1
|
Best HL, Cook SR, Waller-Evans H, Lloyd-Evans E. Niemann-Pick C-like Endolysosomal Dysfunction in DHDDS Patient Cells, a Congenital Disorder of Glycosylation, Can Be Treated with Miglustat. Int J Mol Sci 2025; 26:1471. [PMID: 40003936 PMCID: PMC11855410 DOI: 10.3390/ijms26041471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
DHDDS (dehydrodolichol diphosphate synthetase) and NgBR (Nogo-B Receptor) collectively form an enzymatic complex important for the synthesis of dolichol, a key component of protein N-glycosylation. Mutations in DHDDS and the gene encoding NgBR (NUS1) are associated with neurodevelopmental disorders that clinically present with epilepsy, motor impairments, and developmental delay. Previous work has demonstrated both DHDDS and NgBR can also interact with NPC2 (Niemann-Pick C (NPC) type 2), a protein which functions to traffic cholesterol out of the lysosome and, when mutated, can cause a lysosomal storage disorder (NPC disease) characterised by an accumulation of cholesterol and glycosphingolipids. Abnormal cholesterol accumulation has also been reported in cells from both individuals and animal models with mutations in NUS1, and suspected lipid storage has been shown in biopsies from individuals with mutations in DHDDS. Our findings provide further evidence for overlap between NPC2 and DHDDS disorders, showing that DHDDS patient fibroblasts have increased lysosomal volume, store cholesterol and ganglioside GM1, and have altered lysosomal Ca2+ homeostasis. Treatment of DHDDS cells, with the approved NPC small molecule therapy, miglustat, improves these disease-associated phenotypes, identifying a possible therapeutic option for DHDDS patients. These data suggest that treatment options currently approved for NPC disease may be translatable to DHDDS/NUS1 patients.
Collapse
Affiliation(s)
| | | | | | - Emyr Lloyd-Evans
- Medicines Discovery Institute, Main Building, Cardiff University, Cardiff CF10 3AT, UK; (H.L.B.); (S.R.C.); (H.W.-E.)
| |
Collapse
|
2
|
Huang X, Wang Y, Xiang Y, Zhao Y, Pan H, Liu Z, Xu Q, Sun Q, Tan J, Yan X, Li J, Tang B, Guo J. Genetic Analysis of Neurite Outgrowth Inhibitor-Associated Genes in Parkinson's Disease: A Cross-Sectional Cohort Study. CNS Neurosci Ther 2024; 30:e70070. [PMID: 39354865 PMCID: PMC11445604 DOI: 10.1111/cns.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease caused by a combination of aging, environmental, and genetic factors. Previous research has implicated both causative and susceptibility genes in PD development. Nogo-A, a neurite outgrowth inhibitor, has been shown to impact axon growth through ligand-receptor interactions negatively, thereby involved in the deterioration of dopaminergic neurons. However, rare genetic studies have identified the relationship between neurite outgrowth inhibitor (Nogo)-associated genes and PD from a signaling pathway perspective. METHODS We enrolled 3959 PD patients and 2931 healthy controls, categorized into two cohorts based on their family history and age at onset: sporadic early Parkinson's disease & familial Parkinson's disease (sEOPD & FPD) cohort and sporadic late Parkinson's disease (sLOPD) cohort. We selected 17 Nogo-associated genes and stratified them into three groups via their function, respectively, ligand, receptors, and signaling pathway groups. Additionally, we conducted the burden analysis in rare variants, the logistic regression analysis in common variants, and the genotype-phenotype association analysis. Last, bioinformatics analysis and functional experiments were conducted to identify the role of the MTOR gene in PD. RESULTS Our findings demonstrated that the missense variants in the MTOR gene might increase PD risk, while the deleterious variants in the receptor subtype of Nogo-associated genes might mitigate PD risk. However, common variants of Nogo-associated genes showed no association with PD development in two cohorts. Furthermore, genotype-phenotype association analysis suggested that PD patients with MTOR gene variants exhibited relatively milder motor symptoms but were more susceptible developing dyskinesia. Additionally, bioinformatics analysis results showed MTOR gene was significantly decreased in PD, indicating a potential negative role of the mTOR in PD pathogenesis. Experimental data further demonstrated that MHY1485, a mTOR agonist, could rescue MPP+-induced axon inhibition, further implicating the involvement of mTOR protein in PD by regulating cell growth and axon growth. CONCLUSIONS Our preliminary investigation highlights the association of Nogo-associated genes with PD onset in the Chinese mainland population and hints at the potential role of the MTOR gene in PD. Further research is warranted to elucidate the mechanistic pathways underlying these associations and their therapeutic implications.
Collapse
Affiliation(s)
- Xiurong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| |
Collapse
|
3
|
Ashok S, Ramachandra Rao S. Updates on protein-prenylation and associated inherited retinopathies. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1410874. [PMID: 39026984 PMCID: PMC11254824 DOI: 10.3389/fopht.2024.1410874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Membrane-anchored proteins play critical roles in cell signaling, cellular architecture, and membrane biology. Hydrophilic proteins are post-translationally modified by a diverse range of lipid molecules such as phospholipids, glycosylphosphatidylinositol, and isoprenes, which allows their partition and anchorage to the cell membrane. In this review article, we discuss the biochemical basis of isoprenoid synthesis, the mechanisms of isoprene conjugation to proteins, and the functions of prenylated proteins in the neural retina. Recent discovery of novel prenyltransferases, prenylated protein chaperones, non-canonical prenylation-target motifs, and reversible prenylation is expected to increase the number of inherited systemic and blinding diseases with aberrant protein prenylation. Recent important investigations have also demonstrated the role of several unexpected regulators (such as protein charge, sequence/protein-chaperone interaction, light exposure history) in the photoreceptor trafficking of prenylated proteins. Technical advances in the investigation of the prenylated proteome and its application in vision research are discussed. Clinical updates and technical insights into known and putative prenylation-associated retinopathies are provided herein. Characterization of non-canonical prenylation mechanisms in the retina and retina-specific prenylated proteome is fundamental to the understanding of the pathogenesis of protein prenylation-associated inherited blinding disorders.
Collapse
Affiliation(s)
- Sudhat Ashok
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Sriganesh Ramachandra Rao
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Research Service, VA Western New York Healthcare System, Buffalo, NY, United States
| |
Collapse
|
4
|
Fabiano M, Oikawa N, Kerksiek A, Furukawa JI, Yagi H, Kato K, Schweizer U, Annaert W, Kang J, Shen J, Lütjohann D, Walter J. Presenilin Deficiency Results in Cellular Cholesterol Accumulation by Impairment of Protein Glycosylation and NPC1 Function. Int J Mol Sci 2024; 25:5417. [PMID: 38791456 PMCID: PMC11121565 DOI: 10.3390/ijms25105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Presenilin proteins (PS1 and PS2) represent the catalytic subunit of γ-secretase and play a critical role in the generation of the amyloid β (Aβ) peptide and the pathogenesis of Alzheimer disease (AD). However, PS proteins also exert multiple functions beyond Aβ generation. In this study, we examine the individual roles of PS1 and PS2 in cellular cholesterol metabolism. Deletion of PS1 or PS2 in mouse models led to cholesterol accumulation in cerebral neurons. Cholesterol accumulation was also observed in the lysosomes of embryonic fibroblasts from Psen1-knockout (PS1-KO) and Psen2-KO (PS2-KO) mice and was associated with decreased expression of the Niemann-Pick type C1 (NPC1) protein involved in intracellular cholesterol transport in late endosomal/lysosomal compartments. Mass spectrometry and complementary biochemical analyses also revealed abnormal N-glycosylation of NPC1 and several other membrane proteins in PS1-KO and PS2-KO cells. Interestingly, pharmacological inhibition of N-glycosylation resulted in intracellular cholesterol accumulation prominently in lysosomes and decreased NPC1, thereby resembling the changes in PS1-KO and PS2-KO cells. In turn, treatment of PS1-KO and PS2-KO mouse embryonic fibroblasts (MEFs) with the chaperone inducer arimoclomol partially normalized NPC1 expression and rescued lysosomal cholesterol accumulation. Additionally, the intracellular cholesterol accumulation in PS1-KO and PS2-KO MEFs was prevented by overexpression of NPC1. Collectively, these data indicate that a loss of PS function results in impaired protein N-glycosylation, which eventually causes decreased expression of NPC1 and intracellular cholesterol accumulation. This mechanism could contribute to the neurodegeneration observed in PS KO mice and potentially to the pathogenesis of AD.
Collapse
Affiliation(s)
- Marietta Fabiano
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jun-ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya 466-8550, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jochen Walter
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
Arruda AL, Khandaker GM, Morris AP, Smith GD, Huckins LM, Zeggini E. Genomic insights into the comorbidity between type 2 diabetes and schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:22. [PMID: 38383672 PMCID: PMC10881980 DOI: 10.1038/s41537-024-00445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Multimorbidity represents an increasingly important public health challenge with far-reaching implications for health management and policy. Mental health and metabolic diseases have a well-established epidemiological association. In this study, we investigate the genetic intersection between type 2 diabetes and schizophrenia. We use Mendelian randomization to examine potential causal relationships between the two conditions and related endophenotypes. We report no compelling evidence that type 2 diabetes genetic liability potentially causally influences schizophrenia risk and vice versa. Our findings show that increased body mass index (BMI) has a protective effect against schizophrenia, in contrast to the well-known risk-increasing effect of BMI on type 2 diabetes risk. We identify evidence of colocalization of association signals for these two conditions at 11 genomic loci, six of which have opposing directions of effect for type 2 diabetes and schizophrenia. To elucidate these colocalizing signals, we integrate multi-omics data from bulk and single-cell gene expression studies, along with functional information. We identify putative effector genes and find that they are enriched for homeostasis and lipid-related pathways. We also highlight drug repurposing opportunities including N-methyl-D-aspartate (NMDA) receptor antagonists. Our findings provide insights into shared biological mechanisms for type 2 diabetes and schizophrenia, highlighting common factors that influence the risk of the two conditions in opposite directions and shedding light on the complex nature of this comorbidity.
Collapse
Affiliation(s)
- Ana Luiza Arruda
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Munich School for Data Science, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Technical University of Munich (TUM), TUM School of Medicine and Health, Graduate School of Experimental Medicine, Munich, 81675, Germany
| | - Golam M Khandaker
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Laura M Huckins
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany.
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, 81675, Germany.
| |
Collapse
|
6
|
Zeineddine Y, Friedman MA, Buettmann EG, Abraham LB, Hoppock GA, Donahue HJ. Genetic diversity modulates the physical and transcriptomic response of skeletal muscle to simulated microgravity in male mice. NPJ Microgravity 2023; 9:86. [PMID: 38040743 PMCID: PMC10692100 DOI: 10.1038/s41526-023-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Developments in long-term space exploration necessitate advancements in countermeasures against microgravity-induced skeletal muscle loss. Astronaut data shows considerable variation in muscle loss in response to microgravity. Previous experiments suggest that genetic background influences the skeletal muscle response to unloading, but no in-depth analysis of genetic expression has been performed. Here, we placed eight, male, inbred founder strains of the diversity outbred mice (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ, and WSB/EiJ) in simulated microgravity (SM) via hindlimb unloading for three weeks. Body weight, muscle morphology, muscle strength, protein synthesis marker expression, and RNA expression were collected. A/J and CAST/EiJ mice were most susceptible to SM-induced muscle loss, whereas NOD/ShiLtJ mice were the most protected. In response to SM, A/J and CAST/EiJ mice experienced reductions in body weight, muscle mass, muscle volume, and muscle cross-sectional area. A/J mice had the highest number of differentially expressed genes (68) and associated gene ontologies (328). Downregulation of immunological gene ontologies and genes encoding anabolic immune factors suggest that immune dysregulation contributes to the response of A/J mice to SM. Several muscle properties showed significant interactions between SM and mouse strain and a high degree of heritability. These data imply that genetic background plays a role in the degree of muscle loss in SM and that more individualized programs should be developed for astronauts to protect their skeletal muscles against microgravity on long-term missions.
Collapse
Affiliation(s)
- Yasmina Zeineddine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Lovell B Abraham
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
7
|
Arruda AL, Khandaker GM, Morris AP, Smith GD, Huckins LM, Zeggini E. Genomic insights into the comorbidity between type 2 diabetes and schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.16.23297073. [PMID: 37905000 PMCID: PMC10615007 DOI: 10.1101/2023.10.16.23297073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Multimorbidity represents an increasingly important public health challenge with far-reaching implications for health management and policy. Mental health and metabolic diseases have a well-established epidemiological association. In this study, we investigate the genetic intersection between type 2 diabetes and schizophrenia. We use Mendelian randomization to examine potential causal relationships between the two conditions and related endophenotypes. We report no compelling evidence that type 2 diabetes genetic liability potentially causally influences schizophrenia risk and vice versa. Our findings show that increased body mass index (BMI) has a protective effect against schizophrenia, in contrast to the well-known risk-increasing effect of BMI on type 2 diabetes risk. We identify evidence of colocalization of association signals for these two conditions at 11 genomic loci, six of which have opposing directions of effect for type 2 diabetes and schizophrenia. To elucidate these colocalizing signals, we integrate multi-omics data from bulk and single-cell gene expression studies, along with functional information. We identify high-confidence effector genes and find that they are enriched for homeostasis and lipid-related pathways. We also highlight drug repurposing opportunities including N-methyl-D-aspartate (NMDA) receptor antagonists. Our findings provide insights into shared biological mechanisms for type 2 diabetes and schizophrenia, highlighting common factors that influence the risk of the two conditions in opposite directions and shedding light on the complex nature of this comorbidity.
Collapse
Affiliation(s)
- Ana Luiza Arruda
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, 85764, Germany
- Munich School for Data Science, Helmholtz Munich, Neuherberg, 85764, Germany
- Technical University of Munich (TUM), School of Medicine, Graduate School of Experimental Medicine, Munich, 81675, Germ
| | - Golam M. Khandaker
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Laura M. Huckins
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, 85764, Germany
- TUM school of medicine, Technical University Munich and Klinikum Rechts der Isar, Munich, 81675, Germany
| |
Collapse
|
8
|
Dang Do AN, Chang IJ, Jiang X, Wolfe LA, Ng BG, Lam C, Schnur RE, Allis K, Hansikova H, Ondruskova N, O’Connor SD, Sanchez-Valle A, Vollo A, Wang RY, Wolfenson Z, Perreault J, Ory DS, Freeze HH, Merritt JL, Porter FD. Elevated oxysterol and N-palmitoyl-O-phosphocholineserine levels in congenital disorders of glycosylation. J Inherit Metab Dis 2023; 46:326-334. [PMID: 36719165 PMCID: PMC10023375 DOI: 10.1002/jimd.12595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Congenital disorders of glycosylation (CDG) and Niemann-Pick type C (NPC) disease are inborn errors of metabolism that can both present with infantile-onset severe liver disease and other multisystemic manifestations. Plasma bile acid and N-palmitoyl-O-phosphocholineserine (PPCS) are screening biomarkers with proposed improved sensitivity and specificity for NPC. We report an infant with ATP6AP1-CDG who presented with cholestatic liver failure and elevated plasma oxysterols and bile acid, mimicking NPC clinically and biochemically. On further investigation, PPCS, but not the bile acid derivative N-(3β,5α,6β-trihydroxy-cholan-24-oyl) glycine (TCG), were elevated in plasma samples from individuals with ATP6AP1-, ALG1-, ALG8-, and PMM2-CDG. These findings highlight the importance of keeping CDG within the diagnostic differential when evaluating children with early onset severe liver disease and elevated bile acid or PPCS to prevent delayed diagnosis and treatment.
Collapse
Affiliation(s)
- An N. Dang Do
- Office of the Clinical Director, NICHD, NIH, Bethesda, MD, USA
- Correspondence An Ngoc Dang Do, MD PhD, , 10 Center Drive, MSC 1103, Bethesda, MD 20892
| | - Irene J. Chang
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Xutian Jiang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lynne A. Wolfe
- Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | | | | | - Hana Hansikova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Nina Ondruskova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Shawn D. O’Connor
- Department of Pediatrics, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | | | - Arve Vollo
- Department of Paediatrics, Sykehuset Ostfold HF, Fredrikstad, Norway
| | - Raymond Y. Wang
- Children’s Hospital of Orange County, Orange County, CA, USA
- University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Zoe Wolfenson
- Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - John Perreault
- Office of the Clinical Director, NICHD, NIH, Bethesda, MD, USA
| | - Daniel S. Ory
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - J Lawrence Merritt
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Forbes D. Porter
- Section on Molecular Dysmorphology, NICHD, NIH, Bethesda, MD, USA
| |
Collapse
|
9
|
Rao SR, Pittler SJ, Fliesler SJ. Perspectives on Retinal Dolichol Metabolism, and Visual Deficits in Dolichol Metabolism-Associated Inherited Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:449-456. [PMID: 37440071 DOI: 10.1007/978-3-031-27681-1_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
De novo synthesis of dolichol (Dol) and dolichyl phosphate (Dol-P) is essential for protein glycosylation. Herein, we provide a brief overview of Dol and Dol-P synthesis and the maintenance of their cellular content. Retinal Dol metabolism and the requirement of Dol-linked oligosaccharide synthesis in the neural retina also are discussed. There are recently discovered and an emerging class of rare congenital disorders that affect Dol metabolism, involving the genes DHDDS, NUS1, SRD5A3, and DOLK. Further understanding of these congenital disorders is evolving, based upon studies utilizing yeast and murine models, as well as clinical reports of these rare disorders. We summarize the known visual deficits associated with Dol metabolism disorders, and identify the need for generation and characterization of suitable animal models of these disorders to elucidate the underlying molecular and cellular mechanisms of the associated retinopathies.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry, and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
- Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Pittler
- Department of Optometry and Vision Science, Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
- Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
10
|
Role of Neurite Outgrowth Inhibitor B Receptor in hepatic steatosis. Acta Histochem 2022; 124:151977. [DOI: 10.1016/j.acthis.2022.151977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
|
11
|
Liang H, Guo W, He H, Zhang H, Ye Q, Zhang Q, Liao J, Shen Y, Wang J, Xiao Y, Qin C. Decreased soluble Nogo-B in serum as a promising biomarker for Parkinson's disease. Front Neurosci 2022; 16:894454. [PMID: 35958994 PMCID: PMC9360801 DOI: 10.3389/fnins.2022.894454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022] Open
Abstract
BackgroundRecently, the neurite outgrowth inhibitor-B (Nogo-B) receptor has been reported as a novel candidate gene for Parkinson's disease (PD). Nogo-B receptors need to combine with soluble Nogo-B to exert their physiological function. However, little is known about the relationship between serum soluble Nogo-B and PD.MethodsSerum levels of sNogo-B and α-Synuclein (α-Syn) were measured in a cohort of 53 patients with PD and 49 healthy controls with the ELISA kit method.ResultsSerum sNogo-B level is significantly lower in the PD group than that in healthy controls and is negatively correlated with UPDRS-III score (p = 0.049), H&Y stage (p = 0.0108) as well as serum α-Syn level (p = 0.0001). The area under the curve (AUC) of serum sNogo-B in differentiating patients with PD from controls was 0.801 while the AUC of serum α-Syn was 0.93. Combining serum sNogo-B and α-Syn in differentiating patients with PD from HC presented higher discriminatory potential (AUC = 0.9534).ConclusionDecreased serum sNogo-B may be a potential biomarker for PD. Lower Nogo-B level reflects worse motor function and disease progression of PD. Serum sNogo-B is of added value to serum α-Syn panel in distinguishing PD from controls. Future studies are needed to confirm in larger samples and different populations.
Collapse
Affiliation(s)
- Hongming Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Neurology, The First People's Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honghu He
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Rehabilitation Medicine, The First People's Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Qiongyu Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingxin Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiajia Liao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuefei Shen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Chao Qin
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Yousheng Xiao
| |
Collapse
|
12
|
Xue J, Zhu Y, Wei L, Huang H, Li G, Huang W, Zhu H, Duan R. Loss of Drosophila NUS1 results in cholesterol accumulation and Parkinson's disease-related neurodegeneration. FASEB J 2022; 36:e22411. [PMID: 35695805 DOI: 10.1096/fj.202200212r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 11/11/2022]
Abstract
NgBR is the Nogo-B receptor, encoded by NUS1 gene. As NgBR contains a C-terminal domain that is similar to cis-isoprenyltransferase (cis-IPTase), NgBR was speculated to stabilize nascent Niemann-Pick type C 2 (NPC2) to facilitate cholesterol transport out of lysosomes. Mutations in the NUS1 were known as risk factors for Parkinson's disease (PD). In our previous study, it was shown that knockdown of Drosophila NUS1 orthologous gene tango14 causes decreased climbing ability, loss of dopaminergic neurons, and decreased dopamine contents. In this study, tango14 mutant flies were generated with a mutation in the C-terminal enzyme activity region using CRISPR/Cas9. Tango14 mutant showed a reduced lifespan with locomotive defects and cholesterol accumulation in Malpighian tubules and brains, especially in dopaminergic neurons. Multilamellar bodies were found in tango14 mutants using electron microscopy. Neurodegenerative-related brain vacuolization was also detected in tango14 knockdown flies in an age-dependent manner. In addition, tango14 knockdown increased α-synuclein (α-syn) neurotoxicity in α-syn-overexpressing flies, with decreased locomotive activities, dopamine contents, and the numbers of dopaminergic neurons in aging flies. Thus, these observations suggest a role of NUS1, the ortholog of tango14, in PD-related pathogenesis.
Collapse
Affiliation(s)
- Jin Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yingbao Zhu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Liyi Wei
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hongjing Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Guangxu Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hua Zhu
- Department of Clinical Laboratory, Jilin Cancer Hospital, Jilin, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|
13
|
Angelopoulou E, Bougea A, Papageorgiou SG, Villa C. Psychosis in Parkinson's Disease: A Lesson from Genetics. Genes (Basel) 2022; 13:genes13061099. [PMID: 35741861 PMCID: PMC9222985 DOI: 10.3390/genes13061099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
Psychosis in Parkinson's disease (PDP) represents a common and debilitating condition that complicates Parkinson's disease (PD), mainly in the later stages. The spectrum of psychotic symptoms are heterogeneous, ranging from minor phenomena of mild illusions, passage hallucinations and sense of presence to severe psychosis consisting of visual hallucinations (and rarely, auditory and tactile or gustatory) and paranoid delusions. PDP is associated with increased caregiver stress, poorer quality of life for patients and carers, reduced survival and risk of institutionalization with a significant burden on the healthcare system. Although several risk factors for PDP development have been identified, such as aging, sleep disturbances, long history of PD, cognitive impairment, depression and visual disorders, the pathophysiology of psychosis in PD is complex and still insufficiently clarified. Additionally, several drugs used to treat PD can aggravate or even precipitate PDP. Herein, we reviewed and critically analyzed recent studies exploring the genetic architecture of psychosis in PD in order to further understand the pathophysiology of PDP, the risk factors as well as the most suitable therapeutic strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Sokratis G. Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: ; Tel.: +39-02-6448-8138
| |
Collapse
|
14
|
Majer F, Asfaw B, Kuchař L, Mušálková D, Steiner-Mrázová L, Dobrovolný R, Ledvinová J, Hřebíček M. Loading of cell cultures with cholesterol-dextran particles as a new functional test for Niemann-Pick type C disease. J Inherit Metab Dis 2022; 45:584-592. [PMID: 35088900 DOI: 10.1002/jimd.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 11/09/2022]
Abstract
Deuterium-labeled cholesterol-dextran particles (d4-CholDex), prepared by co-precipitation, were internalized by cultured human skin fibroblasts and HEK293 cells. Subcellular particles from d4-CholDex-treated HEK293 cells were fractionated on iodixanol gradients. More than 60% of d4-cholesterol (d4-UC) in the gradient co-fractionated with lysosomal markers and NPC1. This and formation of d4-cholesteryl esters (d4-CE) in the cells suggests that d4-CholDex is lysosomally processed. In accordance with these findings, we observed an increase in lysosomal cholesterol content by fluorescence microscopy in CholDex-loaded cells. Fibroblast cultures including 13 NPC1-deficient, four heterozygous and six control lines were treated with d4-CholDex at final d4-UC concentration of 0.05 mg/ml (127.98 μmol/L) for 3 h and chased for 48 h in medium without d4-CholDex. Concentrations of d4-UC and d4-CE in harvested cells were measured by tandem mass spectrometry (MS/MS). d4-UC/d4-CE ratios were elevated in NP-C lines compared to controls (n = 6, mean = 4.36, range = 1.89-8.91), with the highest ratios in severe NP-C1 phenotypes and the lowest in adolescent/adult type patients. There were overlaps between NP-C1 forms: early infantile (n = 1, mean = 48.6), late infantile (n = 4, mean = 36.3, range = 20.6-54.0), juvenile (n = 5, mean = 24.7, range = 13.4-38.3), adolescent/adult (n = 3, mean = 14.5, range = 11.7-19.8). The ratios in NP-C1 heterozygotes were mildly elevated (n = 4, mean = 16.4, range = 14.9-17.4) and comparable to patients with adolescent/adult NP-C1. The test can be useful in evaluation of suspected NP-C patients with inconclusive results of biomarker or molecular tests. Its advantages include standardized preparation of particles with longer shelf life at 4 °C, quantitative results, and no requirement for radioactive chemicals.
Collapse
Affiliation(s)
- Filip Majer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Befekadu Asfaw
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ladislav Kuchař
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lenka Steiner-Mrázová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Robert Dobrovolný
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Ledvinová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Hřebíček
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
15
|
Roney JC, Cheng XT, Sheng ZH. Neuronal endolysosomal transport and lysosomal functionality in maintaining axonostasis. J Cell Biol 2022; 221:213000. [PMID: 35142819 PMCID: PMC8932522 DOI: 10.1083/jcb.202111077] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/08/2023] Open
Abstract
Lysosomes serve as degradation hubs for the turnover of endocytic and autophagic cargos, which is essential for neuron function and survival. Deficits in lysosome function result in progressive neurodegeneration in most lysosomal storage disorders and contribute to the pathogenesis of aging-related neurodegenerative diseases. Given their size and highly polarized morphology, neurons face exceptional challenges in maintaining cellular homeostasis in regions far removed from the cell body where mature lysosomes are enriched. Neurons therefore require coordinated bidirectional intracellular transport to sustain efficient clearance capacity in distal axonal regions. Emerging lines of evidence have started to uncover mechanisms and signaling pathways regulating endolysosome transport and maturation to maintain axonal homeostasis, or “axonostasis,” that is relevant to a range of neurologic disorders. In this review, we discuss recent advances in how axonal endolysosomal trafficking, distribution, and lysosomal functionality support neuronal health and become disrupted in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Joseph C Roney
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Ma J, Zeng P, Liu L, Zhu M, Zheng J, Wang C, Zhao X, Hu W, Yang X, Duan Y, Han J, Miao QR, Chen Y. Peroxisome Proliferator-Activated Receptor-Gamma Reduces ER Stress and Inflammation via Targeting NGBR Expression. Front Pharmacol 2022; 12:817784. [PMID: 35111067 PMCID: PMC8801792 DOI: 10.3389/fphar.2021.817784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023] Open
Abstract
Increased Nogo-B receptor (NGBR) expression in the liver improves insulin sensitivity by reducing endoplasmic reticulum stress (ER stress) and activating the AMPK pathway, although it remains elusive the mechanisms by which NGBR is induced. In this study, we found that PPARγ ligands (rosiglitazone or pioglitazone) increased NGBR expression in hepatic cells and HUVECs. Furthermore, promoter analysis defined two PPREs (PPARγ-responsive elements) in the promoter region of NGBR, which was further confirmed by the ChIP assay. In vivo, using liver-specific PPARγ deficient (PPARγLKO) mice, we identified the key role of PPARγ expression in pioglitazone-induced NGBR expression. Meanwhile, the basal level of ER stress and inflammation was slightly increased by NGBR knockdown. However, the inhibitory effect of rosiglitazone on inflammation was abolished while rosiglitazone-inhibited ER stress was weakened by NGBR knockdown. Taken together, these findings show that NGBR is a previously unrecognized target of PPARγ activation and plays an essential role in PPARγ-reduced ER stress and inflammation.
Collapse
Affiliation(s)
- Jialing Ma
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peng Zeng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Lipei Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Mengmeng Zhu
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Juan Zheng
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chengyi Wang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaokang Zhao
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenquan Hu
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Yang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Qing R Miao
- Diabetes and Obesity Research Center, New York University Long Island School of Medicine, New York, NY, United States
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
17
|
Courage C, Oliver KL, Park EJ, Cameron JM, Grabińska KA, Muona M, Canafoglia L, Gambardella A, Said E, Afawi Z, Baykan B, Brandt C, di Bonaventura C, Chew HB, Criscuolo C, Dibbens LM, Castellotti B, Riguzzi P, Labate A, Filla A, Giallonardo AT, Berecki G, Jackson CB, Joensuu T, Damiano JA, Kivity S, Korczyn A, Palotie A, Striano P, Uccellini D, Giuliano L, Andermann E, Scheffer IE, Michelucci R, Bahlo M, Franceschetti S, Sessa WC, Berkovic SF, Lehesjoki AE. Progressive myoclonus epilepsies-Residual unsolved cases have marked genetic heterogeneity including dolichol-dependent protein glycosylation pathway genes. Am J Hum Genet 2021; 108:722-738. [PMID: 33798445 DOI: 10.1016/j.ajhg.2021.03.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/05/2021] [Indexed: 02/04/2023] Open
Abstract
Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.
Collapse
Affiliation(s)
- Carolina Courage
- Folkhälsan Research Center, Helsinki 00290, Finland; Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
| | - Karen L Oliver
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia; Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eon Joo Park
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Jillian M Cameron
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Kariona A Grabińska
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Mikko Muona
- Folkhälsan Research Center, Helsinki 00290, Finland; Blueprint Genetics, Espoo 02150, Finland
| | - Laura Canafoglia
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | | | - Edith Said
- Section of Medical Genetics, Mater dei Hospital, Msida MSD2090, Malta; Department of Anatomy and Cell Biology, University of Malta, Msida MSD2090, Malta
| | - Zaid Afawi
- Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva 8410402, Israel
| | - Betul Baykan
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey
| | | | - Carlo di Bonaventura
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy
| | - Hui Bein Chew
- Genetics Department, Kuala Lumpur Hospital, Ministry of Health Malaysia, Jalan Pahang, 50586 Kuala Lumpur, Malaysia
| | - Chiara Criscuolo
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples 80138, Italy
| | - Leanne M Dibbens
- Epilepsy Research Group, Australian Centre for Precision Health, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Istituto Neurologico Carlo Besta Milan 20133, Italy
| | - Patrizia Riguzzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unit of Neurology, Bellaria Hospital, Bologna 40139, Italy
| | - Angelo Labate
- Institute of Neurology, University Magna Græcia, Catanzaro 88100, Italy
| | - Alessandro Filla
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples 80138, Italy
| | - Anna T Giallonardo
- Neurology Unit, Human Neurosciences Department, Sapienza University, Rome 00185, Italy
| | - Geza Berecki
- Ion Channels and Disease Group, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Christopher B Jackson
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - John A Damiano
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Sara Kivity
- Epilepsy Unit, Schneider Children's Medical Center of Israel, Petah Tiqvah 4922297, Israel
| | - Amos Korczyn
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 60198, Israel
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki 00290, Finland; Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry Massachusetts General Hospital, Boston, MA 02114, USA; The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Boston, MA 02142, USA
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "G. Gaslini," Genova 16147, Italy
| | - Davide Uccellini
- Neurology - Neurophysiology Unit, ASST dei Sette Laghi, Galmarini Tradate Hospital, Tradate 21049, Italy
| | - Loretta Giuliano
- Dipartimento "G.F. Ingrassia," Università degli Studi di Catania, Catania 95131, Italy
| | - Eva Andermann
- Neurogenetics Unit and Epilepsy Research Group, Montreal Neurological Hospital and Institute, Montreal, QC H3A 2B4, Canada; Departments of Neurology & Neurosurgery and Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia; The Florey Institute, Parkville, VIC 3052, Australia
| | - Roberto Michelucci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unit of Neurology, Bellaria Hospital, Bologna 40139, Italy
| | - Melanie Bahlo
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Silvana Franceschetti
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - William C Sessa
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia.
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki 00290, Finland; Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
18
|
Zhang T, Zhao L, Wang S, Liu J, Chang Y, Ma L, Feng J, Niu Y. Common Variants in NUS1 and GP2 Genes Contributed to the Risk of Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:685524. [PMID: 34326813 PMCID: PMC8315097 DOI: 10.3389/fendo.2021.685524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recently, NUS1 and GP2 genes were reported to be associated with the risk of type 2 diabetes (T2D) in a Japanese population. Given the sharing of pathogenic contribution from genetic factors between T2D and gestational diabetes mellitus (GDM), we conducted the study to systematically examine the relationship of NUS1 and GP2 genes with the susceptibility to GDM in Chinese Han population. METHODS A total of 4,250 subjects comprised of 1,282 patients with GDM and 2,968 controls were recruited, and 20 tag single nucleotide polymorphisms (SNPs) (10 from NUS1 and 10 from GP2) were selected for genotyping. Association analyses were conducted for GDM and its related biomedical indexes including fasting glucose and HbA1c levels. RESULTS Two SNPs, rs80196932 from NUS1 (P=2.93×10-5) and rs117267808 from GP2 (P=5.68×10-5), were identified to be significantly associated with the risk of GDM. Additionally, SNP rs80196932 was significantly associated with HbA1c level in both patients with GDM (P=0.0009) and controls (P=0.0003), while SNP rs117267808 was significantly associated with fasting glucose level in both patients with GDM (P=0.0008) and controls (P=0.0007). Serum levels of protein NUS1 and GP2 were measured for the study subjects, and significant differences were identified among groups with different genotypes of SNP rs80196932 and rs117267808, respectively. CONCLUSIONS Our findings indicate that NUS1 and GP2 genes contribute to the risk of GDM, which would help to offer the potential to improve our understanding of the etiology of GDM and, in turn, could facilitate the development of novel medicines and treatments for GDM.
Collapse
Affiliation(s)
- Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Endocrinology and Metabolism, Ninth Hospital of Xi’an, Xi’an, China
| | - Longrui Zhao
- Department of Forensic Medicine, School of Medicine & Forensics, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shujin Wang
- Department of Endocrinology and Metabolism, Ninth Hospital of Xi’an, Xi’an, China
| | - Juan Liu
- Department of Obstetrics, Northwest Women and Children’s Hospital, Xi’an, China
| | - Ying Chang
- Department of Pharmacy, Northwest Women and Children’s Hospital, Xi’an, China
| | - Louyan Ma
- Department of General Practice, Ninth Hospital of Xi’an, Xi’an, China
| | - Jia Feng
- Department of Endocrinology and Metabolism, Ninth Hospital of Xi’an, Xi’an, China
| | - Yu Niu
- Department of Endocrinology and Metabolism, Ninth Hospital of Xi’an, Xi’an, China
- *Correspondence: Yu Niu,
| |
Collapse
|
19
|
Replication assessment of NUS1 variants in Parkinson's disease. Neurobiol Aging 2020; 101:300.e1-300.e3. [PMID: 33309333 DOI: 10.1016/j.neurobiolaging.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/05/2020] [Accepted: 11/07/2020] [Indexed: 01/13/2023]
Abstract
The NUS1 gene was recently associated with Parkinson's disease (PD) in the Chinese population. Here, as part of the International Parkinson's Disease Genomics Consortium, we have leveraged large-scale PD case-control cohorts to comprehensively assess damaging NUS1 variants in individuals of European descent. Burden analysis of rare nonsynonymous damaging variants across case-control individuals from whole-exome and -genome data sets did not find evidence of NUS1 association with PD. Overall, single-variant tests for rare (minor allele frequency<0.01) and common (minor allele frequency>0.01) variants, including 15 PD-GWAS cohorts and summary statistics from the largest PD GWAS meta-analysis to date, also did not uncover any associations. Our results indicate a lack of evidence for a role of rare damaging nonsynonymous NUS1 variants in PD in unrelated case-control cohorts of European descent, suggesting that the previously observed association could be driven by extremely rare population-specific variants.
Collapse
|
20
|
Yang HL, Jiang L, Pan HX, Xu K, Zhao YW, Liu ZH, Xu Q, Sun QY, Tan JQ, Li JC, Tang BS, Guo JF. Assessment of the association between NUS1 variants and essential tremor. Neurosci Lett 2020; 740:135441. [PMID: 33184037 DOI: 10.1016/j.neulet.2020.135441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/28/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND A recent study on early onset Parkinson's disease (PD) revealed that NUS1 is a risk gene for PD. Clinically, essential tremor (ET) is closely related to PD. In this study, we aimed to detect NUS1 variants and assess the effect of those variants on patients with ET. METHODS The 5 coding regions and the exon-intron boundaries of NUS1 were directly sequenced in 395 patients with ET and an equal number of healthy controls, matched for age and sex. The function of variants was assessed by pathogenic predictive software programs. Genetic analysis of variants was used to evaluate susceptibility to ET. RESULTS A total of 6 exonic variants were identified, including 3 synonymous and 3 missense variants. The non-synonymous variants were predicted to be tolerable. No variants had significant association with ET (none of the p-values were less than 0.05, using Fisher's exact test). CONCLUSION Our study suggested that NUS1 variants may not contribute to the risk of ET.
Collapse
Affiliation(s)
- Hong-Lan Yang
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Li Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hong-Xu Pan
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Ke Xu
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yu-Wen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhen-Hua Liu
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qi-Ying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie-Qiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Jin-Chen Li
- National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China; Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008, Changsha, Hunan, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China; Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
21
|
A new role for dolichol isoform profile in the diagnostics of CDG disorders. Clin Chim Acta 2020; 507:88-93. [DOI: 10.1016/j.cca.2020.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/23/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
|
22
|
Zhang R, Tang BS, Guo JF. Research advances on neurite outgrowth inhibitor B receptor. J Cell Mol Med 2020; 24:7697-7705. [PMID: 32542927 PMCID: PMC7348171 DOI: 10.1111/jcmm.15391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Neurite outgrowth inhibitor‐B (Nogo‐B) is a membrane protein which is extensively expressed in multiple organs, especially in endothelial cells and vascular smooth muscle cells of blood vessels and belongs to the reticulon protein family. Notably, its specific receptor, Nogo‐B receptor (NgBR), encoded by NUS1, has been implicated in many crucial cellular processes, such as cholesterol trafficking, lipid metabolism, dolichol synthesis, protein N‐glycosylation, vascular remodelling, angiogenesis, tumorigenesis and neurodevelopment. In recent years, accumulating studies have demonstrated the statistically significant changes of NgBR expression levels in human diseases, including Niemann‐Pick type C disease, fatty liver, congenital disorders of glycosylation, persistent pulmonary hypertension of the newborn, invasive ductal breast carcinoma, malignant melanoma, non‐small cell lung carcinoma, paediatric epilepsy and Parkinson's disease. Besides, both the in vitro and in vivo studies have shown that NgBR overexpression or knockdown contribute to the alteration of various pathophysiological processes. Thus, there is a broad development potential in therapeutic strategies by modifying the expression levels of NgBR.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
23
|
NUS1 mutation in a family with epilepsy, cerebellar ataxia, and tremor. Epilepsy Res 2020; 164:106371. [PMID: 32485575 DOI: 10.1016/j.eplepsyres.2020.106371] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/27/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
We report on familial 5 epilepsy patients with autosomal dominant inheritance of a novel heterozygous NUS1 frameshift mutation. All patients had cerebellar ataxia and tremor. Three patients were diagnosed with childhood absence epilepsy, 1 patient with generalized epilepsy, and 1 patient with parkinsonism without epilepsy. Our cases and previously reported cases with deletions of chromosome 6q22 that include NUS1 share these common symptoms. In a cellular experiment, NUS1 mutation led to a substantial reduction of the protein level of NUS1. NUS1 mutation could contribute to epilepsy pathogenesis and also constitute a distinct syndromic entity with cerebellar ataxia and tremor.
Collapse
|
24
|
Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB. Genetics of Parkinson's disease: An introspection of its journey towards precision medicine. Neurobiol Dis 2020; 137:104782. [PMID: 31991247 PMCID: PMC7064061 DOI: 10.1016/j.nbd.2020.104782] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
A substantial proportion of risk for Parkinson's disease (PD) is driven by genetics. Progress in understanding the genetic basis of PD has been significant. So far, highly-penetrant rare genetic alterations in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1 and GBA have been linked with typical familial PD and common genetic variability at 90 loci have been linked to risk for PD. In this review, we outline the journey thus far of PD genetics, highlighting how significant advances have improved our knowledge of the genetic basis of PD risk, onset and progression. Despite remarkable progress, our field has yet to unravel how genetic risk variants disrupt biological pathways and molecular networks underlying the pathobiology of the disease. We highlight that currently identified genetic risk factors only represent a fraction of the likely genetic risk for PD. Identifying the remaining genetic risk will require us to diversify our efforts, performing genetic studies across different ancestral groups. This work will inform us on the varied genetic basis of disease across populations and also aid in fine mapping discovered loci. If we are able to take this course, we foresee that genetic discoveries in PD will directly influence our ability to predict disease and aid in defining etiological subtypes, critical steps for the implementation of precision medicine for PD.
Collapse
Affiliation(s)
- Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada 18016, Spain.
| | - Monica Diez-Fairen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; Fundació Docència i Recerca Mútua Terrassa and Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa 08221, Barcelona, Spain
| | - Jonggeol Jeff Kim
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Abstract
Natural rubber (NR), principally comprising cis-1,4-polyisoprene, is an industrially important natural hydrocarbon polymer because of its unique physical properties, which render it suitable for manufacturing items such as tires. Presently, industrial NR production depends solely on latex obtained from the Pará rubber tree, Hevea brasiliensis. In latex, NR is enclosed in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The similarity of the basic carbon skeleton structure between NR and dolichols and polyprenols, which are found in most organisms, suggests that the NR biosynthetic pathway is related to the polyisoprenoid biosynthetic pathway and that rubber transferase, which is the key enzyme in NR biosynthesis, belongs to the cis-prenyltransferase family. Here, we review recent progress in the elucidation of molecular mechanisms underlying NR biosynthesis through the identification of the enzymes that are responsible for the formation of the NR backbone structure.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan;
| | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan;
| |
Collapse
|
26
|
Suzuki K, Akiyama M, Ishigaki K, Kanai M, Hosoe J, Shojima N, Hozawa A, Kadota A, Kuriki K, Naito M, Tanno K, Ishigaki Y, Hirata M, Matsuda K, Iwata N, Ikeda M, Sawada N, Yamaji T, Iwasaki M, Ikegawa S, Maeda S, Murakami Y, Wakai K, Tsugane S, Sasaki M, Yamamoto M, Okada Y, Kubo M, Kamatani Y, Horikoshi M, Yamauchi T, Kadowaki T. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
27
|
Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Suzuki K, Akiyama M, Ishigaki K, Kanai M, Hosoe J, Shojima N, Hozawa A, Kadota A, Kuriki K, Naito M, Tanno K, Ishigaki Y, Hirata M, Matsuda K, Iwata N, Ikeda M, Sawada N, Yamaji T, Iwasaki M, Ikegawa S, Maeda S, Murakami Y, Wakai K, Tsugane S, Sasaki M, Yamamoto M, Okada Y, Kubo M, Kamatani Y, Horikoshi M, Yamauchi T, Kadowaki T. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
29
|
Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
30
|
Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
31
|
Suzuki K, Akiyama M, Ishigaki K, Kanai M, Hosoe J, Shojima N, Hozawa A, Kadota A, Kuriki K, Naito M, Tanno K, Ishigaki Y, Hirata M, Matsuda K, Iwata N, Ikeda M, Sawada N, Yamaji T, Iwasaki M, Ikegawa S, Maeda S, Murakami Y, Wakai K, Tsugane S, Sasaki M, Yamamoto M, Okada Y, Kubo M, Kamatani Y, Horikoshi M, Yamauchi T, Kadowaki T. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
32
|
Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
33
|
Suzuki K, Akiyama M, Ishigaki K, Kanai M, Hosoe J, Shojima N, Hozawa A, Kadota A, Kuriki K, Naito M, Tanno K, Ishigaki Y, Hirata M, Matsuda K, Iwata N, Ikeda M, Sawada N, Yamaji T, Iwasaki M, Ikegawa S, Maeda S, Murakami Y, Wakai K, Tsugane S, Sasaki M, Yamamoto M, Okada Y, Kubo M, Kamatani Y, Horikoshi M, Yamauchi T, Kadowaki T. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019; 51:379-386. [PMID: 30718926 DOI: 10.1038/s41588-018-0332-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
To understand the genetics of type 2 diabetes in people of Japanese ancestry, we conducted A meta-analysis of four genome-wide association studies (GWAS; 36,614 cases and 155,150 controls of Japanese ancestry). We identified 88 type 2 diabetes-associated loci (P < 5.0 × 10-8) with 115 independent signals (P < 5.0 × 10-6), of which 28 loci with 30 signals were novel. Twenty-eight missense variants were in linkage disequilibrium (r2 > 0.6) with the lead variants. Among the 28 missense variants, three previously unreported variants had distinct minor allele frequency (MAF) spectra between people of Japanese and European ancestry (MAFJPN > 0.05 versus MAFEUR < 0.01), including missense variants in genes related to pancreatic acinar cells (GP2) and insulin secretion (GLP1R). Transethnic comparisons of the molecular pathways identified from the GWAS results highlight both ethnically shared and heterogeneous effects of a series of pathways on type 2 diabetes (for example, monogenic diabetes and beta cells).
Collapse
Affiliation(s)
- Ken Suzuki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jun Hosoe
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Aya Kadota
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan.,Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kozo Tanno
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan.,Department of Hygiene and Preventive Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yasushi Ishigaki
- Division of Innovation & Education, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan.,Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Makoto Hirata
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Norie Sawada
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Shiro Maeda
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan.,Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan.,Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan.,Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Momoko Horikoshi
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan.
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Department of Metabolism and Nutrition, Mizonokuchi Hospital, Faculty of Medicine, Teikyo University, Tokyo, Japan.
| |
Collapse
|
34
|
Guo JF, Zhang L, Li K, Mei JP, Xue J, Chen J, Tang X, Shen L, Jiang H, Chen C, Guo H, Wu XL, Sun SL, Xu Q, Sun QY, Chan P, Shang HF, Wang T, Zhao GH, Liu JY, Xie XF, Jiang YQ, Liu ZH, Zhao YW, Zhu ZB, Li JD, Hu ZM, Yan XX, Fang XD, Wang GH, Zhang FY, Xia K, Liu CY, Zhu XW, Yue ZY, Li SC, Cai HB, Zhang ZH, Duan RH, Tang BS. Coding mutations in NUS1 contribute to Parkinson's disease. Proc Natl Acad Sci U S A 2018; 115:11567-11572. [PMID: 30348779 PMCID: PMC6233099 DOI: 10.1073/pnas.1809969115] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Whole-exome sequencing has been successful in identifying genetic factors contributing to familial or sporadic Parkinson's disease (PD). However, this approach has not been applied to explore the impact of de novo mutations on PD pathogenesis. Here, we sequenced the exomes of 39 early onset patients, their parents, and 20 unaffected siblings to investigate the effects of de novo mutations on PD. We identified 12 genes with de novo mutations (MAD1L1, NUP98, PPP2CB, PKMYT1, TRIM24, CEP131, CTTNBP2, NUS1, SMPD3, MGRN1, IFI35, and RUSC2), which could be functionally relevant to PD pathogenesis. Further analyses of two independent case-control cohorts (1,852 patients and 1,565 controls in one cohort and 3,237 patients and 2,858 controls in the other) revealed that NUS1 harbors significantly more rare nonsynonymous variants (P = 1.01E-5, odds ratio = 11.3) in PD patients than in controls. Functional studies in Drosophila demonstrated that the loss of NUS1 could reduce the climbing ability, dopamine level, and number of dopaminergic neurons in 30-day-old flies and could induce apoptosis in fly brain. Together, our data suggest that de novo mutations could contribute to early onset PD pathogenesis and identify NUS1 as a candidate gene for PD.
Collapse
Affiliation(s)
- Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008 Changsha, Hunan, China
| | - Lu Zhang
- Department of Computer Science, Stanford University, Stanford, CA 94305
- Department of Pathology, Stanford University, Stanford, CA 94305
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Kai Li
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Jun-Pu Mei
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Jin Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Jia Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Xia Tang
- Network Information Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008 Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008 Changsha, Hunan, China
| | - Chao Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Hui Guo
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Xue-Li Wu
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Si-Long Sun
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Qi-Ying Sun
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Piu Chan
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 100053 Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, 100101 Beijing, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, 61004 Chengdu, Sichuan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Guo-Hua Zhao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Zhejiang, China
| | - Jing-Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China
- Center for Human Genome Research, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China
| | - Xue-Feng Xie
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Yi-Qi Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Zhen-Hua Liu
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Yu-Wen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Zuo-Bin Zhu
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Jia-da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Zheng-Mao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008 Changsha, Hunan, China
| | - Xiao-Dong Fang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Guang-Hui Wang
- Department of Pharmacology, Soochow University, College of Pharmaceutical Sciences, 215021 Suzhou, China
| | - Feng-Yu Zhang
- Division of Clinical Sciences, Lieber Institute for Brain Development, John Hopkins University Medical Campus, Baltimore, MD 21205
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- Collaborative Innovation Center for Genetics and Development, 200433 Shanghai, China
| | - Chun-Yu Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60607
| | - Xiong-Wei Zhu
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Zhen-Yu Yue
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Huai-Bin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Zhuo-Hua Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- Collaborative Innovation Center for Brain Science, 200433 Shanghai, China
| | - Ran-Hui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China;
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008 Changsha, Hunan, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, 100101 Beijing, China
- Collaborative Innovation Center for Genetics and Development, 200433 Shanghai, China
- Collaborative Innovation Center for Brain Science, 200433 Shanghai, China
| |
Collapse
|
35
|
Cheng XT, Xie YX, Zhou B, Huang N, Farfel-Becker T, Sheng ZH. Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons. J Cell Biol 2018; 217:3127-3139. [PMID: 29695488 PMCID: PMC6123004 DOI: 10.1083/jcb.201711083] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/20/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023] Open
Abstract
Despite widespread distribution of LAMP1 and the heterogeneous nature of LAMP1-labeled compartments, LAMP1 is routinely used as a lysosomal marker, and LAMP1-positive organelles are often referred to as lysosomes. In this study, we use immunoelectron microscopy and confocal imaging to provide quantitative analysis of LAMP1 distribution in various autophagic and endolysosomal organelles in neurons. Our study demonstrates that a significant portion of LAMP1-labeled organelles do not contain detectable lysosomal hydrolases including cathepsins D and B and glucocerebrosidase. A bovine serum albumin-gold pulse-chase assay followed by ultrastructural analysis suggests a heterogeneity of degradative capacity in LAMP1-labeled endolysosomal organelles. Gradient fractionation displays differential distribution patterns of LAMP1/2 and cathepsins D/B in neurons. We further reveal that LAMP1 intensity in familial amyotrophic lateral sclerosis-linked motor neurons does not necessarily reflect lysosomal deficits in vivo. Our study suggests that labeling a set of lysosomal hydrolases combined with various endolysosomal markers would be more accurate than simply relying on LAMP1/2 staining to assess neuronal lysosome distribution, trafficking, and functionality under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Yu-Xiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Bing Zhou
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Tamar Farfel-Becker
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
36
|
The non-canonical NF-κB pathway promotes NPC2 expression and regulates intracellular cholesterol trafficking. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1222-1232. [PMID: 30091016 DOI: 10.1007/s11427-018-9339-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Niemann-Pick type C2 (NPC2) is a lysosome luminal protein that functions in concert with NPC1 to mediate egress of low-density lipoprotein-derived cholesterol from lysosome. The nuclear factor kappa B subunit 2 (NF-κB2) protein is a component of NF-κB transcription factor complex critically implicated in immune and inflammatory responses. Here, we report that NF-κB2 regulates intracellular cholesterol transport by controlling NPC2 expression. RNAi-mediated disruption of NF-κB2, as well as other signaling members of the non-canonical NF-κB pathway, caused intracellular cholesterol accumulation. Blockage of the non-canonical NF-κB pathway suppressed NPC2 expression, whereas Lymphotoxin β receptor (LTβR) activation or Baff receptor (BaffR) stimulation up-regulated the mRNA abundance and protein level of NPC2. Further, NF-κB2 activated NPC2 transcription through direct binding to its promoter region. We also observed cholesterol accumulation in NF-κB2-deficient zebrafish embryo and NF-κB2 mutant mice. Collectively, these data identify a regulatory role for the non-canonical NF-κB pathway in intracellular cholesterol trafficking and suggest a link between cholesterol transport and immune system.
Collapse
|
37
|
Wei J, Zhang YY, Luo J, Wang JQ, Zhou YX, Miao HH, Shi XJ, Qu YX, Xu J, Li BL, Song BL. The GARP Complex Is Involved in Intracellular Cholesterol Transport via Targeting NPC2 to Lysosomes. Cell Rep 2018; 19:2823-2835. [PMID: 28658628 DOI: 10.1016/j.celrep.2017.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/07/2017] [Accepted: 05/31/2017] [Indexed: 10/19/2022] Open
Abstract
Proper intracellular cholesterol trafficking is critical for cellular function. Two lysosome-resident proteins, NPC1 and NPC2, mediate the egress of low-density lipoprotein-derived cholesterol from lysosomes. However, other proteins involved in this process remain largely unknown. Through amphotericin B-based selection, we isolated two cholesterol transport-defective cell lines. Subsequent whole-transcriptome-sequencing analysis revealed two cell lines bearing the same mutation in the vacuolar protein sorting 53 (Vps53) gene. Depletion of VPS53 or other subunits of the Golgi-associated retrograde protein (GARP) complex impaired NPC2 sorting to lysosomes and caused cholesterol accumulation. GARP deficiency blocked the retrieval of the cation-independent mannose 6-phosphate receptor (CI-MPR) to the trans-Golgi network. Further, Vps54 mutant mice displayed reduced cellular NPC2 protein levels and increased cholesterol accumulation, underscoring the physiological role of the GARP complex in cholesterol transport. We conclude that the GARP complex contributes to intracellular cholesterol transport by targeting NPC2 to lysosomes in a CI-MPR-dependent manner.
Collapse
Affiliation(s)
- Jian Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying-Yu Zhang
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ju-Qiong Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yu-Xia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hong-Hua Miao
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiong-Jie Shi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yu-Xiu Qu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Xu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo-Liang Li
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
38
|
Abstract
BACKGROUND AND AIMS Hepatic cholesterol deposition drives inflammation and fibrosis in non-alcoholic steatohepatitis (NASH). The Niemann-Pick type C2 (NPC2) protein plays an important role in regulating intracellular cholesterol trafficking and homeostasis. We hypothesized that intravenous NPC2 supplementation reduces cholesterol accumulation, hepatic inflammation and fibrogenesis in a nutritional NASH rat model. METHODS Rats were fed a high-fat, high-cholesterol (HFHC) diet for four weeks resulting in moderately severe NASH. Animals were treated with intravenous NPC2 or placebo twice weekly for either the last two weeks or the entire four weeks. End-points were liver/body- and spleen/body weight ratios, histopathological NASH scores, fibrosis, serum liver enzymes, cholesterol, lipoproteins, cytokines, and quantitative polymerase chain reaction derived hepatic gene expression related to cholesterol metabolism, inflammation, and fibrosis. RESULTS HFHC rats developed hepatomegaly, non-fibrotic NASH histopathology, elevated liver enzymes, serum cholesterol, and pro-inflammatory cytokines. Their sterol regulatory element binding factor 2 (SREBF2) and low-density lipoprotein receptor (LDL-R) mRNAs were down-regulated compared with rats on standard chow. NPC2 did not improve liver weight, histopathology, levels of serum liver enzymes or pro-inflammatory tumor necrosis factor-α (TNFα), Interleukin (IL)-6, or IL-1β in HFHC rats. Two weeks of NPC2 treatment lowered hepatic TNFα and COL1A1 mRNA expression. However, this effect was ultimately reversed following additional two weeks of treatment. Four weeks NPC2 treatment of rats raised ATP-binding cassette A1 (ABCA1) and low-density lipoprotein receptor (LDLR) mRNAs in the liver, concurrent with a strong tendency towards higher serum high-density lipoprotein (HDL). Furthermore, the peroxisome proliferator activated receptor-ɣ (PPARG) gene expression was reduced. CONCLUSIONS NPC2 proved inefficient at modifying robust hepatic NASH end-points in a HFHC NASH model. Nonetheless, our data suggest that hepatic ABCA1 expression and reverse cholesterol transport were upregulated by NPC2 treatment, thus presenting putative therapeutic effects in diseases associated with deregulated lipid metabolism.
Collapse
|
39
|
Holcomb J, Doughan M, Spellmon N, Lewis B, Perry E, Zhang Y, Nico L, Wan J, Chakravarthy S, Shang W, Miao Q, Stemmler T, Yang Z. SAXS analysis of a soluble cytosolic NgBR construct including extracellular and transmembrane domains. PLoS One 2018; 13:e0191371. [PMID: 29346419 PMCID: PMC5773207 DOI: 10.1371/journal.pone.0191371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023] Open
Abstract
The Nogo-B receptor (NgBR) is involved in oncogenic Ras signaling through directly binding to farnesylated Ras. It recruits farnesylated Ras to the non-lipid-raft membrane for interaction with downstream effectors. However, the cytosolic domain of NgBR itself is only partially folded. The lack of several conserved secondary structural elements makes this domain unlikely to form a complete farnesyl binding pocket. We find that inclusion of the extracellular and transmembrane domains that contain additional conserved residues to the cytosolic region results in a well folded protein with a similar size and shape to the E.coli cis-isoprenyl transferase (UPPs). Small Angle X-ray Scattering (SAXS) analysis reveals the radius of gyration (Rg) of our NgBR construct to be 18.2 Å with a maximum particle dimension (Dmax) of 61.0 Å. Ab initio shape modeling returns a globular molecular envelope with an estimated molecular weight of 23.0 kD closely correlated with the calculated molecular weight. Both Kratky plot and pair distribution function of NgBR scattering reveal a bell shaped peak which is characteristic of a single globularly folded protein. In addition, circular dichroism (CD) analysis reveals that our construct has the secondary structure contents similar to the UPPs. However, this result does not agree with the currently accepted topological orientation of NgBR which might partition this construct into three separate domains. This discrepancy suggests another possible NgBR topology and lends insight into a potential molecular basis of how NgBR facilitates farnesylated Ras recruitment.
Collapse
Affiliation(s)
- Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Maysaa Doughan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nicholas Spellmon
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brianne Lewis
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Emerson Perry
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yingxue Zhang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Lindsey Nico
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Junmei Wan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Srinivas Chakravarthy
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Weifeng Shang
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Qing Miao
- Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Timothy Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
40
|
Zhang W, Yang X, Chen Y, Hu W, Liu L, Zhang X, Liu M, Sun L, Liu Y, Yu M, Li X, Li L, Zhu Y, Miao QR, Han J, Duan Y. Activation of hepatic Nogo-B receptor expression-A new anti-liver steatosis mechanism of statins. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:177-190. [PMID: 29217477 DOI: 10.1016/j.bbalip.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022]
Abstract
Deficiency of hepatic Nogo-B receptor (NgBR) expression activates liver X receptor α (LXRα) in an adenosine monophosphate-activated protein kinase α (AMPKα)-dependent manner, thereby inducing severe hepatic lipid accumulation and hypertriglyceridemia. Statins have been demonstrated non-cholesterol lowering effects including anti-nonalcoholic fatty liver disease (NAFLD). Herein, we investigated if the anti-NAFLD function of statins depends on activation of NgBR expression. In vivo, atorvastatin protected apoE deficient or NgBR floxed, but not hepatic NgBR deficient mice, against Western diet (WD)-increased triglyceride levels in liver and serum. In vitro, statins reduced lipid accumulation in nonsilencing small hairpin RNA-transfected (shNSi), but not in NgBR small hairpin RNA-transfected (shNgBRi) HepG2 cells. Inhibition of cellular lipid accumulation by atorvastatin is related to activation of AMPKα, and inactivation of LXRα and lipogenic genes. Statin also inhibited expression of oxysterol producing enzymes. Associated with changes of hepatic lipid levels by WD or atorvastatin, NgBR expression was inversely regulated. At cellular levels, statins increased NgBR mRNA and protein expression, and NgBR protein stability. In contrast to reduced cellular cholesterol levels by statin or β-cyclodextrin, increased cellular cholesterol levels decreased NgBR expression suggesting cholesterol or its synthesis intermediates inhibit NgBR expression. Indeed, mevalonate, geranylgeraniol or geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate or farnesol, blocked atorvastatin-induced NgBR expression. Furthermore, we determined that induction of hepatic NgBR expression by atorvastatin mainly depended on inactivation of extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase B (Akt). Taken together, our study demonstrates that statins inhibit NAFLD mainly through activation of NgBR expression.
Collapse
Affiliation(s)
- Wenwen Zhang
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China; Research Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Xiaoxiao Yang
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China; Key Laboratory of Immuno Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Wenquan Hu
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lipei Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaomeng Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Mengyang Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ying Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Miao Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoju Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yan Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Jihong Han
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; College of Life Sciences, Nankai University, Tianjin, China.
| | - Yajun Duan
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
41
|
Long SL, Li YK, Xie YJ, Long ZF, Shi JF, Mo ZC. Neurite Outgrowth Inhibitor B Receptor: A Versatile Receptor with Multiple Functions and Actions. DNA Cell Biol 2017; 36:1142-1150. [PMID: 29058484 DOI: 10.1089/dna.2017.3813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Members of the reticulon protein family are predominantly distributed within the endoplasmic reticulum. The neurite outgrowth inhibitor (Nogo) has three subtypes, including Nogo-A (200 kDa), Nogo-B (55 kDa), and Nogo-C (25 kDa). Nogo-A and Nogo-C are potent Nogos that are predominantly expressed in the central nervous system. Nogo-B, the splice variant of reticulon-4, is expressed widely in multiple human organ systems, including the liver, lung, kidney, blood vessels, and inflammatory cells. Moreover, the Nogo-B receptor (NgBR) can interact with Nogo-B and can independently affect nervous system regeneration, the chemotaxis of endothelial cells, proliferation, and apoptosis. In recent years, it has been demonstrated that NgBR plays an important role in human pathophysiological processes, including lipid metabolism, angiogenesis, N-glycosylation, cell apoptosis, chemoresistance in human hepatocellular carcinoma, and epithelial-mesenchymal transition. The pathophysiologic effects of NgBR have garnered increased attention, and the detection and enhancement of NgBR expression may be a novel approach to monitor the development and to improve the prognosis of relevant human clinical diseases.
Collapse
Affiliation(s)
- Shuang-Lian Long
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Yu-Kun Li
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Yuan-Jie Xie
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Zhi-Feng Long
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Jin-Feng Shi
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Zhong-Cheng Mo
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| |
Collapse
|
42
|
Peng H, Park JK, Lavker RM. Autophagy and Macropinocytosis: Keeping an Eye on the Corneal/Limbal Epithelia. Invest Ophthalmol Vis Sci 2017; 58:416-423. [PMID: 28118670 PMCID: PMC5270618 DOI: 10.1167/iovs.16-21111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Autophagy and macropinocytosis are processes that are vital for cellular homeostasis, and help cells respond to stress and take up large amounts of material, respectively. The limbal and corneal epithelia have the machinery necessary to carry out both processes; however, autophagy and macropinocytosis are relatively understudied in these two epithelia. In this Perspectives, we describe the basic principles behind macropinocytosis and autophagy, discuss how these two processes are regulated in the limbal and corneal epithelia, consider how these two processes impact on the physiology of limbal and corneal epithelia, and elaborate on areas of future research in autophagy and macropinocytosis as related to the limbal/corneal epithelia.
Collapse
Affiliation(s)
- Han Peng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jong Kook Park
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Robert M. Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
43
|
Kraehling JR, Chidlow JH, Rajagopal C, Sugiyama MG, Fowler JW, Lee MY, Zhang X, Ramírez CM, Park EJ, Tao B, Chen K, Kuruvilla L, Larriveé B, Folta-Stogniew E, Ola R, Rotllan N, Zhou W, Nagle MW, Herz J, Williams KJ, Eichmann A, Lee WL, Fernández-Hernando C, Sessa WC. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun 2016; 7:13516. [PMID: 27869117 PMCID: PMC5121336 DOI: 10.1038/ncomms13516] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. Atherosclerosis is caused by low-density lipoprotein (LDL) buildup in the vessel wall, a process thought to be mediated by LDL receptor alone. Here, the authors show that the endothelium can uptake LDL via ALK1, a TGFβ signalling receptor, suggesting new therapies for blocking LDL accumulation in the vessel wall.
Collapse
Affiliation(s)
- Jan R Kraehling
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - John H Chidlow
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Chitra Rajagopal
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael G Sugiyama
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Joseph W Fowler
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Monica Y Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Eon Joo Park
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bo Tao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Keyang Chen
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Leena Kuruvilla
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bruno Larriveé
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Ewa Folta-Stogniew
- W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Roxana Ola
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Wenping Zhou
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael W Nagle
- Human Genetics &Computational Biomedicine, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kevin Jon Williams
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg 41345, Sweden
| | - Anne Eichmann
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
44
|
Hu W, Zhang W, Chen Y, Rana U, Teng RJ, Duan Y, Liu Z, Zhao B, Foeckler J, Weiler H, Kallinger RE, Thomas MJ, Zhang K, Han J, Miao QR. Nogo-B receptor deficiency increases liver X receptor alpha nuclear translocation and hepatic lipogenesis through an adenosine monophosphate-activated protein kinase alpha-dependent pathway. Hepatology 2016; 64:1559-1576. [PMID: 27480224 PMCID: PMC5074877 DOI: 10.1002/hep.28747] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Nogo-B receptor (NgBR) was identified as a specific receptor for binding Nogo-B and is essential for the stability of Niemann-Pick type C2 protein (NPC2) and NPC2-dependent cholesterol trafficking. Here, we report that NgBR expression levels decrease in the fatty liver and that NgBR plays previously unrecognized roles in regulating hepatic lipogenesis through NPC2-independent pathways. To further elucidate the pathophysiological role of NgBR in mammals, we generated NgBR liver-specific knockout mice and investigated the roles of NgBR in hepatic lipid homeostasis. The results showed that NgBR knockout in mouse liver did not decrease NPC2 levels or increase NPC2-dependent intracellular cholesterol levels. However, NgBR deficiency still resulted in remarkable cellular lipid accumulation that was associated with increased free fatty acids and triglycerides in hepatocytes in vitro and in mouse livers in vivo. Mechanistically, NgBR deficiency specifically promotes the nuclear translocation of the liver X receptor alpha (LXRα) and increases the expression of LXRα-targeted lipogenic genes. LXRα knockout attenuates the accumulation of free fatty acids and triglycerides caused by NgBR deficiency. In addition, we elucidated the mechanisms by which NgBR bridges the adenosine monophosphate-activated protein kinase alpha signaling pathway with LXRα nuclear translocation and LXRα-mediated lipogenesis. CONCLUSION NgBR is a specific negative regulator for LXRα-dependent hepatic lipogenesis. Loss of NgBR may be a potential trigger for inducing hepatic steatosis. (Hepatology 2016;64:1559-1576).
Collapse
Affiliation(s)
- Wenquan Hu
- Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Wenwen Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yuanli Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ujala Rana
- Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI
| | - Ru-Jeng Teng
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI
| | - Yajun Duan
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhong Liu
- Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI
| | - Baofeng Zhao
- Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Rachel E Kallinger
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Jihong Han
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China.
| | - Qing Robert Miao
- Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
45
|
Grabińska KA, Park EJ, Sessa WC. cis-Prenyltransferase: New Insights into Protein Glycosylation, Rubber Synthesis, and Human Diseases. J Biol Chem 2016; 291:18582-90. [PMID: 27402831 PMCID: PMC5000101 DOI: 10.1074/jbc.r116.739490] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. cis-PTs catalyze consecutive condensation reactions of allylic diphosphate acceptor with isopentenyl diphosphate (IPP) in the cis (Z) configuration to generate linear polyprenyl diphosphate. The chain lengths of isoprenoid carbon skeletons vary widely from neryl pyrophosphate (C10) to natural rubber (C>10,000). The homo-dimeric bacterial enzyme, undecaprenyl diphosphate synthase (UPPS), has been structurally and mechanistically characterized in great detail and serves as a model for understanding the mode of action of eukaryotic cis-PTs. However, recent experiments have revealed that mammals, fungal, and long-chain plant cis-PTs are heteromeric enzymes composed of two distantly related subunits. In this review, the classification, function, and evolution of cis-PTs will be discussed with a special emphasis on the role of the newly described NgBR/Nus1 subunit and its plants' orthologs as essential, structural components of the cis-PTs activity.
Collapse
Affiliation(s)
- Kariona A Grabińska
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eon Joo Park
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| | - William C Sessa
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
46
|
Ebrahimi-Fakhari D, Wahlster L, Bartz F, Werenbeck-Ueding J, Praggastis M, Zhang J, Joggerst-Thomalla B, Theiss S, Grimm D, Ory DS, Runz H. Reduction of TMEM97 increases NPC1 protein levels and restores cholesterol trafficking in Niemann-pick type C1 disease cells. Hum Mol Genet 2016; 25:3588-3599. [PMID: 27378690 PMCID: PMC5179952 DOI: 10.1093/hmg/ddw204] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
Niemann-Pick type C disease (NP-C) is a progressive lysosomal lipid storage disease caused by mutations in the NPC1 and NPC2 genes. NPC1 is essential for transporting cholesterol and other lipids out of lysosomes, but little is known about the mechanisms that control its cellular abundance and localization. Here we show that a reduction of TMEM97, a cholesterol-responsive NPC1-binding protein, increases NPC1 levels in cells through a post-transcriptional mechanism. Reducing TMEM97 through RNA-interference reduces lysosomal lipid storage and restores cholesterol trafficking to the endoplasmic reticulum in cell models of NP-C. In TMEM97 knockdown cells, NPC1 levels can be reinstated with wild type TMEM97, but not TMEM97 missing an ER-retention signal suggesting that TMEM97 contributes to controlling the availability of NPC1 to the cell. Importantly, knockdown of TMEM97 also increases levels of residual NPC1 in NPC1-mutant patient fibroblasts and reduces cholesterol storage in an NPC1-dependent manner. Our findings propose TMEM97 inhibition as a novel strategy to increase residual NPC1 levels in cells and a potential therapeutic target for NP-C.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Lara Wahlster
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Fabian Bartz
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
| | | | - Maria Praggastis
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessie Zhang
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Susanne Theiss
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
| | - Dirk Grimm
- Center for Infectious Diseases/Virology, BioQuant BQ0030, Heidelberg, Germany
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Heiko Runz
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Molecular Medicine Partnership Unit (MMPU), Ruprecht-Karls-University Heidelberg/European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
47
|
Vanier MT, Gissen P, Bauer P, Coll MJ, Burlina A, Hendriksz CJ, Latour P, Goizet C, Welford RWD, Marquardt T, Kolb SA. Diagnostic tests for Niemann-Pick disease type C (NP-C): A critical review. Mol Genet Metab 2016; 118:244-54. [PMID: 27339554 DOI: 10.1016/j.ymgme.2016.06.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
Abstract
Niemann-Pick disease type C (NP-C) is a neurovisceral lysosomal cholesterol trafficking and lipid storage disorder caused by mutations in one of the two genes, NPC1 or NPC2. Diagnosis has often been a difficult task, due to the wide range in age of onset of NP-C and clinical presentation of the disease, combined with the complexity of the cell biology (filipin) laboratory testing, even in combination with genetic testing. This has led to substantial delays in diagnosis, largely depending on the access to specialist centres and the level of knowledge about NP-C of the physician in the area. In recent years, advances in mass spectrometry has allowed identification of several sensitive plasma biomarkers elevated in NP-C (e.g. cholestane-3β,5α,6β-triol, lysosphingomyelin isoforms and bile acid metabolites), which, together with the concomitant progress in molecular genetic technology, have greatly impacted the strategy of laboratory testing. Specificity of the biomarkers is currently under investigation and other pathologies are being found to also result in elevations. Molecular genetic testing also has its limitations, notably with unidentified mutations and the classification of new variants. This review is intended to increase awareness on the currently available approaches to laboratory diagnosis of NP-C, to provide an up to date, comprehensive and critical evaluation of the various techniques (cell biology, biochemical biomarkers and molecular genetics), and to briefly discuss ongoing/future developments. The use of current tests in proper combination enables a rapid and correct diagnosis in a large majority of cases. However, even with recent progress, definitive diagnosis remains challenging in some patients, for whom combined genetic/biochemical/cytochemical markers do not provide a clear answer. Expertise and reference laboratories thus remain essential, and further work is still required to fulfill unmet needs.
Collapse
Affiliation(s)
- Marie T Vanier
- INSERM Unit 820, 7 Rue Guillaume Paradin, 69008 Lyon, France; Laboratoire Gillet-Mérieux, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France.
| | - Paul Gissen
- UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Great Ormond Street Hospital, London WC1N 3JH, UK.
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tübingen, 72076 Tübingen, Germany.
| | - Maria J Coll
- Inborn Errors of Metabolism Section, Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; CIBERER, Spain.
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Pediatrics, University Hospital, 35129 Padova, Italy.
| | - Christian J Hendriksz
- The Mark Holland Metabolic Unit, Salford Royal Foundation NHS Trust, Salford, Manchester M68HD, UK; University of Pretoria, Steve Biko Academic Hospital, Department of Paediatrics and Child Health, Pretoria 0001, South Africa.
| | - Philippe Latour
- UF de Neurogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France.
| | - Cyril Goizet
- CHU Bordeaux, Department of Medical Genetics, 33076 Bordeaux, France; INSERM Unit 1211, University of Bordeaux, 33076 Bordeaux, France.
| | - Richard W D Welford
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| | - Thorsten Marquardt
- Unit for Inborn Errors of Metabolism, University Hospital Münster, 48149 Münster, Germany.
| | - Stefan A Kolb
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| |
Collapse
|
48
|
Niemann-Pick Type C2 Protein Mediates Hepatic Stellate Cells Activation by Regulating Free Cholesterol Accumulation. Int J Mol Sci 2016; 17:ijms17071122. [PMID: 27420058 PMCID: PMC4964497 DOI: 10.3390/ijms17071122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/26/2016] [Accepted: 07/07/2016] [Indexed: 01/18/2023] Open
Abstract
In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs) are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2) protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-β1 (TGF-β1)-induced collagen type 1 α1 (Col1a1), α-smooth muscle actin (α-SMA) expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-β1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-β1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis.
Collapse
|
49
|
Sabry S, Vuillaumier-Barrot S, Mintet E, Fasseu M, Valayannopoulos V, Héron D, Dorison N, Mignot C, Seta N, Chantret I, Dupré T, Moore SEH. A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet J Rare Dis 2016; 11:84. [PMID: 27343064 PMCID: PMC4919849 DOI: 10.1186/s13023-016-0468-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type I congenital disorders of glycosylation (CDG-I) are mostly complex multisystemic diseases associated with hypoglycosylated serum glycoproteins. A subgroup harbour mutations in genes necessary for the biosynthesis of the dolichol-linked oligosaccharide (DLO) precursor that is essential for protein N-glycosylation. Here, our objective was to identify the molecular origins of disease in such a CDG-Ix patient presenting with axial hypotonia, peripheral hypertonia, enlarged liver, micropenis, cryptorchidism and sensorineural deafness associated with hypo glycosylated serum glycoproteins. RESULTS Targeted sequencing of DNA revealed a splice site mutation in intron 5 and a non-sense mutation in exon 4 of the dehydrodolichol diphosphate synthase gene (DHDDS). Skin biopsy fibroblasts derived from the patient revealed ~20 % residual DHDDS mRNA, ~35 % residual DHDDS activity, reduced dolichol-phosphate, truncated DLO and N-glycans, and an increased ratio of [2-(3)H]mannose labeled glycoprotein to [2-(3)H]mannose labeled DLO. Predicted truncated DHDDS transcripts did not complement rer2-deficient yeast. SiRNA-mediated down-regulation of DHDDS in human hepatocellular carcinoma HepG2 cells largely mirrored the biochemical phenotype of cells from the patient. The patient also harboured the homozygous ALG6(F304S) variant, which does not cause CDG but has been reported to be more frequent in PMM2-CDG patients with severe/fatal disease than in those with moderate presentations. WES did not reveal other strong candidate causal genes. CONCLUSIONS We describe a patient presenting with severe multisystem disease associated with DHDDS deficiency. As retinitis pigmentosa is the only clinical sign in previously reported cases, this report broadens the spectrum of phenotypes associated with this condition.
Collapse
Affiliation(s)
- S Sabry
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France.,Université Pierre et Marie Curie, Paris 6, Paris, France.,Biochemical Genetics Department, Human Genetics Division, National Research Center NRC, Cairo, Egypt
| | - S Vuillaumier-Barrot
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France
| | - E Mintet
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France
| | - M Fasseu
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France
| | - V Valayannopoulos
- Département de Pédiatrie, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - D Héron
- Département de Génétique & Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Pitié Salpétrière, Paris, France.,Groupe de Recherche Clinique « Déficience Intellectuelle et Autisme » UPMC, Paris, France
| | - N Dorison
- Groupe de Recherche Clinique « Déficience Intellectuelle et Autisme » UPMC, Paris, France
| | - C Mignot
- Département de Génétique & Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Pitié Salpétrière, Paris, France.,Groupe de Recherche Clinique « Déficience Intellectuelle et Autisme » UPMC, Paris, France.,Neuropédiatrie, Hôpital Trousseau, Paris, France
| | - N Seta
- AP-HP, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France.,Université Paris Descartes, Paris, France
| | - I Chantret
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France
| | - T Dupré
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France
| | - S E H Moore
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France. .,Université Denis Diderot, Paris 7, Paris, France.
| |
Collapse
|
50
|
Tadokoro KS, Rana U, Jing X, Konduri GG, Miao QR, Teng RJ. Nogo-B Receptor Modulates Pulmonary Artery Smooth Muscle Cell Function in Developing Lungs. Am J Respir Cell Mol Biol 2016; 54:892-900. [PMID: 26652754 PMCID: PMC4942214 DOI: 10.1165/rcmb.2015-0068oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022] Open
Abstract
Nogo-B and its receptor (NgBR) are involved in blood vessel growth in developing lungs, but their role in pulmonary artery smooth muscle cell (PASMC) growth is unknown. We hypothesized that NgBR regulates growth of PASMCs by modulating the function of endoplasmic reticulum (ER) and formation of reactive oxygen species (ROS). In utero constriction of the ductus arteriosus created pulmonary hypertension in fetal lambs (hypertensive fetal lamb [HTFL]). PASMCs isolated 8 days after surgery were assessed for the alteration of protein levels by immunoblots and ROS formation by dihydroethidium and Cell ROX deep red fluorescence. NgBR small interfering RNA and plasmid DNA were used to manipulate NgBR levels. Proliferation and wound healing were assessed by cell counts and scratch recovery assay, respectively. Acute ER stress was induced by tunicamycin. Differences of mitogen-activated protein kinase and Akt pathway activation in HTFL versus control PASMCs were evaluated. Results showed that HTFL PASMCs had decreased NgBR levels and increased proliferation, wound healing, ER stress, and ROS formation compared with controls. Knockdown of NgBR in control PASMCs generated a phenotype similar to HTFL, and overexpression in HTFL restored the defective phenotype to control. Decreased NgBR levels were associated with increased ROS formation in HTFL PASMCs. Subsequently, scavenging ROS decreased proliferation and wound healing. Mechanistically, ROS formation decreases NgBR expression, which induces ER stress. This leads to extracellular signal-regulated kinase pathway activation and PASMC phenotype alteration. Our data suggest that decreased NgBR expression in pulmonary hypertension of the newborn contributes to increased PASMC proliferation and oxidative stress, which lead to the pathogenesis of lung injury.
Collapse
Affiliation(s)
| | - Ujala Rana
- Surgery, and
- Pathology
- Children’s Research Institute and Cardiovascular Research Center, and
| | - Xigang Jing
- Departments of Pediatrics
- Children’s Research Institute and Cardiovascular Research Center, and
| | - G. Ganesh Konduri
- Departments of Pediatrics
- Children’s Research Institute and Cardiovascular Research Center, and
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Qing R. Miao
- Surgery, and
- Pathology
- Children’s Research Institute and Cardiovascular Research Center, and
| | - Ru-Jeng Teng
- Departments of Pediatrics
- Children’s Research Institute and Cardiovascular Research Center, and
- Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|