1
|
Zhang S, Liu SX, Wang ZH, Xiao P, Liu H, Lu Y, Dong C, You LL. Clinical Features and Risk Factors for Outcome in Hemodialysis Patients with COVID-19 after Complete Liberalization of Epidemic Control in China. Kidney Blood Press Res 2024; 49:898-915. [PMID: 39401498 DOI: 10.1159/000541940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/07/2024] [Indexed: 11/12/2024] Open
Abstract
INTRODUCTION Patients undergoing hemodialysis (HD) are highly vulnerable during the COVID-19 pandemic. We aimed to investigate the risk factors associated with the severity of COVID-19 and death after the complete liberalization of epidemic control in China. METHODS We followed the outcomes of the HD patients of Central Hospital of Dalian University of Technology, from December 6, 2022, to January 8, 2023. The non-contrast-enhanced chest computed tomography (CT) was performed on all COVID-19-infected hospitalized patients. We recorded the patient's clinical characteristics, demographic features, vaccination history, treatments, and lung lesions. Odds ratios and 95% confidence intervals were calculated using logistic regression models to identify independent risk factors for COVID-19-related severity and mortality. RESULTS This study included a total of 858 HD patients, of which 660 were infected with COVID-19. The mean age was (55.61 ± 14.61) years, with a median (interquartile range) dialysis duration of 44.5 (69.5) months. Over half (60%) of the study participants were male, and the majority had hypertension as a comorbidity. Multivariable analysis revealed that age, pre-dialysis diastolic pressure, fever, white blood cell (WBC) count, potassium, β2-microglobulin level, and calcium were independent risk factors for disease severity, while platelets, urea nitrogen, serum chlorine and creatinine were identified as independent protective factors. Furthermore, total iron-binding capacity and vaccination were found to be independent protective factors against mortality, and WBC count was an independent risk factor for in-hospital mortality (p < 0.05). The most frequent CT finding among hospitalized patients with chest symptoms was patchy shadow or pleural effusion, observed in 64.8% of cases. More than half of the patients exhibited bilateral lung lesions, and over 60% involved two or more lobes. CONCLUSION The majority of HD patients are susceptible to COVID-19. Demographic, clinical features, and laboratory indicators can be used to predict the severity and mortality associated with COVID-19. Our findings will assist clinicians in identifying markers for the early detection of high mortality risk in HD patients with COVID-19.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
| | - Shu-Xin Liu
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
| | - Zhi-Hong Wang
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
| | - Ping Xiao
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
| | - Hong Liu
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
| | - Yan Lu
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
| | - Cui Dong
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
| | - Lian-Lian You
- School of Maritime Economics and Management, Dalian Maritime University, Dalian, China
| |
Collapse
|
2
|
Markovič R, Ternar L, Trstenjak T, Marhl M, Grubelnik V. Cardiovascular Comorbidities in COVID-19: Comprehensive Analysis of Key Topics. Interact J Med Res 2024; 13:e55699. [PMID: 39046774 PMCID: PMC11306943 DOI: 10.2196/55699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND The interrelation between COVID-19 and various cardiovascular and metabolic disorders has been a critical area of study. There is a growing need to understand how comorbidities such as cardiovascular diseases (CVDs) and metabolic disorders affect the risk and severity of COVID-19. OBJECTIVE The objective of this study is to systematically analyze the association between COVID-19 and cardiovascular and metabolic disorders. The focus is on comorbidity, examining the roles of CVDs such as embolism, thrombosis, hypertension, and heart failure, as well as metabolic disorders such as disorders of glucose and iron metabolism. METHODS Our study involved a systematic search in PubMed for literature published from 2000 to 2022. We established 2 databases: one for COVID-19-related articles and another for CVD-related articles, ensuring all were peer-reviewed. In terms of data analysis, statistical methods were applied to compare the frequency and relevance of MeSH (Medical Subject Headings) terms between the 2 databases. This involved analyzing the differences and ratios in the usage of these terms and employing statistical tests to determine their significance in relation to key CVDs within the COVID-19 research context. RESULTS The study revealed that "Cardiovascular Diseases" and "Nutritional and Metabolic Diseases" were highly relevant as level 1 Medical Subject Headings descriptors in COVID-19 comorbidity research. Detailed analysis at level 2 and level 3 showed "Vascular Disease" and "Heart Disease" as prominent descriptors under CVDs. Significantly, "Glucose Metabolism Disorders" were frequently associated with COVID-19 comorbidities such as embolism, thrombosis, and heart failure. Furthermore, iron deficiency (ID) was notably different in its occurrence between COVID-19 and CVD articles, underlining its significance in the context of COVID-19 comorbidities. Statistical analysis underscored these differences, highlighting the importance of both glucose and iron metabolism disorders in COVID-19 research. CONCLUSIONS This work lays the foundation for future research that utilizes a knowledge-based approach to elucidate the intricate relationships between these conditions, aiming to develop more effective health care strategies and interventions in the face of ongoing pandemic challenges.
Collapse
Affiliation(s)
- Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Luka Ternar
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Tim Trstenjak
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| |
Collapse
|
3
|
Lima TE, Ferraz MVF, Brito CAA, Ximenes PB, Mariz CA, Braga C, Wallau GL, Viana IFT, Lins RD. Determination of prognostic markers for COVID-19 disease severity using routine blood tests and machine learning. AN ACAD BRAS CIENC 2024; 96:e20230894. [PMID: 38922277 DOI: 10.1590/0001-376520242023089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/22/2024] [Indexed: 06/27/2024] Open
Abstract
The need for the identification of risk factors associated to COVID-19 disease severity remains urgent. Patients' care and resource allocation can be potentially different and are defined based on the current classification of disease severity. This classification is based on the analysis of clinical parameters and routine blood tests, which are not standardized across the globe. Some laboratory test alterations have been associated to COVID-19 severity, although these data are conflicting partly due to the different methodologies used across different studies. This study aimed to construct and validate a disease severity prediction model using machine learning (ML). Seventy-two patients admitted to a Brazilian hospital and diagnosed with COVID-19 through RT-PCR and/or ELISA, and with varying degrees of disease severity, were included in the study. Their electronic medical records and the results from daily blood tests were used to develop a ML model to predict disease severity. Using the above data set, a combination of five laboratorial biomarkers was identified as accurate predictors of COVID-19 severe disease with a ROC-AUC of 0.80 ± 0.13. Those biomarkers included prothrombin activity, ferritin, serum iron, ATTP and monocytes. The application of the devised ML model may help rationalize clinical decision and care.
Collapse
Affiliation(s)
- Tayná E Lima
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Departamento de Virologia, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Matheus V F Ferraz
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Departamento de Virologia, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-560 Recife, PE, Brazil
| | - Carlos A A Brito
- Universidade Federal de Pernambuco, Hospital das Clínicas, Av. Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Pamella B Ximenes
- Hospital dos Servidores Públicos do Estado de Pernambuco, Av. Conselheiro Rosa e Silva, s/n, Espinheiro, 52020-020 Recife, PE, Brazil
| | - Carolline A Mariz
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Departamento de Parasitologia, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Cynthia Braga
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Departamento de Parasitologia, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Gabriel L Wallau
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Departamento de Entomologia, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Isabelle F T Viana
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Departamento de Virologia, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Roberto D Lins
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Departamento de Virologia, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| |
Collapse
|
4
|
Stoffel NU, Drakesmith H. Effects of Iron Status on Adaptive Immunity and Vaccine Efficacy: A Review. Adv Nutr 2024; 15:100238. [PMID: 38729263 PMCID: PMC11251406 DOI: 10.1016/j.advnut.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Vaccines can prevent infectious diseases, but their efficacy varies, and factors impacting vaccine effectiveness remain unclear. Iron deficiency is the most common nutrient deficiency, affecting >2 billion individuals. It is particularly common in areas with high infectious disease burden and in groups that are routinely vaccinated, such as infants, pregnant women, and the elderly. Recent evidence suggests that iron deficiency and low serum iron (hypoferremia) not only cause anemia but also may impair adaptive immunity and vaccine efficacy. A report of human immunodeficiency caused by defective iron transport underscored the necessity of iron for adaptive immune responses and spurred research in this area. Sufficient iron is essential for optimal production of plasmablasts and IgG responses by human B-cells in vitro and in vivo. The increased metabolism of activated lymphocytes depends on the high-iron acquisition, and hypoferremia, especially when occurring during lymphocyte expansion, adversely affects multiple facets of adaptive immunity, and may lead to prolonged inhibition of T-cell memory. In mice, hypoferremia suppresses the adaptive immune response to influenza infection, resulting in more severe pulmonary disease. In African infants, anemia and/or iron deficiency at the time of vaccination predict decreased response to diphtheria, pertussis, and pneumococcal vaccines, and response to measles vaccine may be increased by iron supplementation. In this review, we examine the emerging evidence that iron deficiency may limit adaptive immunity and vaccine responses. We discuss the molecular mechanisms and evidence from animal and human studies, highlight important unknowns, and propose a framework of key research questions to better understand iron-vaccine interactions.
Collapse
Affiliation(s)
- Nicole U Stoffel
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.
| | - Hal Drakesmith
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Bairwa M, Jatteppanavar B, Kant R, Singh M, Choudhury A. Impact of Iron Profile and Vitamin D Levels on Clinical Outcomes in Patients with Sepsis and Septic Shock: A Cross-sectional Analysis at a Tertiary Care Center. Indian J Crit Care Med 2024; 28:569-574. [PMID: 39130393 PMCID: PMC11310672 DOI: 10.5005/jp-journals-10071-24726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/30/2024] [Indexed: 08/13/2024] Open
Abstract
Aim and background Sepsis is a major global health affecting millions worldwide, hence understanding its contributing factors becomes paramount. This cross-sectional study at a tertiary care center explores the relationship between iron profile, vitamin D levels, and outcomes in sepsis and septic shock patients. The primary objective was to explore the prevalence of iron profile and vitamin D parameters during early intensive care unit (ICU) admission and their association with 28-day mortality. Materials and methods Spanning 18 months, the study enrolled adult patients meeting sepsis or septic shock criteria at the ICU. Data collection included demographic information, clinical characteristics, and blood samples for iron profile and vitamin D levels at admission. Disease severity was assessed using sequential organ failure assessment (SOFA) and acute physiology and chronic health evaluation II (APACHE II) scores, and treatment was administered as per surviving sepsis-3 guidelines. Results The research involved 142 participants, uncovering prevalent organisms such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Noteworthy connections to mortality were identified for factors including vasopressor support, ICU stay duration, SOFA score, and APACHE-II score. Interestingly, age, gender, and vitamin D levels showed no significant associations. However, the study did reveal a significant association between iron, ferritin, and transferrin saturation levels with increased 28-day mortality. Conclusion Our study concluded that low Iron, elevated ferritin, and decreased transferrin saturation levels maintained associations with the outcome of interest. While no such relationship was established with vitamin D levels. These results suggest potential implications for patient management and prognosis, warranting further exploration in future research. How to cite this article Bairwa M, Jatteppanavar B, Kant R, Singh M, Choudhury A. Impact of Iron Profile and Vitamin D Levels on Clinical Outcomes in Patients with Sepsis and Septic Shock: A Cross-sectional Analysis at a Tertiary Care Center. Indian J Crit Care Med 2024;28(6):569-574.
Collapse
Affiliation(s)
- Mukesh Bairwa
- Department of Internal Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Basavaraj Jatteppanavar
- Department of General Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ravi Kant
- Department of General Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Mahendra Singh
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Arnab Choudhury
- Department of Internal Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
6
|
Kakavandi S, Hajikhani B, Azizi P, Aziziyan F, Nabi-Afjadi M, Farani MR, Zalpoor H, Azarian M, Saadi MI, Gharesi-Fard B, Terpos E, Zare I, Motamedifar M. COVID-19 in patients with anemia and haematological malignancies: risk factors, clinical guidelines, and emerging therapeutic approaches. Cell Commun Signal 2024; 22:126. [PMID: 38360719 PMCID: PMC10868124 DOI: 10.1186/s12964-023-01316-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024] Open
Abstract
Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 2019 (COVID-19) may be directly associated with more severe outcomes among patients living with haematological disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive phase, this represents an overall risk of morbidity and mortality from COVID-19. In cases suffering from HDMs, further investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this background, the present study aimed to delineate the relationship between HDMs and the novel COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides, effective treatment options for HDM cases were further explored to address this epidemic and its variants. Therefore, learning about how COVID-19 manifests in these patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care strategies by clinicians and researchers to help patients recover faster. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paniz Azizi
- Psychological and Brain Science Departments, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | | | | | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Roth-Walter F, Berni Canani R, O'Mahony L, Peroni D, Sokolowska M, Vassilopoulou E, Venter C. Nutrition in chronic inflammatory conditions: Bypassing the mucosal block for micronutrients. Allergy 2024; 79:353-383. [PMID: 38084827 DOI: 10.1111/all.15972] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Nutritional Immunity is one of the most ancient innate immune responses, during which the body can restrict nutrients availability to pathogens and restricts their uptake by the gut mucosa (mucosal block). Though this can be a beneficial strategy during infection, it also is associated with non-communicable diseases-where the pathogen is missing; leading to increased morbidity and mortality as micronutritional uptake and distribution in the body is hindered. Here, we discuss the acute immune response in respect to nutrients, the opposing nutritional demands of regulatory and inflammatory cells and particularly focus on some nutrients linked with inflammation such as iron, vitamins A, Bs, C, and other antioxidants. We propose that while the absorption of certain micronutrients is hindered during inflammation, the dietary lymph path remains available. As such, several clinical trials investigated the role of the lymphatic system during protein absorption, following a ketogenic diet and an increased intake of antioxidants, vitamins, and minerals, in reducing inflammation and ameliorating disease.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE-Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Liam O'Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Diego Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Emilia Vassilopoulou
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Carina Venter
- Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
8
|
Khan KM, Zimpfer MJ, Sultana R, Parvez TM, Navas-Acien A, Parvez F. Role of Metals on SARS-CoV-2 Infection: a Review of Recent Epidemiological Studies. Curr Environ Health Rep 2023; 10:353-368. [PMID: 37665544 PMCID: PMC11149155 DOI: 10.1007/s40572-023-00409-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW Metals and metalloids are known for their nutritional as well as toxic effects in humans. In the context of the SARS-CoV-2 pandemic, understanding the role of metals on COVID-19 infection is becoming important due to their role in infectious diseases. During the past 2 years, a significant number of studies have examined the impact of metals and metalloids on COVID-19 morbidity and mortality. We conducted a systematic review of peer-reviewed manuscripts on the association of metals and metalloids with SARS-CoV-2 infection and COVID-19 severity published since the onset of the pandemic. RECENT FINDINGS We searched for epidemiological studies available through the PubMed database published from January 2020 to December 2022. Of 92 studies identified, 20 met our inclusion criteria. These articles investigated the association of zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), cadmium (Cd), arsenic (As), copper (Cu), magnesium (Mg), chromium (Cr), and/or lead (Pb) levels on SARS-CoV-2 infection and/or COVID-19 severity. Of the ten metals and metalloids of interest that reported either positive, negative, or no associations, Zn yielded the highest number of articles (n = 13), followed by epidemiological studies on Se (n = 7) and Fe (n = 5). Elevated serum Zn and Se were associated with reduced COVID-19 severity and mortality. Similarly, higher levels of serum Fe were associated with lower levels of cellular damage and symptoms of SARS-CoV-2 infection and with faster recovery from COVID-19. On the other hand, higher serum and urinary Cu and serum Mg levels were associated with higher COVID-19 severity and mortality. Along with the positive or negative effects, some studies reported no impact of metals on SARS-CoV-2 infection. This systematic review suggests that metals, particularly Zn, Fe, and Se, may help reduce the severity of COVID-19, while Cu and Mg may aggravate it. Our review suggests that future pandemic mitigation strategies may evaluate the role of Zn, Se, and Fe as potential therapeutic interventions.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Mariah J Zimpfer
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Rasheda Sultana
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Tahmid M Parvez
- Department of Biology, Hofstra University, Hempstead, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health, Mailman School of Public Health, Columbia University, 722W, 168Th St., New York, NY, 10032, USA
| | - Faruque Parvez
- Department of Environmental Health, Mailman School of Public Health, Columbia University, 722W, 168Th St., New York, NY, 10032, USA.
| |
Collapse
|
9
|
Bagheri-Hosseinabadi Z, Pirsadeghi A, Ostadebrahimi H, Taghipour Khaje Sharifi G, Abbasifard M. Correlation of iron and related factors with disease severity and outcomes and mortality of patients with Coronavirus disease 2019. J Trace Elem Med Biol 2023; 80:127285. [PMID: 37660574 DOI: 10.1016/j.jtemb.2023.127285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Iron is a trace element that possesses immunomodulatory properties and modulates the proneness to the course and outcome of a diverse viral diseases. This study intended to investigate the correlation of different iron-related factors with disease severity and outcomes as well as the mortality of coronavirus disease 2019 (COVID-19) patients. METHODS Blood serum samples were obtained from 80 COVID-19 cases and 100 healthy controls. Concentrations of ferritin, transferrin, total iron binding capacity (TIBC) was measured by Enzyme-linked immunosorbent assay (ELISA) and iron level was measured by immunoturbidometric method. RESULTS Concentrations of iron, transferrin, and TIBC were low, while ferritin level was high in the COVID-19 cases in comparison to controls. In non-survivor (deceased) patients as well as severe subjects, the levels of iron, ferritin, transferrin, and TIBC were significantly different than survivors (discharged) and mild cases. Significant correlations were found between iron and related factors and the clinicopathological features of the patients. Based on ROC curve analysis, iron, ferritin, transferrin, and TIBC had potential to estimate disease severity in COVID-19 subjects. CONCLUSION Iron metabolism is involved in the pathogenesis of COVID-19. Iron and related factors correlate with disease outcomes and might serve as biomarker in diagnosis of the disease severity and estimation of mortality in the COVID-19 subjects.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Pirsadeghi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Ostadebrahimi
- Department of Pediatrics, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
10
|
Harte JV, Coleman-Vaughan C, Crowley MP, Mykytiv V. It's in the blood: a review of the hematological system in SARS-CoV-2-associated COVID-19. Crit Rev Clin Lab Sci 2023; 60:595-624. [PMID: 37439130 DOI: 10.1080/10408363.2023.2232010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global healthcare crisis. While SARS-CoV-2-associated COVID-19 affects primarily the respiratory system, patients with COVID-19 frequently develop extrapulmonary manifestations. Notably, changes in the hematological system, including lymphocytopenia, neutrophilia and significant abnormalities of hemostatic markers, were observed early in the pandemic. Hematological manifestations have since been recognized as important parameters in the pathophysiology of SARS-CoV-2 and in the management of patients with COVID-19. In this narrative review, we summarize the state-of-the-art regarding the hematological and hemostatic abnormalities observed in patients with SARS-CoV-2-associated COVID-19, as well as the current understanding of the hematological system in the pathophysiology of acute and chronic SARS-CoV-2-associated COVID-19.
Collapse
Affiliation(s)
- James V Harte
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | | | - Maeve P Crowley
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- Irish Network for Venous Thromboembolism Research (INViTE), Ireland
| | - Vitaliy Mykytiv
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
| |
Collapse
|
11
|
Wang Y, Shen M, Li Y, Shao J, Zhang F, Guo M, Zhang Z, Zheng S. COVID-19-associated liver injury: Adding fuel to the flame. Cell Biochem Funct 2023; 41:1076-1092. [PMID: 37947373 DOI: 10.1002/cbf.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
COVID-19 is mainly characterized by respiratory disorders and progresses to multiple organ involvement in severe cases. With expansion of COVID-19 and SARS-CoV-2 research, correlative liver injury has been revealed. It is speculated that COVID-19 patients exhibited abnormal liver function, as previously observed in the SARS and MERS pandemics. Furthermore, patients with underlying diseases such as chronic liver disease are more susceptible to SARS-CoV-2 and indicate a poor prognosis accompanied by respiratory symptoms, systemic inflammation, or metabolic diseases. Therefore, COVID-19 has the potential to impair liver function, while individuals with preexisting liver disease suffer from much worse infected conditions. COVID-19 related liver injury may be owing to direct cytopathic effect, immune dysfunction, gut-liver axis interaction, and inappropriate medication use. However, discussions on these issues are infancy. Expanding research have revealed that angiotensin converting enzyme 2 (ACE2) expression mediated the combination of virus and target cells, iron metabolism participated in the virus life cycle and the fate of target cells, and amino acid metabolism regulated immune response in the host cells, which are all closely related to liver health. Further exploration holds great significance in elucidating the pathogenesis, facilitating drug development, and advancing clinical treatment of COVID-19-related liver injury. This article provides a review of the clinical and laboratory hepatic characteristics in COVID-19 patients, describes the etiology and impact of liver injury, and discusses potential pathophysiological mechanisms.
Collapse
Affiliation(s)
- Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Hafizi M, Kalanaky S, Fakharzadeh S, Karimi P, Fakharian A, Lookzadeh S, Mortaz E, Mirenayat MS, Heshmatnia J, Karam MB, Zamani H, Nadji A, Toutkaboni MP, Oraee-Yazdani S, Akbari ME, Jamaati H, Nazaran MH. Beneficial effects of the combination of BCc1 and Hep-S nanochelating-based medicines on IL-6 in hospitalized moderate COVID-19 adult patients: a randomized, double-blind, placebo-controlled clinical trial. Trials 2023; 24:720. [PMID: 37951972 PMCID: PMC10638761 DOI: 10.1186/s13063-023-07624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/05/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND In the severe forms of COVID-19 and many other infectious diseases, the patients develop a cytokine storm syndrome (CSS) where pro-inflammatory cytokines such as IL-6 and TNF-α play a key role in the development of this serious process. Selenium and iron are two important trace minerals, and their metabolism is tightly connected to immune system function. Numerous studies highlight the role of selenium and iron metabolism changes in the procedure of COVID-19 inflammation. The immunomodulator effect of nanomedicines that are synthesized based on nanochelating technology has been proved in previous studies. In the present study, the effects of the combination of BCc1(with iron-chelating property) and Hep-S (containing selenium) nanomedicines on mentioned cytokines levels in hospitalized moderate COVID-19 patients were evaluated. METHODS Laboratory-confirmed moderate COVID-19 patients were enrolled to participate in a randomized, double-blind, placebo-controlled study in two separate groups: combination of BCc1 and Hep-S (N = 62) (treatment) or placebo (N = 60) (placebo). The blood samples were taken before medications on day zero, at discharge, and 28 days after consumption to measure hematological and biochemical parameters and cytokine levels. The clinical symptoms of all the patients were recorded according to an assessment questionnaire before the start of the treatment and on days 3 and discharge day. RESULTS The results revealed that consumption of the nanomedicines led to a significant decrease in the mean level of IL-6 cytokine, and at the end of the study, there was a 77% downward trend in IL-6 in the nanomedicine group, while an 18% increase in the placebo group (p < 0.05). In addition, the patients in the nanomedicines group had lower TNF-α levels; accordingly, there was a 21% decrease in TNF-α level in the treatment group, while a 31% increase in this cytokine level in the placebo was observed (p > 0.05). On the other hand, in nanomedicines treated groups, clinical scores of coughing, fatigue, and need for oxygen therapy improved. CONCLUSIONS In conclusion, the combination of BCc1 and Hep-S inhibits IL-6 as a highly important and well-known cytokine in COVID-19 pathophysiology and presents a promising view for immunomodulation that can manage CSS. TRIAL REGISTRATION Iranian Registry of Clinical Trials RCT20170731035423N2 . Registered on June 12, 2020.
Collapse
Affiliation(s)
- Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Pegah Karimi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Atefeh Fakharian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Lookzadeh
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Mirenayat
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Heshmatnia
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Bakhshayesh Karam
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Zamani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Nadji
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihan Pourabdollah Toutkaboni
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Comprehensive Neurosurgical Center of Excellence, Shohada Tajrish, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamidreza Jamaati
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
13
|
Sauša S, Kistkins S, Krūzmane L, Kalniņa D, Jurģe B, Ivanova K, Svikle Z, Frīdvalde A, Roškova V, Zariņa RE, Treimane T, Geldnere K, Trapiņa I, Pīrāgs V. Impact of Vitamin D Therapy on C-Reactive Protein, Ferritin, and IL-6 Levels in Hospitalised Covid-19 Patients. PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. SECTION B. NATURAL, EXACT, AND APPLIED SCIENCES. 2023; 77:153-161. [DOI: 10.2478/prolas-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Vitamin D insufficiency is associated with poor prognosis in COVID-19 patients. Vitamin D supplementation is related to improved clinical outcomes in terms of intensive care unit admission and death, particularly in individuals with moderate-to-severe forms of COVID-19. The placebo-controlled five-day study was performed on 99 hospitalised COVID-19 patients with vitamin D insufficiency randomised into two groups. Vitamin D in the form of a sublingual sprayable microemulsion was given three times daily (daily dose 12,000 IU) to 51 patients with blood 25(OH)D levels below 30 ng/ml. Forty-eight patients in the control group received a placebo spray in the same daily regimen. Intention-to-treat (ITT) analysis and pre-protocol analysis were used to verify the impact of 25(OH)D level elevation on inflammatory markers. There was a statistically significant increase by 8.7 ± 7.6 ng/ml in 25(OH)D level from the baseline level of 15.6 ± 6.5 ng/ml in the case group. Individuals with moderately severe disease showed negative correlation between changes in 25(OH)D and C-reactive protein (CRP) levels in both ITT and pre-protocol analysis (p < 0.05). Mild and severe cases showed no statistical significance in CRP levels. There were no statistically significant changes in ferritin and IL-6 levels in ITT and pre-protocol analysis. In conclusion, high-dose vitamin D therapy was accompanied by significant decrease in CRP levels in COVID-19 patients with a moderate to severe illness.
Collapse
Affiliation(s)
- Sintija Sauša
- Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| | - Svjatoslavs Kistkins
- Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| | - Lelde Krūzmane
- Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| | - Daina Kalniņa
- Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| | - Betija Jurģe
- Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| | - Kristīne Ivanova
- Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia
| | - Zane Svikle
- Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| | - Aija Frīdvalde
- Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| | - Valērija Roškova
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| | - Rebeka Elīza Zariņa
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| | - Terēze Treimane
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| | - Kristīne Geldnere
- Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| | - Ilva Trapiņa
- Institute of Biology , University of Latvia , 4 Ojāra Vācieša Str., Rīga, LV-1004 , Latvia
| | - Valdis Pīrāgs
- Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia
- Faculty of Medicine , University of Latvia , 3 Jelgavas Str., Rīga, LV-1004 , Latvia
| |
Collapse
|
14
|
Tene L, Karasik A, Chodick G, Pereira DIA, Schou H, Waechter S, Göhring UM, Drakesmith H. Iron deficiency and the effectiveness of the BNT162b2 vaccine for SARS-CoV-2 infection: A retrospective, longitudinal analysis of real-world data. PLoS One 2023; 18:e0285606. [PMID: 37216375 PMCID: PMC10202294 DOI: 10.1371/journal.pone.0285606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Iron plays a key role in human immune responses; however, the influence of iron deficiency on the coronavirus disease 2019 (COVID-19) vaccine effectiveness is unclear. AIM To assess the effectiveness of the BNT162b2 messenger RNA COVID-19 vaccine in preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19-related hospitalization and death in individuals with or without iron deficiency. METHODS This large retrospective, longitudinal cohort study analyzed real-world data from the Maccabi Healthcare Services database (covering 25% of Israeli residents). Eligible adults (aged ≥16 years) received a first BNT162b2 vaccine dose between December 19, 2020, and February 28, 2021, followed by a second dose as per approved vaccine label. Individuals were excluded if they had SARS-CoV-2 infection before vaccination, had hemoglobinopathy, received a cancer diagnosis since January 2020, had been treated with immunosuppressants, or were pregnant at the time of vaccination. Vaccine effectiveness was assessed in terms of incidence rates of SARS-CoV-2 infection confirmed by real-time polymerase chain reaction assay, relative risks of COVID-19-related hospitalization, and mortality in individuals with iron deficiency (ferritin <30 ng/mL or transferrin saturation <20%). The two-dose protection period was Days 7 to 28 after the second vaccination. RESULTS Data from 184,171 individuals with (mean [standard deviation; SD] age 46.2 [19.6] years; 81.2% female) versus 1,072,019 without (mean [SD] age 46.9 [18.0] years; 46.2% female) known iron deficiency were analyzed. Vaccine effectiveness in the two-dose protection period was 91.9% (95% confidence interval [CI] 83.7-96.0%) and 92.1% (95% CI 84.2-96.1%) for those with versus without iron deficiency (P = 0.96). Of patients with versus without iron deficiency, hospitalizations occurred in 28 and 19 per 100,000 during the reference period (Days 1-7 after the first dose), and in 19 and 7 per 100,000 during the two-dose protection period, respectively. Mortality rates were comparable between study groups: 2.2 per 100,000 (4/181,012) in the population with iron deficiency and 1.8 per 100,000 (19/1,055,298) in those without known iron deficiency. CONCLUSIONS Results suggest that the BNT162b2 COVID-19 vaccine is >90% effective in preventing SARS-CoV-2 infection in the 3 weeks after the second vaccination, irrespective of iron-deficiency status. These findings support the use of the vaccine in populations with iron deficiency.
Collapse
Affiliation(s)
- Lilac Tene
- Maccabi Institute for Research & Innovation, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Avraham Karasik
- Maccabi Institute for Research & Innovation, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Gabriel Chodick
- Maccabi Institute for Research & Innovation, Maccabi Healthcare Services, Tel Aviv, Israel
| | | | | | | | | | - Hal Drakesmith
- Medical Research Council Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Gaiatto ACM, Bibo TA, de Godoy Moreira N, Raimundo JRS, da Costa Aguiar Alves B, Gascón T, Carvalho SS, Pereira EC, Fonseca FLA, da Veiga GL. COVID-19 compromises iron homeostasis: Transferrin as a target of investigation. J Trace Elem Med Biol 2023; 76:127109. [PMID: 36509021 PMCID: PMC9694355 DOI: 10.1016/j.jtemb.2022.127109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
IMPORTANCE Since the beginning of the COVID-19 pandemic, numerous metabolic alterations have been observed in individuals with this disease. It is known that SARS-CoV-2 can mimic the action of hepcidin, altering intracellular iron metabolism, but gaps remain in the understanding of possible outcomes in other pathways involved in the iron cycle. OBJECTIVE To profile iron, ferritin and hepcidin levels and transferrin receptor gene expression in patients diagnosed with COVID-19 between June 2020 and September 2020. DESIGN, SETTING AND PARTICIPANTS Cross-sectional study that evaluated iron metabolism markers in 427 participants, 218 with COVID-19 and 209 without the disease. EXPOSURES The primary exposure was positive diagnose to COVID-19 in general population of Santo André and São Bernardo cities. The positive and negative diagnose were determinate through RT-qPCR. MAIN OUTCOMES AND MEASURES Devido a evidências de alterações do ciclo do ferro em pacientes diagnosticados com COVID-19 e devido a corregulação entre hepcidina e receptor de transferrina, uma análise da expressão gênica deste último, poderia trazer insights sobre o estado de ferro celular. A hipótese foi confirmada, mostrando aumento da expressão de receptor de transferrina concomitante com redução do nível de hepcidina circulante. RESULTS Serum iron presented lower values in individuals diagnosed with COVID-19, whereas serum ferritin presented much higher values in infected patients. Elderly subjects had lower serum iron levels and higher ferritin levels, and men with COVID-19 had higher ferritin values than women. Serum hepcidin was lower in the COVID-19 patient group and transferrin receptor gene expression was higher in the infected patient group compared to controls. CONCLUSIONS AND RELEVANCE COVID-19 causes changes in several iron cycle pathways, with iron and ferritin levels being markers that reflect the state and evolution of infection, as well as the prognosis of the disease. The increased expression of the transferrin receptor gene suggests increased iron internalization and the mimicry of hepcidin action by SARS-CoV-2, reduces iron export via ferroportin, which would explain the low circulating levels of iron by intracellular trapping.
Collapse
Affiliation(s)
| | - Thaciane Alkmim Bibo
- Laboratório de Análises Clínicas, Centro Universitário FMABC, Santo André, Brazil
| | | | | | | | - Thaís Gascón
- Laboratório de Análises Clínicas, Centro Universitário FMABC, Santo André, Brazil
| | | | | | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas, Centro Universitário FMABC, Santo André, Brazil; Departamento de Ciências Farmacêuticas, UNIFESP, Campus Diadema, Diadema, Brazil
| | | |
Collapse
|
16
|
Li K, Hou L, Tan Y, Huang Y, Shi J, Han J, Yan J, Guan Y, Cui L. Iron metabolism in non-anemic myasthenia gravis patients: A cohort study. J Neuroimmunol 2023; 375:578015. [PMID: 36682196 DOI: 10.1016/j.jneuroim.2023.578015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND The association of iron metabolism parameters with disease severity and outcome in myasthenia gravis (MG) patients has not been reported. This study was conducted to determined clinical factors including iron metabolism parameters correlated with disease severity and future outcome in non-anemic immunotherapy-naïve MG patients first receiving immunotherapy. MATERIAL AND METHODS One hundred and ten patients were included at baseline to explore predictor variables associated with disease severity represented by variables derived from MG activities of daily living (MG-ADL) score using multivariate logistic regression, after which 103 and 98 patients were included respectively in multivariate survival analyses at 6-month and 12-month follow-up to identify predictors for minimal manifestation status (MMS) after starting immunotherapy. RESULTS Higher ferritin level was independently associated with higher risk of severe generalized disease in non-anemic immunotherapy-naïve MG patients. Total iron binding capacity <250 μg/dL and the interval between onset and immunotherapy <1 year were independent predictors for MMS at 6-month and 12-month follow-up after initiating immunotherapy. Transferrin <2.00 g/L was an independent predictor for MMS at 12-month follow-up. CONCLUSION Iron metabolism parameters might be promising biomarkers for evaluating disease severity and guiding therapeutic decision in MG patients.
Collapse
Affiliation(s)
- Ke Li
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Li'an Hou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ying Tan
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yangyu Huang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jiayu Shi
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jianhua Han
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jingwen Yan
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuzhou Guan
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
17
|
Osuna-Espinoza KY, Rosas-Taraco AG. Metabolism of NK cells during viral infections. Front Immunol 2023; 14:1064101. [PMID: 36742317 PMCID: PMC9889541 DOI: 10.3389/fimmu.2023.1064101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Cellular metabolism is essential for the correct function of immune system cells, including Natural Killer cells (NK). These cells depend on energy to carry out their effector functions, especially in the early stages of viral infection. NK cells participate in the innate immune response against viruses and tumors. Their main functions are cytotoxicity and cytokine production. Metabolic changes can impact intracellular signals, molecule production, secretion, and cell activation which is essential as the first line of immune defense. Metabolic variations in different immune cells in response to a tumor or pathogen infection have been described; however, little is known about NK cell metabolism in the context of viral infection. This review summarizes the activation-specific metabolic changes in NK cells, the immunometabolism of NK cells during early, late, and chronic antiviral responses, and the metabolic alterations in NK cells in SARS-CoV2 infection. The modulation points of these metabolic routes are also discussed to explore potential new immunotherapies against viral infections.
Collapse
Affiliation(s)
- Kenia Y Osuna-Espinoza
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Adrián G Rosas-Taraco
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
18
|
Yadav D, Pvsn KK, Tomo S, Sankanagoudar S, Charan J, Purohit A, Nag V, Bhatia P, Singh K, Dutt N, Garg MK, Sharma P, Misra S, Purohit P. Association of iron-related biomarkers with severity and mortality in COVID-19 patients. J Trace Elem Med Biol 2022; 74:127075. [PMID: 36174458 PMCID: PMC9472468 DOI: 10.1016/j.jtemb.2022.127075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Nutritional deficiency is associated with weaken immune system and increased susceptibility to infection. Among other nutrients, several trace elements have been shown to regulate immune responses. Iron is one of the most abundant trace elements present in our body, which is required in various biological processes. Iron has an immunomodulatory function and thus influence the susceptibility to the course and outcome of a variety of viral infections. So, this present study was aimed to study relations of different iron-related biomarkers in association to severity and mortality in SARS-CoV-2 patients. MATERIALS AND METHODS A total of 150 individuals infected with COVID-19 and 50 healthy individuals were recruited. Cases were divided based on severity (mild, moderate, and severe) and outcome (discharged or deceased). Serum iron, TIBC, ferritin, transferrin, transferrin saturation levels were analyzed by the direct colourimetric method. RESULTS In cases the median levels of serum iron, TIBC, transferrin, transferrin saturation and ferritin are 29 µg/dL, 132.53 µg/dL, 106.3 mg/dL, 17.74 % and 702.9 ng/dL respectively. Similarly, in controls the median levels of serum iron, TIBC, transferrin, transferrin saturation and ferritin are 53 µg/dL, 391.88 µg/dL, 313.51 mg/dL, 12.81 % and 13.52 ng/dL respectively. On comparing the cases with the controls, a significant lower level of iron, TIBC, and transferrin were found in the cases along with the significant higher levels of ferritin and transferrin saturation. On comparing the Receiver operating characteristic (ROC) curves of Iron, Ferritin, Transferrin, Transferrin sat % and TIBC in relation to survival in COVID-19 patients it was found that iron, followed by transferrin and ferritin has the highest area under the curve (AUC) with 74 %, 63 % and 61 % respectively. Further, in pairwise analysis of ROC curve, a significant difference was found between the Iron-transferrin (p < 0.01), iron-TIBC (p < 0.001) and transferrin-ferritin (P < 0.01). The multiple regression model based on Iron and transferrin outperformed any other combination of variables via stepwise AIC selection with an AUC of 98.2 %. The cutoff point according to Youden's J index is characterized with a sensitivity of 98 % and a specificity of 96.8 %, indicating that iron along with transferrin can be a useful marker that may contribute to a better assessment of survival chances in COVID-19. CONCLUSION Our study demonstrated a significantly decreased levels of iron, TIBC, & transferrin and a significantly increased levels of ferritin and transferrin saturation in COVID-19 patients when compared with controls. Further, Iron and transferrin were observed to be a good predictor of mortality in patients with COVID-19. From the above analysis we confirm that iron-related biomarkers play an important role in the development of oxidative stress and further lead to activation of the cytokine storm. So, continuous monitoring of these parameters could be helpful in the early detection of individuals developing the severe disease and can be used to decrease mortality in upcoming new waves of COVID-19.
Collapse
Affiliation(s)
- Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Kiran Kumar Pvsn
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Jayakaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhishek Purohit
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
| | - Vijaylakshami Nag
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Pradeep Bhatia
- Department of Anaesthesia, All India Institute of Medical Sciences, Jodhpur, India
| | - Kuldeep Singh
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Mahendra Kumar Garg
- Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Sanjeev Misra
- Department of Surgical Oncology, Director and CEO, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| |
Collapse
|
19
|
Bego T, Meseldžić N, Prnjavorac B, Prnjavorac L, Marjanović D, Azevedo R, Pinto E, Duro M, Couto C, Almeida A. Association of trace element status in COVID-19 patients with disease severity. J Trace Elem Med Biol 2022; 74:127055. [PMID: 35985069 PMCID: PMC9349050 DOI: 10.1016/j.jtemb.2022.127055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
Abstract
Caused by the new SARS-CoV-2 coronavirus, COVID-19 (coronavirus disease 2019) evolves with clinical symptoms that vary widely in severity, from mild symptoms to critical conditions, which can even result in the patient's death. A critical aspect related to an individual response to SARS-CoV-2 infection is the competence of the immune system, and it is well known that several trace elements are essential for an adequate immune response and have anti-inflammatory and antioxidant properties that are of particular importance in fighting infection. Thus, it is widely accepted that adequate trace element status can reduce the risk of SARS-CoV-2 infection and disease severity. In this study, we evaluated the serum levels of Cu, Zn, Se, Fe, I and Mg in patients (n = 210) with clinical conditions of different severity ("mild", "moderate", "severe" and "exitus letalis", i.e., patients who eventually died). The results showed significant differences between the four groups for Cu, Zn, Se and Fe, in particular a significant trend of Zn and Se serum levels to be decreased and Cu to be increased with the severity of symptoms. For Mg and I, no differences were observed, but I levels were shown to be increased in all groups.
Collapse
Affiliation(s)
- Tamer Bego
- University of Sarajevo, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Neven Meseldžić
- University of Sarajevo, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, 71000 Sarajevo, Bosnia and Herzegovina
| | - Besim Prnjavorac
- University of Sarajevo, Faculty of Pharmacy, 71000 Sarajevo, Bosnia and Herzegovina; General Hospital Tešanj, 74260 Tešanj, Bosnia and Herzegovina
| | | | - Damir Marjanović
- International Burch University, 71000 Sarajevo, Bosnia and Herzegovina
| | - Rui Azevedo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Edgar Pinto
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Department of Environmental Health, School of Health, P.Porto, 4200-072 Porto, Portugal
| | - Mary Duro
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Fernando Pessoa Health School, 4249-004 Porto, Portugal
| | - Cristina Couto
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
20
|
Barazzoni R, Breda J, Cuerda C, Schneider S, Deutz NE, Wickramasinghe K. COVID-19: Lessons on malnutrition, nutritional care and public health from the ESPEN-WHO Europe call for papers. Clin Nutr 2022; 41:2858-2868. [PMID: 36075815 PMCID: PMC9365508 DOI: 10.1016/j.clnu.2022.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023]
Abstract
With prolonged pandemic conditions, and emerging evidence but persisting low awareness of the importance of nutritional derangements, ESPEN has promoted in close collaboration with World Health Organization-Europe a call for papers on all aspects relating COVID-19 and nutrition as well as nutritional care, in the Society Journals Clinical Nutrition and Clinical Nutrition ESPEN. Although more COVID-related papers are being submitted and continue to be evaluated, ESPEN and WHO present the current editorial to summarize the many published findings supporting major interactions between nutritional status and COVID-19. These include 1) high risk of developing the disease and high risk of severe disease in the presence of pre-existing undernutrition (malnutrition) including micronutrient deficiencies; 2) high risk of developing malnutrition during the course of COVID-19, with substantial impact on long-term sequelae and risk of long COVID; 3) persons with obesity are also prone to develop or worsen malnutrition and its negative consequences during the course of COVID-19; 4) malnutrition screening and implementation of nutritional care may improve disease outcomes; 5) social and public health determinants contribute to the interaction between nutritional status and COVID-19, including negative impact of lockdown and social limitations on nutrition quality and nutritional status. We believe the evidence supports the need to consider COVID-19 as (also) a case of malnutrition-enhanced disease and disease-related malnutrition, with added risk for persons both with and without obesity. Similarities with many other disease conditions further support recommendations to implement standard nutritional screening and care in COVID-19 patients, and they underscore the relevance of appropriate nutritional and lifestyle prevention policies to limit infection risk and mitigate the negative health impact of acute pandemic bouts.
Collapse
Affiliation(s)
- Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy.
| | - Joao Breda
- World Health Organization (WHO) Regional Office for Europe, Athens, Greece
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Stephane Schneider
- Gastroenterology and Nutrition, Nice University Hospital, Université Côte d'Azur, Nice, France
| | - Nicolaas E Deutz
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | - Kremlin Wickramasinghe
- World Health Organization European Office for the Prevention and Control of Noncommunicable Diseases, Moscow, Russian Federation
| |
Collapse
|
21
|
Bastin A, Shiri H, Zanganeh S, Fooladi S, Momeni Moghaddam MA, Mehrabani M, Nematollahi MH. Iron Chelator or Iron Supplement Consumption in COVID-19? The Role of Iron with Severity Infection. Biol Trace Elem Res 2022; 200:4571-4581. [PMID: 34825316 PMCID: PMC8614629 DOI: 10.1007/s12011-021-03048-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Iron is a trace element that is used to replicate the virus and has a role in the vital functions of the body and the host's innate immune system. The mechanism of iron in COVID-19 severity is still not well understood. The aim of this study was to evaluate the association of the iron with COVID-19 severity. A case-control study was performed on 147 patients with a positive PCR test result and 39 normal individuals admitted to the Persian Gulf Martyrs Hospital in Bushehr, Iran. The iron profiles and related tests were measured along with hematological analytes. Hemoglobin (Hb), Fe, and saturated transferrin decreased in all the groups compared to the controls, but ferritin increased in the patient groups. After adjusting for age and sex, we found that increased ferritin levels augmented the odds ratio (OR) of the disease in the moderate (OR = 2.95, P = 0.007), severe (OR = 6.1, P < 0.001), and critical groups (OR = 8.34, P < 0.001). The decreased levels of Fe reduced the OR of the disease in the mild (OR = 0.96, P < 0.001), moderate (OR = 0.96, P < 0.001), severe (OR = 0.95, P < 0.001), and critical (OR = 0.98, P = 0.001) groups. Fe (AUC = 85.95, cutoff < 75.5 µg/dL, P < 0.001) and ferritin (AUC = 84.45, cutoff > 157.5 ng/dL, P < 0.001) have higher AUC for disease prognosis, but only ferritin (AUC = 74.89, cutoff > 261.5 ng/dL, P < 0.001) has higher AUC for disease severity assays. It could be concluded that the use of iron chelators to reduce iron intake can be considered a therapeutic goal. In addition, measuring Fe and ferritin is beneficial for the diagnosis of the disease and determining its severity.
Collapse
Affiliation(s)
- Alireza Bastin
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamidreza Shiri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Sareh Zanganeh
- Bacteriology & Virology Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Fooladi
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Momeni Moghaddam
- Department of Nutrition and Biochemistry, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
22
|
Engin AB, Engin ED, Engin A. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103937. [PMID: 35882309 PMCID: PMC9307469 DOI: 10.1016/j.etap.2022.103937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 05/14/2023]
Abstract
In severe COVID-19, the levels of iron (Fe), copper (Cu), zinc (Zn) and selenium (Se), do not only regulate host immune responses, but modify the viral genome, as well. While low serum Fe concentration is an independent risk factor for the increased death rate, Zn controls oxidative stress, synthesis of inflammatory cytokines and viral replication. Therefore, Zn deficiency associates with a worse prognosis. Although Cu exposure inactivates the viral genome and exhibits spike protein dispersal, increase in Cu/Zn due to high serum Cu levels, are correlated with enhanced risk of infections. Se levels are significantly higher in surviving COVID-19 patients. Meanwhile, both Zn and Se suppress the replication of SARS-CoV-2. Since the balance between the deficiency and oversupply of these metals due to a reciprocal relationship, has decisive effect on the prognosis of the SARS-CoV-2 infection, monitoring their concentrations may facilitate improved outcomes for patients suffering from COVID-19.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
23
|
Association between hepcidin and type 2 diabetes markers in indigenous Argentinean children living at high altitude. Clin Chim Acta 2022; 537:194-198. [DOI: 10.1016/j.cca.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/08/2023]
|
24
|
Mohus RM, Flatby H, Liyanarachi KV, DeWan AT, Solligård E, Damås JK, Åsvold BO, Gustad LT, Rogne T. Iron status and the risk of sepsis and severe COVID-19: a two-sample Mendelian randomization study. Sci Rep 2022; 12:16157. [PMID: 36171422 PMCID: PMC9516524 DOI: 10.1038/s41598-022-20679-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/16/2022] [Indexed: 01/15/2023] Open
Abstract
Observational studies have indicated an association between iron status and risk of sepsis and COVID-19. We estimated the effect of genetically-predicted iron biomarkers on risk of sepsis and risk of being hospitalized with COVID-19, performing a two-sample Mendelian randomization study. For risk of sepsis, one standard deviation increase in genetically-predicted serum iron was associated with odds ratio (OR) of 1.14 (95% confidence interval [CI] 1.01-1.29, P = 0.031). The findings were supported in the analyses for transferrin saturation and total iron binding capacity, while the estimate for ferritin was inconclusive. We found a tendency of higher risk of hospitalization with COVID-19 for serum iron; OR 1.29 (CI 0.97-1.72, P = 0.08), whereas sex-stratified analyses showed OR 1.63 (CI 0.94-2.86, P = 0.09) for women and OR 1.21 (CI 0.92-1.62, P = 0.17) for men. Sensitivity analyses supported the main findings and did not suggest bias due to pleiotropy. Our findings suggest a causal effect of genetically-predicted higher iron status and risk of hospitalization due to sepsis and indications of an increased risk of being hospitalized with COVID-19. These findings warrant further studies to assess iron status in relation to severe infections, including the potential of improved management.
Collapse
Affiliation(s)
- Randi Marie Mohus
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Clinic of Anesthesia and Intensive Care, St. Olavs Hospital, Trondheim University Hospital, Postboks 3250 Torgarden, 7006 Trondheim, Norway
| | - Helene Flatby
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristin V. Liyanarachi
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Infectious Diseases, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Andrew T. DeWan
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.47100.320000000419368710Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT USA
| | - Erik Solligård
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Kristian Damås
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Infectious Diseases, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Olav Åsvold
- grid.5947.f0000 0001 1516 2393Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Public Health and Nursing, HUNT Research Centre, NTNU, Norwegian University of Science and Technology, Levanger, Norway
| | - Lise T. Gustad
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,Nord-Trøndelag Hospital Trust, Levanger, Norway ,grid.465487.cFaculty of Health Sciences, Nord University, Levanger, Norway
| | - Tormod Rogne
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.47100.320000000419368710Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT USA ,grid.418193.60000 0001 1541 4204Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
25
|
Sampaio SC, Sacramento GS, De Almeida JB. The role of iron and ferritin in pathophysiology and as a laboratory marker in COVID-19. REVISTA CIÊNCIAS EM SAÚDE 2022. [DOI: 10.21876/rcshci.v12i3.1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) emerged in China exponentially and is recognized as a multisystem disease that gradually elevates markers associated with iron metabolism as the infection becomes more intense, becoming a critical factor in the investigation of prognosis. We review the latest scientific findings on the behavior of iron and ferritin in pathophysiology and as laboratory markers in COVID-19 (Coronavirus Disease 2019).The findings showed that iron and ferritin play a key role in the pathogenesis of COVID-19, contributing to the worsening of the disease. Therefore, iron dysmetabolism, marked by hyperferritinemia, is associated with inflammatory states in SARS-CoV-2 infection, and ferritin measurement has been shown to be a useful laboratory marker with a clinical and discriminatory potential to define the severity and mortality during COVID-19.
Collapse
|
26
|
Zhou S, Li H, Li S. The Associations of Iron Related Biomarkers with Risk, Clinical Severity and Mortality in SARS-CoV-2 Patients: A Meta-Analysis. Nutrients 2022; 14:3406. [PMID: 36014912 PMCID: PMC9416650 DOI: 10.3390/nu14163406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly around the world and has led to millions of infections and deaths. Growing evidence indicates that iron metabolism is associated with COVID-19 progression, and iron-related biomarkers have great potential for detecting these diseases. However, the results of previous studies are conflicting, and there is not consistent numerical magnitude relationship between those biomarkers and COVID-19. Thereby, we aimed to integrate the results of current studies and to further explore their relationships through a meta-analysis. We searched peer-reviewed literature in PubMed, Scopus and Web of Science up to 31 May 2022. A random effects model was used for pooling standard mean difference (SMD) and the calculation of the corresponding 95% confidence interval (CI). I2 was used to evaluate heterogeneity among studies. A total of 72 eligible articles were included in the meta-analysis. It was found that the ferritin levels of patients increased with the severity of the disease, whereas their serum iron levels and hemoglobin levels showed opposite trends. In addition, non-survivors had higher ferritin levels (SMD (95%CI): 1.121 (0.854, 1.388); Z = 8.22 p for Z < 0.001; I2 = 95.7%, p for I2 < 0.001), lower serum iron levels (SMD (95%CI): −0.483 (−0.597, −0.368), Z = 8.27, p for Z < 0.001; I2 = 0.9%, p for I2 =0.423) and significantly lower TIBC levels (SMD (95%CI): −0.612 (−0.900, −0.324), Z = 4.16, p for Z < 0.001; I2 = 71%, p for I2 = 0.016) than survivors. This meta-analysis demonstrates that ferritin, serum iron, hemoglobin and total iron banding capacity (TIBC) levels are strongly associated with the risk, severity and mortality of COVID-19, providing strong evidence for their potential in predicting disease occurrence and progression.
Collapse
Affiliation(s)
| | | | - Shiru Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
27
|
Li Y, Luo W, Liang B. Circulating trace elements status in COVID-19 disease: A meta-analysis. Front Nutr 2022; 9:982032. [PMID: 36034929 PMCID: PMC9411985 DOI: 10.3389/fnut.2022.982032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
Trace elements are a group of essential metals or metalloids, which are necessary for life, and present in minute amounts. Despite substantial researches highlighting the importance of trace elements in Coronavirus disease 2019 (COVID-19) diseases, a thorough evaluation of the levels of circulating trace elements is lacking. Therefore, we conducted a systematic review and meta-analysis to evaluate the trace element status (Zn, Fe, Cu, Mg, and Se) in COVID-19 disease. We also assessed the relationship between circulating trace elements and COVID-19 disease severity and survival status during follow-up. We searched comprehensively MEDLINE, Web of Science, CNKI, and WangFang databases without language restriction, between November 1, 2019 and April 1, 2022. The search identified 1,566 preliminary references. A total of 49 studies met the eligibility criteria and were included in the review, and 42 studies were included in the final meta-analysis. Meta-analysis showed that COVID-19 patients had significantly lower circulating Zn (SMD: -0.83, 95% CI: -1.19 to -0.46, P < 0.001), Fe (SMD: -1.56, 95% CI: -2.90 to -0.21, P = 0.023), and Se (SMD: -0.75, 95% CI: -0.94 to -0.56, P < 0.001) levels than healthy controls, and circulating Zn (SMD: -0.47, 95% CI: -0.75 to -0.18, P = 0.002), Fe (SMD: -0.45, 95% CI: -0.79 to -0.12, P = 0.008), and Se (SMD: -0.27, 95% CI: -0.49 to -0.04, P = 0.020) levels were associated with the presence of severity status in COVID-19 patients. Moreover, circulating Fe levels in non-survivors were significantly lower than survivors in COVID-19 (SMD: -0.28, 95% CI: -0.44 to -0.12, P = 0.001). However, there was no significant difference in Cu and Mg levels between COVID-19 patients and controls, severity and non-severity status, and survivors and non-survivors (all P > 0.05). Taken together, COVID-19 patients displayed lower circulating levels of Zn, Fe, and Se, and their levels were associated with severity status. Moreover, circulating Fe levels may provide part of the explanation for the unfavorable survival status. Therefore, we presumed optimistically that supplements of trace elements might provide an adjutant treatment in the early stages of COVID-19. Systematic review registration [https://www.crd.york.ac.uk/prospero], identifier [CRD42022348599].
Collapse
Affiliation(s)
- Yunhui Li
- Clinical Laboratory, PLA North Military Command Region General Hospital, Shenyang, China
| | - Weihe Luo
- Department of Medical Engineering, PLA North Military Command Region General Hospital, Shenyang, China
| | - Bin Liang
- Department of Bioinformatics, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Ward JL, Torres-Gonzalez M, Ammons MCB. The Influence of Viral Infections on Iron Homeostasis and the Potential for Lactoferrin as a Therapeutic in the Age of the SARS-CoV-2 Pandemic. Nutrients 2022; 14:3090. [PMID: 35956266 PMCID: PMC9370565 DOI: 10.3390/nu14153090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
The association of hyperinflammation and hyperferritinemia with adverse outcomes in SARS-CoV-2-infected patients suggests an integral role for iron homeostasis in pathogenesis, a commonly described symptom of respiratory viral infections. This dysregulated iron homeostasis results in viral-induced lung injury, often lasting long after the acute viral infection; however, much remains to be understood mechanistically. Lactoferrin is a multipurpose glycoprotein with key immunomodulatory, antimicrobial, and antiviral functions, which can be found in various secreted fluids, but is most abundantly characterized in milk from all mammalian species. Lactoferrin is found at its highest concentrations in primate colostrum; however, the abundant availability of bovine-dairy-derived lactoferrin (bLf) has led to the use of bLf as a functional food. The recent research has demonstrated the potential value of bovine lactoferrin as a therapeutic adjuvant against SARS-CoV-2, and herein this research is reviewed and the potential mechanisms of therapeutic targeting are considered.
Collapse
Affiliation(s)
- Jeffrey L Ward
- Medical Student, College of Osteopathic Medicine, William Carey University, Hattiesburg, MI 39401, USA
| | | | - Mary Cloud B Ammons
- Associate Research Scientist, IVREF, Boise VA Medical Center, Boise, ID 83702, USA
| |
Collapse
|
29
|
Tosato M, Ciciarello F, Zazzara MB, Pais C, Savera G, Picca A, Galluzzo V, Coelho-Júnior HJ, Calvani R, Marzetti E, Landi F. Nutraceuticals and Dietary Supplements for Older Adults with Long COVID. Clin Geriatr Med 2022; 38:565-591. [PMID: 35868674 PMCID: PMC9212635 DOI: 10.1016/j.cger.2022.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Francesca Ciciarello
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Maria Beatrice Zazzara
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Cristina Pais
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Giulia Savera
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Vincenzo Galluzzo
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| |
Collapse
|
30
|
de Jesus JR, Galazzi RM, Lopes Júnior CA, Arruda MAZ. Trace element homeostasis in the neurological system after SARS-CoV-2 infection: Insight into potential biochemical mechanisms. J Trace Elem Med Biol 2022; 71:126964. [PMID: 35240553 PMCID: PMC8881805 DOI: 10.1016/j.jtemb.2022.126964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several studies have suggested that COVID-19 is a systemic disease that can affect several organs, including the brain. In the brain, specifically, viral infection can cause dyshomeostasis of some trace elements that promote complex biochemical reactions in specialized neurological functions. OBJECTIVE Understand the neurovirulence of SARS-CoV-2 and the relationship between trace elements and neurological disorders after infection, and provide new insights on the drug development for the treatment of SARS-CoV-2 infections. METHODS The main databases were used to search studies published up September 2021, focusing on the role of trace elements during viral infection and on the correct functioning of the brain. RESULTS The imbalance of important trace elements can accelerate SARS-CoV-2 neurovirulence and increase the neurotoxicity since many neurological processes can be associated with the homeostasis of metal and metalloproteins. Some studies involving animals and humans have suggested the synapse as a vulnerable region of the brain to neurological disorders after viral infection. Considering the combined evidence, some mechanisms have been suggested to understand the relationship between neurological disorders and imbalance of trace elements in the brain after viral infection. CONCLUSION Trace elements play important roles in viral infections, such as helping to activate immune cells, produce antibodies, and inhibit virus replication. However, the relationship between trace elements and virus infections is complex since the specific functions of several elements remain largely undefined. Therefore, there is still a lot to be explored to understand the biochemical mechanisms involved between trace elements and viral infections, especially in the brain.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- Research Laboratory in Bionanomaterials, LPbio, Brazil; Chemistry Department, Federal University of Viçosa, UFV, Viçosa, Minas Gerais, Brazil.
| | - Rodrigo Moretto Galazzi
- Analytical Instrumentation Division, Analytik Jena GmbH, an Endress & Hauser Company, São Paulo, SP 04029-901, Brazil.
| | - Cícero Alves Lopes Júnior
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, Institute of Chemistry, University of Campinas, UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Brazil.
| |
Collapse
|
31
|
Peng D, Gao Y, Zhang L, Liu Z, Wang H, Liu Y. The Relationship Between Hepcidin-Mediated Iron Dysmetabolism and COVID-19 Severity: A Meta-Analysis. Front Public Health 2022; 10:881412. [PMID: 35558525 PMCID: PMC9087037 DOI: 10.3389/fpubh.2022.881412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUNDS Hepcidin has been identified as a systemic iron-regulatory hormone. Recent studies have suggested that iron metabolism disorders may be involved in the pathogenesis of acute respiratory distress syndrome and multiple organ dysfunction in coronavirus disease 2019 (COVID-19). OBJECTIVES To re-evaluate the hepcidin-related iron metabolism parameters and explore the relationship between hepcidin-mediated iron dysmetabolism and COVID-19 severity. METHODS COVID-19 is classified as mild and moderate as non-severe, severe and critical as severe. A meta-analysis was conducted. Four bibliographic databases were comprehensively searched up to December 31st 2021. RESULTS Six unique studies with data from 477 COVID-19 patients were included. Compared to non-severe cases, severe cases had higher hepcidin (standardized mean difference (SMD), -0.39; 95% Confidence Interval (CI) [-0.76, -0.03]; P = 0.03) and ferritin (SMD, -0.84; 95% CI [-1.30, -0.38]; P = 0.0004). In five out of six studies, a total of 427 patients were tested for serum iron, and there were significant differences in their levels between severe and non-severe cases (SMD, 0.22; 95% CI [0.02, 0.41]; P = 0.03). A total of 320 patients from four out of six studies were tested for transferrin saturation, and the statistical difference was not significant (SMD, 0.06; 95% CI [-0.17, 0.28]; P = 0.64). CONCLUSION Severe COVID-19 cases had higher serum levels of hepcidin and ferritin, and lower serum iron, without significant differences in transferrin saturation. Further studies are needed to verify whether targeting the hepcidin-mediated iron metabolism axis may influence the outcome and treatment of COVID-19.
Collapse
Affiliation(s)
- Denggao Peng
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Graduate Collaborative Training Base of Shenzhen Third People's Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanzhang Gao
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Li Zhang
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Zhichao Liu
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Huan Wang
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yingxia Liu
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Graduate Collaborative Training Base of Shenzhen Third People's Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
32
|
Claise C, Saleh J, Rezek M, Vaulont S, Peyssonnaux C, Edeas M. Low transferrin levels predict heightened inflammation in patients with COVID-19: New insights. Int J Infect Dis 2022; 116:74-79. [PMID: 34952211 PMCID: PMC8688186 DOI: 10.1016/j.ijid.2021.12.340] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Mounting evidence links hyperinflammation in gravely ill patients to low serum iron levels and hyperferritinemia. However, little attention has been paid to other iron-associated markers such as transferrin. The aim of this study was to investigate the association of different iron parameters in severe COVID-19 and their relation to disease severity. SUBJECTS AND METHODS This study involved 73 hospitalized patients with positive test results for SARS-CoV-2. Patients were classified into two groups according to symptom severity: mild and severe. Blood levels of anti-SARS-CoV-2 antibodies, interleukin 6 (IL-6), C-reactive protein (CRP), and iron-related biomarkers were measured. RESULTS The results revealed a significant increase in IL-6, CRP, and ferritin levels and decreased transferrin and iron levels in severe COVID-19. Transferrin negatively predicted variations in IgM and IgG levels (P < 0.001), as well as 34.4% and 36.6% increase in IL-6 and CRP levels, respectively (P < 0.005). Importantly, transferrin was the main negative predictor of ferritin levels, determining 22.7% of serum variations (P < 0.001). CONCLUSION Reduced serum transferrin and iron levels, along with the increased CRP and high ferritin, were strongly associated with the heightened inflammatory and immune state in COVID-19. Transferrin can be used as a valuable predictor of increased severity and progression of the disease.
Collapse
Affiliation(s)
| | - Jumana Saleh
- College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Marwa Rezek
- Groupe Hospitalier Sud Ile-de-France (GHSIF), Melun, France
| | - Sophie Vaulont
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Carole Peyssonnaux
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Marvin Edeas
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France; Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
33
|
Kilercik M, Ucal Y, Serdar M, Serteser M, Ozpinar A, Schweigert FJ. Zinc protoporphyrin levels in COVID-19 are indicative of iron deficiency and potential predictor of disease severity. PLoS One 2022; 17:e0262487. [PMID: 35113876 PMCID: PMC8812978 DOI: 10.1371/journal.pone.0262487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background Coronavirus disease (COVID-19) has a severe impact on all aspects of patient care. Among the numerous biomarkers of potential validity for diagnostic and clinical management of COVID-19 are biomarkers at the interface of iron metabolism and inflammation. Methods The follow-up study included 54 hospitalized patients with laboratory-confirmed COVID-19 with a moderate and severe/critical form of the disease. Iron deficiency specific biomarkers such as iron, ferritin, transferrin receptor, hepcidin, and zinc protoporphyrin (ZnPP) as well as relevant markers of inflammation were evaluated twice: in the first five days when the patient was admitted to the hospital and during five to 15 days; and their validity to diagnose iron deficiency was further assessed. The regression and Receiver Operating Characteristics (ROC) analyses were performed to evaluate the prognosis and determine the probability for predicting the severity of the disease in the first five days of COVID-19. Results Based on hemoglobin values, anemia was observed in 21 of 54 patients. Of all iron deficiency anemia-related markers, only ZnPP was significantly elevated (P<0.001) in the anemic group. When patients were grouped according to the severity of disease, slight differences in hemoglobin or other anemia-related parameters could be observed. However, the levels of ZnPP were significantly increased in the severely ill group of patients. The ratio of ZnPP to lymphocyte count (ZnPP/L) had a discrimination power stronger than the neutrophil to lymphocyte count ratio (N/L) to determine disease severity. Additionally, only two markers were independently associated with the severity of COVID-19 in logistic regression analysis; D-dimer (OR (5.606)(95% CI 1.019–30.867)) and ZnPP/L ratio (OR (74.313) (95% CI 1.081–5108.103)). Conclusions For the first time ZnPP in COVID-19 patients were reported in this study. Among all iron-related markers tested, ZnPP was the only one that was associated with anemia as based on hemoglobin. The increase in ZnPP might indicate that the underlying cause of anemia in COVID-19 patients is not only due to the inflammation but also of nutritional origin. Additionally, the ZnPP/L ratio might be a valid prognostic marker for the severity of COVID-19.
Collapse
Affiliation(s)
- Meltem Kilercik
- Department of Medical Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Medical Biochemistry, Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Yasemin Ucal
- Department of Medical Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Muhittin Serdar
- Department of Medical Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Mustafa Serteser
- Department of Medical Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Medical Biochemistry, Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- * E-mail: (FJS); (AO)
| | - Florian J. Schweigert
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- * E-mail: (FJS); (AO)
| |
Collapse
|
34
|
Major trace elements and their binding proteins in the early phase of Covid-19 infection. J Biol Inorg Chem 2022; 27:261-269. [PMID: 35150336 PMCID: PMC8853275 DOI: 10.1007/s00775-022-01931-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
Metal ions seem to play important roles in the pathogenesis of the novel coronavirus disease of 2019 (Covid-19) and are under investigation as potential prognostic markers and supplements in therapeutic procedures. The present study was aimed at assessing the relationship between the most abundant essential microelements (iron, zinc and copper) and their major binding proteins in the circulation in the early stage of infection. The concentration of zinc ions was measured to be higher in infected than in healthy persons, as well as ratios zinc/albumin and zinc/alpha-2-macroglobulin. Increased zinc levels could be attributed to cellular redistribution of zinc ions or to a use of zinc supplementation (zinc concentration was above the upper reference limit in one-third of infected individuals). Immunoblot analysis of protein molecular forms revealed that infected persons had greater amounts of proteinase-bound alpha-2-macroglobulin tetramer and albumin monomer than healthy individuals. The quantities of these forms were correlated with the concentration of zinc ions (r = 0.42 and 0.55, respectively) in healthy persons, but correlations were lost in infected individuals, most likely due to very high zinc concentrations in some participants which were not proportionally followed by changes in the distribution of protein species. Although we still have to wait for a firm confirmation of the involvement of zinc in beneficial defense mechanisms in patients with Covid-19, it seems that this ion may contribute to the existence of circulating protein forms which are the most optimal.
Collapse
|
35
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
36
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
37
|
Ergin Tuncay M, Neselioglu S, Asfuroglu Kalkan E, Inan O, Sena Akkus M, Ates I, Erel O. OUP accepted manuscript. Lab Med 2022; 53:453-458. [PMID: 35394547 PMCID: PMC9047239 DOI: 10.1093/labmed/lmac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective The aim of the study was to evaluate proline metabolism in patients affected by COVID-19. Materials and Methods This case-control study consisted of 116 patients with COVID-19 and 46 healthy individuals. Tests related to proline metabolism (prolidase, proline, hydroxyproline, glutamic acid, manganese) and copper and zinc tests were analyzed. Results The levels of proline and hydroxyproline amino acids and the prolidase enzyme were found to be lower and glutamic acid was found to be higher in the COVID-19 group compared to the healthy group (P = .012, P < .001, P < .001, and P < .001, respectively). The copper/zinc ratio was higher in patients with COVID-19 than in healthy individuals (P < .001). Significant correlations were found between proline metabolism tests and inflammatory and hemostatic markers commonly used in COVID-19. Conclusion The proline metabolic pathway was affected in COVID-19. Relationships between proline pathway–related tests and inflammatory/hemostatic markers supported the roles of proline metabolism in proinflammatory and immune response processes.
Collapse
Affiliation(s)
| | - Salim Neselioglu
- Department of Biochemistry, Yıldırım Beyazıt University Faculty of Medicine, Ankara, Turkey
- Central Biochemistry Laboratory, Ankara City Hospital, Ankara, Turkey
| | | | - Osman Inan
- Department of Internal Medicine, Ankara City Hospital, Ankara, Turkey
| | - Meryem Sena Akkus
- Central Research Laboratory, Yıldırım Beyazıt University, Ankara, Turkey
| | - Ihsan Ates
- Department of Internal Medicine, Ankara City Hospital, Ankara, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Yıldırım Beyazıt University Faculty of Medicine, Ankara, Turkey
- Central Biochemistry Laboratory, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
38
|
Frost JN, Hamilton F, Arnold D, Elvers KT, Shah A, Armitage AE, Milne A, McKernon J, Attwood M, Chen YL, Xue L, Youngs J, Provine NM, Bicanic T, Klenerman P, Drakesmith H, Ghazal P. Evaluation of perturbed iron-homeostasis in a prospective cohort of patients with COVID-19. Wellcome Open Res 2022; 7:173. [PMID: 35935705 PMCID: PMC9307999 DOI: 10.12688/wellcomeopenres.17904.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Marked reductions in serum iron concentrations are commonly induced during the acute phase of infection. This phenomenon, termed hypoferremia of inflammation, leads to inflammatory anemia, but could also have broader pathophysiological implications. In patients with coronavirus disease 2019 (COVID-19), hypoferremia is associated with disease severity and poorer outcomes, although there are few reported cohorts. Methods: In this study, we leverage a well characterised prospective cohort of hospitalised COVID-19 patients and perform a set of analyses focussing on iron and related biomarkers and both acute severity of COVID-19 and longer-term symptomatology. Results: We observed no associations between acute serum iron and long-term outcomes (including fatigue, breathlessness or quality of life); however, lower haemoglobin was associated with poorer quality of life. We also quantified iron homeostasis associated parameters, demonstrating that among 50 circulating mediators of inflammation IL-6 concentrations were strongly associated with serum iron, consistent with its central role in inflammatory control of iron homeostasis. Surprisingly, we observed no association between serum hepcidin and serum iron concentrations. We also observed elevated erythroferrone concentrations in COVID-19 patients with anaemia of inflammation. Conclusions: These results enhance our understanding of the regulation and pathophysiological consequences of disturbed iron homeostasis during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joe N. Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX1 2JD, UK
| | - Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS10 5NB, UK
- North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | | | - Karen T. Elvers
- Medicines Discovery Institute, Cardiff University, Cardiff, UK
| | - Akshay Shah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrew E. Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX1 2JD, UK
| | - Alice Milne
- North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | | | | | - Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX1 2JD, UK
| | - Luzheng Xue
- Respiratory Medicine Unit and Oxford NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jonathan Youngs
- Institute for Infection and Immunity, St George's, University of London, London, UK
- Clinical Academic Group in Infection and Immunity, St George's Hospital, London, London, UK
| | - Nicholas M. Provine
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tihana Bicanic
- Institute for Infection and Immunity, St George's, University of London, London, UK
- Clinical Academic Group in Infection and Immunity, St George's Hospital, London, London, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX1 2JD, UK
| | - Peter Ghazal
- Medicines Discovery Institute, Cardiff University, Cardiff, UK
- Project Sepsis, Systems Immunity Research Institute, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
39
|
Moreira AC, Teles MJ, Silva T, Bento CM, Alves IS, Pereira L, Guimarães JT, Porto G, Oliveira P, Gomes MS. Iron Related Biomarkers Predict Disease Severity in a Cohort of Portuguese Adult Patients during COVID-19 Acute Infection. Viruses 2021; 13:v13122482. [PMID: 34960751 PMCID: PMC8703662 DOI: 10.3390/v13122482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Large variability in COVID-19 clinical progression urges the need to find the most relevant biomarkers to predict patients' outcomes. We evaluated iron metabolism and immune response in 303 patients admitted to the main hospital of the northern region of Portugal with variable clinical pictures, from September to November 2020. One hundred and twenty-seven tested positive for SARS-CoV-2 and 176 tested negative. Iron-related laboratory parameters and cytokines were determined in blood samples collected soon after admission. Demographic data, comorbidities and clinical outcomes were recorded. Patients were assigned into five groups according to severity. Serum iron and transferrin levels at admission were lower in COVID-19-positive than in COVID-19-negative patients. The levels of interleukin (IL)-6 and monocyte chemoattractant protein 1 (MCP-1) were increased in COVID-19-positive patients. The lowest serum iron and transferrin levels at diagnosis were associated with the worst outcomes. Iron levels negatively correlated with IL-6 and higher levels of this cytokine were associated with a worse prognosis. Serum ferritin levels at diagnosis were higher in COVID-19-positive than in COVID-19-negative patients. Serum iron is the simplest laboratory test to be implemented as a predictor of disease progression in COVID-19-positive patients.
Collapse
Affiliation(s)
- Ana C. Moreira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (M.J.T.); (T.S.); (C.M.B.); (I.S.A.); (L.P.); (G.P.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Maria Jose Teles
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (M.J.T.); (T.S.); (C.M.B.); (I.S.A.); (L.P.); (G.P.)
- CHUSJ—Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal;
- ISPUP-EPIUnit—Instituto de Saúde Pública da Universidade do Porto, 4050-091 Porto, Portugal
| | - Tânia Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (M.J.T.); (T.S.); (C.M.B.); (I.S.A.); (L.P.); (G.P.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Clara M. Bento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (M.J.T.); (T.S.); (C.M.B.); (I.S.A.); (L.P.); (G.P.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- MCBiology—Programa Doutoral em Biologia Molecular e Celular, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês Simões Alves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (M.J.T.); (T.S.); (C.M.B.); (I.S.A.); (L.P.); (G.P.)
| | - Luisa Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (M.J.T.); (T.S.); (C.M.B.); (I.S.A.); (L.P.); (G.P.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - João Tiago Guimarães
- CHUSJ—Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal;
- ISPUP-EPIUnit—Instituto de Saúde Pública da Universidade do Porto, 4050-091 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Graça Porto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (M.J.T.); (T.S.); (C.M.B.); (I.S.A.); (L.P.); (G.P.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal;
- CHPorto—Centro Hospitalar do Porto, 4099-001 Porto, Portugal
| | - Pedro Oliveira
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal;
- ISPUP-EPIUnit—Instituto de Saúde Pública da Universidade do Porto, 4050-091 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (M.J.T.); (T.S.); (C.M.B.); (I.S.A.); (L.P.); (G.P.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal;
- Correspondence:
| |
Collapse
|
40
|
Kumar H M, Sharma P, Rudramurthy SM, Sehgal IS, Prasad KT, Pannu AK, Das R, Panda NK, Sharma N, Chakrabarti A, Agarwal R, Muthu V. Serum iron indices in COVID-19-associated mucormycosis: A case-control study. Mycoses 2021; 65:120-127. [PMID: 34743358 PMCID: PMC8662179 DOI: 10.1111/myc.13391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Whether dysregulated iron metabolism is associated with COVID-19-associated mucormycosis (CAM) remains unknown. Herein, we compare the serum iron indices in COVID-19 subjects with and without mucormycosis. METHODS We conducted a case-control study enrolling COVID-19 participants with and without mucormycosis. We compared the baseline serum iron indices (iron, ferritin, total iron-binding capacity [TIBC], unsaturated iron-binding capacity and percentage transferrin saturation) between CAM cases and COVID-19 controls. Additionally, we performed a multivariate logistic regression analysis to assess whether any iron indices are associated with CAM. RESULTS We enrolled 28 CAM cases (mean age 53.6 years old; 78.6% men) and 26 controls (mean age 57.2 years old; 73.1% men). Rhino-orbital (±cerebral) mucormycosis (85.7%) was the most clinical presentation. Diabetes mellitus was more frequent in the cases than controls (75% vs. 42.3%; p = .015). Hypoxaemia during COVID-19 illness was more common in controls than cases. The mean serum iron values (33 vs. 45 μg/dl, p = .03) and TIBC (166.6 vs. 201.6 μg/dl, p = .003) were significantly lower in CAM cases than controls. On multivariate analysis, we found a lower TIBC (odds ratio [OR] 0.97; 95% confidence interval [CI], 0.95-0.99) and diabetes mellitus (OR 5.23; 95% CI, 1.21-22.68) to be independently associated with CAM after adjusting for serum iron, ferritin and glucocorticoid therapy. The case fatality rate of CAM was 73.9%. The iron indices were not significantly different between CAM survivors and non-survivors. CONCLUSIONS The CAM is associated with lower TIBC levels than COVID-19 subjects without mucormycosis, suggesting dysregulated iron metabolism in its pathogenesis. Further studies are required to confirm our preliminary observations.
Collapse
Affiliation(s)
- Mohan Kumar H
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Prashant Sharma
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashok Kumar Pannu
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Reena Das
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh K Panda
- Department of Otolaryngology and Head and Neck Surgery, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Navneet Sharma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
41
|
Bagher Pour O, Yahyavi Y, Karimi A, Khamaneh AM, Milani M, Khalili M, Sharifi A. Serum trace elements levels and clinical outcomes among Iranian COVID-19 patients. Int J Infect Dis 2021; 111:164-168. [PMID: 34454118 PMCID: PMC8384760 DOI: 10.1016/j.ijid.2021.08.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/05/2021] [Accepted: 08/22/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES The relationship between immunity and trace elements levels is well known. We aimed to estimate the association of serum trace elements with severity and outcomes in the Coronavirus Disease-2019 (COVID-19) patients. METHODS In this single-centered, prospective, observational study, we enrolled 114 patients admitted to severe intensive care units (ICUs) and corresponding 112 sex and aged-matched non-ICU ward patients. Demographic data, clinical characteristics, and outcomes were all collected. We analyzed serum levels of zinc (Zn), copper (Cu), selenium (Se), and manganese (Mn) in both severity groups. RESULTS The serum levels of Cu, Se, and Mn in both groups were within the normal range while Zn serum levels were lower than normal values. Based on these findings, Zn, Cu, Se, and Mn serum levels were not associated with disease severity (P > 0.05), while we found Zn serum levels were strongly associated with patient outcomes (P = 0.005). Our results indicated lower Mn serum levels were associated with age more than 55 years (P= 0.006). Our results were not in favor of a causal relationship between serum trace elements levels and disease severity. CONCLUSION We found Zn level to be a strong indicator for patients' outcomes that can be considered for monitoring patient prognosis. Nutritional measures or supplementation can help reduce poor outcomes caused by low Zn levels in Iranian COVID-19 patients.
Collapse
Affiliation(s)
- Ozra Bagher Pour
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yahya Yahyavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Mehdi Khamaneh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Milani
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khalili
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Sharifi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Berger MM, Herter-Aeberli I, Zimmermann MB, Spieldenner J, Eggersdorfer M. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN 2021; 43:39-48. [PMID: 34024545 PMCID: PMC7987506 DOI: 10.1016/j.clnesp.2021.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The enormous health impact of the COVID-19 pandemic has refocused attention on measures to optimize immune function and vaccine response. Dietary deficiencies of micronutrients can weaken adaptive immunity. The aim of this review was to examine links between micronutrients, immune function and COVID-19 infection, with a focus on nutritional risks in subgroups of the Swiss population. METHODS Scoping review on the associations between selected micronutrients (vitamins D and C, iron, selenium, zinc, and n-3 PUFAs) and immunity, with particular reference to the Swiss population. These nutrients were chosen because previous EFSA reviews have concluded they play a key role in immunity. RESULTS The review discusses the available knowledge on links between sufficient nutrient status, optimal immune function, and prevention of respiratory tract infections. Because of the rapid spread of the COVID-19 pandemic, controlled intervention studies of micronutrients in the context of COVID-19 infection are now underway, but evidence is not yet available to draw conclusions. The anti-inflammatory properties of n-3 PUFAs are well established. In Switzerland, several subgroups of the population are at clear risk of nutrient deficiencies; e.g., older adults, multiple comorbidities, obesity, pregnancy, and institutionalized. Low intakes of n-3 PUFA are present in a large proportion of the population. CONCLUSION There are clear and strong relationships between micronutrient and n-3 PUFA status and immune function, and subgroups of the Swiss population are at risk for deficient intakes. Therefore, during the COVID-19 pandemic, as a complement to a healthy and balanced diet, it may be prudent to consider supplementation with a combination of moderate doses of Vitamins C and D, as well as of Se, Zn and n-3 PUFA, in risk groups.
Collapse
Affiliation(s)
- Mette M Berger
- Lausanne University Hospital (CHUV) & University of Lausanne, Lausanne, Switzerland.
| | - Isabelle Herter-Aeberli
- Laboratory of Human Nutrition, Institute of Food, Nutrition, and Health, ETH Zürich, Zurich, Switzerland.
| | | | | | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|