1
|
Pereira De Oliveira R, Droillard C, Devouassoux G, Rosa-Calatrava M. In vitro models to study viral-induced asthma exacerbation: a short review for a key issue. FRONTIERS IN ALLERGY 2025; 6:1530122. [PMID: 40224321 PMCID: PMC11987631 DOI: 10.3389/falgy.2025.1530122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Asthma is a heterogenous inflammatory bronchial disease involving complex mechanisms, several inflammatory pathways, and multiples cell-type networks. Bronchial inflammation associated to asthma is consecutive to multiple aggressions on epithelium, such as microbiologic, pollutant, and antigenic agents, which are responsible for both T2 and non-T2 inflammatory responses and further airway remodeling. Because asthma physiopathology involves multiple crosstalk between several cell types from different origins (epithelial, mesenchymal, and immune cells) and numerous cellular effectors, no single and/or representative in vitro model is suitable to study the overall of this disease. In this short review, we present and discuss the advantages and limitations of different in vitro models to decipher different aspects of virus-related asthma physiopathology and exacerbation.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Clément Droillard
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Gilles Devouassoux
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Respiratory Diseases, CIERA, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon et CRISALIS/F-CRIN INSERM Network, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec - Université Laval, Faculté de Médecine, Département de Pédiatrie de l’Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Huang S, Li X, Cao Y, Mou M, Li J, Zhuo K, Wang L, Zeng Z, Wei X, Tang C, Zhong M. TLR5 activation in respiratory epithelial cells orchestrate mucosal Th17 response through both indirect and direct pathways. Respir Res 2025; 26:104. [PMID: 40098159 PMCID: PMC11916947 DOI: 10.1186/s12931-025-03186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Flagellin, a potent mucosal adjuvant administered via the intranasal route, has been widely recognized for its capacity to enhance immune responses against diverse pathogens. However, the effects and the underlying mechanisms by which flagellin modulates CD4+ T cell differentiation remain incompletely understood. METHODS Recombinant flagellin proteins, including full-length flagellin (SF) and a TLR5-binding deficient variant (SFΔ90-97), were produced and purified. An OT-II derived CD4+ T cell adoptive transfer model, a classical intranasal immunization model and dendritic cell (DC)-CD4+ T co-culturing system were used. The proliferation and differentiation of CD4+ T cells were analyzed using flow cytometry analysis. RNA sequencing and neutralizing antibody blocking experiments were performed to determine the essential cytokines involved in flagellin modulated Th17 differentiation. RESULTS Flagellin preferentially promotes Th17 cells differentiation. Respiratory epithelial cells (RECs), acting as sentinel cells, are the first to encounter exogenous stimuli during intranasal immunization. Flagellin stimulates the secretion of various soluble cytokines by binding to TLR5 on the surface of RECs, with GM-CSF facilitating the functional activation of airway DCs. GM-CSF-conditioned DCs exhibit upregulated IL-6 expression which in turn drives the polarization of naïve CD4+ T cells toward the Th17 phenotype. Furthermore, TLR5-regulated REC-derived IL-6 synergizes with TLR5-modulated DCs to amplify Th17 polarization signals, thereby enhancing the Th17 induction. CONCLUSION Flagellin preferentially induced a Th17-enhanced immune response and RECs were highlighted its essential roles during this process through both indirect and direct pathways. For indirect pathway, RECs modulate DC function through GM-CSF. Moreover, RECs directly contribute to Th17 differentiation by secreting IL-6.
Collapse
Affiliation(s)
- Sijian Huang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Xu Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Clinical Laboratory, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, 430056, China
| | - Yuan Cao
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Analytical & Testing Center, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
| | - Man Mou
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Department of Blood Transfusion, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, 430056, China
| | - Jianlun Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Kexing Zhuo
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Lijuan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Zihang Zeng
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Xianghong Wei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Chunlian Tang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China.
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, 430063, China.
| | - Maohua Zhong
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China.
| |
Collapse
|
3
|
Chen X, Wang Q, Gong M, Wu Y, Huang X, Ye F, Huang L, Jiang S, Shi J. SCGB1A1 as a Key Regulator of Splenic Immune Dysfunction in COPD: Insights From a Murine Model. Int J Chron Obstruct Pulmon Dis 2025; 20:497-509. [PMID: 40060920 PMCID: PMC11887496 DOI: 10.2147/copd.s506332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/23/2025] [Indexed: 05/13/2025] Open
Abstract
Introduction Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory disorder characterized by irreversible airflow limitation and systemic immune impacts. COPD patients demonstrate an increased susceptibility to sepsis and septic shock, underscoring the importance of understanding its effects on splenic function. Methods A rat COPD model was established using lipopolysaccharide (LPS) and cigarette smoke exposure. Splenic function was assessed through carbon clearance assays, histological analysis, and high-throughput mRNA sequencing. In vitro assays were conducted to evaluate the role of secretoglobin family 1a member 1 (SCGB1A1) in macrophage activation and lymphocyte proliferation. Results Carbon clearance assays revealed a significant reduction in splenic phagocytic activity in the smoke-exposed group. Histological analysis showed lymphoid follicle atrophy and connective tissue hyperplasia. High-throughput mRNA sequencing identified 102 upregulated and 32 downregulated genes in the smoke-exposed group, with SCGB1A1 notably upregulated. In vitro assays confirmed that SCGB1A1 inhibits LPS-induced macrophage activation and Phytohemagglutinin (PHA)-induced lymphocyte proliferation. Conclusion These findings suggest that SCGB1A1 contributes to splenic immune dysfunction in COPD. Targeted inhibition of SCGB1A1 expression in the spleen may represent a potential therapeutic strategy to reduce the risk of sepsis in COPD patients.
Collapse
Affiliation(s)
- Xinye Chen
- Department of General Practice, Shenshan Medical Center, Memorial Hospital of Sun Yet-Sen University, Shanwei, People’s Republic of China
- Department of General Practice, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Qiujie Wang
- Department of Respiratory and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Mingyan Gong
- Department of Respiratory Medicine, Shenshan Medical Center, Memorial Hospital of Sun Yet-Sen University, Shanwei, People’s Republic of China
| | - Yanru Wu
- Department of Respiratory Medicine, Shenshan Medical Center, Memorial Hospital of Sun Yet-Sen University, Shanwei, People’s Republic of China
| | - Xiaoping Huang
- Department of Respiratory Medicine, Shenshan Medical Center, Memorial Hospital of Sun Yet-Sen University, Shanwei, People’s Republic of China
| | - Fengzhan Ye
- Department of Respiratory and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Linjie Huang
- Department of Respiratory and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Shanping Jiang
- Department of Respiratory and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jianting Shi
- Department of Respiratory and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Department of Respiratory Medicine, Shenshan Medical Center, Memorial Hospital of Sun Yet-Sen University, Shanwei, People’s Republic of China
| |
Collapse
|
4
|
Liang Q, Wang Y, Li Z. Comprehensive bioinformatics analysis identifies metabolic and immune-related diagnostic biomarkers shared between diabetes and COPD using multi-omics and machine learning. Front Endocrinol (Lausanne) 2025; 15:1475958. [PMID: 39845878 PMCID: PMC11750655 DOI: 10.3389/fendo.2024.1475958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Diabetes and chronic obstructive pulmonary disease (COPD) are prominent global health challenges, each imposing significant burdens on affected individuals, healthcare systems, and society. However, the specific molecular mechanisms supporting their interrelationship have not been fully defined. Methods We identified the differentially expressed genes (DEGs) of COPD and diabetes from multi-center patient cohorts, respectively. Through cross-analysis, we identified the shared DEGs of COPD and diabetes, and investigated alterations of signaling pathways using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). By using weighted gene correlation network analysis (WGCNA), key gene modules for COPD and diabetes were identified, and various machine learning algorithms were employed to identify shared biomarkers. Using xCell, we investigated the relationship between shared biomarkers and immune infiltration in diabetes and COPD. Single-cell sequencing, clinical samples, and animal models were used to confirm the robustness of shared biomarkers. Results Cross-analysis identified 186 shared DEGs between diabetes and COPD patients. Functional enrichment results demonstrate that metabolic and immune-related pathways are common features altered in both diabetes and COPD patients. WGCNA identified 526 genes from key gene modules in COPD and diabetes. Multiple machine learning algorithms identified 4 shared biomarkers for COPD and diabetes, including CADPS, EDNRB, THBS4 and TMEM27. Finally, the 4 shared biomarkers were validated in single-cell sequencing data, clinical samples, and animal models, and their expression changes were consistent with the results of bioinformatic analysis. Conclusions Through comprehensive bioinformatics analysis, we revealed the potential connection between diabetes and COPD, providing a theoretical basis for exploring the common regulatory genes.
Collapse
Affiliation(s)
- Qianqian Liang
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yide Wang
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zheng Li
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang National Clinical Research Base of Traditional Chinese Medicine, The Affiliated Hospital of Xinjiang University of Traditional Chinese Medicine, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Respiratory Disease Research, The Affiliated Hospital of Xinjiang University of Traditional Chinese Medicine, Urumqi, Xinjiang, China
- Xinjiang Clinical Medical Research Center of Respiratory Obstructive Diseases, The Affiliated Hospital of Xinjiang University of Traditional Chinese Medicine, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Li M, Li Z. Research progress on the relationship between phenotype and signaling pathways of pulmonary macrophages and asthma. J Asthma 2025; 62:56-63. [PMID: 39072611 DOI: 10.1080/02770903.2024.2386634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE The purpose of this study is to systematically investigate the different phenotypes and functional analyses of macrophages in lung tissue. DATA SOURCES A search was performed using three databases (Web of Science, Science Direct, and MEDLINE) for all relevant studies published from January 1, 2019, to December 31, 2023. STUDY SELECTIONS This systematic review complied with the PRlSMA document's requirements, including studies related to the signaling pathway relationship between pulmonary macrophages and asthma phenotype. The search includedstudies published in English or French lanquage, and was based on title, abstract, and complete textDocuments not meeting inclusion requirements were excluded. RESULTS We have identified studies published within the past five years that meet the criteria for inclusion in this review. We found that asthma is a heterogeneous chronic inflammatory lung disease, and lung tissue macrophages are important immune cells in the respiratory tract. Pulmonary macrophages are also heterogeneous, as they have different subgroups with varying effector functions depending on the environment. They have different phenotypes and biological functions in different disease environments. The phenotypic changes of pulmonary macrophages occur during asthma, and the study of the different phenotypes and functions of macrophages in lung tissue is of great significance for treatment. CONCLUSIONS This review summarizes current literature and provides a detailed introduction to the role of macrophages as key inflammatory mediators in the pathogenesis of asthma, as well as existing knowledge gaps. In addition, we propose that regulatory macrophages may prevent the development of asthma by producing IL-10, and regulating the polarization of pulmonary macrophages may be a new direction for asthma treatment.
Collapse
Affiliation(s)
- Minghui Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin City, China
| | - Zhuying Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin City, China
| |
Collapse
|
6
|
Gao J, Dong M, Tian W, Xia J, Qian Y, Jiang Z, Chen Z, Shen Y. The role of CISD1 reduction in macrophages in promoting COPD development through M1 polarization and mitochondrial dysfunction. Eur J Med Res 2024; 29:541. [PMID: 39533441 PMCID: PMC11559132 DOI: 10.1186/s40001-024-02146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The mitochondrial dysfunction and oxidative stress imbalance caused by macrophage polarization play a role in the progression of COPD, with CDGSH iron-sulfur domain-containing protein 1 (CISD1) playing a key role. This study revealed the role and mechanism of CISD1 in smoke-induced macrophages. METHODS Using a pure cigarette smoke exposure-induced COPD mouse model, stimulation of Raw264.7 macrophages with cigarette smoke extract mimics the COPD environment. Knocking down CISD1 expression in macrophages and combining it with high-throughput sequencing to obtain subsequent differentially expressed genes and pathways. Macrophage polarization tendency under different treatments was determined using flow cytometry. Meanwhile, Mitosox, JC-1, DCFH-DA fluorescence intensity was measured to detect mitochondrial function and cellular oxidative stress levels. Western Blot technique was employed to validate autophagy (mitochondrial autophagy) pathway-related proteins. In addition, Elisa technique was used to measure inflammatory factors (IL-6, TNF-a) in the cell supernatant after co-culturing macrophages (Raw264.7) with epithelial cells (MLE12). RESULTS CISD1 is underexpressed in peripheral blood monocytes of COPD patients. Under in vitro conditions, we verified that cigarette smoke (smoke extract) indeed inhibits CISD1 expression in macrophages. Subsequently, we found that macrophages with knocked-down CISD1 tend to polarize towards M1 phenotype, and exhibit signs of mitochondrial dysfunction and oxidative stress imbalance. In addition, we observed significant activation of the autophagy pathway in CISD1-inhibited macrophages, with upregulation of LC3A/B and downregulation of p62 protein, as well as increased expression of mitochondrial autophagy-related proteins (PINK1, PARKN). Furthermore, co-culturing CISD1-knockdown macrophages (Raw264.7) with epithelial cells (MLE12) resulted in upregulation of inflammatory factors in the supernatant. CONCLUSIONS Smoke-induced reduction of CISD1 in macrophages promotes M1 polarization and mitochondrial dysfunction by activating the autophagy pathway, thereby promoting the occurrence and development of COPD.
Collapse
Affiliation(s)
- Jiameng Gao
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China
| | - Meiyuan Dong
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Weibin Tian
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Junyi Xia
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Yuhao Qian
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China
| | - Zhilong Jiang
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China.
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China.
| |
Collapse
|
7
|
Fan W, Xu Z, Zhang J, Guan M, Zheng Y, Wang Y, Wu H, Su W, Li P. Naringenin regulates cigarette smoke extract-induced extracellular vesicles from alveolar macrophage to attenuate the mouse lung epithelial ferroptosis through activating EV miR-23a-3p/ACSL4 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155256. [PMID: 38181527 DOI: 10.1016/j.phymed.2023.155256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alveolar macrophages are one of the momentous regulators in pulmonary inflammatory responses, which can secrete extracellular vesicles (EVs) packing miRNAs. Ferroptosis, an iron-dependent cell death, is associated with cigarette smoke-induced lung injury, and EVs have been reported to regulate ferroptosis by transporting intracellular iron. However, the regulatory mechanism of alveolar macrophage-derived EVs has not been clearly illuminated in smoking-related pulmonary ferroptosis. Despite the known anti-ferroptosis effects of naringenin in lung injury, whether naringenin controls EVs-mediated ferroptosis has not yet been explored. PURPOSE We explore the effects of EVs from cigarette smoke-stimulated alveolar macrophages in lung epithelial ferroptosis, and elucidate the EV miRNA-mediated pharmacological mechanism of naringenin. STUDY DESIGN AND METHODS Differential and ultracentrifugation were conducted to extract EVs from different alveolar macrophages treatment groups in vitro. Both intratracheal instilled mice and treated epithelial cells were used to investigate the roles of EVs from alveolar macrophages involved in ferroptosis. Small RNA sequencing analysis was performed to distinguish altered miRNAs in EVs. The ferroptotic effects of EV miRNAs were examined by applying dual-Luciferase reporter assay and miRNA inhibitor transfection experiment. RESULTS Here, we firstly reported that EVs from cigarette smoke extract-induced alveolar macrophages (CSE-EVs) provoked pulmonary epithelial ferroptosis. The ferroptosis inhibitor ferrostatin-1 treatment reversed these changes in vitro. Moreover, EVs from naringenin and CSE co-treated alveolar macrophages (CSE+Naringenin-EVs) markedly attenuated the lung epithelial ferroptosis compared with CSE-EVs. Notably, we identified miR-23a-3p as the most dramatically changed miRNA among Normal-EVs, CSE-EVs, and CSE+Naringenin-EVs. Further experimental investigation showed that ACSL4, a pro-ferroptotic gene leading to lipid peroxidation, was negatively regulated by miR-23a-3p. The inhibition of miR-23a-3p diminished the efficacy of CSE+Naringenin-EVs. CONCLUSION Our findings firstly provided evidence that naringenin elevated the EV miR-23a-3p level from CSE-induced alveolar macrophages, thereby inhibiting the mouse lung epithelial ferroptosis via targeting ACSL4, and further complemented the mechanism of cigarette-induced lung injury and the protection of naringenin in a paracrine manner. The administration of miR-23a-3p-enriched EVs has the potential to ameliorate pulmonary ferroptosis.
Collapse
Affiliation(s)
- Weiyang Fan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziyan Xu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiashuo Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minyi Guan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuying Zheng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
8
|
Ha JG, Cho HJ. Unraveling the Role of Epithelial Cells in the Development of Chronic Rhinosinusitis. Int J Mol Sci 2023; 24:14229. [PMID: 37762530 PMCID: PMC10531804 DOI: 10.3390/ijms241814229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The pathophysiology of CRS is multifactorial and complex yet needs to be completed. Recent evidence emphasizes the crucial part played by epithelial cells in the development of CRS. The epithelial cells act as physical barriers and play crucial roles in host defense, including initiating and shaping innate and adaptive immune responses. This review aims to present a comprehensive understanding of the significance of nasal epithelial cells in CRS. New research suggests that epithelial dysfunction plays a role in developing CRS through multiple mechanisms. This refers to issues with a weakened barrier function, disrupted mucociliary clearance, and irregular immune responses. When the epithelial barrier is compromised, it can lead to the passage of pathogens and allergens, triggering inflammation in the body. Furthermore, impaired mucociliary clearance can accumulate pathogens and secretions of inflammatory mediators, promoting chronic inflammation. Epithelial cells can release cytokines and chemokines, which attract and activate immune cells. This can result in an imbalanced immune response that continues to cause inflammation. The interaction between nasal epithelial cells and various immune cells leads to the production of cytokines and chemokines, which can either increase or decrease inflammation. By comprehending the role of epithelial cells in CRS, we can enhance our understanding of the disease's pathogenesis and explore new therapeutics.
Collapse
Affiliation(s)
- Jong-Gyun Ha
- Department of Otorhinolaryngology—Head and Neck Surgery, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 14353, Republic of Korea;
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Smolinska S, Antolín-Amérigo D, Popescu FD, Jutel M. Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. Int J Mol Sci 2023; 24:12725. [PMID: 37628907 PMCID: PMC10454039 DOI: 10.3390/ijms241612725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that has emerged as a critical player in the development and progression of allergy and asthma. It is primarily produced by epithelial cells and functions as a potent immune system activator. TSLP acts through interaction with its receptor complex, composed of the TSLP receptor (TSLPR) and interleukin-7 receptor alpha chain (IL-7Rα), activating downstream complex signalling pathways. The TSLP major isoform, known as long-form TSLP (lfTSLP), is upregulated in the airway epithelium of patients with allergic diseases. More research is warranted to explore the precise mechanisms by which short-form TSLP (sfTSLP) regulates immune responses. Understanding the dynamic interplay between TSLP and the dysfunctional epithelium provides insights into the mechanisms underlying allergy and asthma pathogenesis. Targeting TSLP represents an important therapeutic strategy, as it may upstream disrupt the inflammatory cascade and alleviate symptoms associated with allergic inflammation.
Collapse
Affiliation(s)
- Sylwia Smolinska
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Darío Antolín-Amérigo
- Servicio de Alergia, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Florin-Dan Popescu
- Department of Allergology “Nicolae Malaxa” Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 022441 Bucharest, Romania;
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- “ALL-MED” Research Medical Institute, 53-201 Wroclaw, Poland
| |
Collapse
|
10
|
Dreyer HHM, van Tuyll van Serooskerken ES, Rodenburg LW, Bittermann AJN, Arets HGM, Reuling EMBP, Verweij JW, Haarman EG, van der Zee DC, Tytgat SHAJ, van der Ent CK, Beekman JM, Amatngalim GD, Lindeboom MYA. Airway Epithelial Cultures of Children with Esophageal Atresia as a Model to Study Respiratory Tract Disorders. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1020. [PMID: 37371252 DOI: 10.3390/children10061020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Esophageal atresia (EA) is a rare birth defect in which respiratory tract disorders are a major cause of morbidity. It remains unclear whether respiratory tract disorders are in part caused by alterations in airway epithelial cell functions such as the activity of motile cilia. This can be studied using airway epithelial cell culture models of patients with EA. Therefore, the aim of this study was to evaluate the feasibility to culture and functionally characterize motile cilia function in the differentiated air-liquid interface cultured airway epithelial cells and 3D organoids derived from nasal brushings and bronchoalveolar lavage (BAL) fluid from children with EA. We demonstrate the feasibility of culturing differentiated airway epithelia and organoids of nasal brushings and BAL fluid of children with EA, which display normal motile cilia function. EA patient-derived airway epithelial cultures can be further used to examine whether alterations in epithelial functions contribute to respiratory disorders in EA.
Collapse
Affiliation(s)
- Henriette H M Dreyer
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, 3508 AB Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Lisa W Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, 3508 AB Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Arnold J N Bittermann
- Pediatric Upper Gastrointestinal and Airway Treatment Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
- Department of Pediatric Otorhinolaryngology, Pediatric Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Hubertus G M Arets
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, 3508 AB Utrecht, The Netherlands
- Pediatric Upper Gastrointestinal and Airway Treatment Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Ellen M B P Reuling
- Department of Pediatric Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
- Pediatric Upper Gastrointestinal and Airway Treatment Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Johannes W Verweij
- Department of Pediatric Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
- Pediatric Upper Gastrointestinal and Airway Treatment Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Eric G Haarman
- Department of Paediatric Pulmonology, Emma Children's Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - David C van der Zee
- Department of Pediatric Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
- Pediatric Upper Gastrointestinal and Airway Treatment Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Stefaan H A J Tytgat
- Department of Pediatric Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
- Pediatric Upper Gastrointestinal and Airway Treatment Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, 3508 AB Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, 3508 AB Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, 3508 AB Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Maud Y A Lindeboom
- Department of Pediatric Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
- Pediatric Upper Gastrointestinal and Airway Treatment Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
11
|
Lajiness JD, Cook-Mills JM. Catching Our Breath: Updates on the Role of Dendritic Cell Subsets in Asthma. Adv Biol (Weinh) 2023; 7:e2200296. [PMID: 36755197 PMCID: PMC10293089 DOI: 10.1002/adbi.202200296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Indexed: 02/10/2023]
Abstract
Dendritic cells (DCs), as potent antigen presenting cells, are known to play a central role in the pathophysiology of asthma. The understanding of DC biology has evolved over the years to include multiple subsets of DCs with distinct functions in the initiation and maintenance of asthma. Furthermore, asthma is increasingly recognized as a heterogeneous disease with potentially diverse underlying mechanisms. The goal of this review is to summarize the role of DCs and the various subsets therein in the pathophysiology of asthma and highlight some of the crucial animal models shaping the field today. Potential future avenues of investigation to address existing gaps in knowledge are discussed.
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Department of Pediatrics, Division of Neonatology, Indiana University School of Medicine, 1030 West Michigan Street, Suite C 4600, Indianapolis, IN, 46202-5201, USA
| | - Joan M Cook-Mills
- Department of Pediatrics, Department of Microbiology and Immunology, Pediatric Pulmonary, Asthma, and Allergy Basic Research Program, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, R4-202A, Indianapolis, IN, 46202, USA
| |
Collapse
|
12
|
Duchesne M, Okoye I, Lacy P. Epithelial cell alarmin cytokines: Frontline mediators of the asthma inflammatory response. Front Immunol 2022; 13:975914. [PMID: 36311787 PMCID: PMC9616080 DOI: 10.3389/fimmu.2022.975914] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The exposure of the airway epithelium to external stimuli such as allergens, microbes, and air pollution triggers the release of the alarmin cytokines IL-25, IL-33 and thymic stromal lymphopoietin (TSLP). IL-25, IL-33 and TSLP interact with their ligands, IL-17RA, IL1RL1 and TSLPR respectively, expressed by hematopoietic and non-hematopoietic cells including dendritic cells, ILC2 cells, endothelial cells, and fibroblasts. Alarmins play key roles in driving type 2-high, and to a lesser extent type 2-low responses, in asthma. In addition, studies in which each of these three alarmins were targeted in allergen-challenged mice showed decreased chronicity of type-2 driven disease. Consequently, ascertaining the mechanism of activity of these upstream mediators has implications for understanding the outcome of targeted therapies designed to counteract their activity and alleviate downstream type 2-high and low effector responses. Furthermore, identifying the factors which shift the balance between the elicitation of type 2-high, eosinophilic asthma and type-2 low, neutrophilic-positive/negative asthma by alarmins is essential. In support of these efforts, observations from the NAVIGATOR trial imply that targeting TSLP in patients with tezepelumab results in reduced asthma exacerbations, improved lung function and control of the disease. In this review, we will discuss the mechanisms surrounding the secretion of IL-25, IL-33, and TSLP from the airway epithelium and how this influences the allergic airway cascade. We also review in detail how alarmin-receptor/co-receptor interactions modulate downstream allergic inflammation. Current strategies which target alarmins, their efficacy and inflammatory phenotype will be discussed.
Collapse
|
13
|
Misiukiewicz-Stępien P, Mierzejewski M, Zajusz-Zubek E, Goryca K, Adamska D, Szeląg M, Krenke R, Paplińska-Goryca M. RNA-Seq Analysis of UPM-Exposed Epithelium Co-Cultivated with Macrophages and Dendritic Cells in Obstructive Lung Diseases. Int J Mol Sci 2022; 23:ijms23169125. [PMID: 36012391 PMCID: PMC9408857 DOI: 10.3390/ijms23169125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Elevated concentrations of airborne pollutants are correlated with an enlarged rate of obstructive lung disease morbidity as well as acute disease exacerbations. This study aimed to analyze the epithelium mRNA profile in response to airborne particulate matter in the control, asthma, and COPD groups. Results. A triple co-culture of nasal epithelium, monocyte-derived macrophages, and monocyte-derived dendritic cells obtained from the controls, asthma, and COPD were exposed to urban particulate matter (UPM) for 24 h. RNA-Seq analysis found differences in seven (CYP1B1, CYP1B1-AS1, NCF1, ME1, LINC02029, BPIFA2, EEF1A2), five (CYP1B1, ARC, ENPEP, RASD1, CYP1B1-AS1), and six (CYP1B1, CYP1B1-AS1, IRF4, ATP1B2, TIPARP, CCL22) differentially expressed genes between UPM exposed and unexposed triple co-cultured epithelium in the control, asthma, and COPD groups, respectively. PCR analysis showed that mRNA expression of BPIFA2 and ENPEP was upregulated in both asthma and COPD, while the expression of CYP1B1-AS1 and TIPARP was increased in the epithelium from COPD patients only. Biological processes changed in UPM exposed triple co-cultured epithelium were associated with epidermis development and epidermal cell differentiation in asthma and with response to toxic substances in COPD. Conclusions. The biochemical processes associated with pathophysiology of asthma and COPD impairs the airway epithelial response to UPM.
Collapse
Affiliation(s)
- Paulina Misiukiewicz-Stępien
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Michał Mierzejewski
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Elwira Zajusz-Zubek
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Krzysztof Goryca
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Dorota Adamska
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Michał Szeląg
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-599-12-41; Fax: +48-22-599-15-61
| |
Collapse
|
14
|
Liu C, Huang XL, Liang JP, Zhong X, Wei ZF, Dai LX, Wang J. Serum‑derived exosomes from house dust mite‑sensitized guinea pigs contribute to inflammation in BEAS‑2B cells via the TLR4‑NF‑κB pathway. Mol Med Rep 2021; 24:747. [PMID: 34458929 PMCID: PMC8436231 DOI: 10.3892/mmr.2021.12387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022] Open
Abstract
Airway epithelial cells, which are the first physical defense barrier against allergens, play a pivotal role in immunity, airway inflammation and airway remodeling. The damage and dysfunction of these cells trigger the development of airway inflammatory diseases. Exosomes, which exist in various bodily fluids, mediate cell-cell communication and participate in the immune response process. The present study aimed to investigate whether serum exosomes play a pro-inflammatory role in bronchial epithelial cells (BEAS-2B cells) and, if so, explore the underlying molecular mechanisms. A guinea pig model of House dust mite (HDM)-induced asthma was established by sensitizing the rodents with HDM and PBS, and serum-derived exosomes were harvested. It was found that serum-derived exosomes from HDM-sensitized guinea pigs displayed higher levels of exosomal markers than those from controls. Additionally, western blot analysis and reverse transcription-quantitative PCR indicated that serum-derived exosomes from HDM-sensitized guinea pigs carried heat shock protein 70 and triggered an inflammatory response in BEAS-2B cells via the toll-like receptor 4 (TLR4)-NF-κB pathway. However, TAK-242, an inhibitor of the expression of TLR4, blocked the activation of the TLR4-NF-κB pathway. These findings provided a novel mechanism for exosome-mediated inflammatory responses and a new perspective for the intervention of inflammatory airway disorders.
Collapse
Affiliation(s)
- Chao Liu
- Department of Respiratory Disease, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xiao-Lin Huang
- Dental Implant and Restoration Centre, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Jian-Ping Liang
- Department of Respiratory Disease, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xu Zhong
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zi-Feng Wei
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Xue Dai
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Wang
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
15
|
Paplinska-Goryca M, Misiukiewicz-Stepien P, Proboszcz M, Nejman-Gryz P, Gorska K, Zajusz-Zubek E, Krenke R. Interactions of nasal epithelium with macrophages and dendritic cells variously alter urban PM-induced inflammation in healthy, asthma and COPD. Sci Rep 2021; 11:13259. [PMID: 34168212 PMCID: PMC8225888 DOI: 10.1038/s41598-021-92626-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Urban particulate matter (UPM) is an important trigger of airway inflammation. The cross-talk between the external and internal matrix in the respiratory tract occurs due to the transepithelial network of macrophages/dendritic cells. This study characterized the immune processes induced by the epithelium after UPM exposure in special regard to interactions with monocyte-derived dendritic cells (moDCs) and monocyte-derived macrophages (moMφs) in obstructive lung diseases. A triple-cell co-culture model (8 controls, 10 asthma, and 8 patients with COPD) utilized nasal epithelial cells, along with moMφs, and moDCs was exposed to UPM for 24 h. The inflammatory response of nasal epithelial cells to UPM stimulation is affected differently by cell-cell interactions in healthy people, asthma or COPD patients of which the interactions with DCs had the strongest impact on the inflammatory reaction of epithelial cells after UPM exposure. The epithelial remodeling and DCs dysfunction might accelerate the inflammation after air pollution exposure in asthma and COPD.
Collapse
Affiliation(s)
- Magdalena Paplinska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.
| | - Paulina Misiukiewicz-Stepien
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Patrycja Nejman-Gryz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Katarzyna Gorska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Elwira Zajusz-Zubek
- Faculty of Energy and Environmental Engineering, Department of Air Protection, Silesian University of Technology, Gliwice, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| |
Collapse
|
16
|
Paplinska-Goryca M, Misiukiewicz-Stepien P, Proboszcz M, Nejman-Gryz P, Gorska K, Krenke R. The Expressions of TSLP, IL-33, and IL-17A in Monocyte Derived Dendritic Cells from Asthma and COPD Patients are Related to Epithelial-Macrophage Interactions. Cells 2020; 9:cells9091944. [PMID: 32842623 PMCID: PMC7565129 DOI: 10.3390/cells9091944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cross-talk between the external and internal environment in the respiratory tract involves macrophage/dendritic cell (DC) transepithelial network. Epithelium triggers dendritic cell-mediated inflammation by producing thymic stromal lymphopoietin (TSLP), IL-33, and IL-17A. The study aimed to evaluate the expression of TSLP, IL-33, and IL-17A in human monocyte derived dendritic cells (moDCs) co-cultured with respiratory epithelium and monocyte derived macrophages (moMφs) in asthma, chronic obstructive pulmonary disease (COPD) and healthy controls. METHODS The study used a triple-cell co-culture model, utilizing nasal epithelial cells, along with moMφs and moDCs. Cells were cultured in mono-, di-, and triple-co-cultures for 24 h. RESULTS Co-culture with epithelium and moMφs significantly increased TSLP in asthma and did not change IL-33 and IL-17A mRNA expression in moDCs. moDCs from asthmatics were characterized by the highest TSLP mRNA expression and the richest population of TSLPR, ST2, and IL17RA expressed cells. A high number of positive correlations between the assessed cytokines and CHI3L1, IL-12p40, IL-1β, IL-6, IL-8, TNF in moDCs was observed in asthma and COPD. CONCLUSION TSLP, IL-33, and IL-17A expression in moDCs are differently regulated by epithelium in asthma, COPD, and healthy subjects. These complex cell-cell interactions may impact airway inflammation and be an important factor in the pathobiology of asthma and COPD.
Collapse
Affiliation(s)
- Magdalena Paplinska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.P.); (P.N.-G.); (K.G.); (R.K.)
- Correspondence: ; Tel.: +48-225991241; Fax +48-225991561
| | | | - Malgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.P.); (P.N.-G.); (K.G.); (R.K.)
| | - Patrycja Nejman-Gryz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.P.); (P.N.-G.); (K.G.); (R.K.)
| | - Katarzyna Gorska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.P.); (P.N.-G.); (K.G.); (R.K.)
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.P.); (P.N.-G.); (K.G.); (R.K.)
| |
Collapse
|