes spp.) flower petals are the most vital sources of carotenoids, especially lutein esters, for the production of natural lutein to use for food, feed, and pharmaceutical industries. Several marigold cultivars are cultivated globally; however, their lutein ester composition and contents have not been widely investigated. Considering this, this study aimed to identify and quantify prominent carotenoid esters from the flower petals of ten marigold cultivars by liquid chromatography (LC)-diode-array detection (DAD)-mass spectrometry (MS). In addition, tocopherols, phytosterols, and fatty acids were analyzed by gas chromatography (GC)-flame ionization detection (FID) and GC-MS. Furthermore, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging abilities of lipophilic extracts were determined. The total carotenoid contents varied significantly (p < 0. 05, Tukey HSD) among cultivars, ranging from 25.62 (cv. Alaska)-2723.11 µg/g fresh weight (cv. Superboy Orange). Among the five major lutein-diesters, (all-E)-lutein-3-O-myristate-3'-O-palmitate and lutein dipalmitate were predominant. Among the studied cultivars, α-tocopherol was recorded, ranging from 167.91 (cv. Superboy Yellow) to 338.50 µg/g FW (cv. Taishan Orange). Among phytosterols, β-sitosterol was the most prevalent phytosterol, ranging between 127.08 (cv. Superboy Yellow) and 191.99 µg/g FW (cv. Taishan Yellow). Palmitic acid (C16:0; 33.36-47.43%) was the most dominant among the fatty acids. In this study, the highest contents of lutein were recorded from cv. Superboy Orange; however, due to the substantially higher flower petal yield, the cv. Durango Red can produce the highest lutein yield of 94.45 kg/ha. These observations suggest that cv. Durango Red and cv. Superboy Orange are the ideal candidates for lutein fortification in foods and also for commercial lutein extraction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ji-Ho Lee
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea; (R.K.S.); (H.-Y.A.); (G.-W.P.); (J.-W.S.); (J.-H.L.); (J.-W.Y.); (M.-H.S.); (Y.-S.K.)
| |
Collapse
|
8
|
Barrea L, Vetrani C, Verde L, Frias-Toral E, Ceriani F, Cernea S, Docimo A, Graziadio C, Tripathy D, Savastano S, Colao A, Muscogiuri G. Comprehensive Approach to Medical Nutrition Therapy in Patients with Type 2 Diabetes Mellitus: From Diet to Bioactive Compounds. Antioxidants (Basel) 2023; 12:904. [PMID: 37107279 PMCID: PMC10135374 DOI: 10.3390/antiox12040904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
In the pathogenesis of type 2 diabetes mellitus (T2DM), diet plays a key role. Individualized medical nutritional therapy, as part of lifestyle optimization, is one of the cornerstones for the management of T2DM and has been shown to improve metabolic outcomes. This paper discusses major aspects of the nutritional intervention (including macro- and micronutrients, nutraceuticals, and supplements), with key practical advice. Various eating patterns, such as the Mediterranean-style, low-carbohydrate, vegetarian or plant-based diets, as well as healthy eating plans with caloric deficits have been proven to have beneficial effects for patients with T2DM. So far, the evidence does not support a specific macronutrient distribution and meal plans should be individualized. Reducing the overall carbohydrate intake and replacing high glycemic index (GI) foods with low GI foods have been shown as valid options for patients with T2DM to improve glycemic control. Additionally, evidence supports the current recommendation to reduce the intake of free sugars to less than 10% of total energy intake, since their excessive intake promotes weight gain. The quality of fats seems to be rather important and the substitution of saturated and trans fatty acids with foods rich in monounsaturated and polyunsaturated fats lowers cardiovascular risk and improves glucose metabolism. There is no benefit of supplementation with antioxidants, such as carotene, vitamins E and C, or other micronutrients, due to the lack of consistent evidence showing efficacy and long-term safety. Some studies suggest possible beneficial metabolic effects of nutraceuticals in patients with T2DM, but more evidence about their efficacy and safety is still needed.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Isola F2, 80143 Napoli, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Claudia Vetrani
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Isola F2, 80143 Napoli, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Florencia Ceriani
- Nutrition School, Universidad de la Republica (UdelaR), Montevideo 11100, Uruguay
| | - Simona Cernea
- Department M3/Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 540146 Târgu Mureş, Romania
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, 540146 Târgu Mureş, Romania
| | - Annamaria Docimo
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Chiara Graziadio
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Devjit Tripathy
- Division of Diabetes UT Health and ALM VA Hospital, San Antonio, TX 78229, USA
| | - Silvia Savastano
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco “Educazione Alla Salute e Allo Sviluppo Sostenibile”, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco “Educazione Alla Salute e Allo Sviluppo Sostenibile”, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
9
|
Profiling of Redox-Active Lipophilic Constituents in Leaf Mustard ( Brassica juncea (L.) Czern.) Cultivars Using LC-MS and GC-MS. Antioxidants (Basel) 2022; 11:antiox11122464. [PMID: 36552672 PMCID: PMC9774780 DOI: 10.3390/antiox11122464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Leaf mustard is an important commercial and culinary vegetable. However, only limited information is available on the content and composition of the nutritionally important lipophilic constituents in these leaves. This research presents information on the contents and composition of carotenoids, tocols, phytosterols, and fatty acids in four cultivars of leaf mustard. The carotenoids and tocols were analyzed utilizing liquid chromatography (LC)-mass spectrometry (MS) with single ion monitoring (SIM), while phytosterols and fatty acids were analyzed using gas chromatography (GC)-MS and GC-flame ionization detection (FID), respectively. The LC-MS results revealed the dominance of (all-E)-lutein, within the range of 37.12 (cv. Asia Curled)-43.54% (cv. Jeok) of the total carotenoids. The highest amount of all of the individual carotenoids and total carotenoids (143.85 µg/g fresh weight; FW) were recorded in cv. Cheong. Among the studied leaf samples, 67.16 (cv. Asia Curled)-83.42 µg/g FW (cv. Cheong) of α-tocopherol was recorded. Among the phytosterols, β-sitosterol was the most dominant one among the studied mustard leaves, accounting for 80.42 (cv. Jeok)-83.14% (cv. Red frill) of the total phytosterols. The fatty acid analysis revealed the presence of a significant amount of rare hexadecatrienoic acid (C16:3n3) in the studied mustard leaves, which accounted for 27.17 (cv. Asia Curled)-32.59% (cv. Red frill) of the total fatty acids. Overall, the cv. Cheong represented the highest contents of carotenoids, tocols, and phytosterols. Moreover, cv. Red frill contains the highest amount of n-3 PUFAs and antioxidant compounds. Thus, these cultivars can be promoted in cuisines which can be eaten to obtain the highest health benefits.
Collapse
|
10
|
Profiling of Nutritionally Vital Bioactive Compounds in Emerging Green Leafy Vegetables: A Comparative Study. Foods 2022; 11:foods11233867. [PMID: 36496677 PMCID: PMC9736515 DOI: 10.3390/foods11233867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Green leafy vegetables (GLVs), especially lettuce and spinach, are the key source of bioactive antioxidants in a diet. This research compared the contents and composition of lettuce and spinach bioactive compounds with emerging GLVs, moringa and fenugreek. Liquid chromatography (LC)-mass spectrometry (MS) with single ion monitoring (SIM) was used to examine carotenoids and tocols, while phytosterols were examined using gas chromatography (GC)-MS. Among the studied GLVs, the (all-E)-lutein was the most dominating carotenoid ranging between 31.3 (green/red lettuce)−45.3 % (fenugreek) of total carotenoids, followed by (all-E)-violaxanthin and (all-E)-β-carotene. Surprisingly, (all-E)-β-carotene, a provitamin A carotenoid, was the second most dominating carotenoid in moringa, accounting for 109.2 µg/g fresh weight (FW). Moreover, the significantly highest (p < 0.05; Tukey HSD) contents of total carotenoids (473.3 µg/g FW), α-tocopherol (83.7 µg/g FW), and total phytosterols (206.4 µg/g FW) were recorded in moringa. Therefore, moringa foliage may serve as an affordable source of nutritionally vital constituents in a diet.
Collapse
|
11
|
Nunes VS, de Campos EVS, Baracat J, França V, Gomes ÉIL, Coelho RP, Nakandakare ER, Zago VHS, de Faria EC, Quintão ECR. Plasma Campesterol Is Positively Associated with Carotid Plaques in Asymptomatic Subjects. Int J Mol Sci 2022; 23:ijms231911997. [PMID: 36233298 PMCID: PMC9569444 DOI: 10.3390/ijms231911997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Increased cholesterol absorption and reduced synthesis are processes that have been associated with cardiovascular disease risk in a controversial way. However, most of the studies involving markers of cholesterol synthesis and absorption include conditions, such as obesity, diabetes, dyslipidemia, which can be confounding factors. The present study aimed at investigating the relationships of plasma cholesterol synthesis and absorption markers with cardiovascular disease (CVD) risk factors, cIMT (carotid intima-media thickness), and the presence of carotid plaques in asymptomatic subjects. METHODS A cross-sectional study was carried out in 270 asymptomatic individuals and anthropometrical parameters, fasting plasma lipids, glucometabolic profiles, high-sensitivity C-reactive protein (hs-CRP), markers of cholesterol synthesis (desmosterol and lathosterol), absorption (campesterol and sitosterol), cIMT, and the presence of atherosclerotic plaques were analyzed. RESULTS Among the selected subjects aged between 19 and 75 years, 51% were females. Age, body mass index, systolic and diastolic blood pressure, total cholesterol, non-HDL-C, triglycerides, glucose, and lathosterol/sitosterol ratios correlated positively with cIMT (p ≤ 0.05). Atherosclerotic plaques were present in 19% of the subjects. A direct association of carotid plaques with campesterol, OR = 1.71 (95% CI = 1.04-2.82, p ≤ 0.05) and inverse associations with both ratios lathosterol/campesterol, OR = 0.29 (CI = 0.11-0.80, p ≤ 0.05) and lathosterol/sitosterol, OR = 0.45 (CI = 0.22-0.95, p ≤ 0.05) were observed in univariate logistic regression analysis. CONCLUSIONS The findings suggested that campesterol may be associated with atherosclerotic plaques and the lathosterol/campesterol or sitosterol ratios suggested an inverse association. Furthermore, synthesis and absorption of cholesterol are inverse processes, and the absorption marker, campesterol, may reflect changes in body cholesterol homeostasis with atherogenic potential.
Collapse
Affiliation(s)
- Valéria Sutti Nunes
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-900, SP, Brazil
| | - Edite Vieira Silva de Campos
- Lipid Laboratory and Center for Medicine and Experimental Surgery, Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | - Jamal Baracat
- Faculty of Medical Sciences, Department of Radiology, Hospital of Clinics, State University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | - Victor França
- Lipid Laboratory and Center for Medicine and Experimental Surgery, Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | - Érica Ivana Lázaro Gomes
- Lipid Laboratory and Center for Medicine and Experimental Surgery, Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | - Raissa Peres Coelho
- Lipid Laboratory and Center for Medicine and Experimental Surgery, Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | - Edna Regina Nakandakare
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-900, SP, Brazil
| | - Vanessa Helena Souza Zago
- Centro de Ciências da Vida, Pontifical Catholic University of Campinas, Campinas 13034-68, SP, Brazil
| | - Eliana Cotta de Faria
- Lipid Laboratory and Center for Medicine and Experimental Surgery, Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | - Eder Carlos Rocha Quintão
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-900, SP, Brazil
- Correspondence: ; Tel.: +55-11-3061-7263
| |
Collapse
|
12
|
Sumara A, Stachniuk A, Montowska M, Kotecka-Majchrzak K, Grywalska E, Mitura P, Saftić Martinović L, Kraljević Pavelić S, Fornal E. Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Poznan, Poland
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Lublin, Poland
| | - Przemysław Mitura
- Department of Urology and Urological Oncology, Medical University of Lublin, Lublin, Poland
| | | | | | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
13
|
Vlaicu PA, Untea AE, Turcu RP, Saracila M, Panaite TD, Cornescu GM. Nutritional Composition and Bioactive Compounds of Basil, Thyme and Sage Plant Additives and Their Functionality on Broiler Thigh Meat Quality. Foods 2022; 11:foods11081105. [PMID: 35454692 PMCID: PMC9029320 DOI: 10.3390/foods11081105] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/17/2023] Open
Abstract
Meat industries across the world are constantly focusing to find natural low-cost additives for the development of novel meat products to meet consumer demand for improving the health benefits. In this study, we investigated the chemical composition and the bioactive compounds of some herbal plants, namely basil, thyme, sage, and their functionality on broiler chicken thigh meat quality. Chemical composition, as well as total antioxidant activity, polyphenols, vitamin E lutein and zeaxanthin and the fatty acids of the plants, were analyzed. According to findings, total polyphenols was 21.53 mg gallic acid/g in basil, 31.73 mg gallic acid/g in thyme and 38.87 mg gallic acid/g in sage. The antioxidant capacity was 19.91 mM Trolox in basil, 54.09 mM Trolox in thyme and 54.09 mM Trolox in sage. Lutein and zeaxanthin from basil was 267.91 mg/kg, 535.79 mg/kg in thyme and 99.89 mg/kg, and vitamin E ranged from 291.71 mg/kg in basil to 379.37 mg/kg in thyme and 148.07 mg/kg in sage, respectively. After, we developed a trial on 120 unsexed broiler chickens (n = 30) which were separated into four groups with six replications of five chickens each: control (C); 1% basil (B); 1% thyme (T) and 1% sage (S). The B, T and S groups deposited significantly higher (p < 0.05) concentration of zinc, polyphenols, antioxidant capacity and vitamin E in meat samples compared with the C group. In the experimental groups, the proportion of total polyunsaturated fatty acids, the ratio of n-6 to n-3 fatty acids, and the ratio of polyunsaturated fatty acids to saturated fatty acids in the thigh muscles were significantly improved (p < 0.05). The tested plants exhibited a significant (p = 0.0007) hypocholesterolemic effect in the meat of the B (45.90 mg/g), T (41.60 mg/g) and S (48.80 mg/kg) experimental groups compared with the C (60.50 mg/g) group. These results support the application of the studied plants as natural sources of additives which could be effective in improving meat quality, from the human consumption perspective.
Collapse
|
14
|
Gunathilake M, Van NTH, Kim J. Effects of nut consumption on blood lipid profile: A meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2022; 32:537-549. [PMID: 35144856 DOI: 10.1016/j.numecd.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Several randomized controlled trials (RCTs) have assessed the effects of nut consumption on blood lipid profile. The aim of this study was to conduct a meta-analysis to quantitatively estimate the effects of nut consumption on blood lipid profile. METHODS AND RESULTS The PubMed, EMBASE, Cochrane Library, and Google Scholar databases were systematically searched to identify RCTs examining the effects of nut intake on blood total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TGs) from inception until March 2021. A random-effects model was used to pool standardized mean differences (SMDs) and 95% confidence intervals (CIs). Potential publication bias was assessed using Begg's test and Egger's test. Sensitivity analysis was performed to assess the impact of each individual study on the pooled results. The meta-analysis showed that nut consumption had no significant effect on the blood lipid profile. However, there was a significant reduction in TC (SMD: -2.89, 95% CI: -4.80, -0.98, I2 = 97.4) for pistachio consumption, and cashew consumption significantly increased HDL-C (SMD: 0.24, 95% CI: 0.04, 0.43, I2 = 0.0) compared with that in controls. There was no significant publication bias in the meta-analysis. The sensitivity analysis showed that removing one study at a time did not change the significance of the results. CONCLUSION There was no overall effect of nut consumption on lipid profile, and the results may vary depending on nut type. We found that pistachio consumption may reduce TC levels, while cashew consumption increases HDL-C. REGISTRY NUMBER PROSPERO CRD42021249147.
Collapse
Affiliation(s)
- Madhawa Gunathilake
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, 10408, Gyeonggi-do, South Korea
| | - Nhung Thi Hong Van
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, 10408, Gyeonggi-do, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, 10408, Gyeonggi-do, South Korea.
| |
Collapse
|
15
|
Kopecky SL, Alias S, Klodas E, Jones PJH. Reduction in Serum LDL Cholesterol Using a Nutrient Compendium in Hyperlipidemic Adults Unable or Unwilling to Use Statin Therapy: A Double-Blind Randomized Crossover Clinical Trial. J Nutr 2022; 152:458-465. [PMID: 35079806 DOI: 10.1093/jn/nxab375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Many hyperlipidemic patients prescribed β-hydroxy-β-methylglutaryl coenzyme A reductase inhibitors (statins) are unable or unwilling to take them. A hedonically acceptable snack-based solution formulated from cholesterol-lowering food ingredients could represent a therapeutic alternative but has not been tested in this population. OBJECTIVES To evaluate the effect of snacks containing a compendium of functional bioactives on fasting LDL cholesterol in statin candidates unwilling to use or intolerant to ≥1 statin drug. Secondary outcomes included changes in circulating total cholesterol (TC), triglycerides, HDL cholesterol, fasting glucose, insulin, and high-sensitivity C-reactive protein concentrations, as well as effects of single-nucleotide polymorphisms (SNPs) on outcome. METHODS This multicenter, randomized, double-blind, free-living crossover study was composed of 2 regimented phases of 4 wk each, separated by a 4-wk washout. Eighteen men and 36 women, with a mean ± SD age of 49 ± 12 y and mean ± SD LDL cholesterol of 131 ± 32.1 mg/dL, were instructed to ingest a variety of ready-to-eat snacks twice daily as a substitute for something they were consuming already. Other behavior changes were actively discouraged. Treatment products provided ≥5 g fiber, 1000 mg ω-3 (n-3) fatty acids, 1000 mg phytosterols, and 1800 μmol antioxidants per serving. Control products were calorie-matched like-items drawn from the general grocery marketplace. Serum lipids were measured at baseline and the end of each phase and compared using the ANOVA model. Compliance to study foods was confirmed by serum 18:3n-3 concentration assessment. RESULTS Comparing intervention phase endpoints, LDL cholesterol was reduced a mean ± SD of 8.80 ± 1.69% (P < 0.0001), and TC was reduced a mean ± SD of 5.08 ± 1.12% (P < 0.0001) by treatment foods compared with control foods, whereas effects on other analytes did not differ between treatments. SNPs were not significantly related to outcomes (P ≥ 0.230). Compliance with study foods was 95%. CONCLUSIONS Consumption of hedonically acceptable snacks containing a compendium of cholesterol-lowering bioactive compounds can rapidly and meaningfully reduce LDL cholesterol in adult patients unable or unwilling to take statin drugs. This trial was registered at clinicaltrials.gov as NCT02341924.
Collapse
Affiliation(s)
| | - Soumya Alias
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada
| | | | - Peter J H Jones
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada
| |
Collapse
|
16
|
Gao P, Liu R, Jin Q, Wang X. Key chemical composition of walnut (Juglans regia. L) Oils generated with different processing methods and their cholesterol-lowering effects in HepG2 cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Li Y, Wang T, Shi HH, Wang YM, Xue CH, Huang QR, Zhang TT. Absorption, Pharmacokinetics, Tissue Distribution, and Excretion Profiles of Sea Cucumber-Derived Sulfated Sterols in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:480-487. [PMID: 34936372 DOI: 10.1021/acs.jafc.1c04218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sea cucumber-derived sulfated sterols exhibited more significant bioactivities compared to plant sterols due to the distinctive structure of the sulfate group at the C-3 position; however, their absorption, pharmacokinetics, tissue distribution, and excretion profiles are unknown, which limits the analysis of molecular mechanisms related to their unique activities. In this study, the absorption characteristics of sea cucumber sterols were determined by oral gavage administration, and their pharmacokinetics, excretion, and tissue distribution were studied by tail vein injection. The results showed that SS1 and SS2 reached the peak at 3 h (20.14 ± 1.2 μg/mL) and 4 h (13.32 ± 0.9 μg/mL) in serum, respectively, after oral gavage administration, suggesting the faster absorption rate of SS1 than SS2 due to the difference in the side-chain groups. Besides, lipid-containing food media improved the digestion and absorption rates of sea cucumber sterols. Moreover, SS1 exhibited a relatively longer duration of efficacy than SS2, and they were almost completely excreted within 9 h through urine. Additionally, sea cucumber sterols were found to be mainly accumulated in the liver (P < 0.05), followed by the kidney and spleen. These findings might provide a theoretical basis for the research and development of functional foods and nutraceuticals associated with sea cucumber sterols.
Collapse
Affiliation(s)
- Yue Li
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
| | - Teng Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| | - Qing-Rong Huang
- Department of Food Science, Rutgers State University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China
| |
Collapse
|
18
|
Hadi A, Asbaghi O, Kazemi M, Haghighian HK, Pantovic A, Ghaedi E, Abolhasani Zadeh F. Consumption of pistachio nuts positively affects lipid profiles: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2021:1-14. [PMID: 34933637 DOI: 10.1080/10408398.2021.2018569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to evaluate the effects of consuming pistachio nuts on lipid profiles (total cholesterol [TC], low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], and triglyceride [TG]). Databases of PubMed, Scopus, ISI Web of Science, and Cochrane Library were searched from inception to June 2019 to identify RCTs documenting the effects of consuming pistachio nuts on blood lipid profiles in adults. Effect sizes were reported as weighted mean difference (WMD) and 95% confidence interval (CI) using the random-effects models (DerSimonian-Laird method). Twelve eligible RCTs were included. Consumption of pistachio nuts decreased TC (WMD: -7.48 mg/dL; 95% CI, -12.62 to -2.34), LDL-C (WMD: -3.82 mg/dL; 95% CI, -5.49 to -2.16) and TG (WMD: -11.19 mg/dL; 95% CI, -14.21 to -8.17) levels. However, HDL-cholesterol levels (WMD: 2.45 mg/dL; 95% CI, -2.44 to 7.33) did not change following pistachio consumption. Consuming pistachio nuts may improve lipid profiles (TC, LDL-C, TG) in adults and may be protective against cardiometabolic diseases. However, further studies with larger sample sizes are required to confirm these results.
Collapse
Affiliation(s)
- Amir Hadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Kazemi
- Human Metabolic Research Unit, Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Hossein Khadem Haghighian
- Metabolic Diseases Research Center, Research Institute for Prevention of on-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ana Pantovic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ehsan Ghaedi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Zyriax BC, Borof K, Walter S, Augustin M, Windler E. Knowledge as to cholesterol reduction and use of phytosterol-enriched dietary foods in the general population: Insights from the Hamburg City Health Study. Atherosclerosis 2021; 341:1-6. [PMID: 34922192 DOI: 10.1016/j.atherosclerosis.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/17/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Dietary approaches to lowering cholesterol appear to be common knowledge. However, the marketing of phytosterol-enriched products and their recommendation by guidelines for individuals at increased risk of cardiovascular disease have given rise to concern, since phytosterols may be atherogenic and inappropriately used by healthy individuals of higher social status at low cardiovascular risk. Hence, we have investigated awareness of cholesterol lowering lifestyle measures and attitudes towards consumption of phytosterol-enriched foods. METHODS Data from validated questionnaires supplemented by queries on cholesterol lowering and phytosterol-enriched products were analyzed using data of 7223 participants of the Hamburg City Health Study, an ongoing cohort study of the general population aged 45-74 years. RESULTS 95.9% of the participants agreed that lifestyle may lower cholesterol and 76.6% claimed knowledge of measures that lower plasma cholesterol. As to effective approaches, 80.2% suggested physical activity, 67.8% reducing dietary fat, followed by sugar-sweetened beverages or stress, increasing water consumption, or dietary fiber and only 16.2% stated statins and 9.3% phytosterol-enriched products. Compared to nonusers, the 2.0% female and 2.8% male individuals regularly using phytosterol-enriched products had a lower educational status, higher cardiovascular risk, but no difference in income and were characterized by adverse dietary habits. The study has been registered in ClinicalTrial.gov (NCT03934957). CONCLUSIONS In the general population awareness of hypercholesterolemia is high but knowledge on how to lower plasma cholesterol does not necessarily follow scientific evidence. There is a trend towards the use of phytosterol-enriched products by individuals at increased cardiovascular risk independent of income.
Collapse
Affiliation(s)
- Birgit-Christiane Zyriax
- Midwifery Science - Health Care Research and Prevention, Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Katrin Borof
- Epidemiological Study Center, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Lübeck/Kiel, Munich, Germany
| | - Sascha Walter
- Midwifery Science - Health Care Research and Prevention, Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Eberhard Windler
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
20
|
Mohamed D, Mohammed S, Hamed I. Chia seeds oil enriched with phytosterols and mucilage as a cardioprotective dietary supplement towards inflammation, oxidative stress, and dyslipidemia. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Non-communicable diseases are a cluster of metabolic diseases, which include type-2 diabetes, cancer, and cardiovascular diseases (CVDs). The aim of the current research was to incorporate dietary fibers (mucilage) and phytosterol for enriching chia seeds oil for producing new dietary supplements for cardio-protection from oxidative stress, inflammation, and dyslipidemia. Methods: Fatty acids profile, phytosterols, and phenolic compounds content of the prepared dietary supplement were assessed. The cardioprotective potency of the dietary supplement was evaluated in rats fed on a high-fat diet for a month. Biochemical parameters related to inflammation, oxidative stress, lipid profile, cardiac enzymes, and kidney function were determined in all rats. Results: The results revealed that dietary supplement was rich in omega-3 fatty acids. Beta-sitosterol and campesterol were the major phytosterols in chia seeds oil dietary supplement. Phenolic compounds were present by 25.9 ± 1.202 mg gallic acid equivalent (GAE)/g dietary supplements. Rats fed on the high-fat diet showed significant elevation (P < 0.05) in inflammatory markers, oxidative stress, dyslipidemia, and cardiac enzymes in association with the elevation of kidney function compared with normal rats. Administration of both doses of dietary supplement significantly (P < 0.05) improved all the studied biochemical parameters. The high dose of the dietary supplement was promising in the reduction of inflammatory markers, oxidative stress, and improved dyslipidemia in accordance with the reduction of all cardiac enzymes and kidney function. Conclusion: Dietary supplements investigated in the current research showed cardioprotective potency through its anti-inflammatory and dyslipidemic activities, which may be attributed to the presence of phenolic compounds, omega-3 fatty acids, phytosterols, and soluble dietary fibers.
Collapse
Affiliation(s)
- Doha Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Shaimaa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ibrahim Hamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
21
|
Nattagh-Eshtivani E, Barghchi H, Pahlavani N, Barati M, Amiri Y, Fadel A, Khosravi M, Talebi S, Arzhang P, Ziaei R, Ghavami A. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytother Res 2021; 36:299-322. [PMID: 34729825 DOI: 10.1002/ptr.7312] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022]
Abstract
Phytosterols (PSs), classified into plant sterols and stanols, are bioactive compounds found in foods of plant origin. PSs have been proposed to exert a wide number of pharmacological properties, including the potential to reduce total and low-density lipoprotein (LDL) cholesterol levels and thereby decreasing the risk of cardiovascular diseases. Other health-promoting effects of PSs include anti-obesity, anti-diabetic, anti-microbial, anti-inflammatory, and immunomodulatory effects. Also, anticancer effects have been strongly suggested, as phytosterol-rich diets may reduce the risk of cancer by 20%. The aim of this review is to provide a general overview of the available evidence regarding the beneficial physiological and pharmacological activities of PSs, with special emphasis on their therapeutic potential for human health and safety. Also, we will explore the factors that influence the physiologic response to PSs.
Collapse
Affiliation(s)
- Elyas Nattagh-Eshtivani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Barghchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naseh Pahlavani
- Nutrition and Biochemistry Department, School of Medicine, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.,Department of Clinical Biochemistry and Nutrition, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Amiri
- Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdulmannan Fadel
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Maryam Khosravi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Talebi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pishva Arzhang
- Department of Biochemistry and Diet Therapy, Faculty of Nutritional Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahele Ziaei
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abed Ghavami
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Zhang Y, Zhang T, Liang Y, Jiang L, Sui X. Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8929-8943. [PMID: 34161727 DOI: 10.1021/acs.jafc.1c01369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary lipids are an indispensable source of energy and nutrition in human life. Numerous studies have shown that dietary bioactive lipids have many health benefits, including prevention or treatment of chronic diseases. The different chemical compositions and structural characteristics of bioactive lipids not only affect their digestion, absorption, and metabolism but also affect their health properties. In this review, the major dietary bioactive lipids (fatty acids, carotenoids, phytosterols, phenolic lipids, fat-soluble vitamins, and sphingomyelins) in foods are systematically summarized, from the aspects of composition, digestion, absorption, metabolism, source, structural characteristics, and their health properties. In particular, the relationship between the compositional and structural changes of bioactive lipids and their absorption and metabolism is discussed as well as their effect on health properties. This review provides a comprehensive summary toward health properties of dietary bioactive lipids.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yan Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
23
|
Mota MFS, Waktola HD, Nolvachai Y, Marriott PJ. Gas chromatography ‒ mass spectrometry for characterisation, assessment of quality and authentication of seed and vegetable oils. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Saini RK, Mahomoodally MF, Sadeer NB, Keum YS, Rr Rengasamy K. Characterization of nutritionally important lipophilic constituents from brown kelp Ecklonia radiata (C. Ag.) J. Agardh. Food Chem 2021; 340:127897. [PMID: 32871355 DOI: 10.1016/j.foodchem.2020.127897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
This research study presents information for the first time on the nutritionally relevant lipophilic compounds obtained from Ecklonia radiata, a poorly studied brown kelp. The major lipophilic compounds were analyzed utilizing liquid chromatography (LC)-tandem mass spectrometry (MS/MS) and gas chromatography (GC)-mass spectrometry (MS). The LC-MS/MS results revealed the presence of eight major lipophilic compounds, including sterols, carotenoids, vitamin E, and phylloquinone (vitamin K1). Quantitative analysis showed that fucosterol was the most predominant phytosterol in the fronds and stipes of E. radiata. The carotenoids (all-E)-fucoxanthin and (all-E)-β-carotene were present in higher yield. In terms of vitamin E, α-tocopherol was identified as the main tocol. The coenzyme, phylloquinone, important for protein synthesis, was also identified in E. radiata. GC-MS identified 13 fatty acids with palmitic (C16:0) and oleic acid (C18:1n9c) present in the highest quantities. To our knowledge, this is the first report on E. radiata, and the valuable data presented herein can be used as a baseline for developing novel nutraceuticals.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kannan Rr Rengasamy
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
25
|
Tavares AKMM, Ribas SA, Paravidino VB, Sgambato MR, Rodrigues RDRM, da Rocha CMM, Sichieri R, Cunha DB. Effect of phytosterol capsule supplementation associated with the National Cholesterol Education Program Step 2 diet on low-density lipoprotein in children and adolescents with dyslipidemia: A double-blind crossover trial. Nutrition 2020; 82:111051. [PMID: 33290971 DOI: 10.1016/j.nut.2020.111051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the effect of phytosterol capsule supplementation associated with the National Cholesterol Education Program (NCEP) Step 2 diet on LDL-C levels in children and adolescents with dyslipidemia. METHODS This is a randomized, double-blind, crossover trial conducted with children and adolescents (n = 31; mean ± SD, age 9.0 ± 2.22 years, BMI zscore 1.65 ± 1.47 kg/m2) with dyslipidemia. After a run-in period, the participants were randomly allocated to control or intervention groups. The intervention group received capsules containing 1.5 g/day of phytosterols, and the control group received capsules containing 2 g/day of sunflower oil for 8 weeks. Patients in both groups were instructed to follow the NCEP Step 2 diet during the study. The primary outcome was LDL-C and secondary outcomes were total cholesterol (TC), HDL-C, triglyceride, insulin, blood pressure, and anthropometric measures. Intention-to-treat analyses were performed using the proc mixed procedure in SAS. RESULTS The rate of change for LDL-C was not different between intervention and control groups (p=0.30). No significant reduction was also observed for TC (p=0.47), HDL-C (p=0.97), insulin (p=0.27), triglycerides (p=0.38), systolic blood pressure (p=0.11), and diastolic blood pressure (p=0.57) compared to control group. Although we observed a high adherence to the capsule intake (95.7% in phytosterol and 93.8% in the control group), the low adherence to the diet may have contributed to explaining the results. CONCLUSION Daily phytosterol capsules supplementation associated with the NCEP Step 2 diet did not reduce LDL-cholesterol concentrations in children and adolescents with dyslipidemia.
Collapse
Affiliation(s)
| | - Simone Augusta Ribas
- Department of Nutrition in Public Health, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor Barreto Paravidino
- Department of Epidemiology, Institute of Social Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Physical Education and Sports, Naval Academy - Brazilian Navy, Rio de Janeiro, Brazil
| | - Michele Ribeiro Sgambato
- Department of Epidemiology, Institute of Social Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Rosely Sichieri
- Department of Epidemiology, Institute of Social Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diana Barbosa Cunha
- Department of Epidemiology, Institute of Social Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Pistachios and cardiometabolic risk factors: A systematic review and meta-analysis of randomized controlled clinical trials. Complement Ther Med 2020; 52:102513. [PMID: 32951758 DOI: 10.1016/j.ctim.2020.102513] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Previous experimental studies have reported that pistachios can elicit positive effects on lipid profile, blood pressure, and inflammation; however, a meta-analysis of the available evidence has yet to be performed. OBJECTIVE the aim of this study was to conduct systematic review and meta-analysis of the effect of pistachio enriched diets on cardiometabolic risk factors, such as weight, BMI, blood pressure, serum lipids, blood glucose, and inflammatory biomarkers. DESIGN A literature search was carried out for RCTs in medical databases, including PubMed/MEDLINE, Scopus, and Cochrane databases, with no time limitation up to August 2019, and conducted in accordance with the Preferred Reporting Items of Systematic Reviews and Meta-Analysis guidelines. RESULTS 11 RCTs, with 506 participants, that reported the effect of pistachios consumption on cardiometabolic risk factors were included in this systematic review and meta-analysis. Our findings indicated that pistachios consumption significantly reduced FBS (WMD: -3.73, 95 % CI: -6.99, -0.46, I2 = 99 %), TC/HDL (WMD: -0.46, 95 % CI: -0.76, -0.15, I2 = 95 %), LDL/HDL (WMD: -0.24, 95 % CI: -0.38, -0.11, I2 = 96 %), HbA1C (WMD: -0.14, 95 % CI: -0.26, -0.02, I2 = 60 %), Insulin (WMD: -2.43, 95 % CI: -4.85, -0.001, I2 = 58 %), SBP (WMD: -3.10, 95 % CI: -5.35, -0.85, I2 = 63 %), and MDA (WMD: -0.36, 95 % CI: -0.49, -0.23, I2 = 0%). Importantly, we did not observe adverse effects of pistachios consumption on BMI or blood pressure. CONCLUSION This systematic review and meta-analysis demonstrates that pistachios consumption can elicit a beneficial effect on some cardiometabolic risk factors. All previous clinical studies are well designed but some points have still remained unclear including the effects of different pistachios dosages on cardio metabolic risk factors and efficacy of pistachios consumption in preventing endothelial dysfunction. Further examination is required to determine the effect of pistachios consumption on further endothelial function risk factors.
Collapse
|
27
|
Healthcare Cost Implications of Utilizing a Dietary Intervention to Lower LDL Cholesterol: Proof of Concept Actuarial Analysis and Recommendations. Curr Cardiol Rep 2020; 22:138. [PMID: 32910320 DOI: 10.1007/s11886-020-01397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW To determine if subsidizing the cost of a food-based intervention for managing hyperlipidemia could be cost-effective under commercial insurance and/or Medicare coverage scenarios. RECENT FINDINGS A large number of patients eligible for pharmaceutical treatment of hyperlipidemia either cannot or will not use lipid lowering drugs, leaving them at increased cardiovascular risk. Lipid levels can be modified by diet, but food has never enjoyed covered benefit status. We evaluated the financial implications of providing insurance coverage for a specifically formulated suite of food products previously documented to yield statistically significant lipid reductions, using multiple product uptake and lipid impact scenarios in both commercially covered and Medicare-covered populations. Even after controlling for multiple confounders, we noted positive payback on subsidizing the cost of lipid-lowering foods under all scenarios. Addressing a root cause of hyperlipidemia by directly encouraging dietary modification provides a cost-effective alternative for cholesterol management, especially for statin intolerant or statin unwilling patients.
Collapse
|
28
|
Adeleke BS, Babalola OO. Oilseed crop sunflower ( Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci Nutr 2020; 8:4666-4684. [PMID: 32994929 PMCID: PMC7500752 DOI: 10.1002/fsn3.1783] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
The use of biofertilizers in developing environmentally friendly agriculture as an alternative to chemical-based fertilizers in enhancing food production is promising in sustainable agriculture for the improvement in the yield of some commercial crops such as sunflowers and other oilseed crops in terms of quality and quantity. Sunflower is an important oilseed crop native to South America and currently cultivated throughout the world. Generally, the sunflower is considered important based on its nutritional and medicinal value. Due to its beneficial health effects, sunflower has been recognized as functional foods or nutraceutical, although not yet fully harnessed. Sunflower contains mineral elements and phytochemicals such as dietary fiber, manganese, vitamins, tocopherols, phytosterols, triterpene glycosides, α-tocopherol, glutathione reductase, flavonoids, phenolic acids, carotenoids, peptides, chlorogenic acid, caffeic acid, alkaloids, tannins, and saponins; and these compounds contribute to their functional and nutraceutical development. The extract from sunflower is known to be a potential source of antimicrobial, anti-inflammatory, antitumor, and antioxidants agents that protect human cells against harmful reactive oxygen molecules and pathogenic microorganisms. Also, the pharmacological survey on sunflower had revealed its curative power to different kinds of diseases. The health benefits of sunflower include blood pressure and diabetic control, skin protection, and lowering cholesterol and other functions. This review is written with appropriate referencing to previously published work and provides updated information regarding the new method of organic farming for sunflower production, nutritional and health benefits, and its by-products as human diet and livestock feed. Also, the constraints of sunflower production are elucidated.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area Faculty of Natural and Agricultural Sciences North-West University Mmabatho South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area Faculty of Natural and Agricultural Sciences North-West University Mmabatho South Africa
| |
Collapse
|
29
|
Laura AP, Múzquiz de la Garza AR, Elena PM, Gutiérrez-Uribe JA, Armando TC, Cruz-Suárez LE, Serna-Saldívar SO. Effects of Ecklonia arborea or Silvetia compressa algae intake on serum lipids and hepatic fat accumulation in Wistar rats fed hyperlipidic diets. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Bergamin A, Mantzioris E, Cross G, Deo P, Garg S, Hill AM. Nutraceuticals: Reviewing their Role in Chronic Disease Prevention and Management. Pharmaceut Med 2020; 33:291-309. [PMID: 31933188 DOI: 10.1007/s40290-019-00289-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over half the adult population in many Western countries consume nutraceuticals because of their purported therapeutic benefits, accessibility and convenience. Several studies have demonstrated that they may also serve as a useful adjunct to pharmaceuticals to better manage chronic conditions or offset negative side effects. Individuals are advised to consult their physician before using nutraceuticals, but this advice is often overlooked. Thus, the community pharmacist plays an increasingly important role in assisting consumers with selecting a nutraceutical that is safe and for which there is evidence of therapeutic efficacy. Therefore, the aim of this review is to summarise the clinical evidence, safety and purported mechanisms of action for selected nutraceuticals in the management of chronic diseases, including obesity, diabetes, hypertension, hypercholesterolemia and inflammatory-based diseases.
Collapse
Affiliation(s)
- Amanda Bergamin
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Evangeline Mantzioris
- School of Pharmacy and Medical Sciences, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Giordana Cross
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Permal Deo
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Alison M Hill
- School of Pharmacy and Medical Sciences, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia.
| |
Collapse
|
31
|
Feng S, Belwal T, Li L, Limwachiranon J, Liu X, Luo Z. Phytosterols and their derivatives: Potential health‐promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Compr Rev Food Sci Food Saf 2020; 19:1243-1267. [DOI: 10.1111/1541-4337.12560] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Simin Feng
- College of Food Science and TechnologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light IndustryZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Jarukitt Limwachiranon
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Xingquan Liu
- School of Agriculture and Food SciencesZhejiang Agriculture and Forestry University Hangzhou 311300 People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Ningbo Research InstituteZhejiang University Ningbo 315100 People's Republic of China
- Fuli Institute of Food ScienceZhejiang University Hangzhou 310058 People's Republic of China
| |
Collapse
|
32
|
Kaur R, Myrie SB. Association of Dietary Phytosterols with Cardiovascular Disease Biomarkers in Humans. Lipids 2020; 55:569-584. [PMID: 32557606 DOI: 10.1002/lipd.12262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/27/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. Elevated concentrations of serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are major lipid biomarkers that contribute to the risk of CVD. Phytosterols well known for their cholesterol-lowering ability, are non-nutritive compounds that are naturally found in plant-based foods and can be classified into plant sterols and plant stanols. Numerous clinical trials demonstrated that 2 g phytosterols per day have LDL-C lowering efficacy ranges of 8-10%. Some observational studies also showed an inverse association between phytosterols and LDL-C reduction. Beyond the cholesterol-lowering beneficial effects of phytosterols, the association of phytosterols with CVD risk events such as coronary artery disease and premature atherosclerosis in sitosterolemia patients have also been reported. Furthermore, there is an increasing demand to determine the association of circulating phytosterols with vascular health biomarkers such as arterial stiffness biomarkers. Therefore, this review aims to examine the ability of phytosterols for CVD risk prevention by reviewing the current data that looks at the association between dietary phytosterols intake and serum lipid biomarkers, and the impact of circulating phytosterols level on vascular health biomarkers. The clinical studies in which the impact of phytosterols on vascular function is investigated show minor but beneficial phytosterols effects over vascular health. The aforementioned vascular health biomarkers are pulse wave velocity, augmentation index, and arterial blood pressure. The current review will serve to begin to address the research gap that exists between the association of dietary phytosterols with CVD risk biomarkers.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Food and Human Nutritional Sciences, Richardson Centre for Functional Food and Nutraceuticals, University of Manitoba, R3T 2N2, 196 Innovation Drive, Winnipeg, MB, Canada
| | - Semone B Myrie
- Department of Food and Human Nutritional Sciences, Richardson Centre for Functional Food and Nutraceuticals, University of Manitoba, R3T 2N2, 196 Innovation Drive, Winnipeg, MB, Canada
| |
Collapse
|
33
|
Askarpour M, Alami F, Campbell MS, Venkatakrishnan K, Hadi A, Ghaedi E. Effect of fenugreek supplementation on blood lipids and body weight: A systematic review and meta-analysis of randomized controlled trials. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112538. [PMID: 32087319 DOI: 10.1016/j.jep.2019.112538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fenugreek is a traditional herbal medicine that has been used for centuries to treat hyperglycemia, muscle spasms, gastritis, constipation, edema, and other metabolic disorders. Recently, lipid-lowering effects of fenugreek have been identified. AIM OF THE STUDY The aim of this systematic review and meta-analysis was to determine and clarify the impact of fenugreek supplementation on anthropometric indices and serum lipid levels. MATERIALS AND METHODS We searched PubMed, Scopus, ISI Web of Science, Cochrane Library, and Google Scholar from inception to June 2019 using relevant keywords. All randomized controlled trials (RCTs) investigating the effects of fenugreek on anthropometric indices and plasma lipids in adults were included. A random-effects model was used for quantitative data synthesis. A sensitivity analysis was conducted using the leave-one-out method. RESULTS A meta-analysis of 12 RCTs (14 arms) with 560 participants suggested a significant decrease in plasma concentrations of total cholesterol (WMD = -9.371 mg/dL; 95% CI: -15.419, -3.323, p = 0.002), triglycerides (WMD = -13.776 mg/dL; 95% CI: -26.636, -0.916, p = 0.036), and low density lipoprotein cholesterol (WMD = -6.590 mg/Dl; 95% CI: -13.042, -0.137, p = 0.045), as well as an increase in plasma high density lipoprotein cholesterol (WMD = 3.501 mg/dL; 95% CI: 1.309, 5.692, p = 0.002), while body weight (WMD = 0.223 kg; 95% CI: -0.509, 0.955, p = 0.551) and body mass index (WMD = 0.091 kg/m2; 95% CI: -0.244, 0.426, p = 0.596) were not altered. CONCLUSION Fenugreek supplementation improved lipid parameters in adults. However, to confirm these results, more studies, particularly among hyperlipidemic patients, are needed.
Collapse
Affiliation(s)
- Moein Askarpour
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Alami
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Marilyn S Campbell
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Kamesh Venkatakrishnan
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City, Taiwan, ROC
| | - Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran.
| | - Ehsan Ghaedi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Hikihara R, Yamasaki Y, Shikata T, Nakayama N, Sakamoto S, Kato S, Hatate H, Tanaka R. Analysis of Phytosterol, Fatty Acid, and Carotenoid Composition of 19 Microalgae and 6 Bivalve Species. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1749744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Risako Hikihara
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yasuhiro Yamasaki
- Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Japan
| | - Tomoyuki Shikata
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, Hatsukaichi, Japan
| | - Natsuko Nakayama
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, Hatsukaichi, Japan
| | - Setsuko Sakamoto
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, Hatsukaichi, Japan
| | - Sueo Kato
- Faculty of Human Development, Kokugakuin University, Yokohama, Japan
| | - Hideo Hatate
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryusuke Tanaka
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
35
|
β-Sitosterol Protects against Myocardial Ischemia/Reperfusion Injury via Targeting PPAR γ/NF- κB Signalling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2679409. [PMID: 32308701 PMCID: PMC7142345 DOI: 10.1155/2020/2679409] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a clinically severe complication, which can cause high rates of disability and mortality particularly in patients with myocardial infarction, yet the molecular mechanisms underlying this process remain unclear. This study aimed to explore the protective effects of β-sitosterol against myocardial I/R injury and to elucidate the underlying molecular mechanisms. Our results showed that hypoxia/reoxygenation (H/R) treatment suppressed cell viability, induced cell apoptosis and reactive oxygen species production, increased caspase-3 and -9 activities, upregulated caspase-3 and -9 protein expressions, downregulated the Bcl-2 protein expression, and reduced the mitochondrial membrane potential. β-Sitosterol treatment attenuated H/R-induced cardiomyocyte injury. Moreover, β-sitosterol treatment counteracted the inhibitory effects of H/R treatment on the peroxisome proliferator-activated receptor gamma (PPARγ) expression and enhanced effects of H/R treatment on the NF-κB expression in cardiomyocytes. Furthermore, inhibition of PPARγ impaired the protective actions of β-sitosterol against H/R-induced cardiomyocyte injury. In the I/R rats, β-sitosterol treatment reduced the myocardial infarcted size and apoptosis, which was attenuated by the inhibition of PPARγ. In conclusion, our results demonstrate that β-sitosterol protected against in vitro H/R-induced cardiomyocyte injury and in vivo myocardial I/R injury. The β-sitosterol-mediated cardioprotective effects may involve the modulation of PPARγ/NF-κB signalling during myocardial I/R injury. Further studies are required to further explore the clinical application of β-sitosterol in the myocardial I/R injury.
Collapse
|
36
|
Jędrusek-Golińska A, Górecka D, Buchowski M, Wieczorowska-Tobis K, Gramza-Michałowska A, Szymandera-Buszka K. Recent progress in the use of functional foods for older adults: A narrative review. Compr Rev Food Sci Food Saf 2020; 19:835-856. [PMID: 33325174 DOI: 10.1111/1541-4337.12530] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
The number and proportion of older adults are increasing globally, and it is predicted that in 2020, there will be 723 million people worldwide aged 66 and older. In recent decades, numerous studies showed that healthy eating is positively associated with better nutritional status and quality of life, and the decreased incidence of noncommunicable diseases. As older adults become health conscious, the demand for foods and beverages rich in nutrients and bioactive compounds has increased. The increased demand for healthy food stimulated a recent rapid increase in designing, producing, and marketing functional foods to prevent or correct nutrient deficiencies and to improve the nutritional status of older adults. These functional products contain and/or are enriched with dietary fiber; omega-3 polyunsaturated fatty acids; phytoestrogens; polyphenols; carotenoids such as alpha- and beta-carotene; lutein and zeaxanthin; pre-, pro-, and synbiotics; and plant sterols and stanols. A limited number of publications have thoroughly addressed the effect of functional foods on the nutritional status of older adults. The goal of this review was to review existing recent research on the role of functional foods in healthy and active aging.
Collapse
Affiliation(s)
- Anna Jędrusek-Golińska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Danuta Górecka
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Maciej Buchowski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katarzyna Wieczorowska-Tobis
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poland and Laboratory for Geriatric Medicine, Department of Palliative Care, University of Medical Science, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
37
|
Scolaro B, de Andrade LF, Castro IA. Cardiovascular Disease Prevention: The Earlier the Better? A Review of Plant Sterol Metabolism and Implications of Childhood Supplementation. Int J Mol Sci 2019; 21:ijms21010128. [PMID: 31878116 PMCID: PMC6981772 DOI: 10.3390/ijms21010128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is the underlying cause of major cardiovascular events. The development of atherosclerotic plaques begins early in life, indicating that dietary interventions in childhood might be more effective at preventing cardiovascular disease (CVD) than treating established CVD in adulthood. Although plant sterols are considered safe and consistently effective in lowering plasma cholesterol, the health effects of early-life supplementation are unclear. Studies suggest there is an age-dependent effect on plant sterol metabolism: at a younger age, plant sterol absorption might be increased, while esterification and elimination might be decreased. Worryingly, the introduction of low-cholesterol diets in childhood may unintentionally favor a higher intake of plant sterols. Although CVD prevention should start as early as possible, more studies are needed to better elucidate the long-term effects of plant sterol accumulation and its implication on child development.
Collapse
|
38
|
Xu B, You S, Zhou L, Kang H, Luo D, Ma H, Han S. Simultaneous Determination of Free Phytosterols and Tocopherols in Vegetable Oils by an Improved SPE–GC–FID Method. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01649-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Jiang K, Gachumi G, Poudel A, Shurmer B, Bashi Z, El-Aneed A. The Establishment of Tandem Mass Spectrometric Fingerprints of Phytosterols and Tocopherols and the Development of Targeted Profiling Strategies in Vegetable Oils. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1700-1712. [PMID: 31111414 DOI: 10.1007/s13361-019-02242-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
Phytosterols and tocopherols are essential for plant biochemistry, and they possess beneficial health effects for humans. Evaluating the tandem mass spectrometric (MS/MS) behavior of phytosterols and tocopherols is needed for the development of a qualitative and quantitative method for these biologically active plant metabolites. Herein, the MS/MS dissociation behavior of phytosterols and tocopherols is elucidated to establish generalized MS/MS fingerprints. MS/MS and multistage (MS3) analysis revealed common fragmentation behavior among the four tested phytosterols, namely β-sitosterol, stigmasterol, campesterol, and brassicasterol. Similar analysis was conducted for the tocopherols (i.e., alpha (α), beta (β), gamma (γ), and delta (δ)). As such, a universal MS/MS fragmentation pathway for each group was successfully established for the first time. Based on the generalized MS/MS fragmentation behavior of phytosterols, diagnostic product ions were chosen for the development of profiling methods for over 20 naturally occurring phytosterols. A precursor ion scan-triggered-enhanced product ion scan (PIS-EPI) method was established. Due to enhanced chromatographic peaks, multiple ion monitoring-triggered-enhanced product ion scan (MIM-EPI) was employed for confirmation. The screening approach was applied successfully to identify blinded samples obtained from standard mixtures as well as sesame and olive oils. The oil samples contain other phytosterols, and their successful identification indicates that, the generalized MS/MS fragmentation behavior is applicable to various structures of phytosterols. A similar approach was attempted for tocopherols and was only hindered by the low concentration of these bioactive metabolites present in the oil samples.
Collapse
Affiliation(s)
- Kang Jiang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - George Gachumi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Asmita Poudel
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bryn Shurmer
- Government of Canada, Canadian Food Inspection Agency, Saskatoon, SK, Canada
| | - Zafer Bashi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
40
|
Ulmus minor bark hydro-alcoholic extract ameliorates histological parameters and testosterone level in an experimental model of PCOS rats. Endocr Regul 2019; 53:146-153. [DOI: 10.2478/enr-2019-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Objective. Polycystic ovary syndrome (PCOS) is a common and multifactorial disease associated with female factor infertility. Ulmus minor bark (UMB) is one of the medicinal plants used in Persian folklore as a fertility enhancer. In the current study, we aimed to elucidate the effect of UMB hydro-alcoholic extract on histological parameters and testosterone condition in an experimental model of PCOS rats.
Methods. Thirty female rats were randomly divided into five groups: (1) control, (2) vehicle, (3) PCOS/50 mg [6 mg/kg dehydroepiandrosterone (DHEA) + 50 mg/kg UMB hydro-alcoholic extract], (4) PCOS/150 mg (6 mg/kg DHEA + 150 mg/kg UMB hydro-alcoholic extract), and (5) PCOS (6 mg/kg DHEA). All interventions were performed for 21 days. Afterwards, stereological analysis was done for determination of ovarian volume and follicle number. The serum level of testosterone was measured by ELISA kit.
Results. UMB hydro-alcoholic extract improved the total number of the corpus luteum in the treatment groups when compared to the PCOS group (p<0.05). PCOS/150 mg and PCOS/50 mg groups showed significantly lower total number of the primordial, primary, and secondary follicles as well as testosterone level compared to the PCOS group (p<0.05). The total number of antral follicles and volume of ovary did not differ significantly between groups.
Conclusion. UMB extract may be an effective and good alternative in improving PCOS histo-logical and testosterone disturbances although further studies are warranted to confirm the safety of UMB plant in human.
Collapse
|
41
|
Scognamiglio M, Costa D, Sorriento A, Napoli C. Current Drugs and Nutraceuticals for the Treatment of Patients with Dyslipidemias. Curr Pharm Des 2019; 25:85-95. [DOI: 10.2174/1381612825666190130101108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/20/2019] [Indexed: 02/05/2023]
Abstract
Coronary heart disease (CHD) remains the leading cause of disability and death in industrialized Countries.
Among many conditions, which contribute to the etiology and progression of CHD, the presence of high
low density lipoprotein-cholesterol (LDL-C) levels represents the major risk factor. Therefore, the reduction of
LDL-C levels plays a key role in the management of patients with high or very high cardiovascular risk. Although
statins represent the gold standard therapy for the reduction of cholesterol levels, these drugs do not allow to
achieve target levels of LDL-C in all patients. Indeed, a significant number of patients resulted intolerants, especially
when the dosage increased. The availability of new lipid-lowering drugs, such as ezetimibe and PCSK9
inhibitors, may represent an important alternative or complement to the conventional lipid-lowering therapies.
However, long-term studies are still needed to define both efficacy and safety of use of these latter new drugs.
Some nutraceuticals may become an adequate and effective support in the management of some patients. To date,
several nutraceuticals with different mechanism of actions that provide a good tolerability are available as lipidlowering
agents. In particular, the most investigated are red yeast rice, phytosterols, berberine, beta-glucans and
soy. The aim of this review was to report recent data on the efficacy and safety of principle hypocholesterolemic
drugs available and to evaluate the possible role of some nutraceuticals as support therapy in the management of
patients with dyslipidemias.
Collapse
Affiliation(s)
- Michele Scognamiglio
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, University of Campania , Italy
| | - Dario Costa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, University of Campania , Italy
| | - Antonio Sorriento
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, University of Campania , Italy
| | - Claudio Napoli
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, University of Campania , Italy
| |
Collapse
|
42
|
Ghaedi E, Kord-Varkaneh H, Mohammadi H, Askarpour M, Miraghajani M. Phytosterol Supplementation Could Improve Atherogenic and Anti-Atherogenic Apolipoproteins: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. J Am Coll Nutr 2019; 39:82-92. [PMID: 31074692 DOI: 10.1080/07315724.2019.1605313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phytosterol and phytostanol (PS) supplementation is reported to improve atherogenic and anti-atherogenic apolipoproteins (Apo). The purpose of the present study is to critically investigate the effectiveness of PS supplementation on Apo in adults.A comprehensive search was conducted of all randomized controlled trials (RCTs) conducted up to September 2018 in the following databases: PubMed, Web of Science, Cochrane Library, and Scopus. Mean difference with 95% confidence intervals (CIs) were pooled using a random-effects model (DerSimonian-Laird method).Fifty-one arms from 37 RCTs were included in the present meta-analysis. Findings showed that PS supplementation and fortification increased Apo-AI (weighted mean difference [WMD]: 0.014 mg/dl, 95% CI: 0.001, 0.028, p = 0.042) and Apo-CII (WMD: 0.303 mg/dl, 95% CI: 0.084, 0.523, p = 0.007) and lowered Apo-B (WMD: -0.063 mg/dl, 95% CI: -0.075, -0.051, p < 0.001), Apo-B/Apo-A-I ratio (WMD: -0.044 mg/dl, 95% CI: -0.062, -0.025, p < 0.001), and Apo-E (WMD: -0.255 mg/dl, 95% CI: -0.474, -0.036, p = 0.023). However, PS supplementation did not have significant effects on Apo-AII and Apo-CIII. PS supplementation or fortification significantly changes Apo-E (r = -0.137, p nonlinearity = 0.006) and Apo-CIII (r = 1.26, p nonlinearity = 0.028) based on PS dosage (mg/d) and Apo-CIII (r = 3.34, p nonlinearity = 0.013) and Apo-CII (r = 1.09, p nonlinearity = 0.017) based on trial duration (weeks) in a nonlinear fashion.Based on our findings, supplements or fortified foods containing PS might have a considerable favorite effect in achieving Apo profile target; however, due to high heterogeneity among included studies, results must be interpreted with caution.KEY TEACHING POINTSCardiovascular diseases (CVDs) recognized as main public health concern worldwide with considerable mortality of all global deaths.Apo-lipoproteins are amphipathic molecules involved in the lipoprotein metabolism which introduced as biomarkers in the evaluation of CVD risk.Phytosterols bioactive components of plants have important biological functions in cholesterol metabolism in humans.Here we showed that phytosterols and phytostanols improve apo-lipoproteins profile of humans; finding from meta-analysis of randomized controlled trials.Phytosterols supplementation lowered atherogenic apo-lipoproteins (Apo-B and Apo-E) and increased anti-atherogenic apo-lipoproteins (Apo-AI, Apo-CII).
Collapse
Affiliation(s)
- Ehsan Ghaedi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Kord-Varkaneh
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Askarpour
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Miraghajani
- National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, UK
| |
Collapse
|
43
|
Soleimanian Y, Goli SAH, Varshosaz J, Maestrelli F. Propolis wax nanostructured lipid carrier for delivery of β sitosterol: Effect of formulation variables on physicochemical properties. Food Chem 2018; 260:97-105. [DOI: 10.1016/j.foodchem.2018.03.145] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/19/2018] [Accepted: 03/31/2018] [Indexed: 12/19/2022]
|
44
|
Cabral CE, Klein MRST. Phytosterols in the Treatment of Hypercholesterolemia and Prevention of Cardiovascular Diseases. Arq Bras Cardiol 2018; 109:475-482. [PMID: 29267628 PMCID: PMC5729784 DOI: 10.5935/abc.20170158] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
Phytosterols are bioactive compounds found in foods of plant origin, which can be
divided into plant sterols and plant stanols. Clinical studies consistently
indicate that the intake of phytosterols (2 g/day) is associated with a
significant reduction (8-10%) in levels of low-density lipoprotein cholesterol
(LDL-cholesterol). Thus, several guidelines recommend the intake of 2 g/day of
plant sterols and/or stanols in order to reduce LDL-cholesterol levels. As the
typical western diet contains only about 300 mg/day of phytosterols, foods
enriched with phytosterols are usually used to achieve the recommended intake.
Although phytosterols decrease LDL-cholesterol levels, there is no evidence that
they reduce the risk of cardiovascular diseases; on the contrary, some studies
suggest an increased risk of atherosclerosis with increasing serum levels of
phytosterols. This review aims to address the evidence available in the
literature on the relationship between phytosterols and risk of cardiovascular
disease.
Collapse
Affiliation(s)
- Carlos Eduardo Cabral
- Divisão de Nutrição - Hospital Universitário Pedro Ernesto - Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ - Brazil
| | - Márcia Regina Simas Torres Klein
- Divisão de Nutrição - Hospital Universitário Pedro Ernesto - Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ - Brazil.,Departamento de Nutrição Aplicada - Instituto de Nutrição - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ - Brazil
| |
Collapse
|
45
|
Yin Y, Liu X, Liu J, Cai E, Zhu H, Li H, Zhang L, Li P, Zhao Y. Beta-sitosterol and its derivatives repress lipopolysaccharide/d-galactosamine-induced acute hepatic injury by inhibiting the oxidation and inflammation in mice. Bioorg Med Chem Lett 2018; 28:1525-1533. [DOI: 10.1016/j.bmcl.2018.03.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023]
|
46
|
CYP7A1-rs3808607: a single nucleotide polymorphism associated with cholesterol response to functional foods. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Yin Y, Liu X, Liu J, Cai E, Zhao Y, Li H, Zhang L, Li P, Gao Y. The effect of beta-sitosterol and its derivatives on depression by the modification of 5-HT, DA and GABA-ergic systems in mice. RSC Adv 2018; 8:671-680. [PMID: 35538977 PMCID: PMC9076981 DOI: 10.1039/c7ra11364a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/24/2017] [Indexed: 01/09/2023] Open
Abstract
Beta-sitosterol belongs to the group of phytosterols, which are active trace components existing in natural plants, known as the "key of life", and have a steroid nucleus structure similar to cholesterol. Due to the insolubility issue of beta-sitosterol, most pharmacological studies and clinical applications are limited. Therefore, the modification of beta-sitosterol into its derivatives to enhance its pharmacologic activity is viable. In this study, 4 kinds of new beta-sitosterol derivative were obtained by an esterification reaction with beta-sitosterol, organic acids, EDCI and DMAP in dichloromethane. The chemical structures were defined by IR and NMR. Beta-sitosterol and its derivatives were used to carry out antidepressant research in the tail suspension test (TST) and the forced swimming test (FST) in mice. Additionally, the roles of different parts of the central nervous system (CNS) in the antidepressant-like effect of Sit-S, which is one of the beta-sitosterol derivatives, were also investigated. The results showed that the derivatives exhibited a stronger antidepressant activity than beta-sitosterol. Among the derivatives, administration of Sit-S (4 mg kg-1) gave the lowest immobility time in the TST, demonstrating that Sit-S exhibited the strongest antidepressant-like activity. The study into the roles of different parts of the CNS in the antidepressant-like effect of Sit-S showed that agomelatine (40 mg kg-1), haloperidol (0.2 mg kg-1) and bicuculline (4 mg kg-1) reversed the antidepressant effect of Sit-S (4 mg kg-1). This study confirmed the conclusions that beta-sitosterol derivatives broaden the pharmacological effects of beta-sitosterol, Sit-S (4 mg kg-1) exhibits antidepressant-like effects, and this antidepressant-like effect on male adult mice is mediated by the 5-HT, DA and GABA-ergic systems.
Collapse
Affiliation(s)
- Yongxia Yin
- College of Chinese Medicinal Materials, Jilin Agricultural UniversityChangchun 130118JilinChina+86 431 84533358+86 431 84533358
| | | | | | - Enbo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural UniversityChangchun 130118JilinChina+86 431 84533358+86 431 84533358
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural UniversityChangchun 130118JilinChina+86 431 84533358+86 431 84533358
| | | | - Lianxue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural UniversityChangchun 130118JilinChina+86 431 84533358+86 431 84533358
| | | | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural UniversityChangchun 130118JilinChina+86 431 84533358+86 431 84533358
| |
Collapse
|
48
|
Xu B, Zhang L, Ma F, Zhang W, Wang X, Zhang Q, Luo D, Ma H, Li P. Determination of free steroidal compounds in vegetable oils by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Food Chem 2017; 245:415-425. [PMID: 29287390 DOI: 10.1016/j.foodchem.2017.10.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
A method based on comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOF/MS) was developed to analyze steroidal compounds in vegetable oils, which could provide better separation and higher sensitivity than conventional one dimensional gas chromatography, and allowed determination of 31 sterols and triterpene alcohols in one injection. Furthermore, the approach also permitted separation and detection of small amounts of other compounds (may be steroidal compounds whose molecular structures have not been confirmed), which were obscured in the lower-resolution single-column technique. With the help of the GC × GC system, a more elaborate and complete information regarding the distributions and concentrations of free phytosterols and triterpene alcohols in safflower seed oil, soybean oil, rapeseed oil, sunflower seed oil and peanut oil were obtained. The proposed method could potentially open a new opportunity for the more in-depth knowledge of the steroidal compounds of vegetable oils.
Collapse
Affiliation(s)
- Baocheng Xu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Liangxiao Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
| | - Fei Ma
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China
| | - Xiupin Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Hongyan Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
49
|
Non-Polar Natural Products from Bromelia laciniosa, Neoglaziovia variegata and Encholirium spectabile (Bromeliaceae). Molecules 2017; 22:molecules22091478. [PMID: 28878176 PMCID: PMC6151397 DOI: 10.3390/molecules22091478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/29/2017] [Accepted: 09/02/2017] [Indexed: 12/28/2022] Open
Abstract
Extensive regional droughts are already a major problem on all inhabited continents and severe regional droughts are expected to become an increasing and extended problem in the future. Consequently, extended use of available drought resistant food plants should be encouraged. Bromelia laciniosa, Neoglaziovia variegata and Encholirium spectabile are excellent candidates in that respect because they are established drought resistant edible plants from the semi-arid Caatinga region. From a food safety perspective, increased utilization of these plants would necessitate detailed knowledge about their chemical constituents. However, their chemical compositions have previously not been determined. For the first time, the non-polar constituents of B. laciniosa, N. variegata and E. spectabile have been identified. This is the first thorough report on natural products from N. variegata, E. spectabile, and B. laciniosa. Altogether, 20 non-polar natural products were characterized. The identifications were based on hyphenated gas chromatography-high resolution mass spectrometry (GC-HRMS) and supported by 1D and 2D Nuclear Magnetic Resonance (NMR) plant metabolomics.
Collapse
|
50
|
Corrêa RC, Peralta RM, Bracht A, Ferreira IC. The emerging use of mycosterols in food industry along with the current trend of extended use of bioactive phytosterols. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|