1
|
Gu Q, Wang C, Huang H, Wei D, Fu L, Liu G, Zhou Q, Yang J, Fu Y. Phlorizin mitigates high glucose-induced metabolic disorders through the IIS pathway in Caenorhabditis elegans. Food Funct 2025; 16:3004-3017. [PMID: 40130478 DOI: 10.1039/d4fo04519j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Phlorizin is a dihydrochalcone with various biological activities. To elucidate the mechanism of mitigating high glucose-induced metabolic disorders by phlorizin, the integrated approach combining metabolomics and gene expression profiling was used. The results demonstrated that phlorizin effectively mitigated the impact of high glucose on various growth indicators of C. elegans, as well as decreased lipofuscin, ROS, glucose and triglyceride levels. Metabolomics analysis revealed that phlorizin significantly affected the metabolic pathways of carbohydrates, lipids, and amino acids in C. elegans, indicating its potential role in maintaining energy homeostasis. Gene expression analysis indicated that phlorizin reversed the downregulation of IIS, mTOR and lipid metabolism pathways and promoted the nuclear translocation of DAF-16. In the C. elegans mutant BQ1, the effect of phlorizin on lowering glucose and triglyceride levels was eliminated, meaning that AKT-1 was found to be a key target protein for phlorizin's hypoglycemic and lipid-lowering effects. Molecular docking results also indicated a strong interaction between phlorizin and AKT-1 protein. In summary, phlorizin alleviated metabolic disorders and gene expression imbalances induced by high glucose, and AKT-1 was first found as the key target protein for phlorizin achieving hypoglycemic and hypolipidemic effects.
Collapse
Affiliation(s)
- Qi Gu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China
| | - Chenlu Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China
| | - Han Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dandan Wei
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China
| | - Lina Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China
| | - Guosheng Liu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China
| | - Quan Zhou
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China
| | - Jie Yang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, PR China
| |
Collapse
|
2
|
Li Q, Homilius M, Achilles E, Massey LK, Convey V, Ohlsson Å, Ljungvall I, Häggström J, Boler BV, Steiner P, Day S, MacRae CA, Oyama MA. Metabolic abnormalities and reprogramming in cats with naturally occurring hypertrophic cardiomyopathy. ESC Heart Fail 2025; 12:1256-1270. [PMID: 39499136 PMCID: PMC11911622 DOI: 10.1002/ehf2.15135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND AND AIMS The heart is a metabolic organ rich in mitochondria. The failing heart reprograms to utilize different energy substrates, which increase its oxygen consumption. These adaptive changes contribute to increased oxidative stress. Hypertrophic cardiomyopathy (HCM) is a common heart condition, affecting approximately 15% of the general cat population. Feline HCM shares phenotypical and genotypical similarities with human HCM, but the disease mechanisms for both species are incompletely understood. Our goal was to characterize global changes in metabolome between healthy control cats and cats with different stages of HCM. METHODS Serum samples from 83 cats, the majority (70/83) of which were domestic shorthair and included 23 healthy control cats, 31 and 12 preclinical cats with American College of Veterinary Internal Medicine (ACVIM) stages B1 and B2, respectively, and 17 cats with history of clinical heart failure or arterial thromboembolism (ACVIM stage C), were collected for untargeted metabolomic analysis. Multiple linear regression adjusted for age, sex and body weight was applied to compare between control and across HCM groups. RESULTS Our study identified 1253 metabolites, of which 983 metabolites had known identities. Statistical analysis identified 167 metabolites that were significantly different among groups (adjusted P < 0.1). About half of the differentially identified metabolites were lipids, including glycerophospholipids, sphingolipids and cholesterol. Serum concentrations of free fatty acids, 3-hydroxy fatty acids and acylcarnitines were increased in HCM groups compared with control group. The levels of creatine phosphate and multiple Krebs cycle intermediates, including succinate, aconitate and α-ketoglutarate, also accumulated in the circulation of HCM cats. In addition, serum levels of nicotinamide and tryptophan, precursors for de novo NAD+ biosynthesis, were reduced in HCM groups versus control group. Glutathione metabolism was altered. Serum levels of cystine, the oxidized form of cysteine and cysteine-glutathione disulfide, were elevated in the HCM groups, indicative of heightened oxidative stress. Further, the level of ophthalmate, an endogenous glutathione analog and competitive inhibitor, was increased by more than twofold in HCM groups versus control group. Finally, several uremic toxins, including guanidino compounds and protein bound putrescine, accumulated in the circulation of HCM cats. CONCLUSIONS Our study provided evidence of deranged energy metabolism, altered glutathione homeostasis and impaired renal uremic toxin excretion. Altered lipid metabolism suggested perturbed structure and function of cardiac sarcolemma membrane and lipid signalling.
Collapse
Affiliation(s)
| | - Max Homilius
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Erin Achilles
- Department of Clinical Sciences and Advanced MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Laura K. Massey
- Department of Clinical Sciences and Advanced MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Victoria Convey
- Department of Clinical Sciences and Advanced MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Åsa Ohlsson
- Department of Animal BiosciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Ingrid Ljungvall
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Jens Häggström
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | | | | | - Sharlene Day
- Division of Cardiovascular Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Calum A. MacRae
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Mark A. Oyama
- Department of Clinical Sciences and Advanced MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Kirkwood-Donelson KI, Jarmusch AK, Bortner CD, Merrick BA, Sinha BK. Metabolic consequences of erastin-induced ferroptosis in human ovarian cancer cells: an untargeted metabolomics study. Front Mol Biosci 2025; 11:1520876. [PMID: 39902375 PMCID: PMC11788483 DOI: 10.3389/fmolb.2024.1520876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Ovarian cancer has been difficult to cure due to acquired or intrinsic resistance and therefore, newer or more effective drugs/approaches are needed for a successful treatment in the clinic. Erastin (ER), a ferroptosis inducer, kills tumor cells by generating and accumulating reactive oxygen species (ROS) within the cell, resulting in an iron-dependent oxidative damage-mediated ferroptotic cell death. Methods We have utilized human ovarian cancer cell lines, OVCAR-8 and its adriamycin-selected, multi-drug resistance protein (MDR1)-expressing NCI/ADR-RES, both equally sensitive to ER, to identify metabolic biomarkers of ferroptosis. Results Our studies showed that ER treatment rapidly depleted cellular glutathione and cysteine and enhanced formation of ophthalamate (OPH) in both cells. Opthalalmate has been proposed to be a biomarker of oxidative stress in cells. Our study also found significant decreases in cellular taurine, a natural antioxidant in cells. Additionally, we found that ER treatment decreased cellular levels of NAD+/NADP+, carnitines and glutamine/glutamate in both cells, suggesting significant oxidative stress, decrease in energy production, and cellular and mitochondrial disfunctions, leading to cell death. Conclusion Our studies identified several potential biomarkers of ER-induced ferroptosis including OPH, taurine, NAD+, NADP+ and glutamate in ovarian cancer cells. Identifying specific metabolic biomarkers that are predictive of whether a cancer is susceptible to ferroptosis will help us devise more successful treatment modalities.
Collapse
Affiliation(s)
- Kaylie I. Kirkwood-Donelson
- Metabolomics Core Facility, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Alan K. Jarmusch
- Metabolomics Core Facility, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Carl D. Bortner
- Laboratory of Signal Transduction, Research Triangle Park, NC, United States
| | - Bruce Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC, United States
| | - Birandra K. Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC, United States
| |
Collapse
|
4
|
Batra R, Krumsiek J, Wang X, Allen M, Blach C, Kastenmüller G, Arnold M, Ertekin-Taner N, Kaddurah-Daouk R. Comparative brain metabolomics reveals shared and distinct metabolic alterations in Alzheimer's disease and progressive supranuclear palsy. Alzheimers Dement 2024; 20:8294-8307. [PMID: 39439201 DOI: 10.1002/alz.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Metabolic dysregulation is a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). Although metabolic dysregulation is a common link between these two tauopathies, a comprehensive brain metabolic comparison of the diseases has not yet been performed. METHODS We analyzed 342 postmortem brain samples from the Mayo Clinic Brain Bank and examined 658 metabolites in the cerebellar cortex and the temporal cortex between the two tauopathies. RESULTS Our findings indicate that both diseases display oxidative stress associated with lipid metabolism, mitochondrial dysfunction linked to lysine metabolism, and an indication of tau-induced polyamine stress response. However, specific to AD, we detected glutathione-related neuroinflammation, deregulations of enzymes tied to purines, and cognitive deficits associated with vitamin B. DISCUSSION Our findings underscore vast alterations in the brain's metabolome, illuminating shared neurodegenerative pathways and disease-specific traits in AD and PSP. HIGHLIGHTS First high-throughput metabolic comparison of Alzheimer's diesease (AD) versus progressive supranuclear palsy (PSP) in brain tissue. Cerebellar cortex (CER) shows substantial AD-related metabolic changes, despite limited proteinopathy. AD impacts both CER and temporal cortex (TCX); PSP's changes are primarily in CER. AD and PSP share metabolic alterations despite major pathological differences.
Collapse
Affiliation(s)
- Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Golovachev N, Siebold L, Sutton RL, Ghavim S, Harris NG, Bartnik-Olson B. Metabolic-driven analytics of traumatic brain injury and neuroprotection by ethyl pyruvate. J Neuroinflammation 2024; 21:294. [PMID: 39538295 PMCID: PMC11562096 DOI: 10.1186/s12974-024-03280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Research on traumatic brain injury (TBI) highlights the significance of counteracting its metabolic impact via exogenous fuels to support metabolism and diminish cellular damage. While ethyl pyruvate (EP) treatment shows promise in normalizing cellular metabolism and providing neuroprotection, there is a gap in understanding the precise metabolic pathways involved. Metabolomic analysis of the acute post-injury metabolic effects, with and without EP treatment, aims to deepen our knowledge by identifying and comparing the metabolite profiles, thereby illuminating the injury's effects and EP's therapeutic potential. METHODS In the current study, an untargeted metabolomics approach was used to reveal brain metabolism changes in rats 24 h after a controlled cortical impact (CCI) injury, with or without EP treatment. Using principal component analysis (PCA), volcano plots, Random Forest and pathway analysis we differentiated the brain metabolomes of CCI and sham injured animals treated with saline (Veh) or EP, identifying key metabolites and pathways affected by injury. Additionally, the effect of EP on the non-injured brain was also explored. RESULTS PCA showed a clear separation of the four study groups (sham-Veh, CCI-Veh, sham-EP, CCI-EP) based on injury. Following CCI injury (CCI-Veh), 109 metabolites belonging to the amino acid, carbohydrate, lipid, nucleotide, and xenobiotic families exhibited a twofold change at 24 h compared to the sham-Veh group, with 93 of these significantly increasing and 16 significantly decreasing (p < 0.05). CCI animals were treated with EP (CCI-EP) showed only 5 metabolites in the carbohydrate, amino acids, peptides, nucleotides, lipids, and xenobiotics super families that exhibited a twofold change, compared to the CCI-Veh group (p < 0.05). In the non-injured brain, EP treatment (sham-EP) resulted in a twofold change in 6 metabolites within the amino acid, peptide, nucleotide, and lipid super families compared to saline treated sham animals (sham-Veh, p < 0.05). CONCLUSIONS This study delineates the unique metabolic signatures resulting from a CCI injury and those related to EP treatment in both the injured and non-injured brain, underscoring the metabolic adaptations to brain injury and the effects of EP. Our analysis uncovers significant shifts in metabolites associated with inflammation, energy metabolism, and neuroprotection after injury, and demonstrates how EP intervention after injury alters metabolites associated with mitigating inflammation and oxidative damage.
Collapse
Affiliation(s)
- Nikita Golovachev
- School of Medicine, Loma Linda University, 11175 Campus St, Loma Linda, CA, 92350, USA
| | - Lorraine Siebold
- School of Medicine, Loma Linda University, 11175 Campus St, Loma Linda, CA, 92350, USA
| | - Richard L Sutton
- David Geffen School of Medicine, Neurotrauma Laboratory, University of California Los Angeles, 58-125 CHS, 650 Charles E. Young Dr. S., Los Angeles, CA, 90095, USA
| | - Sima Ghavim
- David Geffen School of Medicine, Neurotrauma Laboratory, University of California Los Angeles, 58-125 CHS, 650 Charles E. Young Dr. S., Los Angeles, CA, 90095, USA
| | - Neil G Harris
- David Geffen School of Medicine, Neurotrauma Laboratory, University of California Los Angeles, 58-125 CHS, 650 Charles E. Young Dr. S., Los Angeles, CA, 90095, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University, 11234 Anderson St, Room B623 MRI, Loma Linda, CA, 92354, USA.
| |
Collapse
|
6
|
Schomakers BV, Jillings SL, van Weeghel M, Vaz FM, Salomons GS, Janssens GE, Houtkooper RH. Ophthalmic acid is a glutathione regulating tripeptide. FEBS J 2024; 291:3317-3330. [PMID: 38245827 DOI: 10.1111/febs.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Since its discovery in 1958 in the lens of cows, ophthalmic acid (OPH) has stood in the shadow of its anti-oxidant analog: glutathione (GSH). Lacking the thiol group that gives GSH many of its important properties, ophthalmic acid's function has remained elusive, and it has been widely presumed to be an accidental product of the same enzymes. In this review, we compile evidence demonstrating that OPH is a ubiquitous metabolite found in bacteria, plants, fungi, and animals, produced through several layers of metabolic regulation. We discuss the limitations of the oft-repeated suggestions that aberrations in OPH levels should solely indicate GSH deficiency or oxidative stress. Finally, we discuss the available literature and suggest OPH's role in metabolism as a GSH-regulating tripeptide; controlling both cellular and organelle influx and efflux of GSH, as well as modulating GSH-dependent reactions and signaling. Ultimately, we hope that this review reinvigorates and directs more research into this versatile metabolite.
Collapse
Affiliation(s)
- Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Sonia L Jillings
- Green Biotechnology, Inholland University of Applied Sciences, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Gajja S Salomons
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Amsterdam Cardiovascular Sciences, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Amsterdam Cardiovascular Sciences, The Netherlands
| |
Collapse
|
7
|
Fogal V, Michopoulos F, Jarnuczak AF, Hamza GM, Harlfinger S, Davey P, Hulme H, Atkinson SJ, Gabrowski P, Cheung T, Grondine M, Hoover C, Rose J, Bray C, Foster AJ, Askin S, Majumder MM, Fitzpatrick P, Miele E, Macdonald R, Keun HC, Coen M. Mechanistic safety assessment via multi-omic characterisation of systemic pathway perturbations following in vivo MAT2A inhibition. Arch Toxicol 2024; 98:2589-2603. [PMID: 38755480 PMCID: PMC11272821 DOI: 10.1007/s00204-024-03771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis. MAT2A and its liver- and pancreas-specific isoform, MAT1A, generate the universal methyl donor S-adenosylmethionine (SAM) from ATP and methionine. Given the pleiotropic role SAM plays in methylation of diverse substrates, characterising the extent of SAM depletion and downstream perturbations following MAT2A/MAT1A inhibition (MATi) is critical for safety assessment. We have assessed in vivo target engagement and the resultant systemic phenotype using multi-omic tools to characterise response to a MAT2A inhibitor (AZ'9567). We observed significant SAM depletion and extensive methionine accumulation in the plasma, liver, brain and heart of treated rats, providing the first assessment of both global SAM depletion and evidence of hepatic MAT1A target engagement. An integrative analysis of multi-omic data from liver tissue identified broad perturbations in pathways covering one-carbon metabolism, trans-sulfuration and lipid metabolism. We infer that these pathway-wide perturbations represent adaptive responses to SAM depletion and confer a risk of oxidative stress, hepatic steatosis and an associated disturbance in plasma and cellular lipid homeostasis. The alterations also explain the dramatic increase in plasma and tissue methionine, which could be used as a safety and PD biomarker going forward to the clinic.
Collapse
Affiliation(s)
- Valentina Fogal
- Oncology Safety, Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Filippos Michopoulos
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Andrew F Jarnuczak
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ghaith M Hamza
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, R&D Boston, Waltham, USA
| | | | - Paul Davey
- Chemistry, Oncology R&D AstraZeneca, Cambridge, UK
| | - Heather Hulme
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Piotr Gabrowski
- Biological Insights Knowledge Graph, R&D IT, AstraZeneca, Barcelona, Spain
| | - Tony Cheung
- Oncology R&D, AstraZeneca, R&D Boston, Waltham, USA
| | | | - Clare Hoover
- Oncology Safety Pathology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, R&D Boston, Waltham, USA
| | - Jonathan Rose
- Animal Science & Technologies, R&D, AstraZeneca, Cambridge, UK
| | - Chandler Bray
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alison J Foster
- Regulatory Toxicology and Safety Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sean Askin
- Advanced Drug Delivery, Pharmaceutical Sci, R&D, AstraZeneca, Cambridge, UK
| | - Muntasir Mamun Majumder
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Paul Fitzpatrick
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Eric Miele
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, R&D Boston, Waltham, USA
| | - Ruth Macdonald
- Animal Science & Technologies, R&D, AstraZeneca, Cambridge, UK
| | - Hector C Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Muireann Coen
- Oncology Safety, Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
8
|
Li W, McIntyre RL, Schomakers BV, Kamble R, Luesink AH, van Weeghel M, Houtkooper RH, Gao AW, Janssens GE. Low-dose naltrexone extends healthspan and lifespan in C. elegans via SKN-1 activation. iScience 2024; 27:109949. [PMID: 38799567 PMCID: PMC11126937 DOI: 10.1016/j.isci.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
As the global aging population rises, finding effective interventions to improve aging health is crucial. Drug repurposing, utilizing existing drugs for new purposes, presents a promising strategy for rapid implementation. We explored naltrexone from the Library of Integrated Network-based Cellular Signatures (LINCS) based on several selection criteria. Low-dose naltrexone (LDN) has gained attention for treating various diseases, yet its impact on longevity remains underexplored. Our study on C. elegans demonstrated that a low dose, but not high dose, of naltrexone extended the healthspan and lifespan. This effect was mediated through SKN-1 (NRF2 in mammals) signaling, influencing innate immune gene expression and upregulating oxidative stress responses. With LDN's low side effects profile, our findings underscore its potential as a geroprotector, suggesting further exploration for promoting healthy aging in humans is warranted.
Collapse
Affiliation(s)
- Weisha Li
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rebecca L. McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Rashmi Kamble
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anne H.G. Luesink
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Arwen W. Gao
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Georges E. Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Aggarwal H, Gautam J, Kumari D, Gupta SK, Bajpai S, Chaturvedi K, Kumar Y, Dikshit M. Comparative profiling of gut microbiota and metabolome in diet-induced obese and insulin-resistant C57BL/6J mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119643. [PMID: 37996062 DOI: 10.1016/j.bbamcr.2023.119643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Diet-based models are commonly used to investigate obesity and related disorders. We conducted a comparative profiling of three obesogenic diets HFD, high fat diet; HFHF, high fat high fructose diet; and HFCD, high fat choline deficient diet to assess their impact on the gut microbiome and metabolome. After 20 weeks, we analyzed the gut microbiota and metabolomes of liver, plasma, cecal, and fecal samples. Fecal and plasma bile acids (BAs) and fecal short-chain fatty acids (SCFAs) were also examined. Significant changes were observed in fecal and cecal metabolites, with increased Firmicutes and decreased Bacteroidetes in the HFD, HFHF, and HFCD-fed mice compared to chow and LFD (low fat diet)-fed mice. Most BAs were reduced in plasma and fecal samples of obese groups, except taurocholic acid, which increased in HFCD mice's plasma. SCFAs like acetate and butyrate significantly decreased in obesogenic diet groups, while propionic acid specifically decreased in the HFCD group. Pathway analysis revealed significant alterations in amino acid, carbohydrate metabolism, and nucleic acid biosynthesis pathways in obese mice. Surprisingly, even LFD-fed mice showed distinct changes in microbiome and metabolite profiles compared to the chow group. This study provides insights into gut microbiome dysbiosis and metabolite alterations induced by obesogenic and LFD diets in various tissues. These findings aid in selecting suitable diet models to study the role of the gut microbiome and metabolites in obesity and associated disorders, with potential implications for understanding similar pathologies in humans.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sneh Bajpai
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Kartikey Chaturvedi
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
10
|
Bamba T, Hori Y, Umebayashi K, Soh C, Hakozaki T, Toyama K, Osumi M, Kondo A, Hasunuma T. Comprehensive metabolic profiling of Geotrichum candidum and comparison with Saccharomyces cerevisiae. J Biosci Bioeng 2024; 137:9-15. [PMID: 37968228 DOI: 10.1016/j.jbiosc.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/17/2023]
Abstract
Geotrichum candidum is a dimorphic yeast used in cheese processing. To our knowledge, no major metabolites have been identified to date in G. candidum except for some amino acid and fatty acid metabolites. This has limited research on the commercial use of G. candidum. In this study, we aimed to analyze temporal changes in the intra- and extra-cellular metabolites of G. candidum and Saccharomyces cerevisiae cultured in YM medium as reference. As a result of metabolite analysis, it was observed that G. candidum tends to accumulate pentose phosphate pathway compounds, which are involved in nucleic acid synthesis, after 48 h of cultivation when compared to S. cerevisiae. In addition, G. candidum accumulated higher amounts of the antioxidant glutathione in the medium than did S. cerevisiae. In addition, G. candidum accumulated large amounts of B vitamins such as pantothenic acid and nicotinic acid in the medium. Finally, we examined the potential of G. candidum as a host for the production of useful compounds such as pantothenic acid. When cultured in medium supplemented with the pantothenic acid precursor β-alanine, G. candidum produced 12-fold higher amounts of pantothenic acid (30 μM) than that by S. cerevisiae. This study indicates that G. candidum accumulates various useful compounds that are dissimilar to those produced by S. cerevisiae. Furthermore, G. candidum has the potential to produce useful chemicals under appropriate culture conditions.
Collapse
Affiliation(s)
- Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yoshimi Hori
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kyohei Umebayashi
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chieko Soh
- Procter and Gamble Innovation GK, 7-1-18 Onoedori, Chuo-ku, Kobe 651-0088 Japan
| | | | - Kazumi Toyama
- Procter and Gamble Innovation GK, 7-1-18 Onoedori, Chuo-ku, Kobe 651-0088 Japan
| | - Masako Osumi
- Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
11
|
Batra R, Krumsiek J, Wang X, Allen M, Blach C, Kastenmüller G, Arnold M, Ertekin-Taner N, Kaddurah-Daouk RF. Comparative brain metabolomics reveals shared and distinct metabolic alterations in Alzheimer's disease and progressive supranuclear palsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.25.23293055. [PMID: 37546878 PMCID: PMC10402214 DOI: 10.1101/2023.07.25.23293055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Metabolic dysregulation is a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). While metabolic dysregulation is a common link between these two tauopathies, a comprehensive brain metabolic comparison of the diseases has not yet been performed. We analyzed 342 postmortem brain samples from the Mayo Clinic Brain Bank and examined 658 metabolites in the cerebellar cortex and the temporal cortex between the two tauopathies. Our findings indicate that both diseases display oxidative stress associated with lipid metabolism, mitochondrial dysfunction linked to lysine metabolism, and an indication of tau-induced polyamine stress response. However, specific to AD, we detected glutathione-related neuroinflammation, deregulations of enzymes tied to purines, and cognitive deficits associated with vitamin B. Taken together, our findings underscore vast alterations in the brain's metabolome, illuminating shared neurodegenerative pathways and disease-specific traits in AD and PSP.
Collapse
Affiliation(s)
- Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Rima F Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Young T, Gale SL, Ragg NLC, Sander SG, Burritt DJ, Benedict B, Le DV, Villas-Bôas SG, Alfaro AC. Metabolic Regulation of Copper Toxicity during Marine Mussel Embryogenesis. Metabolites 2023; 13:838. [PMID: 37512545 PMCID: PMC10385052 DOI: 10.3390/metabo13070838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The development of new tools for assessing the health of cultured shellfish larvae is crucial for aquaculture industries to develop and refine hatchery methodologies. We established a large-volume ecotoxicology/health stressor trial, exposing mussel (Perna canaliculus) embryos to copper in the presence of ethylenediaminetetraacetic acid (EDTA). GC/MS-based metabolomics was applied to identify potential biomarkers for monitoring embryonic/larval health and to characterise mechanisms of metal toxicity. Cellular viability, developmental abnormalities, larval behaviour, mortality, and a targeted analysis of proteins involved in the regulation of reactive oxygen species were simultaneously evaluated to provide a complementary framework for interpretative purposes and authenticate the metabolomics data. Trace metal analysis and speciation modelling verified EDTA as an effective copper chelator. Toxicity thresholds for P. canaliculus were low, with 10% developmental abnormalities in D-stage larvae being recorded upon exposure to 1.10 μg·L-1 bioavailable copper for 66 h. Sublethal levels of bioavailable copper (0.04 and 1.10 μg·L-1) caused coordinated fluctuations in metabolite profiles, which were dependent on development stage, treatment level, and exposure duration. Larvae appeared to successfully employ various mechanisms involving the biosynthesis of antioxidants and a restructuring of energy-related metabolism to alleviate the toxic effects of copper on cells and developing tissues. These results suggest that regulation of trace metal-induced toxicity is tightly linked with metabolism during the early ontogenic development of marine mussels. Lethal-level bioavailable copper (50.3 μg·L-1) caused severe metabolic dysregulation after 3 h of exposure, which worsened with time, substantially delayed embryonic development, induced critical oxidative damage, initiated the apoptotic pathway, and resulted in cell/organism death shortly after 18 h of exposure. Metabolite profiling is a useful approach to (1) assess the health status of marine invertebrate embryos and larvae, (2) detect early warning biomarkers for trace metal contamination, and (3) identify novel regulatory mechanisms of copper-induced toxicity.
Collapse
Affiliation(s)
- Tim Young
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | | | | | - Sylvia G. Sander
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9010, New Zealand
- Marine Mineral Resources Group, Research Division 4: Dynamics of the Ocean Floor, Magmatic and Hydrothermal Systems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - David J. Burritt
- Department of Botany, University of Otago, 464 Great King St, Dunedin 9016, New Zealand
| | - Billy Benedict
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9010, New Zealand
| | - Dung V. Le
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi 000084, Vietnam
| | - Silas G. Villas-Bôas
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
13
|
Ferrer M, Mourikis N, Davidson EE, Kleeman SO, Zaccaria M, Habel J, Rubino R, Gao Q, Flint TR, Young L, Connell CM, Lukey MJ, Goncalves MD, White EP, Venkitaraman AR, Janowitz T. Ketogenic diet promotes tumor ferroptosis but induces relative corticosterone deficiency that accelerates cachexia. Cell Metab 2023; 35:1147-1162.e7. [PMID: 37311455 PMCID: PMC11037504 DOI: 10.1016/j.cmet.2023.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Glucose dependency of cancer cells can be targeted with a high-fat, low-carbohydrate ketogenic diet (KD). However, in IL-6-producing cancers, suppression of the hepatic ketogenic potential hinders the utilization of KD as energy for the organism. In IL-6-associated murine models of cancer cachexia, we describe delayed tumor growth but accelerated cachexia onset and shortened survival in mice fed KD. Mechanistically, this uncoupling is a consequence of the biochemical interaction of two NADPH-dependent pathways. Within the tumor, increased lipid peroxidation and, consequently, saturation of the glutathione (GSH) system lead to the ferroptotic death of cancer cells. Systemically, redox imbalance and NADPH depletion impair corticosterone biosynthesis. Administration of dexamethasone, a potent glucocorticoid, increases food intake, normalizes glucose levels and utilization of nutritional substrates, delays cachexia onset, and extends the survival of tumor-bearing mice fed KD while preserving reduced tumor growth. Our study emphasizes the need to investigate the effects of systemic interventions on both the tumor and the host to accurately assess therapeutic potential. These findings may be relevant to clinical research efforts that investigate nutritional interventions such as KD in patients with cancer.
Collapse
Affiliation(s)
- Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | | | - Emma E Davidson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sam O Kleeman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Jill Habel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rachel Rubino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Qing Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Thomas R Flint
- Department of Oncology, CRUK Cambridge Institute, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Lisa Young
- Department of Oncology, CRUK Cambridge Institute, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Claire M Connell
- Department of Oncology, CRUK Cambridge Institute, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eileen P White
- Department of Molecular Biology and Biochemistry, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Ashok R Venkitaraman
- MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Institute for Molecular & Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Northwell Health Cancer Institute, Northwell Health, New Hyde Park, NY 11042, USA.
| |
Collapse
|
14
|
Wang J, Hua G, Yang X, Zhang L, Ma Y, Ma Q, Li R, Wu K, Zhao Y, Deng X. A newly identified small tRNA fragment reveals the regulation of different wool types and oxidative stress in lambs. Sci Rep 2023; 13:10213. [PMID: 37353550 PMCID: PMC10290153 DOI: 10.1038/s41598-023-36895-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
Novel small RNAs derived from tRNAs are continuously identified, however, their biological functions are rarely reported. Here, we accidentally found the reads peak at 32nt during statistical analysis on the miRNA-seq data of lamb skin tissue, and found that it was related to the wool type of lambs. This 32nt peak was composed of small tRNA fragments. The main component sequence of this peak was a novel small tRNA derived from Glycyl tRNA (tRNAGly), the expression level of tRNAGly-derived tRNA fragments (tRFGly) was 5.77 folds higher in the coarse wool lambs than that in the fine wool lambs. However, in contrast, the expression of tRNAGly in the skin of fine wool lambs is 6.28 folds more than that in coarse wool lambs. tRNAGly promoted the synthesis of high glycine protein including KAP6 in fine wool lamb skin. These proteins were reported as the major genes for fine curly wool. Integrative analysis of target gene prediction, proteomics and metabolomics results revealed that tRFGly reduced the level of reactive oxygen species (ROS) in the skin of coarse wool lambs by targeted inhibition of the Metabolic signal and the corresponding Glutathione metabolic pathway, on the contrary, the level of oxidative stress in the skin of fine wool lambs was significantly higher. This study revealed for the first time the relationship between tRNAGly and its derived tRFGly and animal traits. tRFGly has the function of targeting and regulating protein synthesis. At the same time, tRFGly can reduce the expression of its resource complete tRNA, thereby reducing its ability to transport specific amino acid and affecting the expression of corresponding proteins.
Collapse
Affiliation(s)
- Jiankui Wang
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoying Hua
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xue Yang
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Letian Zhang
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yuhao Ma
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qing Ma
- Animal Science Institute of Ningxia Agriculture and Forestry Academy, Yinchuan, 750002, China
| | - Rui Li
- Jinfeng Animal Husbandry Group Co., Ltd., Chifeng, 024000, China
| | - Keliang Wu
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yaofeng Zhao
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xuemei Deng
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|
16
|
Kim JK, Hong S, Park J, Kim S. Metabolic and Transcriptomic Changes in the Mouse Brain in Response to Short-Term High-Fat Metabolic Stress. Metabolites 2023; 13:metabo13030407. [PMID: 36984847 PMCID: PMC10051449 DOI: 10.3390/metabo13030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The chronic consumption of diets rich in saturated fats leads to obesity and associated metabolic disorders including diabetes and atherosclerosis. Intake of a high-fat diet (HFD) is also recognized to dysregulate neural functions such as cognition, mood, and behavior. However, the effects of short-term high-fat diets on the brain are elusive. Here, we investigated molecular changes in the mouse brain following an acute HFD for 10 days by employing RNA sequencing and metabolomics profiling. Aberrant expressions of 92 genes were detected in the brain tissues of acute HFD-exposed mice. The differentially expressed genes were enriched for various pathways and processes such as superoxide metabolism. In our global metabolomic profiling, a total of 59 metabolites were significantly altered by the acute HFD. Metabolic pathways upregulated from HFD-exposed brain tissues relative to control samples included oxidative stress, oxidized polyunsaturated fatty acids, amino acid metabolism (e.g., branched-chain amino acid catabolism, and lysine metabolism), and the gut microbiome. Acute HFD also elevated levels of N-acetylated amino acids, urea cycle metabolites, and uracil metabolites, further suggesting complex changes in nitrogen metabolism. The observed molecular events in the present study provide a valuable resource that can help us better understand how acute HFD stress impacts brain homeostasis.
Collapse
Affiliation(s)
- Ji-Kwang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sehoon Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jina Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
- KAIST Stem Cell Center, KAIST, Daejeon 34141, Republic of Korea
- Correspondence:
| |
Collapse
|
17
|
Colyn L, Alvarez-Sola G, Latasa MU, Uriarte I, Herranz JM, Arechederra M, Vlachogiannis G, Rae C, Pineda-Lucena A, Casadei-Gardini A, Pedica F, Aldrighetti L, López-López A, López-Gonzálvez A, Barbas C, Ciordia S, Van Liempd SM, Falcón-Pérez JM, Urman J, Sangro B, Vicent S, Iraburu MJ, Prosper F, Nelson LJ, Banales JM, Martinez-Chantar ML, Marin JJG, Braconi C, Trautwein C, Corrales FJ, Cubero FJ, Berasain C, Fernandez-Barrena MG, Avila MA. New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming. J Exp Clin Cancer Res 2022; 41:183. [PMID: 35619118 PMCID: PMC9134609 DOI: 10.1186/s13046-022-02386-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. METHODS Cholangiocarcinogenesis was induced in rats (TAA) and mice (JnkΔhepa + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRASG12D cells. Cell signaling, growth, gene regulation and [U-13C]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. RESULTS Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRASG12D can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRASG12D promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRASG12D CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. CONCLUSIONS In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA.
Collapse
Affiliation(s)
- Leticia Colyn
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Gloria Alvarez-Sola
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - M Ujue Latasa
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Jose M Herranz
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maria Arechederra
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | | | - Colin Rae
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, UK
| | | | | | - Federica Pedica
- Department of Experimental Oncology, Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, Vita-Salute San Raffaele University, IRCCS San Raffaele Hospital, Milan, Italy
| | - Angeles López-López
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEU, Boadilla del Monte, Spain
| | - Angeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEU, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEU, Boadilla del Monte, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | | | - Juan M Falcón-Pérez
- CIBERehd, Madrid, Spain
- Exosomes Laboratory and Metabolomics Platform, CIC bioGUNE-BRTA, Derio, Spain
- Ikerbaske, Basque Foundation for Science, Bilbao, Spain
| | - Jesus Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Gastroenterology Department, Hospital Universitario de Navarra, Pamplona, Spain
| | - Bruno Sangro
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Hepatology Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Silve Vicent
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Solid Tumors Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERonc, Madrid, Spain
| | - Maria J Iraburu
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Felipe Prosper
- Oncohematology Program, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Leonard J Nelson
- Institute of Engineering, School of Engineering, Faraday Building, The University of Edimburgh, Edinburgh, Scotland, UK
| | - Jesus M Banales
- CIBERehd, Madrid, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | | | - Jose J G Marin
- CIBERehd, Madrid, Spain
- Physiology and Pharmacology Department, HEVEPHARM, IBSAL, University of Salamanca, Salamanca, Spain
| | - Chiara Braconi
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, UK
- Beatson West of Scotland Cancer Center, Glasgow, UK
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - Fernando J Corrales
- CIBERehd, Madrid, Spain
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | - F Javier Cubero
- CIBERehd, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias A Avila
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain.
- CIBERehd, Madrid, Spain.
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
18
|
Deprogramming metabolism in pancreatic cancer with a bi-functional GPR55 inhibitor and biased β2 adrenergic agonist. Sci Rep 2022; 12:3618. [PMID: 35256673 PMCID: PMC8901637 DOI: 10.1038/s41598-022-07600-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/21/2022] [Indexed: 01/14/2023] Open
Abstract
Metabolic reprogramming contributes to oncogenesis, tumor growth, and treatment resistance in pancreatic ductal adenocarcinoma (PDAC). Here we report the effects of (R,S′)-4′-methoxy-1-naphthylfenoterol (MNF), a GPR55 antagonist and biased β2-adrenergic receptor (β2-AR) agonist on cellular signaling implicated in proliferation and metabolism in PDAC cells. The relative contribution of GPR55 and β2-AR in (R,S′)-MNF signaling was explored further in PANC-1 cells. Moreover, the effect of (R,S′)-MNF on tumor growth was determined in a PANC-1 mouse xenograft model. PANC-1 cells treated with (R,S′)-MNF showed marked attenuation in GPR55 signal transduction and function combined with increased β2-AR/Gαs/adenylyl cyclase/PKA signaling, both of which contributing to lower MEK/ERK, PI3K/AKT and YAP/TAZ signaling. (R,S′)-MNF administration significantly reduced PANC-1 tumor growth and circulating l-lactate concentrations. Global metabolic profiling of (R,S′)-MNF-treated tumor tissues revealed decreased glycolytic metabolism, with a shift towards normoxic processes, attenuated glutamate metabolism, and increased levels of ophthalmic acid and its precursor, 2-aminobutyric acid, indicative of elevated oxidative stress. Transcriptomics and immunoblot analyses indicated the downregulation of gene and protein expression of HIF-1α and c-Myc, key initiators of metabolic reprogramming in PDAC. (R,S′)-MNF treatment decreased HIF-1α and c-Myc expression, attenuated glycolysis, shifted fatty acid metabolism towards β-oxidation, and suppressed de novo pyrimidine biosynthesis in PANC-1 tumors. The results indicate a potential benefit of combined GPR55 antagonism and biased β2-AR agonism in PDAC therapy associated with the deprogramming of altered cellular metabolism.
Collapse
|
19
|
Janssens GE, Grevendonk L, Perez RZ, Schomakers BV, de Vogel-van den Bosch J, Geurts JMW, van Weeghel M, Schrauwen P, Houtkooper RH, Hoeks J. Healthy aging and muscle function are positively associated with NAD + abundance in humans. NATURE AGING 2022; 2:254-263. [PMID: 37118369 DOI: 10.1038/s43587-022-00174-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/12/2022] [Indexed: 04/30/2023]
Abstract
Skeletal muscle is greatly affected by aging, resulting in a loss of metabolic and physical function. However, the underlying molecular processes and how (lack of) physical activity is involved in age-related metabolic decline in muscle function in humans is largely unknown. Here, we compared, in a cross-sectional study, the muscle metabolome from young to older adults, whereby the older adults were exercise trained, had normal physical activity levels or were physically impaired. Nicotinamide adenine dinucleotide (NAD+) was one of the most prominent metabolites that was lower in older adults, in line with preclinical models. This lower level was even more pronounced in impaired older individuals, and conversely, exercise-trained older individuals had NAD+ levels that were more similar to those found in younger individuals. NAD+ abundance positively correlated with average number of steps per day and mitochondrial and muscle functioning. Our work suggests that a clear association exists between NAD+ and health status in human aging.
Collapse
Affiliation(s)
- Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Lotte Grevendonk
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- TI Food and Nutrition, Wageningen, the Netherlands
| | - Ruben Zapata Perez
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- TI Food and Nutrition, Wageningen, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
- TI Food and Nutrition, Wageningen, the Netherlands.
| |
Collapse
|
20
|
Reigle J, Secic D, Biesiada J, Wetzel C, Shamsaei B, Chu J, Zang Y, Zhang X, Talbot NJ, Bischoff ME, Zhang Y, Thakar CV, Gaitonde K, Sidana A, Bui H, Cunningham JT, Zhang Q, Schmidt LS, Linehan WM, Medvedovic M, Plas DR, Figueroa JAL, Meller J, Czyzyk-Krzeska MF. Tobacco smoking induces metabolic reprogramming of renal cell carcinoma. J Clin Invest 2021; 131:140522. [PMID: 32970633 DOI: 10.1172/jci140522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDClear cell renal cell carcinoma (ccRCC) is the most common histologically defined renal cancer. However, it is not a uniform disease and includes several genetic subtypes with different prognoses. ccRCC is also characterized by distinctive metabolic reprogramming. Tobacco smoking (TS) is an established risk factor for ccRCC, with unknown effects on tumor pathobiology.METHODSWe investigated the landscape of ccRCCs and paired normal kidney tissues using integrated transcriptomic, metabolomic, and metallomic approaches in a cohort of white males who were long-term current smokers (LTS) or were never smokers (NS).RESULTSAll 3 Omics domains consistently identified a distinct metabolic subtype of ccRCCs in LTS, characterized by activation of oxidative phosphorylation (OXPHOS) coupled with reprogramming of the malate-aspartate shuttle and metabolism of aspartate, glutamate, glutamine, and histidine. Cadmium, copper, and inorganic arsenic accumulated in LTS tumors, showing redistribution among intracellular pools, including relocation of copper into the cytochrome c oxidase complex. A gene expression signature based on the LTS metabolic subtype provided prognostic stratification of The Cancer Genome Atlas ccRCC tumors that was independent of genomic alterations.CONCLUSIONThe work identified the TS-related metabolic subtype of ccRCC with vulnerabilities that can be exploited for precision medicine approaches targeting metabolic pathways. The results provided rationale for the development of metabolic biomarkers with diagnostic and prognostic applications using evaluation of OXPHOS status. The metallomic analysis revealed the role of disrupted metal homeostasis in ccRCC, highlighting the importance of studying effects of metals from e-cigarettes and environmental exposures.FUNDINGDepartment of Defense, Veteran Administration, NIH, ACS, and University of Cincinnati Cancer Institute.
Collapse
Affiliation(s)
- James Reigle
- Department of Cancer Biology and.,Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Dina Secic
- Department of Cancer Biology and.,Agilent Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati College of Arts and Science, Cincinnati, Ohio, USA
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Collin Wetzel
- Department of Cancer Biology and.,Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati College of Arts and Science, Cincinnati, Ohio, USA
| | - Behrouz Shamsaei
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Yuanwei Zang
- Department of Cancer Biology and.,Department of Urology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiang Zhang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| | | | | | - Yongzhen Zhang
- Department of Cancer Biology and.,Department of Urology, Qilu Hospital, Shandong University, Jinan, China
| | - Charuhas V Thakar
- Division of Nephrology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Cincinnati Veteran Affairs Medical Center, Department of Veterans Affairs, Cincinnati, Ohio, USA
| | - Krishnanath Gaitonde
- Division of Nephrology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Urology, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Abhinav Sidana
- Division of Urology, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hai Bui
- Cincinnati Veteran Affairs Medical Center, Department of Veterans Affairs, Cincinnati, Ohio, USA
| | | | - Qing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, North Carolina, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.,Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mario Medvedovic
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Julio A Landero Figueroa
- Agilent Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati College of Arts and Science, Cincinnati, Ohio, USA.,Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering and Applied Sciences, Cincinnati, Ohio, USA
| | - Maria F Czyzyk-Krzeska
- Department of Cancer Biology and.,Cincinnati Veteran Affairs Medical Center, Department of Veterans Affairs, Cincinnati, Ohio, USA.,Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Peukert M, Zimmermann S, Egert B, Weinert CH, Schwarzmann T, Brüggemann DA. Sexual Dimorphism of Metabolite Profiles in Pigs Depends on the Genetic Background. Metabolites 2021; 11:261. [PMID: 33922306 PMCID: PMC8146355 DOI: 10.3390/metabo11050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
The study aimed to investigate possible systematic effects in the basic underlying variability of individual metabolomic data. In this context, the extent of gender- and genotype-dependent differences reflected in the metabolic composition of three tissues in fattening pigs was determined. The 40 pigs belonged to the genotypes PIx(LWxGL) and PIxGL with gilts and boars, respectively. Blood and tissue samples from M. longissimus dorsi and liver were directly taken at the slaughtering plant and directed to GC × GC qMS metabolite analysis. Differences were observed for various metabolite classes like amino acids, fatty acids, sugars, or organic acids. Gender-specific differences were much more pronounced than genotype-related differences, which could be due to the close genetic relation of the fattening pigs. However, the metabolic dimorphism between gilts and boars was found to be genotype-dependent, and vice versa metabolic differences between genotypes were found to be gender-dependent. Most interestingly, integration into metabolic pathways revealed different patterns for carbon (C) and nitrogen (N) usage in boars and gilts. We suppose a stronger N-recycling and increased energy metabolism in boars, whereas, in gilts, more N is presumably excreted and remaining carbon skeletons channeled into lipogenesis. Associations of metabolites to meat quality factors confirmed the applicability of metabolomics approaches for a better understanding about the impact of drivers (e.g., gender, age, breed) on physiological processes influencing meat quality. Due to the huge complexity of the drivers-traits-network, the derivation of independent biomarkers for meat quality prediction will hardly be possible.
Collapse
Affiliation(s)
- Manuela Peukert
- Department of Safety and Quality of Meat, Max Rubner-Institut, 95326 Kulmbach, Germany; (S.Z.); (D.A.B.)
| | - Sebastian Zimmermann
- Department of Safety and Quality of Meat, Max Rubner-Institut, 95326 Kulmbach, Germany; (S.Z.); (D.A.B.)
| | - Björn Egert
- Department of Quality and Safety of Fruit and Vegetables, Max Rubner-Institut, 76131 Karlsruhe, Germany; (B.E.); (C.H.W.)
| | - Christoph H. Weinert
- Department of Quality and Safety of Fruit and Vegetables, Max Rubner-Institut, 76131 Karlsruhe, Germany; (B.E.); (C.H.W.)
| | - Thomas Schwarzmann
- Staatsgut Schwarzenau, Leistungsprüfungsanstalt für Schweinezucht Schwarzenau (LPA), 97359 Schwarzenau, Germany;
| | - Dagmar A. Brüggemann
- Department of Safety and Quality of Meat, Max Rubner-Institut, 95326 Kulmbach, Germany; (S.Z.); (D.A.B.)
| |
Collapse
|
22
|
Fouesnard M, Zoppi J, Petera M, Le Gleau L, Migné C, Devime F, Durand S, Benani A, Chaffron S, Douard V, Boudry G. Dietary switch to Western diet induces hypothalamic adaptation associated with gut microbiota dysbiosis in rats. Int J Obes (Lond) 2021; 45:1271-1283. [PMID: 33714973 DOI: 10.1038/s41366-021-00796-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Early hyperphagia and hypothalamic inflammation encountered after Western diet (WD) are linked to rodent propensity to obesity. Inflammation in several brain structures has been associated with gut dysbiosis. Since gut microbiota is highly sensitive to dietary changes, we hypothesised that immediate gut microbiota adaptation to WD in rats is involved in inflammation-related hypothalamic modifications. METHODS We evaluated short-term impact of WD consumption (2 h, 1, 2 and 4 days) on hypothalamic metabolome and caecal microbiota composition and metabolome. Data integration analyses were performed to uncover potential relationships among these three datasets. Finally, changes in hypothalamic gene expression in absence of gut microbiota were evaluated in germ-free rats fed WD for 2 days. RESULTS WD quickly and profoundly affected the levels of several hypothalamic metabolites, especially oxidative stress markers. In parallel, WD consumption reduced caecal microbiota diversity, modified its composition towards pro-inflammatory profile and changed caecal metabolome. Data integration identified strong correlations between gut microbiota sub-networks, unidentified caecal metabolites and hypothalamic oxidative stress metabolites. Germ-free rats displayed reduced energy intake and no changes in redox homoeostasis machinery expression or pro-inflammatory cytokines after 2 days of WD, in contrast to conventional rats, which exhibited increased SOD2, GLRX and IL-6 mRNA levels. CONCLUSION A potentially pro-inflammatory gut microbiota and an early hypothalamic oxidative stress appear shortly after WD introduction. Tripartite data integration highlighted putative links between gut microbiota sub-networks and hypothalamic oxidative stress. Together with the absence of hypothalamic modifications in germ-free rats, this strongly suggests the involvement of the microbiota-hypothalamus axis in rat adaptation to WD introduction and in energy homoeostasis regulation.
Collapse
Affiliation(s)
| | | | - Mélanie Petera
- Clermont Auvergne University, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Léa Le Gleau
- Institut MICALIS, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Carole Migné
- Clermont Auvergne University, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Fabienne Devime
- Institut MICALIS, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Stéphanie Durand
- Clermont Auvergne University, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, Unité Mixte de Recherche 6265-Centre National de la Recherche Scientifique 13241-Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Bourgogne, Dijon, France
| | - Samuel Chaffron
- Université de Nantes, CNRS (UMR6004), LS2N, Nantes, France.,Research Federation (FR2022) Tara Oceans GO-SEE, Paris, France
| | - Véronique Douard
- Institut MICALIS, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Gaëlle Boudry
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France.
| |
Collapse
|
23
|
Krupenko NI, Sharma J, Pediaditakis P, Helke KL, Hall MS, Du X, Sumner S, Krupenko SA. Aldh1l2 knockout mouse metabolomics links the loss of the mitochondrial folate enzyme to deregulation of a lipid metabolism observed in rare human disorder. Hum Genomics 2020; 14:41. [PMID: 33168096 PMCID: PMC7654619 DOI: 10.1186/s40246-020-00291-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Mitochondrial folate enzyme ALDH1L2 (aldehyde dehydrogenase 1 family member L2) converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2 simultaneously producing NADPH. We have recently reported that the lack of the enzyme due to compound heterozygous mutations was associated with neuro-ichthyotic syndrome in a male patient. Here, we address the role of ALDH1L2 in cellular metabolism and highlight the mechanism by which the enzyme regulates lipid oxidation. Methods We generated Aldh1l2 knockout (KO) mouse model, characterized its phenotype, tissue histology, and levels of reduced folate pools and applied untargeted metabolomics to determine metabolic changes in the liver, pancreas, and plasma caused by the enzyme loss. We have also used NanoString Mouse Inflammation V2 Code Set to analyze inflammatory gene expression and evaluate the role of ALDH1L2 in the regulation of inflammatory pathways. Results Both male and female Aldh1l2 KO mice were viable and did not show an apparent phenotype. However, H&E and Oil Red O staining revealed the accumulation of lipid vesicles localized between the central veins and portal triads in the liver of Aldh1l2-/- male mice indicating abnormal lipid metabolism. The metabolomic analysis showed vastly changed metabotypes in the liver and plasma in these mice suggesting channeling of fatty acids away from β-oxidation. Specifically, drastically increased plasma acylcarnitine and acylglycine conjugates were indicative of impaired β-oxidation in the liver. Our metabolomics data further showed that mechanistically, the regulation of lipid metabolism by ALDH1L2 is linked to coenzyme A biosynthesis through the following steps. ALDH1L2 enables sufficient NADPH production in mitochondria to maintain high levels of glutathione, which in turn is required to support high levels of cysteine, the coenzyme A precursor. As the final outcome, the deregulation of lipid metabolism due to ALDH1L2 loss led to decreased ATP levels in mitochondria. Conclusions The ALDH1L2 function is important for CoA-dependent pathways including β-oxidation, TCA cycle, and bile acid biosynthesis. The role of ALDH1L2 in the lipid metabolism explains why the loss of this enzyme is associated with neuro-cutaneous diseases. On a broader scale, our study links folate metabolism to the regulation of lipid homeostasis and the energy balance in the cell. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-020-00291-3.
Collapse
Affiliation(s)
- Natalia I Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Jaspreet Sharma
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Madeline S Hall
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Xiuxia Du
- Department of Bioinformatics & Genomics, UNC Charlotte, Charlotte, NC, USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Sergey A Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA. .,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Pipino C, Shah H, Prudente S, Di Pietro N, Zeng L, Park K, Trischitta V, Pennathur S, Pandolfi A, Doria A. Association of the 1q25 Diabetes-Specific Coronary Heart Disease Locus With Alterations of the γ-Glutamyl Cycle and Increased Methylglyoxal Levels in Endothelial Cells. Diabetes 2020; 69:2206-2216. [PMID: 32651240 PMCID: PMC7506838 DOI: 10.2337/db20-0475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022]
Abstract
A chromosome 1q25 variant (rs10911021) has been associated with coronary heart disease (CHD) in type 2 diabetes. In human umbilical vein endothelial cells (HUVECs), the risk allele "C" is associated with lower expression of the adjacent gene GLUL encoding glutamine synthase, converting glutamic acid to glutamine. To further investigate the mechanisms through which this locus affects CHD risk, we measured 35 intracellular metabolites involved in glutamic acid metabolism and the γ-glutamyl cycle in 62 HUVEC strains carrying different rs10911021 genotypes. Eight metabolites were positively associated with the risk allele (17-58% increase/allele copy, P = 0.046-0.002), including five γ-glutamyl amino acids, β-citryl-glutamate, N-acetyl-aspartyl-glutamate, and ophthalmate-a marker of γ-glutamyl cycle malfunction. Consistent with these findings, the risk allele was also associated with decreased glutathione-to-glutamate ratio (-9%, P = 0.012), decreased S-lactoylglutathione (-41%, P = 0.019), and reduced detoxification of the atherogenic compound methylglyoxal (+54%, P = 0.008). GLUL downregulation by shRNA caused a 40% increase in the methylglyoxal level, which was completely prevented by glutamine supplementation. In summary, we have identified intracellular metabolic traits associated with the 1q25 risk allele in HUVECs, including impairments of the γ-glutamyl cycle and methylglyoxal detoxification. Glutamine supplementation abolishes the latter abnormality, suggesting that such treatment may prevent CHD in 1q25 risk allele carriers.
Collapse
Affiliation(s)
- Caterina Pipino
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Hetal Shah
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Sabrina Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Lixia Zeng
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Subramanian Pennathur
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Mert S, Bulutoglu B, Chu C, Dylewski M, Lin FM, Yu YM, Yarmush ML, Sheridan RL, Uygun K. Multiorgan Metabolomics and Lipidomics Provide New Insights Into Fat Infiltration in the Liver, Muscle Wasting, and Liver-Muscle Crosstalk Following Burn Injury. J Burn Care Res 2020; 42:269-287. [PMID: 32877506 DOI: 10.1093/jbcr/iraa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Burn injury mediated hypermetabolic syndrome leads to increased mortality among severe burn victims, due to liver failure and muscle wasting. Metabolic changes may persist up to 2 years following the injury. Thus, understanding the underlying mechanisms of the pathology is crucially important to develop appropriate therapeutic approaches. We present detailed metabolomic and lipidomic analyses of the liver and muscle tissues in a rat model with a 30% body surface area burn injury located at the dorsal skin. Three hundred and thirty-eight of 1587 detected metabolites and lipids in the liver and 119 of 1504 in the muscle tissue exhibited statistically significant alterations. We observed excessive accumulation of triacylglycerols, decreased levels of S-adenosylmethionine, increased levels of glutamine and xenobiotics in the liver tissue. Additionally, the levels of gluconeogenesis, glycolysis, and tricarboxylic acid cycle metabolites are generally decreased in the liver. On the other hand, burn injury muscle tissue exhibits increased levels of acyl-carnitines, alpha-hydroxyisovalerate, ophthalmate, alpha-hydroxybutyrate, and decreased levels of reduced glutathione. The results of this preliminary study provide compelling observations that liver and muscle tissues undergo distinctly different changes during hypermetabolism, possibly reflecting liver-muscle crosstalk. The liver and muscle tissues might be exacerbating each other's metabolic pathologies, via excessive utilization of certain metabolites produced by each other.
Collapse
Affiliation(s)
- Safak Mert
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Beyza Bulutoglu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christopher Chu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maggie Dylewski
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Florence M Lin
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Yong-Ming Yu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Martin L Yarmush
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Robert L Sheridan
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Korkut Uygun
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
26
|
γ-Glutamylcysteine synthetase and γ-glutamyl transferase as differential enzymatic sources of γ-glutamylpeptides in mice. Amino Acids 2020; 52:555-566. [PMID: 32170467 DOI: 10.1007/s00726-020-02835-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Some γ-glutamylpeptides in blood plasma are putative biomarkers for pathological conditions of the liver. γ-Glutamyltransferase (GGT) and γ-glutamylcysteine synthetase (γ-GCS) are two such potential enzymes that are responsible for the production of γ-glutamylpeptides. GGT produces γ-glutamylpeptides by transferring the γ-glutamyl moiety from glutathione to an amino acid or a peptide. γ-GCS normally catalyzes the production of γ-glutamylcysteine from glutamate and cysteine in the glutathione-synthesizing reaction, but other amino acids can also serve as an acceptor of a γ-glutamyl group, thus resulting in the formation of a variety of γ-glutamylpeptides. Based on liquid chromatography-mass spectrometry analyses, we observed differences in the distribution of γ-glutamylpeptides between the liver and kidney and were able to measure the activities of γ-GCS as well as the GGT reactions by quantifying the resulting γ-glutamylpeptides. The enzymatic characterization of γ-GCS in liver homogenates indicated that several γ-glutamylpeptides including γ-glutamyltaurine are actually produced. Cys showed the lowest Km value (0.06 mM) while other amino acids had much higher Km values (ranging from 21 to 1800 mM). The moderate Km values for these amino acids suggest that they were not the preferred amino acids in this conversion but were utilized as acceptor substrates for the production of the corresponding γ-glutamylpeptides by the γ-GCS reaction under Cys-deficient conditions. Thus, the production of these γ-glutamylpeptides by γ-GCS is directly correlated with a low Cys content, suggesting that their measurement in blood plasma could be useful for predicting the presymptomatic disease state of the liver with a defect in GSH redox balance.
Collapse
|
27
|
Multi-Omics Integration Reveals Short and Long-Term Effects of Gestational Hypoxia on the Heart Development. Cells 2019; 8:cells8121608. [PMID: 31835778 PMCID: PMC6952773 DOI: 10.3390/cells8121608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Antenatal hypoxia caused epigenetic reprogramming of methylome and transcriptome in the developing heart and increased the risk of heart disease later in life. Herein, we investigated the impact of gestational hypoxia in proteome and metabolome in the hearts of fetus and adult offspring. Pregnant rats were treated with normoxia or hypoxia (10.5% O2) from day 15 to 21 of gestation. Hearts were isolated from near-term fetuses and 5 month-old offspring, and proteomics and metabolomics profiling was determined. The data demonstrated that antenatal hypoxia altered proteomics and metabolomics profiling in the heart, impacting energy metabolism, lipid metabolism, oxidative stress, and inflammation-related pathways in a developmental and sex dependent manner. Of importance, integrating multi-omics data of transcriptomics, proteomics, and metabolomics profiling revealed reprogramming of the mitochondrion, especially in two clusters: (a) the cluster associated with "mitochondrial translation"/"aminoacyl t-RNA biosynthesis"/"one-carbon pool of folate"/"DNA methylation"; and (b) the cluster with "mitochondrion"/"TCA cycle and respiratory electron transfer"/"acyl-CoA dehydrogenase"/"oxidative phosphorylation"/"complex I"/"troponin myosin cardiac complex". Our study provides a powerful means of multi-omics data integration and reveals new insights into phenotypic reprogramming of the mitochondrion in the developing heart by fetal hypoxia, contributing to an increase in the heart vulnerability to disease later in life.
Collapse
|
28
|
Influence of Dietary Ingredients on Lean Body Percent, Uremic Toxin Concentrations, and Kidney Function in Senior-Adult Cats. Metabolites 2019; 9:metabo9100238. [PMID: 31635090 PMCID: PMC6836002 DOI: 10.3390/metabo9100238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
The goal of this study was to determine if modification of currently available maintenance foods with alternative ingredients, botanicals (fruit and vegetables), and increased amounts of functional lipids (fish oil) would delay the age-associated decline in glomerular filtration rate (GFR) and lean body mass (LBM) in senior-adult cats. Forty-four healthy cats (mean age, 12.2 years; range 10.7 to 14.0 years) were fed one of three foods (n = 14 or 15 per group) for six months: control food with 32.6% protein (as fed), or control food supplemented with increasing amounts of functional food bioactives: fish oil, fruit and vegetables, different protein sources, and <32.0% protein [functional foods one (FF1) and two (FF2)]. Senior-adult cats were compared before and after the feeding trial with 20 young-adult cats (mean age, 3.5 years; range 2.1 to 4.9 years). Compared with younger cats, older cats had decreased lean-body percent and serum albumin concentrations. Feeding FF1 and FF2 for six months increased lean-body percent, maintained serum albumin concentrations, increased GFR, decreased serum symmetric dimethylarginine (SDMA) concentrations, and decreased concentrations of the uremic toxin 3-indoxyl sulfate. These dietary changes may assist in offsetting sarcopenia and the chronic inflammation associated with aging in senior-adult cats.
Collapse
|
29
|
Analysis of glutathione S-transferase and cytochrome P450 gene polymorphism in recipients of dose-adjusted busulfan-cyclophosphamide conditioning. Int J Hematol 2019; 111:84-92. [PMID: 31555969 DOI: 10.1007/s12185-019-02741-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Sporadic incidence of veno-occlusive disease (VOD) continues to occur, despite achievement of recommended busulfan (BU) concentrations after real-time BU dose adjustment. To explore the potential influence of glutathione S-transferase (GST) and cytochrome P450 (CYP) genotypes on plasma BU concentration, subsequent VOD, and transplant outcome, we assessed the polymorphisms of multiple GST and CYP genes. Fifty-five patients were included (median age 38 years; range 21-67). Of these, 49 received dose-adjusted BU/CY therapy. Twenty-six patients received transplants from human leukocyte antigen-identical siblings, 26 from unrelated donors. The GSTA1*A/*A genotype was significantly associated with lower BU first-dose area under curve (AUC1st). We found that patients with higher AUC1st showed a significantly higher serum total bilirubin during the first month after transplantation, but this was not necessarily associated with subsequent development of VOD. We further analyzed a possible association of GST and CYP polymorphisms and VOD development, and found none of the polymorphisms investigated was associated with VOD incidence. Regarding transplant outcomes, GSTM1-positive patients showed lower relapse rates and better overall survival in multivariate analyses. These results suggest that a GSTM1-positive genotype in patients receiving BU/CY conditioning protects against relapse of hematological malignancies after allogeneic hematopoietic stem cell transplantation.
Collapse
|
30
|
The effect of short-term methionine restriction on glutathione synthetic capacity and antioxidant responses at the whole tissue and mitochondrial level in the rat liver. Exp Gerontol 2019; 127:110712. [PMID: 31472257 DOI: 10.1016/j.exger.2019.110712] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022]
Abstract
Dietary methionine restriction (MR) where methionine is the sole source of sulfur amino acid increases lifespan in diverse species. Methionine restricted rodents experience a decrease in glutathione (GSH), a major antioxidant, in several tissues, which is paradoxical to longevity interventions because tissues with low GSH might experience more oxidative damage. Liver plays a key role in GSH synthesis and here we examined how MR influences GSH metabolism in the liver. We also hypothesised that low GSH might be subsidized by compensatory pathway(s) in the liver. To investigate GSH synthesis and antioxidant responses, Fischer-344 rats were given either a MR diet or a control diet for 8 weeks. Based on γ-glutamylcysteine synthetase activity, GSH synthetic capacity did not respond to low dietary methionine availability. Tissue level protein and lipid oxidation markers do not support elevated oxidative damage, despite low GSH availability. Whole tissue and mitochondrial level responses to MR differed. Specifically, the activity of glutathione reductase and thioredoxin reductase increase in whole liver tissue which might offset the effects of declined GSH availability whereas mitochondrial GSH levels were unperturbed by MR. Moreover, enhanced proton leak in liver mitochondria by MR (4 week) presumably diminishes ROS production. Taken together, we suggest that the effect of low GSH in liver tissue is subsidized, at least in part, by increased antioxidant activity and possibly by enhanced mitochondrial proton leak.
Collapse
|
31
|
Kobayashi S, Tokairin Y, Miyakoshi T, Saito T, Nagaoka K, Ikeda Y, Fujii J, Konno H. Quantitative analysis of γ-glutamylpeptides by liquid chromatography-mass spectrometry and application for γ-glutamyltransferase assays. Anal Biochem 2019; 578:13-22. [PMID: 31059677 DOI: 10.1016/j.ab.2019.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/11/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
γ-Glutamylpeptides are largely produced via the action of γ-glutamylcysteine synthetase or γ-glutamyltransferase (GGT). GGT transfers the γ-glutamyl moiety from glutathione (GSH) and other γ-glutamyl compounds to amino acids, peptides, or water. A conventional GGT assay employs a synthetic donor substrate, which facilitates monitoring cleavage activity by means of colorimetric analyses but provides no information on the resulting γ-glutamylpeptides. In this study, we report on the use of liquid chromatography-mass spectrometry (LC-MS) to quantitatively measure the levels of 21 γ-glutamylpeptides including GSH and 45 amino acids, including Cys. Authentic compounds consisting of 17 chemically synthesized and commercially available 4 γ-glutamylpeptides were adopted as references. We applied this method to the characterization of γ-glutamylpeptides in blood plasma and livers of mice that had been treated with an overdose of acetaminophen. The established LC-MS-based assay was found to be useful for characterizing the γ-glutamylation reaction under in vivo and in vitro conditions and was clearly helpful for understanding the physiological significance of the production of γ-glutamylpeptides.
Collapse
Affiliation(s)
- Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan
| | - Yoshinori Tokairin
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Takeru Miyakoshi
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Takuya Saito
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Keita Nagaoka
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| |
Collapse
|
32
|
Lu X, Li Y, Xia B, Bai Y, Zhang K, Zhang X, Xie H, Sun F, Hou Y, Li K. Selection of small plasma peptides for the auxiliary diagnosis and prognosis of epithelial ovarian cancer by using UPLC/MS‐based nontargeted and targeted analyses. Int J Cancer 2019; 144:2033-2042. [DOI: 10.1002/ijc.31807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/14/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Xin Lu
- School of Life Science and TechnologyHarbin Institute of Technology Harbin China
| | - Yiqun Li
- School of Life Science and TechnologyHarbin Institute of Technology Harbin China
| | - Bairong Xia
- Department of GynecologyThe Affiliated Tumor Hospital of Harbin Medical University Harbin China
| | - Yunfan Bai
- School of Life Science and TechnologyHarbin Institute of Technology Harbin China
| | - Kun Zhang
- School of Life Science and TechnologyHarbin Institute of Technology Harbin China
| | - Xiaohan Zhang
- School of Life Science and TechnologyHarbin Institute of Technology Harbin China
| | - Hongyu Xie
- Department of Epidemiology and BiostatisticsSchool of Public Health, Harbin Medical University Harbin China
| | - Fengyu Sun
- Department of CardiologyThe First Affiliated Hospital of Harbin Medical University Harbin China
| | - Yan Hou
- Department of Epidemiology and BiostatisticsSchool of Public Health, Harbin Medical University Harbin China
| | - Kang Li
- Department of Epidemiology and BiostatisticsSchool of Public Health, Harbin Medical University Harbin China
| |
Collapse
|
33
|
DiBattista A, McIntosh N, Lamoureux M, Al-Dirbashi OY, Chakraborty P, Britz-McKibbin P. Metabolic Signatures of Cystic Fibrosis Identified in Dried Blood Spots For Newborn Screening Without Carrier Identification. J Proteome Res 2019; 18:841-854. [PMID: 30507207 DOI: 10.1021/acs.jproteome.8b00351] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystic fibrosis (CF) is a complex multiorgan disorder that is among the most common fatal genetic diseases benefiting from therapeutic interventions early in life. Newborn screening (NBS) for presymptomatic detection of CF currently relies on a two-stage immunoreactive trypsinogen (IRT) and cystic fibrosis transmembrane conductance regulator (CFTR) mutation panel algorithm that is sensitive but not specific for identifying affected neonates with a low positive predictive value. For the first time, we report the discovery of a panel of CF-specific metabolites from a single 3.2 mm diameter dried blood spot (DBS) punch when using multisegment injection-capillary electrophoresis-mass spectrometry (MS) as a high-throughput platform for nontargeted metabolite profiling from volume-restricted/biobanked specimens with quality control. This retrospective case-control study design identified 32 metabolites, including a series of N-glycated amino acids, oxidized glutathione disulfide, and nicotinamide that were differentially expressed in normal birth weight CF neonates without meconium ileus ( n = 36) as compared to gestational age/sex-matched screen-negative controls ( n = 44) after a false discovery rate adjustment ( q < 0.05). Also, 16 metabolites from DBS extracts allowed for discrimination of true CF cases from presumptive screen-positive carriers with one identified CFTR mutation and transient neonatal hypertrypsinogenemic neonates ( n = 72), who were later confirmed as unaffected due to a low sweat chloride (<29 mM) test result. Importantly, six CF-specific biomarker candidates satisfying a Bonferroni adjustment ( p < 7.25 × 10-5) from three independent batches of DBS specimens included several amino acids depleted in circulation (Tyr, Ser, Thr, Pro, Gly) likely reflecting protein maldigestion/malabsorption. Additionally, CF neonates had lower ophthalmic acid as an indicator of oxidative stress due to impaired glutathione efflux from exocrine/epithelial tissue and elevation of an unknown trivalent peptide that was directly correlated with IRT (ρ = 0.332, p = 4.55 × 10-4). Structural elucidation of unknown metabolites was performed by high-resolution MS/MS, whereas biomarker validation was realized when comparing a subset of metabolites from matching neonatal DBS specimens independently analyzed by direct infusion-MS/MS at an accredited NBS facility. This work sheds new light into the metabolic phenotype of CF early in life, which is required for better functional understanding of CFTR mutations of unknown clinical consequence and the development of more accurate yet cost-effective strategies for CF screening.
Collapse
Affiliation(s)
- Alicia DiBattista
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton L8S 4M1 , Canada
| | | | | | - Osama Y Al-Dirbashi
- College of Medicine and Health Sciences , United Arab Emirates University , Al Ain 15551 , United Arab Emirates
| | | | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton L8S 4M1 , Canada
| |
Collapse
|
34
|
Navy Beans Impact the Stool Metabolome and Metabolic Pathways for Colon Health in Cancer Survivors. Nutrients 2018; 11:nu11010028. [PMID: 30583518 PMCID: PMC6356708 DOI: 10.3390/nu11010028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States and emerging evidence supports that increased consumption of legumes, such as navy beans, can reduce risk. Navy bean consumption was previously shown to modulate host and microbiome metabolism, and this investigation was performed to assess the impact on the human stool metabolome, which includes the presence of navy bean metabolites. This 4-week, randomized-controlled trial with overweight and obese CRC survivors involved consumption of 1 meal and 1 snack daily. The intervention contained 35 g of cooked navy bean or macronutrient matched meals and snacks with 0 g of navy beans for the control group (n = 18). There were 30 statistically significant metabolite differences in the stool of participants that consumed navy bean at day 28 compared to the participants’ baseline (p ≤ 0.05) and 26 significantly different metabolites when compared to the control group. Of the 560 total metabolites identified from the cooked navy beans, there were 237 possible navy bean-derived metabolites that were identified in the stool of participants consuming navy beans, such as N-methylpipecolate, 2-aminoadipate, piperidine, and vanillate. The microbial metabolism of amino acids and fatty acids were also identified in stool after 4 weeks of navy bean intake including cadaverine, hydantoin-5 propionic acid, 4-hydroxyphenylacetate, and caprylate. The stool relative abundance of ophthalmate increased 5.25-fold for navy bean consumers that can indicate glutathione regulation, and involving cancer control mechanisms such as detoxification of xenobiotics, antioxidant defense, proliferation, and apoptosis. Metabolic pathways involving lysine, and phytochemicals were also modulated by navy bean intake in CRC survivors. These metabolites and metabolic pathways represent an acute response to increased navy bean intake, which merit further investigation for improving colonic health after long-term consumption.
Collapse
|
35
|
Jönsson TJ, Schäfer HL, Herling AW, Brönstrup M. A metabolome-wide characterization of the diabetic phenotype in ZDF rats and its reversal by pioglitazone. PLoS One 2018; 13:e0207210. [PMID: 30481177 PMCID: PMC6258476 DOI: 10.1371/journal.pone.0207210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex metabolic disease associated with alterations in glucose, lipid and protein metabolism. In order to characterize the biochemical phenotype of the Zucker diabetic fatty (ZDF) rat, the most common animal model for the study of T2D, and the impact of the insulin sensitizer pioglitazone, a global, mass spectrometry-based analysis of the metabolome was conducted. Overall, 420 metabolites in serum, 443 in the liver and 603 in the intestine were identified at study end. In comparison to two control groups, obese diabetic ZDF rats showed characteristic metabolic signatures that included hyperglycemia, elevated β-oxidation, dyslipidemia—featured by an increase in saturated and monounsaturated fatty acids and a decrease of medium chain and of polyunsaturated fatty acids in serum–and decreased amino acid levels, consistent with their utilization in hepatic gluconeogenesis. A 13-week treatment with the PPARγ agonist pioglitazone reversed most of these signatures: Pioglitazone improved glycemic control and the fatty acid profile, elevated amino acid levels in the liver, but decreased branched chain amino acids in serum. The hitherto most comprehensive metabolic profiling study identified a biochemical blueprint for the ZDF diabetic model and captured the impact of genetic, nutritional and pharmacological perturbations. The in-depth characterization on the molecular level deepens the understanding and further validates the ZDF rat as a suitable preclinical model of diabetes in humans.
Collapse
Affiliation(s)
| | | | | | - Mark Brönstrup
- Helmholtz Centre for Infection Research and German Center for Infection Research (DZIF), Braunschweig, Germany
- * E-mail:
| |
Collapse
|
36
|
Zhang ZY, Marrachelli VG, Yang WY, Trenson S, Huang QF, Wei FF, Thijs L, Van Keer J, Monleon D, Verhamme P, Voigt JU, Kuznetsova T, Redón J, Staessen JA. Diastolic left ventricular function in relation to circulating metabolic biomarkers in a population study. Eur J Prev Cardiol 2018; 26:22-32. [DOI: 10.1177/2047487318797395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aims We studied the association of circulating metabolic biomarkers with asymptomatic left ventricular diastolic dysfunction, a risk-carrying condition that affects 25% of the population. Methods and results In 570 randomly recruited people, we assessed in 2005–2010 and in 2009–2013 the multivariable-adjusted correlations of e’ (early left ventricular relaxation) and E/e’ (left ventricular filling pressure) measured by Doppler echocardiography with 43 serum metabolites, quantified by magnetic resonance spectroscopy. In 2009–2013, e’ cross-sectionally increased (Bonferroni corrected p ≤ 0.016) with the branched-chain amino acid valine (per one standard deviation increment, +0.274 cm/s (95% confidence interval, 0.057–0.491)) and glucose+the amino acid (AA) taurine (+0.258 cm/s (0.067–0.481)), while E/e’ decreased ( p ≤ 0.017) with valine (–0.264 (–0.496– –0.031)). The risk of developing left ventricular diastolic dysfunction over follow-up (9.4%) was inversely associated ( p ≤ 0.0059) with baseline glucose+amino acid taurine (odds ratio, 0.64 (0.44–0.94). In partial least squares analyses of all the baseline and follow-up data, markers consistently associated with better diastolic left ventricular function included the amino acids 2-aminobutyrate and 4-hydroxybutyrate and the branched-chain amino acids leucine and valine, and those consistently associated with worse diastolic left ventricular function glucose+amino acid glutamine and fatty acid pentanoate. Branched-chain amino acid metabolism (–log10 p = 12.6) and aminoacyl-tRNA biosynthesis (9.9) were among the top metabolic pathways associated with left ventricular diastolic dysfunction. Conclusion The associations of left ventricular diastolic dysfunction with circulating amino acids and branched-chain amino acids were consistent over a five-year interval and suggested a key role of branched-chain amino acid metabolism and aminoacyl-tRNA biosynthesis in maintaining diastolic left ventricular function.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Belgium
- Department of Cardiology, Shanghai General Hospital, China
| | - Vannina G Marrachelli
- Metabolomic and Molecular Image Laboratory, Fundación Investigatión Clínico de Valencia (INCLIVA), Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Wen-Yi Yang
- Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Belgium
- Department of Cardiology, Shanghai General Hospital, China
| | | | - Qi-Fang Huang
- Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Belgium
| | - Fang-Fei Wei
- Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Belgium
| | - Lutgarde Thijs
- Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Belgium
| | - Jan Van Keer
- Research Unit Cardiology, University of Leuven, Belgium
| | - Daniel Monleon
- Metabolomic and Molecular Image Laboratory, Fundación Investigatión Clínico de Valencia (INCLIVA), Spain
| | - Peter Verhamme
- Centre for Molecular and Vascular Biology, University of Leuven, Belgium
| | | | - Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Belgium
| | - Josep Redón
- Metabolomic and Molecular Image Laboratory, Fundación Investigatión Clínico de Valencia (INCLIVA), Spain
- Hypertension Unit, University of Valencia, Spain
- Centro de Investigación Biomédica de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Ministerio de Ciencia e Innovación, Spain
- Instituto de Salud Carlos III, Spain
| | - Jan A Staessen
- Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Belgium
- Cardiovascular Research Institute (CARIM), Maastricht University, The Netherlands
| |
Collapse
|
37
|
Endo-Tsukude C, Sasaki JI, Saeki S, Iwamoto N, Inaba M, Ushijima S, Kishi H, Fujii S, Semba H, Kashiwabara K, Tsubata Y, Hayashi M, Kai Y, Saito H, Isobe T, Kohrogi H, Hamada A. Population Pharmacokinetics and Adverse Events of Erlotinib in Japanese Patients with Non-small-cell Lung Cancer: Impact of Genetic Polymorphisms in Metabolizing Enzymes and Transporters. Biol Pharm Bull 2018; 41:47-56. [PMID: 29311482 DOI: 10.1248/bpb.b17-00521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Determinants of interindividual variability in erlotinib pharmacokinetics (PK) and adverse events remain to be elucidated. This study with 50 Japanese non-small-cell lung cancer patients treated with oral erlotinib at a standard dose of 150 mg aimed to investigate whether genetic polymorphisms affect erlotinib PK and adverse events. Single nucleotide polymorphisms (SNPs) in genes encoding metabolizing enzymes (CYP1A1, CYP1A2, CYP2D6, CYP3A4, CYP3A5, UGT1A1, UGT2B7, GSTM1, and GSTT1) or efflux transporters (ABCB1, and ABCG2) were analyzed as covariates in a population PK model. The ABCB1 1236C>T (rs1128503) polymorphism, not ABCB1*2 haplotype (1236TT-2677TT-3455TT, rs1128503 TT-rs2032582 TT-rs1045642 TT), was a significant covariate for the apparent clearance (CL/F), with the TT genotype showing a 29.4% decrease in CL/F as compared with the CC and the CT genotypes. A marginally higher incidence of adverse events (mainly skin rash) was observed in the TT genotype group; however, patients with high plasma erlotinib exposure did not always experience skin rash. None of the other SNPs affected PK or adverse events. The ABCB1 genotype is a potential predictor for erlotinib adverse events. Erlotinib might be used with careful monitoring of adverse events in patients with ABCB1 polymorphic variants.
Collapse
Affiliation(s)
- Chihiro Endo-Tsukude
- Department of Medical Oncology and Translational Research, Graduate School of Pharmaceutical Sciences, Kumamoto University.,National Cancer Center Research Institute.,Chugai Pharmaceutical Co., Ltd
| | | | | | | | | | | | | | | | | | | | | | | | - Yuki Kai
- Department of Medical Oncology and Translational Research, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Hideyuki Saito
- Department of Medical Oncology and Translational Research, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Kumamoto University Hospital
| | | | - Hirotsugu Kohrogi
- Department of Medical Oncology and Translational Research, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Akinobu Hamada
- Department of Medical Oncology and Translational Research, Graduate School of Pharmaceutical Sciences, Kumamoto University.,National Cancer Center Research Institute
| |
Collapse
|
38
|
Servillo L, Castaldo D, Giovane A, Casale R, D'Onofrio N, Cautela D, Balestrieri ML. Ophthalmic acid is a marker of oxidative stress in plants as in animals. Biochim Biophys Acta Gen Subj 2018; 1862:991-998. [DOI: 10.1016/j.bbagen.2018.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 01/17/2023]
|
39
|
Altered gene expression and metabolism in fetal umbilical cord mesenchymal stem cells correspond with differences in 5-month-old infant adiposity gain. Sci Rep 2017; 7:18095. [PMID: 29273781 PMCID: PMC5741772 DOI: 10.1038/s41598-017-17588-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
The intrauterine period is a critical time wherein developmental exposure can influence risk for chronic disease including childhood obesity. Using umbilical cord-derived mesenchymal stem cells (uMSC) from offspring born to normal-weight and obese mothers, we tested the hypothesis that changes in infant body composition over the first 5 months of life correspond with differences in cellular metabolism and transcriptomic profiles at birth. Higher long-chain acylcarnitine concentrations, lipid transport gene expression, and indicators of oxidative stress in uMSC-adipocytes were related to higher adiposity at 5 months of age. In uMSC-myocytes, lower amino acid concentrations and global differential gene expression for myocyte growth, amino acid biosynthesis, and oxidative stress were related to lower infant percent fat-free mass at 5 months of age, particularly in offspring of obese mothers. This is the first evidence of human infant adipocyte- or myocyte-related alterations in cellular metabolic pathways that correspond with increased adiposity and lower fat-free mass in early infancy. These pathways might reflect the effects of an adverse maternal metabolic environment on the fetal metabolome and genome. Our findings suggest that programmed differences in infant stem cell metabolism correspond with differences in body composition in early life, a known contributor to obesity risk.
Collapse
|
40
|
Lee J, Kang E, Kobayashi S, Homma T, Sato H, Seo H, Fujii J. The viability of primary hepatocytes is maintained under a low cysteine-glutathione redox state with a marked elevation in ophthalmic acid production. Exp Cell Res 2017; 361:178-191. [DOI: 10.1016/j.yexcr.2017.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022]
|
41
|
Blaber EA, Pecaut MJ, Jonscher KR. Spaceflight Activates Autophagy Programs and the Proteasome in Mouse Liver. Int J Mol Sci 2017; 18:ijms18102062. [PMID: 28953266 PMCID: PMC5666744 DOI: 10.3390/ijms18102062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
Increased oxidative stress is an unavoidable consequence of exposure to the space environment. Our previous studies showed that mice exposed to space for 13.5 days had decreased glutathione levels, suggesting impairments in oxidative defense. Here we performed unbiased, unsupervised and integrated multi-‘omic analyses of metabolomic and transcriptomic datasets from mice flown aboard the Space Shuttle Atlantis. Enrichment analyses of metabolite and gene sets showed significant changes in osmolyte concentrations and pathways related to glycerophospholipid and sphingolipid metabolism, likely consequences of relative dehydration of the spaceflight mice. However, we also found increased enrichment of aminoacyl-tRNA biosynthesis and purine metabolic pathways, concomitant with enrichment of genes associated with autophagy and the ubiquitin-proteasome. When taken together with a downregulation in nuclear factor (erythroid-derived 2)-like 2-mediated signaling, our analyses suggest that decreased hepatic oxidative defense may lead to aberrant tRNA post-translational processing, induction of degradation programs and senescence-associated mitochondrial dysfunction in response to the spaceflight environment.
Collapse
Affiliation(s)
- Elizabeth A Blaber
- Universities Space Research Association, Mountain View, CA 94040, USA.
- NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Karen R Jonscher
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
42
|
Kobayashi S, Lee J, Takao T, Fujii J. Increased ophthalmic acid production is supported by amino acid catabolism under fasting conditions in mice. Biochem Biophys Res Commun 2017; 491:649-655. [DOI: 10.1016/j.bbrc.2017.07.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 01/18/2023]
|
43
|
Servillo L, D'Onofrio N, Casale R, Cautela D, Giovane A, Castaldo D, Balestrieri ML. Ergothioneine products derived by superoxide oxidation in endothelial cells exposed to high-glucose. Free Radic Biol Med 2017; 108:8-18. [PMID: 28300670 DOI: 10.1016/j.freeradbiomed.2017.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 11/24/2022]
Abstract
Ergothioneine (Egt), 2-mercapto-L-histidine betaine (ESH), is a dietary component acting as antioxidant and cytoprotectant. In vitro studies demonstrated that Egt, a powerful scavenger of hydroxyl radicals, superoxide anion, hypochlorous acid and peroxynitrite, protects vascular function against oxidative damages, thus preventing endothelial dysfunction. In order to delve the peculiar oxidative behavior of Egt, firstly identified in cell free-systems, experiments were designed to identify the Egt oxidation products when endothelial cells (EC) benefit of its protection against high-glucose (hGluc). HPLC-ESI-MS/MS analyses revealed a decrease in the intracellular GSH levels and an increase in the ophthalmic acid (OPH) levels during hGluc treatment. Interestingly, in the presence of Egt, the decrease of the GSH levels was lower than in cells treated with hGluc alone, and this effect was paralleled by lower OPH levels. Egt was also effective in reducing the cytotoxicity of H2O2 and paraquat (PQT), an inducer of superoxide anion production, showing a similar time-dependent pattern of GSH and OPH levels, although with peaks occurring at different times. Importantly, Egt oxidation generated not only hercynine (EH) but also the sulfonic acid derivative (ESO3H) whose amounts were dependent on the oxidative stress employed. Furthermore, cell-free experiments confirmed the formation of both EH and ESO3H when Egt was reacted with superoxide anion. In summary, these data, by identifying the EH and ESO3H formation in EC exposed to hGluc, highlight the cellular antioxidant properties of Egt, whose peculiar redox behavior makes it an attractive candidate for the prevention of oxidative stress-associated endothelial dysfunction during hyperglycemia.
Collapse
Affiliation(s)
- Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosario Casale
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi, Azienda Speciale della Camera di Commercio di Reggio Calabria, Reggio Calabria, Italy
| | - Alfonso Giovane
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Domenico Castaldo
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi, Azienda Speciale della Camera di Commercio di Reggio Calabria, Reggio Calabria, Italy; Ministero dello Sviluppo Economico, MiSE, Roma, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
44
|
Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism? PLoS One 2017; 12:e0174174. [PMID: 28542224 PMCID: PMC5443495 DOI: 10.1371/journal.pone.0174174] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/04/2017] [Indexed: 12/22/2022] Open
Abstract
The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA’s Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function.
Collapse
|
45
|
Ghosh S, Forney LA, Wanders D, Stone KP, Gettys TW. An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice. PLoS One 2017; 12:e0177513. [PMID: 28520765 PMCID: PMC5433721 DOI: 10.1371/journal.pone.0177513] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/29/2017] [Indexed: 12/12/2022] Open
Abstract
Dietary methionine restriction (MR) produces a coordinated series of transcriptional responses in peripheral tissues that limit fat accretion, remodel lipid metabolism in liver and adipose tissue, and improve overall insulin sensitivity. Hepatic sensing of reduced methionine leads to induction and release of fibroblast growth factor 21 (FGF21), which acts centrally to increase sympathetic tone and activate thermogenesis in adipose tissue. FGF21 also has direct effects in adipose to enhance glucose uptake and oxidation. However, an understanding of how the liver senses and translates reduced dietary methionine into these transcriptional programs remains elusive. A comprehensive systems biology approach integrating transcriptomic and metabolomic readouts in MR-treated mice confirmed that three interconnected mechanisms (fatty acid transport and oxidation, tricarboxylic acid cycle, and oxidative phosphorylation) were activated in MR-treated inguinal adipose tissue. In contrast, the effects of MR in liver involved up-regulation of anti-oxidant responses driven by the nuclear factor, erythroid 2 like 2 transcription factor, NFE2L2. Metabolomic analysis provided evidence for redox imbalance, stemming from large reductions in the master anti-oxidant molecule glutathione coupled with disproportionate increases in ophthalmate and its precursors, glutamate and 2-aminobutyrate. Thus, cysteine and its downstream product, glutathione, emerge as key early hepatic signaling molecules linking dietary MR to its metabolic phenotype.
Collapse
Affiliation(s)
- Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States of America
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, United States of America
- Program in Cardiovascular & Metabolic Disorders and Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore
| | - Laura A. Forney
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, United States of America
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, United States of America
| | - Kirsten P. Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, United States of America
| | - Thomas W. Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, United States of America
| |
Collapse
|
46
|
Abstract
Systematic reviews, pioneered in the clinical field, provide a transparent, methodologically rigorous and reproducible means of summarizing the available evidence on a precisely framed research question. Having matured to a well-established approach in many research fields, systematic reviews are receiving increasing attention as a potential tool for answering toxicological questions. In the larger framework of evidence-based toxicology, the advantages and obstacles of, as well as the approaches for, adapting and adopting systematic reviews to toxicology are still being explored. To provide the toxicology community with a starting point for conducting or understanding systematic reviews, we herein summarized available guidance documents from various fields of application. We have elaborated on the systematic review process by breaking it down into ten steps, starting with planning the project, framing the question, and writing and publishing the protocol, and concluding with interpretation and reporting. In addition, we have identified the specific methodological challenges of toxicological questions and have summarized how these can be addressed. Ultimately, this primer is intended to stimulate scientific discussions of the identified issues to fuel the development of toxicology-specific methodology and to encourage the application of systematic review methodology to toxicological issues.
Collapse
|
47
|
Remø SC, Hevrøy EM, Breck O, Olsvik PA, Waagbø R. Lens metabolomic profiling as a tool to understand cataractogenesis in Atlantic salmon and rainbow trout reared at optimum and high temperature. PLoS One 2017; 12:e0175491. [PMID: 28419112 PMCID: PMC5395160 DOI: 10.1371/journal.pone.0175491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
Periods of high or fluctuating seawater temperatures result in several physiological challenges for farmed salmonids, including an increased prevalence and severity of cataracts. The aim of the present study was to compare cataractogenesis in Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss) reared at two temperatures, and investigate whether temperature influences lens metabolism and cataract development. Atlantic salmon (101±2 g) and rainbow trout (125±3 g) were reared in seawater at either 13°C (optimum for growth) or 19°C during the 35 days experiment (n = 4 tanks for each treatment). At the end of the experiment, the prevalence of cataracts was nearly 100% for Atlantic salmon compared to ~50% for rainbow trout, irrespective of temperature. The severity of the cataracts, as evaluated by slit-lamp inspection of the lens, was almost three fold higher in Atlantic salmon compared to rainbow trout. The global metabolic profile revealed differences in lens composition and metabolism between the two species, which may explain the observed differences in cataract susceptibility between the species. The largest differences were seen in the metabolism of amino acids, especially the histidine metabolism, and this was confirmed by a separate quantitative analysis. The global metabolic profile showed temperature dependent differences in the lens carbohydrate metabolism, osmoregulation and redox homeostasis. The results from the present study give new insight in cataractogenesis in Atlantic salmon and rainbow trout reared at high temperature, in addition to identifying metabolic markers for cataract development.
Collapse
Affiliation(s)
- Sofie Charlotte Remø
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
- * E-mail:
| | - Ernst Morten Hevrøy
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | | | - Pål Asgeir Olsvik
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Rune Waagbø
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| |
Collapse
|
48
|
Ablation of β,β-carotene-9',10'-oxygenase 2 remodels the hypothalamic metabolome leading to metabolic disorders in mice. J Nutr Biochem 2017; 46:74-82. [PMID: 28482236 DOI: 10.1016/j.jnutbio.2017.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 01/07/2023]
Abstract
β,β-Carotene-9',10'-oxygenase 2 (BCO2) is a protein localized to the inner membrane of mitochondria. It was initially discovered as an enzyme that catalyzes the asymmetric cleavage of carotenoids. Systemic depletion of BCO2 causes increased food intake and impaired hepatic lipid metabolism in mice. The aim of this current study was to determine the extent to which BCO2 exerts its role in hypothalamic nutrient metabolism and feeding behavior through remodeling the hypothalamic metabolome in mice. Male BCO2 knockout (KO) and the isogenic wild-type 129S6 (WT) mice at 6 weeks of age were used for metabolic and cytokine and hypothalamic metabolomics and biochemical analysis. Compared to the WT, BCO2 KO mice exhibited widespread disruptions in metabolism and metabolite homeostasis, an increase in fasting blood glucose, a decrease in circulating glucagon and leptin, an elevation of plasma interleukin 1 beta and tumor necrosis factor alpha, and impaired AMP-activated protein kinase signaling. The global hypothalamic metabolomic results revealed that depletion of BCO2 resulted in striking metabolic changes, including suppression of long-chain fatty acids transport into mitochondria, inhibition of the metabolism of dipeptides and sulfur-containing amino acids, and stimulation of local oxidative stress and inflammation in the hypothalamus of BCO2 KO mice. These findings suggest that BCO2 regulates hypothalamic mitochondrial function, nutrient metabolism, and local oxidative stress and inflammation. Complex interplay between the hormone signaling and impaired lipid and glucose metabolism could account for initiation of oxidative stress, inflammation and eventual metabolic disorders in BCO2 KO mice.
Collapse
|
49
|
Vemula H, Kitase Y, Ayon NJ, Bonewald L, Gutheil WG. Gaussian and linear deconvolution of LC-MS/MS chromatograms of the eight aminobutyric acid isomers. Anal Biochem 2016; 516:75-85. [PMID: 27771391 DOI: 10.1016/j.ab.2016.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Isomeric molecules present a challenge for analytical resolution and quantification, even with MS-based detection. The eight aminobutyric acid (ABA) isomers are of interest for their various biological activities, particularly γ-aminobutyric acid (GABA) and the d- and l-isomers of β-aminoisobutyric acid (β-AIBA; BAIBA). This study aimed to investigate LC-MS/MS-based resolution of these ABA isomers as their Marfey's (Mar) reagent derivatives. HPLC was able to separate three Mar-ABA isomers l-β-ABA (l-BABA), and l- and d-α-ABA (AABA) completely, with three isomers (GABA, and d/l-BAIBA) in one chromatographic cluster, and two isomers (α-AIBA (AAIBA) and d-BABA) in a second cluster. Partially separated cluster components were deconvoluted using Gaussian peak fitting except for GABA and d-BAIBA. MS/MS detection of Marfey's derivatized ABA isomers provided six MS/MS fragments, with substantially different intensity profiles between structural isomers. This allowed linear deconvolution of ABA isomer peaks. Combining HPLC separation with linear and Gaussian deconvolution allowed resolution of all eight ABA isomers. Application to human serum found a substantial level of l-AABA (13 μM), an intermediate level of l-BAIBA (0.8 μM), and low but detectable levels (<0.2 μM) of GABA, l-BABA, AAIBA, d-BAIBA, and d-AABA. This approach should be useful for LC-MS/MS deconvolution of other challenging groups of isomeric molecules.
Collapse
Affiliation(s)
- Harika Vemula
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yukiko Kitase
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Navid J Ayon
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Lynda Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - William G Gutheil
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
50
|
Disease Severity and Immune Activity Relate to Distinct Interkingdom Gut Microbiome States in Ethnically Distinct Ulcerative Colitis Patients. mBio 2016; 7:mBio.01072-16. [PMID: 27531910 PMCID: PMC4992973 DOI: 10.1128/mbio.01072-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Significant gut microbiota heterogeneity exists among ulcerative colitis (UC) patients, though the clinical implications of this variance are unknown. We hypothesized that ethnically distinct UC patients exhibit discrete gut microbiotas with unique metabolic programming that differentially influence immune activity and clinical status. Using parallel 16S rRNA and internal transcribed spacer 2 sequencing of fecal samples (UC, 30; healthy, 13), we corroborated previous observations of UC-associated bacterial diversity depletion and demonstrated significant Saccharomycetales expansion as characteristic of UC gut dysbiosis. Furthermore, we identified four distinct microbial community states (MCSs) within our cohort, confirmed their existence in an independent UC cohort, and demonstrated their coassociation with both patient ethnicity and disease severity. Each MCS was uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of the metabolic products of these pathways. Using a novel ex vivo human dendritic cell and T-cell coculture assay, we showed that exposure to fecal water from UC patients caused significant Th2 skewing in CD4+ T-cell populations compared to that of healthy participants. In addition, fecal water from patients in whom their MCS was associated with the highest level of disease severity induced the most dramatic Th2 skewing. Combined with future investigations, these observations could lead to the identification of highly resolved UC subsets based on defined microbial gradients or discrete microbial features that may be exploited for the development of novel, more effective therapies. Despite years of research, the etiology of UC remains enigmatic. Diagnosis is difficult and the patient population heterogeneous, which represents a significant barrier to the development of more effective, tailored therapy. In this study, we demonstrate the clinical utility of the gut microbiome in stratifying UC patients by identifying the existence of four distinct interkingdom pathogenic microbiotas within the UC patient population that are compositionally and metabolically distinct, covary with clinical markers of disease severity, and drive discrete CD4+ T-cell expansions ex vivo. These findings offer new insight into the potential value of the gut microbiome as a tool for subdividing UC patients, opening avenues to the development of more personalized treatment plans and targeted therapies.
Collapse
|