1
|
Qin X, Zhang M, Liang J, Xu S, Fu X, Liu Z, Tian T, Song J, Lin Y. Nanoparticles encapsulating antigenic peptides induce tolerogenic dendritic cells in situ for treating systemic lupus erythematosus. J Control Release 2025; 380:943-956. [PMID: 39983922 DOI: 10.1016/j.jconrel.2025.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Using Tetrahedral framework nucleic acids, we combined antigenic peptides to create the "DART" vaccine: DNA framework-Antigenic peptide-RNA modification-Targeting aptamer coupling. Generating antigen-specific tolerogenic dendritic cells (tolDCs), for systemic lupus erythematosus (SLE) is a potential therapeutic strategy for addressing compromised autoimmune tolerance. However, simple antigenic peptides degrade easily, lack specificity for delivery to dendritic cells (DCs), and cannot transform DCs to tolDCs. Therefore, this study aims to employ DART to generate tolDCs and compare DART-treated DCs to tolDCs. DART improved peptide stability, specifically targeted DCs, induced tolDCs in situ, and showed promising outcomes in mitigating SLE symptoms in the MRL/lpr mouse model. DART effectively normalized the plasma cytokine levels, glomerulonephritis, and joint lesions in MRL/lpr mice. These findings highlight the potential of the DART vaccine to induce transformation of DCs to tolDCs and address SLE symptoms, suggesting novel therapeutic utility. These findings may advance vaccine design for various autoimmune diseases.
Collapse
Affiliation(s)
- Xin Qin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiale Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siqi Xu
- The Affiliated Hainan Hospital of Hainan Medical University, Haikou 570101, China
| | - Xiao Fu
- The Affiliated Hainan Hospital of Hainan Medical University, Haikou 570101, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Mohammad TAM, Jaafar HM, Maroof AMA. SHR0302 Improves Treg/Th17 Imbalance in Patients with Systemic Lupus Erythematosus. Indian J Clin Biochem 2025; 40:274-283. [PMID: 40123628 PMCID: PMC11928704 DOI: 10.1007/s12291-023-01179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/19/2023] [Indexed: 03/25/2025]
Abstract
IL-6-mediated JAK1/STAT3 signaling pathway is involved in the development of Th17 cells, which play an essential role in the pathogenesis of various autoimmune diseases such as systemic lupus erythematosus (SLE). To evaluation of the regulatory and anti-inflammatory effects of the JAK1/STAT3 inhibition in SLE, we evaluated the effects of SHR0302 on regulatory T cell (Treg)/Th17 balance. Thirty-two patients with SLE and twenty-nine healthy subjects were enrolled in this study. The mRNA expression levels of anti- and pro-inflammatory cytokines, such as FOXP3, ROR-γt, IL-10, IL-17A, IL-21, and IRF-4, were determined using real-time PCR, and the cytokine levels of IL-6, IL-10, IL-17A, TNF-α, and IFN-γ were analyzed by ELISA. The frequency and in vitro development of CD4+ CD25+ Foxp3+ Treg and Th17 cells were evaluated by flow cytometry. SHR0302 could increase the mRNA expression and cytokine level of Treg-related molecules. Furthermore, numbers of Treg cells were increased, after treatment with SHR0302. In contrast, the mRNA expression level of Th17-related molecules, ROR-γt, IL-17A, and IL-21, were decreased. Reduction of inflammatory cytokine levels was a confirmation of the modulating effect of the SHR0302, including IL-6, IL-17, TNF-α, and IFN-γ. In addition, frequency of Th17 cells were reduced by SHR0302. Our study shows that SHR0302 regulating the JAK1/STAT3 pathway can be a new treatment option for SLE.
Collapse
Affiliation(s)
- Talar Ahmad Merza Mohammad
- Department of Pharmacology, College of Pharmacy, Hawler Medical University-Erbil, Erbil, Kurdistan Region Iraq
| | - Halmat M. Jaafar
- Department of Pharmacology, College of Pharmacy, Hawler Medical University-Erbil, Erbil, Kurdistan Region Iraq
| | | |
Collapse
|
3
|
Al-Mazroua HA, Nadeem A, Attia SM, Bakheet SA, Ahmad A, Ansari MA, Ibrahim KE, Alomar HA, Almutairi MM, Algarzae NK, Mahmoud MA, Hussein MH, Ahmed OM, Ahmad SF. The PPAR-α selective agonist WY14643 improves lupus nephritis via the downregulation of the RORγT/STAT3 signaling pathway in MRL/lpr mice. Int Immunopharmacol 2025; 145:113787. [PMID: 39653614 DOI: 10.1016/j.intimp.2024.113787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Systemic lupus erythematosus (SLE) is a classic autoimmune disorder that mostly affects young women and involves various organs, such as the skin, joints, central nervous system, and kidneys. WY14643, a selective agonist of peroxisome proliferator-activated receptor-α, has previously shown anti-inflammatory effects in various disease models. However, its effects on lupus nephritis are yet to be explored. Therefore, the efficacy of WY14643 on renal biomarkers and lupus nephritis was assessed in MRL/lpr mice. Flow cytometry was used to examinethe effects of WY14643 on the expression of IL-17A, STAT3, RORγT, IL-21, IL-21R, IL-22, and TNF-α in splenic CD4+ T cells. We further investigated the impact of WY14643 on the mRNA expression of IL-17A, STAT3, RORγT, IL-21, IL-21R, IL-22, and TNF-α in kidney tissue via RT-PCR analysis. The administration of WY14643 effectively improved the symptoms of lupus nephritis in MRL/lpr mice. The administration of WY14643 decreased serum albumin, urine protein, serum creatinine, and blood urea nitrogen levels in MRL/lpr mice. WY14643 reduced the levels of inflammatory markers, including CD4+IL-17A+, CD4+STAT3+, CD4+RORγT+, CD4+IL-21+, CD4+IL-21R+, CD4+IL-22+, and CD4+TNF-α+, in the spleen cells of MRL/lpr mice. Additionally, we discovered that the administration of WY14643 resulted in the suppression of mRNA levels of IL-17A, STAT3, RORγT, IL-21, IL-22, and TNF-α. The current work shows that the suppression of inflammatory cells by WY14643 may effectively reduce autoimmune characteristics, such as renal inflammation, in lupus-prone MRL/lpr mice. Therefore, WY14643, being a specific PPAR-α agonist, shows significant potential as a novel therapeutic option for treatingnephritis associated with SLE, offering hope for future treatments in this challenging field.
Collapse
Affiliation(s)
- Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah K Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A Mahmoud
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
4
|
Duan K, Wang J, Chen S, Chen T, Wang J, Wang S, Chen X. Causal associations between both psoriasis and psoriatic arthritis and multiple autoimmune diseases: a bidirectional two-sample Mendelian randomization study. Front Immunol 2024; 15:1422626. [PMID: 39119335 PMCID: PMC11306030 DOI: 10.3389/fimmu.2024.1422626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Background Numerous observational studies have identified associations between both psoriasis (PsO) and psoriatic arthritis (PsA), and autoimmune diseases (AIDs); however, the causality of these associations remains undetermined. Methods We conducted a bidirectional two-sample Mendelian Randomization study to identify causal associations and directions between both PsO and PsA and AIDs, such as systemic lupus erythematosus (SLE), Crohn's disease (CD), ulcerative colitis (UC), multiple sclerosis (MS), uveitis, bullous pemphigoid (BP), Hashimoto's thyroiditis (HT), rheumatoid arthritis (RA), vitiligo, and ankylosing spondylitis (AS). The causal inferences were drawn by integrating results from four regression models: Inverse Variance Weighting (IVW), MR-Egger, Weighted Median, and Maximum Likelihood. Furthermore, we performed sensitivity analyses to confirm the reliability of our findings. Results The results showed that CD [IVW odds ratio (ORIVW), 1.11; 95% confidence interval (CI), 1.06-1.17; P = 8.40E-06], vitiligo (ORIVW, 1.16; 95% CI, 1.05-1.28; P = 2.45E-03) were risk factors for PsO, while BP may reduce the incidence of PsO (ORIVW, 0.91; 95% CI, 0.87-0.96; P = 1.26E-04). CD (ORIVW, 1.07; 95% CI, 1.02-1.12; P = 0.01), HT (ORIVW, 1.23; 95% CI, 1.08-1.40; P = 1.43E-03), RA (ORIVW, 1.11; 95% CI, 1.02-1.21, P = 2.05E-02), AS (ORIVW, 2.18; 95% CI, 1.46-3.27; P = 1.55E-04), SLE (ORIVW, 1.04; 95% CI, 1.01-1.08; P = 1.07E-02) and vitiligo (ORIVW, 1.27; 95% CI, 1.14-1.42; P = 2.67E-05) were risk factors for PsA. Sensitivity analyses had validated the reliability of the results. Conclusions Our study provides evidence for potential causal relationships between certain AIDs and both PsO and PsA. Specifically, CD and vitiligo may increase the risk of developing PsO, while CD, HT, SLE, RA, AS, and vitiligo may elevate the risk for PsA. Additionally, it is crucial to closely monitor the condition of PsO patients with specific AIDs, as they have a higher likelihood of developing PsA than those without AIDs. Moving forward, greater attention should be paid to PsA and further exploration of other PsO subtypes is warranted.
Collapse
Affiliation(s)
- Kexin Duan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingrui Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaomin Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tong Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiajue Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shujing Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinsheng Chen
- Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Zhang Y, Wang J, Fang Y, Liang W, Lei L, Wang J, Gao X, Ma C, Li M, Guo H, Wei L. IFN-α affects Th17/Treg cell balance through c-Maf and associated with the progression of EBV- SLE. Mol Immunol 2024; 171:22-35. [PMID: 38749236 DOI: 10.1016/j.molimm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease, of which the pathogens is remains obscure. Viral infection, particularly Epstein Barr viru (EBV) infection, has been considered a common pathogenic factor. This study suggests that c-Maf may be an important target in T cell differentiation during SLE progression, providing a potentially new perspective on the role of viral infection in the pathogenesis of autoimmune diseases. METHODS Cytokines of EBV-infected SLE patients were measured by ELISA and assessed in conjunction with their clinical data. IFN-α, c-Maf, and the differentiation of Th17/Treg cells in SLE patients and MRL/LPR mice were analyzed using FCM, WB, RT-PCR, etc. Following the infection of cells and mice with EBV or viral mimic poly (dA:dT), the changes of the aforementioned indicators were investigated. The relationship among IFN-α, STAT3, c-Maf and Th17 cells was determined by si-RNA technique. RESULTS Many SLE patients are found to be complicated by viral infections; Further, studies have demonstrated that viral infection, especially EBV, is involved in SLE development. This study showed that viral infections might promote IFN-α secretion, inhibit c-Maf expression by activating STAT3, increase Th17 cell differentiation, and lead to the immune imbalance of Th17/Treg cells, thus playing a role in the onset and progression of SLE. CONCLUSION This study demonstrates that EBV infections may contribute to SLE development by activating STAT3 through IFN-α, inhibiting c-Maf, and causing Th17/Treg immune imbalance. Our work provided a new insight into the pathogenesis and treatment of SLE.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiachao Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yaqi Fang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Wenzhang Liang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lingyan Lei
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Junhai Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Xue Gao
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Huifang Guo
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Nilsson M, Kozyrev SV, Saellström S, Johansson S, Andersson G, Lindblad-Toh K, Hansson-Hamlin H, Rönnberg H. Elevated levels of IL-12/IL-23p40 in Nova Scotia Duck Tolling Retrievers with autoimmune disease and lymphoma. Sci Rep 2024; 14:11624. [PMID: 38773194 PMCID: PMC11109178 DOI: 10.1038/s41598-024-62265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
The Nova Scotia Duck Tolling Retriever (NSDTR) is predisposed to immune mediated rheumatic disease (IMRD), steroid-responsive meningitis-arteritis (SRMA) and certain forms of cancer. Cytokines are the main regulators of the immune system. Interleukin 2 is a cytokine involved in activation of T regulatory cells, playing a role in central tolerance and tumor immunity. Interleukin 12 and interleukin 23 share the same subunit, p40, and are both pro-inflammatory cytokines. The aim of this study was to compare levels of IL-2 in healthy NSDTRs to those with cancer or autoimmune disease and to compare levels of IL-12/IL-23p40 in healthy NSDTRs and beagles versus NSDTRs with cancer or autoimmune disease. 62 dogs were included in the analysis of IL-12/IL-23p40; healthy NSDTRs (n = 16), healthy beagles (n = 16), NSDTRs autoimmune (n = 18) and NDSTRs lymphoma/mastocytoma (n = 12) and 68 dogs for IL-2; healthy (n = 20), autoimmune (n = 36) and lymphoma/mastocytoma/adenocarcinoma (n = 12). NSDTRs with autoimmune disease had higher levels of IL-12/IL-23p40 compared to healthy dogs (p = 0.008). NSDTRs with lymphoma also had higher levels of IL-12/IL-23p40 compared to healthy NSDTRs (p = 0.002). There was no difference in levels of IL-2 between healthy and diseased NSDTR. Statistical analysis was performed using Bonferroni corrections for multiple testing. These findings can contribute to the knowledge of autoimmune disease and cancer in dogs.
Collapse
Affiliation(s)
- Malin Nilsson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Sergey V Kozyrev
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Sara Saellström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Siri Johansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Anicura Kalmarsund Animal Hospital, Kalmar, Sweden
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Helene Hansson-Hamlin
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Rönnberg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Ebrahimi Chaharom F, Ebrahimi AA, Feghhi Koochebagh F, Babalou Z, Ghojazadeh M, Aghebati Maleki L, Nader ND. Association of IL-17 serum levels with clinical findings and systemic lupus erythematosus disease activity index. Immunol Med 2023; 46:175-181. [PMID: 37073815 DOI: 10.1080/25785826.2023.2202050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/08/2023] [Indexed: 04/20/2023] Open
Abstract
The current study aims to investigate the relationship betweSen serum IL-17 (IL-17) levels and systemic lupus erythematosus disease activity index (SLE-DAEI) in systemic lupus erythematosus (SLE) patients. In this case-control study, 36 patients with SLE and 40 healthy individuals matched for age and sex were included as the control group. The study measured serum IL-17 in both groups. The correlation between serum IL-17 with disease activity (as per SLE-DAI) and organ involvement in SLE patients. The case group in this study consisted of 4 males and 32 females with a mean age of 35 (17-54) years old, and the control group included six males and 34 females with a mean age of 37 (25-53) years old (p = .35). Serum IL-17 was higher in the cases than in the controls (536 pg/mL vs. 110 pg/mL; p < .001). There was a positive correlation between the serum levels of IL-17 and disease activity index (p < .001, rho = 0.93) among cases. Additionally, the serum levels of IL-17 were higher in patients with renal (p = .003) or central nervous system involvement (p < .001) than in patients without such involvement. Serum Il-17 is associated with SLE, and its serum levels correlate positively with the disease activity and renal and nervous system involvement.
Collapse
Affiliation(s)
- Faegheh Ebrahimi Chaharom
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Ali Asghar Ebrahimi
- Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zohreh Babalou
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Ghojazadeh
- Research Development and Coordination Center (RDCC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
8
|
Chang YH, Hsing CH, Chiu CJ, Wu YR, Hsu SM, Hsu YH. Protective role of IL-17-producing γδ T cells in a laser-induced choroidal neovascularization mouse model. J Neuroinflammation 2023; 20:279. [PMID: 38007487 PMCID: PMC10676594 DOI: 10.1186/s12974-023-02952-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Vision loss in patients with wet/exudative age-related macular degeneration (AMD) is associated with choroidal neovascularization (CNV), and AMD is the leading cause of irreversible vision impairment in older adults. Interleukin-17A (IL-17A) is a component of the microenvironment associated with some autoimmune diseases. Previous studies have indicated that wet AMD patients have elevated serum IL-17A levels. However, the effect of IL-17A on AMD progression needs to be better understood. We aimed to investigate the role of IL-17A in a laser-induced CNV mouse model. METHODS We established a laser-induced CNV mouse model in wild-type (WT) and IL-17A-deficient mice and then evaluated the disease severity of these mice by using fluorescence angiography. We performed enzyme-linked immunosorbent assay (ELISA) and fluorescence-activated cell sorting (FACS) to analyze the levels of IL-17A and to investigate the immune cell populations in the eyes of WT and IL-17A-deficient mice. We used ARPE-19 cells to clarify the effect of IL-17A under oxidative stress. RESULTS In the laser-induced CNV model, the CNV lesions were larger in IL-17A-deficient mice than in WT mice. The numbers of γδ T cells, CD3+CD4+RORγt+ T cells, Treg cells, and neutrophils were decreased and the number of macrophages was increased in the eyes of IL-17A-deficient mice compared with WT mice. In WT mice, IL-17A-producing γδ T-cell numbers increased in a time-dependent manner from day 7 to 28 after laser injury. IL-6 levels increased and IL-10, IL-24, IL-17F, and GM-CSF levels decreased in the eyes of IL-17A-deficient mice after laser injury. In vitro, IL-17A inhibited apoptosis and induced the expression of the antioxidant protein HO-1 in ARPE-19 cells under oxidative stress conditions. IL-17A facilitated the repair of oxidative stress-induced barrier dysfunction in ARPE-19 cells. CONCLUSIONS Our findings provide new insight into the protective effect of IL-17A in a laser-induced CNV model and reveal a novel regulatory role of IL-17A-producing γδ T cells in the ocular microenvironment in wet AMD.
Collapse
Affiliation(s)
- Yu-Hsien Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chiao-Juno Chiu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Rou Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Antibody New Drug Research Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Gallo CDA, Dellavance A, Gama RA, Silva AE, Silva ISDSE, Andrade LEC, Ferraz MLG. Anti-ribosomal P (anti-P) antibodies in patients with autoimmune hepatitis. EINSTEIN-SAO PAULO 2023; 21:eAO0375. [PMID: 37991088 PMCID: PMC10691313 DOI: 10.31744/einstein_journal/2023ao0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/01/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE Anti-P-ribosomal antibody is a biomarker of systemic lupus erythematosus mainly associated with renal, nervous, and hepatic involvement. Systemic lupus erythematosus may present with features similar to autoimmune hepatitis. This study aimed to investigate the association of Anti-P-ribosomal antibodies in systemic lupus erythematosus compared to autoimmune hepatitis in the general Brazilian population. Autoimmune hepatitis and systemic lupus erythematosus share several clinical features. ۪Anti-P ribosomal antibody is a biomarker for systemic lupus erythematosus. The association between anti-P ribosomal antibody and autoimmune hepatitis has shown conflicting results. Our results showed no association between anti-P ribosomal antibody and autoimmune hepatitis. Published studies have shown associations between anti-ribosomal P (anti-P) antibody and systemic lupus erythematosus with hepatic manifestations. This has been reported also in autoimmune hepatitis. However, the consistency of the latter association remains controversial. This study aimed to evaluate the frequency of anti-P antibodies in autoimmune hepatitis using two different immunoassays. METHODS One-hundred and seventy-seven patients with autoimmune hepatitis were screened, and 142 were analyzed for anti-P antibody positivity. The samples were first analyzed using two different immunoassays: enzyme-linked immunosorbent assay (ELISA) and chemiluminescence and then compared with a group of 60 patients with systemic lupus erythematous. The positive samples were subjected to western blot analysis. RESULTS Anti-P was found in 5/142 autoimmune hepatitis cases (3.5%) by chemiluminescence and in none by ELISA. Among the five chemiluminescence-positive autoimmune hepatitis samples, on anti-P western blot analysis one was negative, two were weakly positive, and two were positive. In contrast, anti-P was detected in 10/60 patients with systemic lupus erythematosus (16.7%) and presented higher chemiluminescence units than the autoimmune hepatitis samples. CONCLUSION A low frequency of anti-P antibodies was observed in autoimmune hepatitis, suggesting that this test is not useful for the diagnosis or management of this disease.
Collapse
Affiliation(s)
- Clarisse de Almeida Gallo
- Division of GastroenterologyUniversidade Federal de São PauloSão PauloSPBrazil Division of Gastroenterology , Universidade Federal de São Paulo , São Paulo , SP , Brazil .
| | - Alessandra Dellavance
- Research and Development DivisionGrupo FleurySão PauloSPBrazil Research and Development Division , Grupo Fleury , São Paulo , SP , Brazil .
| | - Raimundo Araújo Gama
- Division of GastroenterologyUniversidade Federal de São PauloSão PauloSPBrazil Division of Gastroenterology , Universidade Federal de São Paulo , São Paulo , SP , Brazil .
| | - Antônio Eduardo Silva
- Division of GastroenterologyUniversidade Federal de São PauloSão PauloSPBrazil Division of Gastroenterology , Universidade Federal de São Paulo , São Paulo , SP , Brazil .
| | - Ivonete Sandra de Souza e Silva
- Division of GastroenterologyUniversidade Federal de São PauloSão PauloSPBrazil Division of Gastroenterology , Universidade Federal de São Paulo , São Paulo , SP , Brazil .
| | - Luis Eduardo Coelho Andrade
- Division of RheumatologyUniversidade Federal de São PauloSão PauloSPBrazil Division of Rheumatology , Universidade Federal de São Paulo , São Paulo , SP , Brazil .
- Division of ImmunologyGrupo FleurySão PauloSPBrazil Division of Immunology , Grupo Fleury , São Paulo , SP , Brazil .
| | - Maria Lúcia Gomez Ferraz
- Division of GastroenterologyUniversidade Federal de São PauloSão PauloSPBrazil Division of Gastroenterology , Universidade Federal de São Paulo , São Paulo , SP , Brazil .
| |
Collapse
|
10
|
Qu Y, Li D, Liu W, Shi D. Molecular consideration relevant to the mechanism of the comorbidity between psoriasis and systemic lupus erythematosus (Review). Exp Ther Med 2023; 26:482. [PMID: 37745036 PMCID: PMC10515117 DOI: 10.3892/etm.2023.12181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Systemic lupus erythematosus (SLE), a common autoimmune disease with a global incidence and newly diagnosed population estimated at 5.14 (range, 1.4-15.13) per 100,000 person-years and 0.40 million people annually, respectively, affects multiple tissues and organs; for example, skin, blood system, heart and kidneys. Accumulating data has also demonstrated that psoriasis (PS) can be a systemic inflammatory disease, which can affect organs other than the skin and occur alongside other autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis and SLE. The current explanations for the possible comorbidity of PS and SLE include: i) The two diseases share susceptible gene loci; ii) they share a common IL-23/T helper 17 (Th17) axis inflammatory pathway; and iii) the immunopathogenesis of the two conditions is a consequence of the interactions between IL-17 cytokines with effector Th17 cells, T regulatory cells, as well as B cells. In addition, the therapeutic efficacy of IL-17 or TNF-α inhibitors has been demonstrated in PS, and has also become evident in SLE. However, the mechanisms have not been investigated. To the best of our knowledge, there remains a lack of substantial studies on the correlation between PS and SLE. In the present review, the literature, with regards to the epidemiology, genetic predisposition, inflammatory mechanisms and treatment of the patients with both PS and SLE, has been reviewed. Further investigations into the molecular pathogenic mechanism may provide drug targets that could benefit the patients with concomitant PS and SLE.
Collapse
Affiliation(s)
- Yuying Qu
- Department of Dermatology, College of Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Weida Liu
- Department of Medical Mycology, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, Jiangsu 272002, P.R. China
| | - Dongmei Shi
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
11
|
Hoseinzadeh A, Rezaieyazdi Z, Afshari JT, Mahmoudi A, Heydari S, Moradi R, Esmaeili SA, Mahmoudi M. Modulation of Mesenchymal Stem Cells-Mediated Adaptive Immune Effectors' Repertoire in the Recovery of Systemic Lupus Erythematosus. Stem Cell Rev Rep 2023; 19:322-344. [PMID: 36272020 DOI: 10.1007/s12015-022-10452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 02/07/2023]
Abstract
The breakdown of self-tolerance of the immune response can lead to autoimmune conditions in which chronic inflammation induces tissue damage. Systemic lupus erythematosus (SLE) is a debilitating multisystemic autoimmune disorder with a high prevalence in women of childbearing age; however, SLE incidence, prevalence, and severity are strongly influenced by ethnicity. Although the mystery of autoimmune diseases remains unsolved, disturbance in the proportion and function of B cell subsets has a major role in SLE's pathogenesis. Additionally, colocalizing hyperactive T helper cell subgroups within inflammatory niches are indispensable. Despite significant advances in standard treatments, nonspecific immunosuppression, the risk of serious infections, and resistance to conventional therapies in some cases have raised the urgent need for new treatment strategies. Without the need to suppress the immune system, mesenchymal stem cells (MSCs), as ''smart" immune modulators, are able to control cellular and humoral auto-aggression responses by participating in precursor cell development. In lupus, due to autologous MSCs disorder, the ability of allogenic engrafted MSCs in tissue regeneration and resetting immune homeostasis with the provision of a new immunocyte repertoire has been considered simultaneously. In Brief The bone marrow mesenchymal stem cells (BM-MSCs) lineage plays a critical role in maintaining the hematopoietic stem-cell microstructure and modulating immunocytes. The impairment of BM-MSCs and their niche partially contribute to the pathogenesis of SLE-like diseases. Allogenic MSC transplantation can reconstruct BM microstructure, possibly contributing to the recovery of immunocyte phenotype restoration of immune homeostasis. In terms of future prospects of MSCs, artificially gained by ex vivo isolation and culture adaptation, the wide variety of potential mediators and mechanisms might be linked to the promotion of the immunomodulatory function of MSCs.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Department of Rheumatology, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran.,Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Heydari
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Moradi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Mashhad University of Medical Sciences, Azadi Square, Kalantari Blvd, Pardi's campusMashhad, Iran.
| |
Collapse
|
12
|
Yang Y, Yan C, Yu L, Zhang X, Shang J, Fan J, Zhang R, Ren J, Duan X. The star target in SLE: IL-17. Inflamm Res 2023; 72:313-328. [PMID: 36538077 DOI: 10.1007/s00011-022-01674-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The purpose of this review is to discuss the significance of IL-17 in SLE and the potential of IL-17-targeted therapy. BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect many organs and tissues throughout the body. It is characterized by overactive B and T cells and loss of immune tolerance to autoantigens. Interleukin-17 (IL-17) is a cytokine that promotes inflammation and has been implicated in the pathogenesis of several autoimmune diseases as well as inflammatory diseases. In in vitro cellular experiments in lupus susceptible mice or SLE patients, there is substantial evidence that IL-17 is a highly promising therapeutic target. METHODS We searched papers from PubMed database using the search terms, such as interleukin-17, systemic lupus erythematosus, treatment targets, T cells, lupus nephritis, and other relevant terms. RESULTS We discuss in this paper the molecular mechanisms of IL-17 expression, Th17 cell proliferation, and the relationship between IL-17 and Th17. The significance of IL-17 in SLE and the potential of IL-17-targeted therapy are further discussed in detail. CONCLUSION IL-17 has a very high potential for the development as a star target in SLE.
Collapse
Affiliation(s)
- Yi Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Yan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuling Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingjing Shang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Fan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rongwei Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Ren
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinwang Duan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
13
|
Chen Y, Wang YF, Song SS, Zhu J, Wu LL, Li XY. Potential shared therapeutic and hepatotoxic mechanisms of Tripterygium wilfordii polyglycosides treating three kinds of autoimmune skin diseases by regulating IL-17 signaling pathway and Th17 cell differentiation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115496. [PMID: 35750104 DOI: 10.1016/j.jep.2022.115496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii polyglycosides (TWP) are extracted from Tripterygium wilfordii Hook. f., which has the significant effects of anti-inflammation and immunosuppression and has been widely used to treat autoimmune diseases in traditional Chinese medicine. AIM OF STUDY In Chinese clinical dermatology, TWP was generally used for the treatment of autoimmune skin diseases including psoriasis (PSO), systemic lupus erythematosus (SLE) and pemphigus (PEM). However, the potential hepatotoxicity (HPT) induced by TWP was also existing with the long-term use of TWP. This study aims to explore the potential shared therapeutic mechanism of TWP treating PSO, SLE, PEM and the possible hepatotoxic mechanism induced by TWP. MATERIALS AND METHODS Network pharmacology was used to predict the potential targets and pathways in this study. The main bioactive compounds in TWP was screened according to TCMSP, PubChem, ChEMBL databases and Lipinski's Rule of Five. The potential targets of these chemical constituents were obtained from PharmMapper, SEA and SIB databases. The related targets of PSO, SLE, PEM and HPT were collected from GeneCards, DrugBank, DisGeNET and CTD databases. The target network construction was performed through STRING database and Cytoscape. GO enrichment, KEGG enrichment and molecular docking were then performed, respectively. In particular, imiquimod (IMQ)-induced PSO model was selected as the representative for the experimental verification of effects and shared therapeutic mechanisms of TWP. RESULTS 41 targets were considered as the potential shared targets of TWP treating PSO, SLE and PEM. KEGG enrichment indicated that IL-17 signaling pathway and Th17 cell differentiation were significant in the potential shared therapeutic mechanism of TWP. The animal experimental verification demonstrated that TWP could notably ameliorate skin lesions (P˂0.001), decrease inflammatory response (P˂0.05, P˂0.01, P˂0.001) and inhibit the differentiation of Th1/Th17 cells (P˂0.05, P˂0.01) compared to PSO model group. The molecular docking and qPCR validation then showed that TWP could effectively act on MAPK14, IL-2, IL-6 and suppress Th17 cell differentiation and IL-17 signaling pathway. The possible hepatotoxic mechanism of TWP indicated that there were 145 hepatotoxic targets and it was also associated with IL-17 signaling pathway and Th17 cell differentiation, especially for the key role of ALB, CASP3 and HSP90AA1. Meanwhile, the potential correlations between efficacy and hepatotoxicity of TWP showed that 28 targets were shared by therapeutic and hepatotoxic mechanisms such as IL-6, IL-2, MAPK14, MMP9, ALB, CASP3 and HSP90AA1. These significant relevant targets were also involved in IL-17 signaling pathway and Th17 cell differentiation. CONCLUSIONS There were shared disease targets in PSO, SLE and PEM, and TWP could treat them by potential shared therapeutic mechanisms of suppressing IL-17 signaling pathway and Th17 cell differentiation. The possible hepatotoxicity induced by TWP was also significantly associated with the regulation of IL-17 signaling pathway and Th17 cell differentiation. Meanwhile, the potential correlations between efficacy and hepatotoxicity of TWP also mainly focused on IL-17 signaling pathway and Th17 cell differentiation, which provided a potential direction for the study of the mechanism of "You Gu Wu Yun" theory of TWP treating autoimmune skin diseases in the future.
Collapse
Affiliation(s)
- Yi Chen
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yong-Fang Wang
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Sha-Sha Song
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Jia Zhu
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Li-Li Wu
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Xin-Yu Li
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
14
|
Wilson AS, Randall KL, Pettitt JA, Ellyard JI, Blumenthal A, Enders A, Quah BJ, Bopp T, Parish CR, Brüstle A. Neutrophil extracellular traps and their histones promote Th17 cell differentiation directly via TLR2. Nat Commun 2022; 13:528. [PMID: 35082281 PMCID: PMC8792063 DOI: 10.1038/s41467-022-28172-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 01/08/2022] [Indexed: 01/08/2023] Open
Abstract
Neutrophils perform critical functions in the innate response to infection, including through the production of neutrophil extracellular traps (NETs) - web-like DNA structures which are extruded from neutrophils upon activation. Elevated levels of NETs have been linked to autoimmunity but this association is poorly understood. By contrast, IL-17 producing Th17 cells are a key player in various autoimmune diseases but are also crucial for immunity against fungal and bacterial infections. Here we show that NETs, through their protein component histones, directly activate T cells and specifically enhance Th17 cell differentiation. This modulatory role of neutrophils, NETs and their histones is mediated downstream of TLR2 in T cells, resulting in phosphorylation of STAT3. The innate stimulation of a specific adaptive immune cell subset provides an additional mechanism demonstrating a direct link between neutrophils, NETs and T cell autoimmunity.
Collapse
Affiliation(s)
- Alicia S Wilson
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katrina L Randall
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Jessica A Pettitt
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Julia I Ellyard
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Anselm Enders
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Benjamin J Quah
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christopher R Parish
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anne Brüstle
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
15
|
Huang X, Zhang Q, Zhang H, Lu Q. A Contemporary Update on the Diagnosis of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2022; 63:311-329. [DOI: 10.1007/s12016-021-08917-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
|
16
|
Néel A, Degauque N, Bruneau S, Braudeau C, Bucchia M, Caristan A, De Mornac D, Genin V, Glemain A, Oriot C, Rimbert M, Brouard S, Josien R, Hamidou M. [Pathogenesis of ANCA-associated vasculitides in 2021: An update]. Rev Med Interne 2022; 43:89-97. [PMID: 35033384 DOI: 10.1016/j.revmed.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Anticytoplasmic neutrophil antibodies (ANCA)-associated vasculitis (AAV) are rare systemic immune-mediated diseases characterized by small vessel necrotizing vasculitis and/or respiratory tract inflammation. Over the last 2 decades, anti-MPO vasculitis mouse model has enlightened the role of ANCA, neutrophils, complement activation, T helper cells (Th1, Th17) and microbial agents. In humans, CD4T cells have been extensively studied, while the dramatic efficacy of rituximab demonstrated the key role of B cells. Many areas of uncertainty remain, such as the driving force of GPA extra-vascular granulomatous inflammation and the relapse risk of anti-PR3 AAV pathogenesis. Animal models eventually led to identify complement activation as a promising therapeutic target. New investigation tools, which permit in depth immune profiling of human blood and tissues, may open a new era for the studying of AAV pathogenesis.
Collapse
Affiliation(s)
- A Néel
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Centre de référence maladies auto-immunes systémiques Rares, hôpital Cochin, AP-HP, Paris, France.
| | - N Degauque
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - S Bruneau
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - C Braudeau
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - M Bucchia
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Service de pédiatrie, CHU de Nantes, Nantes, France
| | - A Caristan
- Service de médecine interne, CHD Vendée, La-Roche-Sur-Yon, France
| | - D De Mornac
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - V Genin
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - A Glemain
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - C Oriot
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Service de pédiatrie, CHU de Nantes, Nantes, France
| | - M Rimbert
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - S Brouard
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - R Josien
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - M Hamidou
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| |
Collapse
|
17
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Ho CC, Kim G, Mun CH, Kim JW, Han J, Park JY, Park YB, Lee SK. Transcriptional Interactomic Inhibition of RORα Suppresses Th17-Related Inflammation. J Inflamm Res 2021; 14:7091-7105. [PMID: 34992408 PMCID: PMC8710077 DOI: 10.2147/jir.s344031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Th17 cells and their cytokines are implicated in the pathogenesis of various autoimmune diseases. Retinoic acid-related orphan receptor alpha (RORα) is a transcription factor for the differentiation and the inflammatory functions of Th17 cells. In this study, we generated the nucleus-transducible form of transcription modulation domain of RORα (nt-RORα-TMD) to investigate the functional roles of RORα in vitro and in vivo under normal physiological condition without genetic alteration. METHODS The functions of nt-RORα-TMD were analyzed in vitro through flow cytometry, luciferase assay, ELISA, and transcriptome sequencing. Finally, the in vivo therapeutic effects of nt-RORα-TMD were verified in dextran sulfate sodium (DSS)-induced colitis mice. RESULTS nt-RORα-TMD was effectively delivered into the cell nucleus in a dose- and time-dependent manner without any cellular toxicity. nt-RORα-TMD competitively inhibited the RORα-mediated transcription but not RORγt-mediated transcription. Secretion of IL-17A from the splenocytes was suppressed by nt-RORα-TMD without affecting the secretion of Th1- or Th2-type cytokine and T cell activation events such as induction of CD69 and CD25. The differentiation potential of naïve T cells into Th17 cells, not into Th1, Th2, or Treg cells, was significantly blocked by nt-RORα-TMD. Consistently, mRNA sequencing analysis showed that nt-RORα-TMD treatment down-regulated the expression of the genes related to the differentiation and functions of Th17 cells. Treatment of DSS-induced colitis mice with nt-RORα-TMD improved the overall symptoms of colitis, such as body weight change, colon length, infiltration of inflammatory cells, and the level of inflammatory cytokines in the serum. In the mesenteric lymph node (MLN) of the nt-RORα-TMD-treated mice, the population of CD4+IL-17A+ Th17 cells was reduced, and the population of CD4+Foxp3+ Treg cells increased. CONCLUSION nt-RORα-TMD has a potential to be developed as a novel therapeutic reagent for treating various inflammatory diseases in which Th17 cells are the leading pathological player.
Collapse
Affiliation(s)
- Chun-Chang Ho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Giha Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Chin Hee Mun
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju-Won Kim
- Department of Medical Science, Brain Korea 21 PLUS Project, Yonsei University, Seoul, Republic of Korea
| | - Jieun Han
- Department of Medical Science, Brain Korea 21 PLUS Project, Yonsei University, Seoul, Republic of Korea
| | - Ji Yoon Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Brain Korea 21 PLUS Project, Yonsei University, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Good T Cells, Inc., Seoul, Republic of Korea
| |
Collapse
|
19
|
El-Mallah R, Saab AA, Nassar N. Serum interleukin-17 and estradiol levels in postmenopausal women in relation to osteoporosis. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2021. [DOI: 10.1186/s43166-021-00083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In post-menopausal women, estrogen deficiency leads to instability between bone formation and resorption which is regulated by osteoclastogenic cytokines leading to resorption. Interleukin-17 (IL-17) a proinflammatory cytokine has been found as an important regulator of osteoclast-genesis induced by estrogen deficiency in favor of bone loss in animal studies.
The study aimed to evaluate levels of IL-17 and estrogen (E2) in relation to bone mineral density (BMD) and risk of fracture in postmenopausal women with and without osteoporosis.
Results
IL-17 levels were significantly higher and E2 levels were significantly lower in the osteoporotic group compared to the non-osteoporotic group (P value ≤ 0.01). There was a highly significant difference in DEXA score and FRAX index between two groups: with higher values of FRAX and lower values of DEXA score among osteoporotic group (P value ≤ 0.01). IL-17 was inversely correlated to estrogen level and highly significant negative correlation with DEXA as well as a highly significant positive one with FRAX index. IL-17 serum level was able to diagnose osteoporosis at a cutoff level of > 80 pg/mL with 100% sensitivity, 100% specificity, 100% positive predictive value (PPV), and 100% negative predictive value (NPV).
Conclusions
Serum IL-17 was significantly elevated in osteoporotic postmenopausal women when compared to healthy postmenopausal ones and was inversely correlated with estrogen level and DEXA.
Collapse
|
20
|
Costa R, Antunes P, Salvador P, Oliveira P, Marinho A. Secukinumab on Refractory Lupus Nephritis. Cureus 2021; 13:e17198. [PMID: 34540426 PMCID: PMC8439396 DOI: 10.7759/cureus.17198] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 01/19/2023] Open
Abstract
Lupus nephritis (LN) is the most frequent severe organ manifestation of systemic lupus erythematosus (SLE). About 30% of patients are refractory to treatment. The authors report a case of treatment of LN with interleukin-17-targeted therapy, demonstrating its possible benefit, after reports of T helper 17 cell involvement in SLE pathogenesis. We present the case of a childbearing age woman with SLE, who developed refractory LN despite all the indicated therapeutic options. During follow up, infection with human papillomavirus was detected, a possible trigger, and the following management was based on this discovery. We currently know that cytokines play a major role in tissue damage and interleukin-17 (IL-17) seems to be a fundamental key in SLE and LN, having shown its expression in renal glomeruli and urinary sediment. Thus, it was decided to start treatment with an anti-IL-17A antibody, secukinumab. After starting secukinumab, clinical and biological features improved and complete renal response was achieved.
Collapse
Affiliation(s)
- Rita Costa
- Internal Medicine Department, Centro Hospitalar Vila Nova De Gaia, Vila Nova de Gaia, PRT
| | - Paula Antunes
- Internal Medicine, Hospital de Cascais Dr José de Almeida, Lisboa, PRT
| | - Pedro Salvador
- Internal Medicine Department, Centro Hospitalar Vila Nova De Gaia, Vila Nova de Gaia, PRT
| | - Pedro Oliveira
- Internal Medicine Department, Centro Hospitalar Vila Nova De Gaia, Vila Nova de Gaia, PRT
| | | |
Collapse
|
21
|
Izati AF, Mohd Shukri ND, Wan Ghazali WS, Che Hussin CM, Wong KK. Increased IL-23R + Th Cells Population Exhibits Higher SLEDAI-2K Scores in Systemic Lupus Erythematosus Patients. Front Immunol 2021; 12:690908. [PMID: 34484186 PMCID: PMC8416093 DOI: 10.3389/fimmu.2021.690908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023] Open
Abstract
The IL-23/IL-17 axis plays causative roles in the development and progression of systemic lupus erythematosus (SLE). However, it remains unclear if the IL-17RA+ and IL-23R+ T helper (Th) cells populations are associated with the serum IL-17 and IL-23 levels, or with the immunological parameters and disease activities in SLE patients. Herein, we examined the proportion of IL-17RA+ and IL-23R+ Th cells and serum levels of IL-17 and IL-23 in established SLE patients (n = 50) compared with healthy controls (n = 50). The associations of these interleukins and their receptors with immunological parameters [anti-nuclear antibody (ANA), anti-dsDNA antibody, and C-reactive protein (CRP)] and SLE disease activity (SLEDAI-2K scores) in SLE patients were assessed. CD3+CD4+ Th cells of SLE patients demonstrated significantly elevated IL-17RA+ (p = 1.12 x 10-4) or IL-23R+ (p = 1.98 x 10-29) populations compared with the healthy controls. Serum IL-17 levels were significantly lower in SLE patients compared with the healthy controls (p = 8.32 x 10-5), while no significant difference was observed for the IL-23 serum levels between both groups. IL-23R+ Th cells population was significantly associated with higher SLEDAI-2K scores (p = 0.017). In multivariate analysis, the proportion of IL-23R+ Th cells remained significantly associated with higher SLEDAI-2K scores independent of prednisolone intake (p = 0.027). No associations were observed between the interleukin parameters (i.e., IL-17, IL-23, IL-17RA+ Th cells, and IL-23R+ Th cells) with ANA, anti-dsDNA, and CRP status, suggesting that the IL-17/IL-23 axis acts independently of these immunological parameters. In conclusion, our results support that therapeutic inhibition of the IL-23/IL-17 axis receptors on Th cells, particularly IL-23R, is potentially relevant in SLE patients.
Collapse
Affiliation(s)
- Aziz Farah Izati
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Nur Diyana Mohd Shukri
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Syamimee Wan Ghazali
- Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Che Maraina Che Hussin
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
22
|
Cheng T, Ding S, Liu S, Li X, Tang X, Sun L. Resolvin D1 Improves the Treg/Th17 Imbalance in Systemic Lupus Erythematosus Through miR-30e-5p. Front Immunol 2021; 12:668760. [PMID: 34093566 PMCID: PMC8171186 DOI: 10.3389/fimmu.2021.668760] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Resolvin D1 (RvD1) prompts inflammation resolution and regulates immune responses. We explored the effect of RvD1 on systemic lupus erythematosus (SLE) and investigated the correlation between RvD1 and Treg/Th17 imbalance, which is one of the major factors contributing to the pathogenesis of disease. SLE patients and healthy controls were recruited to determine plasma RvD1 levels. MRL/lpr lupus model was used to verify rescue of the disease phenotype along with Treg/Th17 ratio. Purified naive CD4+ T cells were used to study the effect of RvD1 on Treg/Th17 differentiation in vitro. Furthermore, small RNA Sequencing and transfection were performed successively to investigate downstream microRNAs. The result showed that the RvD1 level was significantly lower in active SLE patients compared with inactive status and controls. Moreover, The SLE disease activity index (SLEDAI) score had a significant negative correlation with RvD1 level. As expected, RvD1 treatment ameliorated disease phenotype and inflammatory response, improved the imbalanced Treg/Th17 in MRL/lpr mice. In addition, RvD1 increased Treg while reduced Th17 differentiation in vitro. Furthermore, miR-30e-5p was verified to modulate the Treg/Th17 differentiation from naïve CD4+ T cells as RvD1 downstream microRNA. In conclusion, RvD1 effectively ameliorates SLE progression through up-regulating Treg and down-regulating Th17 cells via miR-30e-5p.
Collapse
MESH Headings
- Adult
- Animals
- Anti-Inflammatory Agents/pharmacology
- Case-Control Studies
- Cell Differentiation/drug effects
- Cells, Cultured
- Cytokines/blood
- Disease Models, Animal
- Docosahexaenoic Acids/blood
- Docosahexaenoic Acids/pharmacology
- Female
- Humans
- Inflammation Mediators/blood
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/prevention & control
- Male
- Mice, Inbred MRL lpr
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Young Adult
- Mice
Collapse
Affiliation(s)
| | | | | | | | | | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
23
|
Karatas A, Celik C, Oz B, Akar ZA, Etem EO, Dagli AF, Koca SS. Secukinumab and metformin ameliorate dermal fibrosis by decreasing tissue interleukin-17 levels in bleomycin-induced dermal fibrosis. Int J Rheum Dis 2021; 24:795-802. [PMID: 33835703 DOI: 10.1111/1756-185x.14114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Although the pathogenesis of systemic sclerosis is not exactly known, it is thought that immune activation has prominent roles in pathogenesis. Secukinumab is a monoclonal antibody against interleukin (IL)-17A. Metformin, a widely used antidiabetic medication, has anti-proliferative, immunomodulating and anti-fibrotic activities. The purpose of our study is to determine the therapeutic efficacy of secukinumab and metformin on bleomycin (BLM) induced dermal fibrosis. Fifty Balb/c female mice were divided into 5 groups: (group 1 control, 2 sham, 3 secukinumab, 4 metformin and 5 secukinumab + metformin). The mice in the control group received 100 μL phosphate-buffered saline (PBS), while the mice in other groups received 100 μL (100 μg) BLM in PBS subcutaneously (sc) every day for 4 weeks. In addition, mice in groups 3 and 5 received secukinumab at a dose of 10 mg/kg/wk sc, and mice in the groups 4 and 5 received oral metformin 50 mg/kg/d for 28 days. All groups of mice were sacrificed at the end of the 4th week and tissue samples were taken for analysis. In addition to histopathological analysis, skin tissue messenger RNA (mRNA) expressions of IL-17 and collagen 3A were measured by real-time polymerase chain reaction. Repeated BLM injections had caused dermal fibrosis. In addition, the mRNA expressions of IL-17 and collagen 3A were increased in the BLM group. Secukinumab and metformin ameliorated dermal fibrosis. They decreased dermal thickness and tissue IL-17A and collagen 3A mRNA levels. Secukinumab and metformin exhibit anti-fibrotic effects in the BLM-induced dermal fibrosis.
Collapse
Affiliation(s)
- Ahmet Karatas
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Cigdem Celik
- Department of Internal Medicine, Eleskirt State Hospital, Agri, Turkey
| | - Burak Oz
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Zeynel Abidin Akar
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ebru Onalan Etem
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Adile Ferda Dagli
- Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Suleyman Serdar Koca
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
24
|
Wang Z, Zhao M, Yin J, Liu L, Hu L, Huang Y, Liu A, Ouyang J, Min X, Rao S, Zhou W, Wu H, Yoshimura A, Lu Q. E4BP4-mediated inhibition of T follicular helper cell differentiation is compromised in autoimmune diseases. J Clin Invest 2021; 130:3717-3733. [PMID: 32191636 DOI: 10.1172/jci129018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells are indispensable for the formation of germinal center (GC) reactions, whereas T follicular regulatory (Tfr) cells inhibit Tfh-mediated GC responses. Aberrant activation of Tfh cells contributes substantially to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE). Nonetheless, the molecular mechanisms mitigating excessive Tfh cell differentiation are not fully understood. Herein we demonstrate that the adenovirus E4 promoter-binding protein (E4BP4) mediates a feedback loop and acts as a transcriptional brake to inhibit Tfh cell differentiation. Furthermore, we show that such an immunological mechanism is compromised in patients with SLE. Establishing mice with either conditional knockout (cKO) or knockin (cKI) of the E4bp4 gene in T cells reveals that E4BP4 strongly inhibits Tfh cell differentiation. Mechanistically, E4BP4 regulates Bcl6 transcription by recruiting the repressive epigenetic modifiers HDAC1 and EZH2. E4BP4 phosphorylation site mutants have limited capability with regard to inhibiting Tfh cell differentiation. In SLE, we detected impaired phosphorylation of E4BP4, finding that this compromised transcription factor is positively correlated with disease activity. These findings unveiled molecular mechanisms by which E4BP4 restrains Tfh cell differentiation, whose compromised function is associated with uncontrolled autoimmune reactions in SLE.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Jinghua Yin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Limin Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Longyuan Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Yi Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Aiyun Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Jiajun Ouyang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Xiaoli Min
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Shijia Rao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Wenhui Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| |
Collapse
|
25
|
Abstract
In inflammatory rheumatic disorders, the immune system attacks and damages the connective tissues and invariably internal organs. During the past decade, remarkable advances having been made towards our understanding on the cellular and molecular mechanisms involved in rheumatic diseases. The discovery of IL-23/IL-17 axis and the delineation of its important role in the inflammation led to the introduction of many needed new therapeutic tools. We will present an overview of the rationale for targeting therapeutically the IL-23/IL-17 axis in rheumatic diseases and the clinical benefit which has been realized so far. Finally, we will discuss the complex interrelationship between IL-23 and IL-17 and the possible uncoupling in certain disease settings.
Collapse
|
26
|
Sato K, Aizaki Y, Yoshida Y, Mimura T. Treatment of psoriatic arthritis complicated by systemic lupus erythematosus with the IL-17 blocker secukinumab and an analysis of the serum cytokine profile. Mod Rheumatol Case Rep 2020; 4:181-185. [PMID: 33086998 DOI: 10.1080/24725625.2020.1717741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Psoriasis is a chronic disease of the skin that often affects the joints (psoriatic arthritis, PsA). Biologic agents such as TNF-α, IL-23 and IL-17 blockers have been proven to be quite effective against psoriasis and PsA, indicating the importance of those cytokines in the pathogenesis of the diseases. The importance of the IL-23/IL-17 axis has also been reported in systemic lupus erythematosus (SLE), but the safety and effectiveness of IL-17 blockers in SLE remain largely unknown. We encountered a patient with PsA and SLE. We treated him with an IL-17 blocker, secukinumab, and quantified the serum levels of various cytokines before and after the initiation of secukinumab therapy. As expected, the treatment was effective against the symptoms of PsA. No serious adverse events were observed in terms of SLE. Interestingly, serum IL-6 was substantially decreased after the initiation of therapy, whereas serum IL-17 was under the detection limit. These data indicate that IL-17 is produced locally, upstream of IL-6 production.
Collapse
Affiliation(s)
- Kojiro Sato
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yoshimi Aizaki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yoshihiro Yoshida
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
27
|
Akaji K, Nakagawa Y, Kakuda K, Takafuji M, Kiyohara E, Murase C, Takeichi T, Akiyama M, Fujimoto M. Generalized pustular psoriasis associated with systemic lupus erythematosus successfully treated with secukinumab. J Dermatol 2020; 48:e43-e44. [PMID: 33063316 DOI: 10.1111/1346-8138.15645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuya Akaji
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukinobu Nakagawa
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kasumi Kakuda
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Madoka Takafuji
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiji Kiyohara
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Chiaki Murase
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
28
|
Radmanesh F, Mahmoudi M, Yazdanpanah E, Keyvani V, Kia N, Nikpoor AR, Zafari P, Esmaeili SA. The immunomodulatory effects of mesenchymal stromal cell-based therapy in human and animal models of systemic lupus erythematosus. IUBMB Life 2020; 72:2366-2381. [PMID: 33006813 DOI: 10.1002/iub.2387] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune inflammatory disease with no absolute cure. Although the exact etiopathogenesis of SLE is still enigmatic, it has been well demonstrated that a combination of genetic predisposition and environmental factors trigger a disturbance in immune responses and thereby participate in the development of this condition. Almost all available therapeutic strategies in SLE are primarily based on the administration of immunosuppressive drugs and are not curative. Mesenchymal stromal cells (MSCs) are a subset of non-hematopoietic adult stem cells that can be isolated from many adult tissues and are increasingly recognized as immune response modulating agents. MSC-mediated inhibition of immune responses is a complex mechanism that involves almost every aspect of the immune response. MSCs suppress the maturation of antigen-presenting cells (DC and MQ), proliferation of T cells (Th1, T17, and Th2), proliferation and immunoglobulin production of B cells, the cytotoxic activity of CTL and NK cells in addition to increasing regulatory cytokines (TGF-β and IL10), and decreasing inflammatory cytokines (IL17, INF-ϒ, TNF-α, and IL12) levels. MSCs have shown encouraging results in the treatment of several autoimmune diseases, in particular SLE. This report aims to review the beneficial and therapeutic properties of MSCs; it also focuses on the results of animal model studies, preclinical studies, and clinical trials of MSC therapy in SLE from the immunoregulatory aspect.
Collapse
Affiliation(s)
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahideh Keyvani
- Molecular Genetics, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nadia Kia
- Skin Cancer Prevention Research Center, Torvergata University of Medical Sciences, Rome, Italy
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Li M, Yang C, Wang Y, Song W, Jia L, Peng X, Zhao R. The Expression of P2X7 Receptor on Th1, Th17, and Regulatory T Cells in Patients with Systemic Lupus Erythematosus or Rheumatoid Arthritis and Its Correlations with Active Disease. THE JOURNAL OF IMMUNOLOGY 2020; 205:1752-1762. [PMID: 32868411 DOI: 10.4049/jimmunol.2000222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023]
Abstract
P2X7 receptor (P2X7R) is highly expressed on immune cells, triggering the release of cytokines and regulating autoimmune responses. To investigate P2X7R surface expression on T helper (Th) 1, Th17, and regulatory T (Treg) cells in patients with systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA) and correlations with disease activity, 29 SLE and 29 RA patients and 18 healthy controls (HCs) were enrolled. We showed that SLE and RA patients had significantly higher levels of plasma cytokines (IFN-γ, IL-1β, IL-6, IL-17A, and IL-23), frequencies of Th1 and Th17 cells, and expression of P2X7R on Th1 and Th17 than HCs, and the Th17/Treg ratio was significantly increased, whereas Treg cell levels were significantly decreased. The Ca2+ influx increase following BzATP stimulation was significantly higher in CD4+PBMCs from SLE and RA patients than in HCs. Blood levels of shed P2X7R were increased in SLE and RA patients. Furthermore, 28-joint Disease Activity Score and SLE Disease Activity Index score showed negative correlations with Treg cell levels and positive correlations with Th17/Treg ratio and Th17 cell P2X7R expression. Interestingly, Th17 cell P2X7R expression was closely correlated with IL-1β, C-reactive protein, the erythrocyte sedimentation rate, anticyclic citrullinated peptide Abs, albumin, and C4. These data indicate that increased Th17 cell P2X7R expression is functionally and positively related to disease activity and some inflammatory mediators in SLE and RA patients, and P2X7R could be critical in promoting the Th17 immune response and contributing to the complex pathogenesis of SLE and RA.
Collapse
Affiliation(s)
- Mingxuan Li
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Chuanyu Yang
- Department of Blood Transfusion, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; and
| | - Yunhai Wang
- Department of Clinical Laboratory, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Wei Song
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Lina Jia
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Xiaoxiang Peng
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China;
| | - Ronglan Zhao
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China;
| |
Collapse
|
30
|
Kourti M, Sokratous M, Katsiari CG. Regulation of microRNA in systemic lupus erythematosus: the role of miR-21 and miR-210. Mediterr J Rheumatol 2020; 31:71-74. [PMID: 32411934 PMCID: PMC7219647 DOI: 10.31138/mjr.31.1.71] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/30/2020] [Accepted: 02/15/2020] [Indexed: 01/23/2023] Open
Abstract
miRNAs are small non-coding RNA molecules that participate through silencing in post-transcriptional regulation of gene expression. Recent studies have highlighted the importance of microRNAs (miRNAs) as regulators of both the innate and the adaptive immune response. There are emerging data regarding the role of miRNAs in patients with Systemic Lupus Erythematosus (SLE). One of the main stimuli for the induction of miR-21 is hypoxia. Moreover, the expression and function of miR-210 is directly related to the activity of "hypoxia inducible factor-1a" (HIF-1a). The aim of the study is to examine the regulation of miR-21 and mir-210 in patients with SLE based on the hypothesis that cellular hypoxia may have an important role in SLE pathogenesis. Plasma, PBMC and urine samples will be collected from patients with SLE and normal controls. miR expression will be studied with real-time PCR. Functional experiments will examine the effect of miR-21 and miR- 210 on HIFa and ERK1/2 και PI3K/AKT signalling pathways. The study will provide novel data regarding the expression and the role of miR-21 and miR-210 in patients with SLE. The results of the study will contribute to a better understanding of miR network regulation in SLE in order to ultimately identify molecules that can be used in clinical practice as diagnostic or prognostic markers, treatment response markers, or even as potential future therapeutic targets.
Collapse
Affiliation(s)
- Maria Kourti
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Maria Sokratous
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Christina G Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
31
|
Moran MC, Beck LA, Richardson CT. A Spectrum of Skin Disease: How Staphylococcus aureus Colonization, Barrier Dysfunction, and Cytokines Shape the Skin. J Invest Dermatol 2020; 140:941-944. [PMID: 32331569 DOI: 10.1016/j.jid.2019.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 11/18/2022]
Abstract
Cytokines are key mediators of skin homeostasis and disease through their effects on keratinocytes, skin barrier integrity, immune activation, and microbial ecology. Sirobhushanam et al. (2020) suggest that the IFN signature in lupus erythematosus (LE) alters expression of epithelial barrier and adhesin genes, which, in turn, promotes Staphylococcus aureus colonization. This work highlights the need to better understand both barrier function and S. aureus colonization in LE, two new potential therapeutic targets for the treatment of LE.
Collapse
Affiliation(s)
- Mary C Moran
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
32
|
Koriyama H, Ikeda Y, Nakagami H, Shimamura M, Yoshida S, Rakugi H, Morishita R. Development of an IL-17A DNA Vaccine to Treat Systemic Lupus Erythematosus in Mice. Vaccines (Basel) 2020; 8:vaccines8010083. [PMID: 32059488 PMCID: PMC7157613 DOI: 10.3390/vaccines8010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin-17 (IL-17) family, especially IL-17A, plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). This study developed an IL-17A epitope vaccine to treat SLE in NZBWF1 and MRL/lpr mouse models. A plasmid vector encoding a hepatitis B core (HBc)-IL-17A epitope fusion protein was injected using electroporation into the skeletal muscle of NZBWF1(New Zealand Black mice x New Zealand White mice F1 hybrid strain) or MRL/lpr mice three times at 2-week intervals. As a result, anti-IL-17A antibodies were successfully produced in the HBc-IL-17A group. Accordingly, serum tumor necrosis factor alpha (TNF-α) concentrations were significantly reduced in the HBc-IL-17A group. According to pathological analysis, the IL-17A DNA vaccine significantly suppressed renal tissue damage and macrophage infiltration. Consequently, the survival rate was significantly improved in the HBc-IL-17A group. In addition, we evaluated the antigen reactivity of splenocytes from IL-17A-immunized mice using an enzyme-linked immune absorbent spot (ELISPot) assay for safety evaluation. Splenocytes from IL-17A-immunized mice were significantly stimulated by the HBc epitope peptide, but not by the IL-17A epitope or recombinant IL-17A. These results indicate that the IL-17A vaccine did not induce autoreactive T cells against endogenous IL-17A. This study demonstrates for the first time that an IL-17A DNA vaccine significantly reduced organ damage and extended survival time in lupus-prone mice.
Collapse
Affiliation(s)
- Hiroshi Koriyama
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuka Ikeda
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Correspondence: (H.N.); (R.M.)
| | - Munehisa Shimamura
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shota Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Correspondence: (H.N.); (R.M.)
| |
Collapse
|
33
|
Matsuda-Hirose H, Sho Y, Yamate T, Nakamura Y, Saito K, Takeo N, Nishida H, Ishii K, Sugiura K, Hatano Y. Acute generalized exanthematous pustulosis induced by hydroxychloroquine successfully treated with etretinate. J Dermatol 2019; 47:e53-e54. [PMID: 31840277 DOI: 10.1111/1346-8138.15185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Haruna Matsuda-Hirose
- Departments of, Department of, Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuriko Sho
- Departments of, Department of, Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tomoko Yamate
- Departments of, Department of, Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yusuke Nakamura
- Departments of, Department of, Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kanami Saito
- Departments of, Department of, Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naoko Takeo
- Departments of, Department of, Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Haruto Nishida
- Department of, Diagnostic Pathology, and, Faculty of Medicine, Oita University, Yufu, Japan
| | - Koji Ishii
- Department of, Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yutaka Hatano
- Departments of, Department of, Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
34
|
Muhammad Yusoff F, Wong KK, Mohd Redzwan N. Th1, Th2, and Th17 cytokines in systemic lupus erythematosus. Autoimmunity 2019; 53:8-20. [PMID: 31771364 DOI: 10.1080/08916934.2019.1693545] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the breakdown of immune tolerance leading to excessive inflammation and tissue damage. Imbalance in the levels of cytokines represents one of the multifactorial causes of SLE pathogenesis and it contributes to disease severity. Deregulated levels of T helper type 1 (Th1), type 2 (Th2), and type 17 (Th17) cytokines have been associated with autoimmune inflammation. Growing evidence has shown deregulated levels of Th1, Th2, and Th17 cytokines in SLE patients compared to healthy controls associated with disease activity and severity. In this review, we describe and discuss the levels of Th1, Th2, and Th17 cytokines in SLE patients, and clinical trials involving Th1, Th2, and Th17 cytokines in SLE patients. In particular, with the exception of IL-2, IL-4, and TGF-β1, the levels of Th1, Th2, and Th17 cytokines are increased in SLE patients associated with disease severity. Current phase II or III studies involve therapeutic antibodies targeting IFN-α and type I IFN receptor, while low-dose IL-2 therapy is assessed in phase II clinical trials.
Collapse
Affiliation(s)
- Farhana Muhammad Yusoff
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| |
Collapse
|
35
|
Chuang HC, Tan TH. MAP4K Family Kinases and DUSP Family Phosphatases in T-Cell Signaling and Systemic Lupus Erythematosus. Cells 2019; 8:cells8111433. [PMID: 31766293 PMCID: PMC6912701 DOI: 10.3390/cells8111433] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
T cells play a critical role in the pathogenesis of systemic lupus erythematosus (SLE), which is a severe autoimmune disease. In the past 60 years, only one new therapeutic agent with limited efficacy has been approved for SLE treatment; therefore, the development of early diagnostic biomarkers and therapeutic targets for SLE is desirable. Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) and dual-specificity phosphatases (DUSPs) are regulators of MAP kinases. Several MAP4Ks and DUSPs are involved in T-cell signaling and autoimmune responses. HPK1 (MAP4K1), DUSP22 (JKAP), and DUSP14 are negative regulators of T-cell activation. Consistently, HPK1 and DUSP22 are downregulated in the T cells of human SLE patients. In contrast, MAP4K3 (GLK) is a positive regulator of T-cell signaling and T-cell-mediated immune responses. MAP4K3 overexpression-induced RORγt–AhR complex specifically controls interleukin 17A (IL-17A) production in T cells, leading to autoimmune responses. Consistently, MAP4K3 and the RORγt–AhR complex are overexpressed in the T cells of human SLE patients, as are DUSP4 and DUSP23. In addition, DUSPs are also involved in either human autoimmune diseases (DUSP2, DUSP7, DUSP10, and DUSP12) or T-cell activation (DUSP1, DUSP5, and DUSP14). In this review, we summarize the MAP4Ks and DUSPs that are potential biomarkers and/or therapeutic targets for SLE.
Collapse
|
36
|
Leptin: an unappreciated key player in SLE. Clin Rheumatol 2019; 39:305-317. [PMID: 31707542 DOI: 10.1007/s10067-019-04831-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023]
Abstract
Leptin is the forerunner of the adipokine superfamily and plays a key role in regulating energy expenditure and neuroendocrine function. Researches into leptin put emphasize not only on the metabolic role but also its immunoregulatory effect on immune response through immunocyte activation and cytokine secretion. Leptin acts on receptors that are widespread throughout the body and that are expressed across many tissue types. As a consequence, the abnormal expression of leptin has been found to correlate with a number of diseases, including cancers, autoimmune diseases, and cardiovascular diseases. The significance of leptin in the development of autoimmune diseases is becoming increasingly prominent. Systemic lupus erythematosus (SLE) is a severe atypical autoimmune disease that causes damage to multiple organ systems. It is characterised by the following: impaired clearance of apoptotic cells, loss of tolerance to self-antigens, aberrant activation of T cells and B cells, and chronic inflammation. The heightened immunocyte response in SLE means that these physiological systems are particularly vulnerable to regulation by leptin in addition to being of great significance to the research field. Our current review provides insight into the regulatory roles that leptin plays on immune effector cells in SLE.
Collapse
|
37
|
Evaluation of Eosinophilic Cationic Protein and Some Immunological Markers in Patients Infected with Scabies. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Wang X, Zhao C, Zhang C, Mei X, Song J, Sun Y, Wu Z, Shi W. Increased HERV-E clone 4-1 expression contributes to DNA hypomethylation and IL-17 release from CD4 + T cells via miR-302d/MBD2 in systemic lupus erythematosus. Cell Commun Signal 2019; 17:94. [PMID: 31412880 PMCID: PMC6694475 DOI: 10.1186/s12964-019-0416-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Increased human endogenous retroviruses E clone 4–1 (HERV-E clone 4–1) mRNA expression is observed in systemic lupus erythematosus (SLE) patients and associates with the disease activity. In this study, we want to further investigate the mechanism of HERV-E clone 4–1 mRNA upregulation and its roles in SLE progression. Methods CD4+ T cells were isolated from venous blood of SLE patients or healthy controls and qRT-PCR was used to detect HERV-E clone 4–1 mRNA expression. We then investigated the regulation of Nuclear factor of activated T cells 1 (NFAT1) and Estrogen receptor-α (ER-α) on HERV-E clone 4–1 transcription and the functions of HERV-E clone 4–1 3′ long terminal repeat (LTR) on DNA hypomethylation and IL-17 release. Results We found HERV-E clone 4–1 mRNA expression was upregulated in CD4+ T cells from SLE patients and positively correlated with SLE disease activity. This is associated with the activation of Ca2+/calcineurin (CaN)/NFAT1 and E2/ER-α signaling pathway and DNA hypomethylation of HERV-E clone 4–1 5’LTR. HERV-E clone 4–1 also takes part in disease pathogenesis of SLE through miR-302d/Methyl-CpG binding domain protein 2 (MBD2)/DNA hypomethylation and IL-17 signaling via its 3’LTR. Conclusions HERV-E clone 4–1 mRNA upregulation is due to the abnormal inflammation/immune/methylation status of SLE and it could act as a potential biomarker for diagnosis of SLE. HERV-E clone 4–1 also takes part in disease pathogenesis of SLE via its 3’LTR and the signaling pathways it involved in may be potential therapeutic targets of SLE. Electronic supplementary material The online version of this article (10.1186/s12964-019-0416-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Wang
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Chaoshuai Zhao
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Chengzhong Zhang
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Jun Song
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yue Sun
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
39
|
Chuang HC, Chen YM, Chen MH, Hung WT, Yang HY, Tseng YH, Tan TH. AhR-ROR-γt complex is a therapeutic target for MAP4K3/GLK highIL-17A high subpopulation of systemic lupus erythematosus. FASEB J 2019; 33:11469-11480. [PMID: 31318609 PMCID: PMC6766655 DOI: 10.1096/fj.201900105rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cytokine IL-17A plays critical roles in the pathogenesis of autoimmune diseases. The frequencies of MAP kinase kinase kinase kinase 3 [also named germinal center kinase-like kinase (GLK)]-overexpressing T cells are correlated with disease severity of systemic lupus erythematosus (SLE). T-cell-specific GLK-transgenic mice develop spontaneous autoimmune responses through IL-17A. GLK signaling selectively stimulates IL-17A production in murine T cells through inducing aryl hydrocarbon receptor (AhR)-retinoic acid receptor-related orphan nuclear receptor-γt (ROR-γt) complex formation. Here, we investigated whether GLK-induced AhR-ROR-γt complex in T cells is a therapeutic target for human SLE. The population of GLK+IL-17A+ T cells was enhanced in the peripheral blood from patients with SLE compared with that of healthy controls using flow cytometry. The receiver operating characteristic curve analysis showed that increased GLK+IL-17A+ T-cell population in peripheral blood reflected an active stage of SLE. In addition, peripheral blood T cells from patients with SLE displayed induction of ROR-γt phosphorylation and the AhR-ROR-γt (and AhR-phosphorylated ROR-γt) complex. Moreover, we identified a small-molecule inhibitor, verteporfin, that inhibited GLK kinase activity and AhR-ROR-γt interaction. The small-molecule inhibitor verteporfin suppressed the disease severity in autoimmune mouse models and IL-17A production in T cells from patients with SLE. Collectively, the GLK-induced AhR-ROR-γt (and AhR-phosphorylated ROR-γt) complex is a therapeutic target for the GLKhighIL-17Ahigh subpopulation of human patients with SLE.-Chuang, H.-C., Chen, Y.-M., Chen, M.-H., Hung, W.-T., Yang, H.-Y., Tseng, Y.-H., Tan, T.-H. AhR-ROR-γt complex is a therapeutic target for MAP4K3/GLKhighIL-17Ahigh subpopulation of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Ming Chen
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Han Chen
- Division of Allergy, Immunology, and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ting Hung
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Huang-Yu Yang
- Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yang-Hao Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
40
|
Neely J, von Scheven E. Autoimmune haemolytic anaemia and autoimmune thrombocytopenia in childhood-onset systemic lupus erythematosus: updates on pathogenesis and treatment. Curr Opin Rheumatol 2019; 30:498-505. [PMID: 29979258 DOI: 10.1097/bor.0000000000000523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Autoimmune haemolytic anaemia (AIHA) and autoimmune thrombocytopenia are common complications of childhood-onset lupus, which may be life-threatening. A greater understanding of the pathogenesis of these haematologic manifestations will enhance our understanding of the biology of systemic lupus erythematosus (SLE) and inform the identification of novel treatments. RECENT FINDINGS The mechanisms underlying AIHA and autoimmune thrombocytopenia are incompletely understood and likely multifactorial. Although the development of auto-antibodies is central to the disease process, recent studies have demonstrated the importance of cytokines in the underlying pathologic process. In-vitro and in-vivo evidence points to a role for IL17 in the pathogenesis of AIHA, which involves loss of tolerance to red cell auto-antigens and the development of autoantibodies. Sirolimus, an mTor inhibitor, has benefited patients with primary autoimmune cytopenias, possibly by stimulating T regulatory cells, and may also have efficacy for SLE-associated cytopenias. Similarly, low-dose recombinant human IL-2 therapy has shown promising results for improving platelet counts in patients with autoimmune thrombocytopenia, possibly by restoring the balance between T regulatory, T helper and Th17 cells. SUMMARY The emergence of new agents directed at restoring immune dysregulation hold promise for the treatment of AIHA and autoimmune thrombocytopenia and should provide better tolerated alternatives to high-dose corticosteroids.
Collapse
Affiliation(s)
- Jessica Neely
- University of California, San Francisco, Department of Pediatrics, Division of Pediatric Rheumatology, San Francisco, California, USA
| | | |
Collapse
|
41
|
Bunte K, Beikler T. Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2019; 20:ijms20143394. [PMID: 31295952 PMCID: PMC6679067 DOI: 10.3390/ijms20143394] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Innate immunity represents the semi-specific first line of defense and provides the initial host response to tissue injury, trauma, and pathogens. Innate immunity activates the adaptive immunity, and both act highly regulated together to establish and maintain tissue homeostasis. Any dysregulation of this interaction can result in chronic inflammation and autoimmunity and is thought to be a major underlying cause in the initiation and progression of highly prevalent immune-mediated inflammatory diseases (IMIDs) such as psoriasis, rheumatoid arthritis, inflammatory bowel diseases among others, and periodontitis. Th1 and Th2 cells of the adaptive immune system are the major players in the pathogenesis of IMIDs. In addition, Th17 cells, their key cytokine IL-17, and IL-23 seem to play pivotal roles. This review aims to provide an overview of the current knowledge about the differentiation of Th17 cells and the role of the IL-17/IL-23 axis in the pathogenesis of IMIDs. Moreover, it aims to review the association of these IMIDs with periodontitis and briefly discusses the therapeutic potential of agents that modulate the IL-17/IL-23 axis.
Collapse
Affiliation(s)
- Kübra Bunte
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
42
|
Holcar M, Goropevšek A, Avčin T. Altered Homeostasis of Regulatory T Lymphocytes and Differential Regulation of STAT1/STAT5 in CD4+ T Lymphocytes in Childhood-onset Systemic Lupus Erythematosus. J Rheumatol 2019; 47:557-566. [PMID: 31263070 DOI: 10.3899/jrheum.181418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Childhood-onset systemic lupus erythematosus (cSLE) is usually a more severe and aggressive disease than adult-onset SLE (aSLE), but cellular and subcellular reasons for these differences are not well understood. The present study analyzed Th subsets, STAT1/STAT5 signaling response, and cytokine profiles of cSLE. METHODS FOXP3+ regulatory (Treg) and effector Th subsets, expression and phosphorylation of STAT1/STAT5 in Th, and cytokine profiles were measured in the peripheral blood of patients with cSLE and healthy controls (HC), using flow cytometry and immunoassay on a biochip. RESULTS Significant correlation between expression of the activation marker HLA-DR and decreased Th counts, an increase in the percentage of FOXP3+ Th, and a decrease in the activated Treg (aTreg) subset among them were found in cSLE. In contrast to our previous findings in aSLE, no significant differences in percentages and a significant decrease in the numbers of the naive-resting Treg (rTreg) subset compared to HC were found. The percentages of CD25- cells, possibly reflecting interleukin 2 depletion, were significantly increased in cSLE aTreg, but not in the rTreg subset. Consistent with the results of our previous studies in aSLE, increased expression of STAT1, along with significant correlation between decreased Th counts and their increased basal phosphorylation of STAT5, were also found in cSLE. CONCLUSION Our results suggest that the key difference in Treg homeostasis between cSLE and aSLE is in the rTreg subset. However, perturbed aTreg homeostasis, increased levels of STAT1 protein, and homeostatic STAT5 signaling appear to be intrinsic characteristics of the disease, present in cSLE and aSLE alike.
Collapse
Affiliation(s)
- Marija Holcar
- From the Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana; Department of Laboratory Diagnostics, University Medical Centre Maribor, Maribor; Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,M. Holcar, PhD, Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana; A. Goropevšek, MD, PhD, Department of Laboratory Diagnostics, University Medical Centre Maribor; T. Avčin, MD, PhD, Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, and Department of Pediatrics, Faculty of Medicine, University of Ljubljana
| | - Aleš Goropevšek
- From the Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana; Department of Laboratory Diagnostics, University Medical Centre Maribor, Maribor; Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,M. Holcar, PhD, Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana; A. Goropevšek, MD, PhD, Department of Laboratory Diagnostics, University Medical Centre Maribor; T. Avčin, MD, PhD, Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, and Department of Pediatrics, Faculty of Medicine, University of Ljubljana
| | - Tadej Avčin
- From the Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana; Department of Laboratory Diagnostics, University Medical Centre Maribor, Maribor; Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. .,M. Holcar, PhD, Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana; A. Goropevšek, MD, PhD, Department of Laboratory Diagnostics, University Medical Centre Maribor; T. Avčin, MD, PhD, Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, and Department of Pediatrics, Faculty of Medicine, University of Ljubljana.
| |
Collapse
|
43
|
Tang Y, Tao H, Gong Y, Chen F, Li C, Yang X. Changes of Serum IL-6, IL-17, and Complements in Systemic Lupus Erythematosus Patients. J Interferon Cytokine Res 2019; 39:410-415. [PMID: 31173544 DOI: 10.1089/jir.2018.0169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yamei Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Yuji Gong
- Department of Laboratory Medicine, Union Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fang Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Cunyan Li
- Department of Laboratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Xiudeng Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, People's Republic of China
| |
Collapse
|
44
|
Li Y, Wang R, Liu S, Liu J, Pan W, Li F, Li J, Meng D. Interleukin-25 is upregulated in patients with systemic lupus erythematosus and ameliorates murine lupus by inhibiting inflammatory cytokine production. Int Immunopharmacol 2019; 74:105680. [PMID: 31200339 DOI: 10.1016/j.intimp.2019.105680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
Interleukin-25 (IL-25), an anti-inflammatory member of the IL-17 family of cytokines, has been extensively investigated in multiple autoimmune and inflammatory diseases. However, its pathogenic role in systemic lupus erythematosus (SLE) remains largely unknown. This study aimed to explore the expression and clinical significance of IL-25 in patients with SLE as well as its pathogenic role in lupus-prone MRL/lpr mice. The results showed that IL-25 mRNA and serum levels were increased in patients with SLE compared with those in healthy controls. Higher IL-25 mRNA and serum levels were found in patients with an active disease. IL-25 levels were positively associated with SLEDAI, anti-dsDNA, and IgG but negatively associated with C3 and C4. Ex vivo assay showed that IL-25 could inhibit the production of the inflammatory cytokines IL-1β, IL-17, IL-6, and IFN-γ as well as TNF-α in the peripheral blood mononuclear cells in patients with SLE. In vivo studies revealed that treatment with IL-25 significantly ameliorated lupus symptoms in lupus-prone MRL/lpr mice by suppressing the production of inflammatory cytokines, including IL-1α, IL-1β, IL-6, IL-12p70, IL-17A, and IFN-β. Cumulatively, our results suggest that IL-25 levels are increased in patients with SLE and associated with disease activity; IL-25 plays a potent immunosuppressive role in the pathogenesis of SLE by suppressing the production of inflammatory cytokines. IL-25 could potentially be used as a diagnostic and therapeutic target for SLE treatment.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Rui Wang
- Department of Hematology, Lianshui County People's Hospital, No. 6 Hongri Road, Lianshui, Huai'an 224600, China
| | - Shanshan Liu
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Juan Liu
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Wenyou Pan
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Fang Li
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Ju Li
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China
| | - Deqian Meng
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300, China.
| |
Collapse
|
45
|
Cryptotanshinone ameliorates the pathogenesis of systemic lupus erythematosus by blocking T cell proliferation. Int Immunopharmacol 2019; 74:105677. [PMID: 31177018 DOI: 10.1016/j.intimp.2019.105677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic, devastating autoimmune disorder associated with severe organ damage. Recently, the role of Signal Transducer and Activator of Transcription 3 (STAT3) in murine lupus has been described, suggesting the involvement of STAT3 signaling in the development of SLE. Cryptotanshinone (CTS) is an effective inhibitor of STAT3; however its potential as a SLE treatment remains to be explored. To determine the function of CTS in SLE, we treated MRL/lpr female mice with CTS. Firstly, we found CTS treatment reversed the elevated STAT3 signaling of spleens in lupus-prone MRL/lpr mice, accompanying with a dramatically decreased number of T cells, especially double-negative (DN) T cells. Further research showed that CTS inhibited T cell proliferation via suppressing of STAT3 activation in vitro and in vivo. Consistently, we also proved that CTS treatment significantly alleviated autoimmune response including notably diminished skin lesions, reduced spleen size and increased life span. In addition, CTS treatment decreased the levels of auto-antibodies and pro-inflammatory cytokines, as well as normalized structure and function of kidneys. All these data suggested that CTS treatment depressed STAT3 phosphorylation, which resulted in blocked DN T cell proliferation and finally attenuated the spontaneous SLE development. Taken together, our data identify CTS as a potential therapeutic drug for SLE patients.
Collapse
|
46
|
Kaur R, Rawat AK, Kumar S, Aadil W, Akhtar T, Narang T, Chopra D. Association of genetic polymorphism of interleukin-17A & interleukin-17F with susceptibility of psoriasis. Indian J Med Res 2019; 148:422-426. [PMID: 30666004 PMCID: PMC6362716 DOI: 10.4103/ijmr.ijmr_1859_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background & objectives: Psoriasis is a chronic inflammatory skin disease with unknown aetiology. So far studies have confirmed that interleukins, pro-inflammatory factors and T-cell activation play major role in the development of disease. Interleukin-17 (IL-17) a T helper inflammatory cytokine, was found to be positively correlated with severity of psoriasis. However, the specific mechanism has not been clarified. IL-17A and IL-17F are group members of IL17 family cytokines and found to be located adjacent to one another on the same human chromosome, 6p12. The present study was designed to identify the association between IL-17A and IL-17F gene polymorphism with susceptibility of psoriasis in north Indian population. Methods: A total of 166 psoriasis patients and 150 healthy controls were genotyped for IL-17A and IL-17F gene polymorphism by amplification refractory mutation system-polymerase chain reaction method. One single nucleotide polymorphism (SNP) was analysed in IL-17A (rs10484879) and one SNP in IL-17F (rs763780) to look for an association with psoriasis. Results: Our study indicated decreased frequency of IL-17A (rs10484879) G allele (51.8 vs. 65.0%), and IL-17F (rs763780) C allele (36.5 vs. 45.7%) in psoriatic patients as compared to healthy controls. Interpretation & conclusions: The present findings suggest that IL-17A (rs10484879) G/T and IL-17F (rs763780) C/T gene polymorphisms may contribute in pathogenesis of psoriasis. Further studies need to be done to confirm these findings.
Collapse
Affiliation(s)
- Rajinder Kaur
- Department of Human Genetics, Punjabi University, Patiala, India
| | - Arun Kumar Rawat
- Department of Human Genetics, Punjabi University, Patiala, India
| | - Sunil Kumar
- Department of Human Genetics, Punjabi University, Patiala, India
| | - Wani Aadil
- Department of Human Genetics, Punjabi University, Patiala, India
| | - Tahseena Akhtar
- Department of Human Genetics, Punjabi University, Patiala, India
| | - Tarun Narang
- Department of Dermatology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Dimple Chopra
- Department of Dermatology, Government Rajindra Medical College & Hospital, Patiala, India
| |
Collapse
|
47
|
Corneth OBJ, Schaper F, Luk F, Asmawidjaja PS, Mus AMC, Horst G, Heeringa P, Hendriks RW, Westra J, Lubberts E. Lack of IL-17 Receptor A signaling aggravates lymphoproliferation in C57BL/6 lpr mice. Sci Rep 2019; 9:4032. [PMID: 30858513 PMCID: PMC6412096 DOI: 10.1038/s41598-019-39483-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/15/2018] [Indexed: 01/07/2023] Open
Abstract
Defects in Fas function correlate with susceptibility to systemic autoimmune diseases like autoimmune lymphoproliferative syndrome (ALPS) and systemic lupus erythematosus (SLE). C57BL/6 lpr (B6/lpr) mice are used as an animal model of ALPS and develop a mild SLE phenotype. Involvement of interleukin-17A (IL-17A) has been suggested in both phenotypes. Since IL-17 receptor A is part of the signaling pathway of many IL-17 family members we investigated the role of IL-17 receptor signaling in disease development in mice with a B6/lpr background. B6/lpr mice were crossed with IL-17 receptor A deficient (IL-17RA KO) mice and followed over time for disease development. IL-17RA KO/lpr mice presented with significantly enhanced lymphoproliferation compared with B6/lpr mice, which was characterized by dramatic lymphadenomegaly/splenomegaly and increased lymphocyte numbers, expansion of double-negative (DN) T-cells and enhanced plasma cell formation. However, the SLE phenotype was not enhanced, as anti-nuclear antibody (ANA) titers and induction of glomerulonephritis were not different. In contrast, levels of High Mobility Group Box 1 (HMGB1) and anti-HMGB1 autoantibodies were significantly increased in IL-17RA KO/lpr mice compared to B6/lpr mice. These data show that lack of IL-17RA signaling aggravates the lymphoproliferative phenotype in B6/lpr mice but does not affect the SLE phenotype.
Collapse
Affiliation(s)
- Odilia B J Corneth
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fleur Schaper
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Franka Luk
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Patrick S Asmawidjaja
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Adriana M C Mus
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerda Horst
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Zhao Y, Mu Z, Cai L, Liu X, Jia J, Zhang J. Tetra-arsenic tetra-sulfide ameliorates lupus syndromes by inhibiting IL-17 producing double negative T cells. Dermatol Ther 2019; 32:e12849. [PMID: 30707471 DOI: 10.1111/dth.12849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/26/2018] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease of uncertain etiology that affects multiple tissues and organs. Tetra-arsenic tetra-sulfide (As4 S4 ), a traditional Chinese medicine, is effective on acute promyelocytic leukemia with mild side effects. In our previous study, BXSB lupus-prone mice treated with As4 S4 has showed improved monocytosis, decreased serum interleukin (IL)-6 and suppressed skin, liver and renal lesions with well-tolerance. In this study, we explored the effect and mechanism of As4 S4 on the MRL/lpr mice. MRL/lpr and wild MRL/MpJ mice were divided into control and As4 S4 treatment groups and dosed with As4 S4 or placebo for 8 weeks. We found that As4 S4 prevented the skin, renal and lung lesions of MRL/lpr mice. As4 S4 significantly decreased the double negative T (DN T) cells and reduced the serum levels of IL-17, IL-10, and antinuclear antibodies titer. Further results revealed that the FasL was decreased, and activated caspases elevated in DN T cells in As4 S4 treated MRL/lpr mice. Taken together, As4 S4 could selectively suppresses DN T cells by inducing apoptosis. It also reduced inflammatory cytokines IL-17, which may be produced by DN T cells. As4 S4 may represent a new therapy for SLE.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Dermatology, People's Hospital of Peking University, Beijing, China
| | - Zhanglei Mu
- Department of Dermatology, People's Hospital of Peking University, Beijing, China
| | - Lin Cai
- Department of Dermatology, People's Hospital of Peking University, Beijing, China
| | - Xiaojing Liu
- Department of Dermatology, People's Hospital of Peking University, Beijing, China
| | - Jun Jia
- Department of Dermatology, People's Hospital of Peking University, Beijing, China
| | - Jianzhong Zhang
- Department of Dermatology, People's Hospital of Peking University, Beijing, China
| |
Collapse
|
49
|
Kim CJ, Lee CG, Jung JY, Ghosh A, Hasan SN, Hwang SM, Kang H, Lee C, Kim GC, Rudra D, Suh CH, Im SH. The Transcription Factor Ets1 Suppresses T Follicular Helper Type 2 Cell Differentiation to Halt the Onset of Systemic Lupus Erythematosus. Immunity 2018; 49:1034-1048.e8. [PMID: 30566881 DOI: 10.1016/j.immuni.2018.10.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 12/12/2022]
Abstract
Single-nucleotide polymorphisms in ETS1 are associated with systemic lupus erythematosus (SLE). Ets1-/- mice develop SLE-like symptoms, suggesting that dysregulation of this transcription factor is important to the onset or progression of SLE. We used conditional deletion approaches to examine the impact of Ets1 expression in different immune cell types. Ets1 deletion on CD4+ T cells, but not B cells or dendritic cells, resulted in the SLE autoimmunity, and this was associated with the spontaneous expansion of T follicular helper type 2 (Tfh2) cells. Ets1-/- Tfh2 cells exhibited increased expression of GATA-3 and interleukin-4 (IL-4), which induced IgE isotype switching in B cells. Neutralization of IL-4 reduced Tfh2 cell frequencies and ameliorated disease parameters. Mechanistically, Ets1 suppressed signature Tfh and Th2 cell genes, including Cxcr5, Bcl6, and Il4ra, thus curbing the terminal Tfh2 cell differentiation process. Tfh2 cell frequencies in SLE patients correlated with disease parameters, providing evidence for the relevance of these findings to human disease.
Collapse
Affiliation(s)
- Chan Johng Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Choong-Gu Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Ambarnil Ghosh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Syed Nurul Hasan
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sung-Min Hwang
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyeji Kang
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Changhon Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gi-Cheon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
50
|
Raymond WD, Eilertsen GØ, Nossent J. Principal component analysis reveals disconnect between regulatory cytokines and disease activity in Systemic Lupus Erythematosus. Cytokine 2018; 114:67-73. [PMID: 30551949 DOI: 10.1016/j.cyto.2018.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Cytokine dysregulation contributes to inflammation and organ damage in Systemic Lupus Erythematosus (SLE). Principle Component Analysis (PCA) can determine which groups of cytokines have the most influence across disease activity states. MATERIAL AND METHOD A cross-sectional study of age- and gender-matched SLE patients (n = 100) and controls (n = 31). SLE patients had a median Systemic Lupus Erythematosus Disease Activity Index - 2000 (SLEDAI-2K) score of 6 (IQR 2, 11). IFN-γ, interleukin (IL)-1β, IL-4, IL-6, IL-10, IL-12, IL-17, BAFF, TNF-α, TGF-β1, MIP-1α, MIP-1β and MCP-1 levels were quantified by sandwich ELISA, and compared non-parametrically between groups. PCA was used to determine the principal components across controls, SLE patients in states of remission (SLEDAI-2K = 0), low disease activity (LDA = SLEDAI-2K from 1 ≤ x ≤ 4) or high disease activity (HDA = SLEDAI-2K > 4). RESULTS TGF-β1 (Rs -0.266, p = 0.005) and IL-1β (Rs -0.199, p = 0.004) inversely correlated, whereas BAFF correlated with increasing disease activity (Rs 0.465, p < 0.001). IL-1β, IL-4, IL-10, IL-12, IL-17, IFN-γ, MCP-1, and TNF-α were featured consistently in the PC1 of all study groups. PC1 changes from controls to SLE-HDA patients, included: the increased impact of IL-1β (from 0.58 to >0.95); increased impact of IL-6 in HDA (0.76); increased influence of MIP-1α (0.60) and MIP-1β (0.85); and the uncoupling of TGF-β1 (0.14). PC2 changes from healthy controls to the HDA state, included: the increased influence of BAFF (from -0.18 to 0.88); the oppositional effect of TGF-β1 (-0.36); and, the inclusion of MCP-1 (0.65). Levels of cytokine profiles were equivalent between controls and SLE patients (p > 0.18). BAFF was not associated with the cytokine profiles. TGF-β1 associated with Th1 (Rs 0.36), Th1 + Th17 (Rs 0.22), and inversely with Th17/Th2 (Rs -0.23) profiles. IL-1β associated with the proinflammatory (Rs 0.47), Th1 (Rs 0.55), Th2 (Rs 0.55), Th17 (Rs 0.51), Th1 + Th17 (Rs 0.56), Th2 + Treg (Rs 0.45), and inversely with the (Th1 + Th17 / Th2 + Treg) (Rs -0.22) and Th17/Th2 (Rs -0.27) profiles (all, p < 0.05). CONCLUSION Principal component analysis helped to describe the influence of complex cytokine interactions in SLE in a manner congruent with the wider literature. The typical univariate changes in BAFF and TGF-β1 levels with increasing levels of disease activity, were not the dominant factors (in PC1) in the PCA. The PCA demonstrated that IL-1β did not seem to change its regulatory function in SLE.
Collapse
Affiliation(s)
- Warren David Raymond
- Rheumatology Group, School of Medicine & Pharmacology, The University of Western Australia, Australia
| | - Gro Østli Eilertsen
- Molecular Inflammation Research Group, Department of Clinical Medicine, Artic University, Tromso, Norway
| | - Johannes Nossent
- Rheumatology Group, School of Medicine & Pharmacology, The University of Western Australia, Australia; Department of Rheumatology, Sir Charles Gairdner Hospital, Perth Western, Australia.
| |
Collapse
|