1
|
Yang Y, Duan Z, Liu XL, Li Z, Shen Z, Gong S, Lu Q, Hu Y, Song L, Wang Z, Cao X, Dang Y, Wang L, He Q, Liu X. Checkpoint kinases regulate the circadian clock after DNA damage by influencing chromatin dynamics. Nucleic Acids Res 2025; 53:gkaf162. [PMID: 40052820 PMCID: PMC11886795 DOI: 10.1093/nar/gkaf162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/10/2025] Open
Abstract
The interplay between circadian clocks, the cell cycle, and DNA repair has been extensively documented, yet the epigenetic control of circadian clocks by DNA damage responses remains relatively unexplored. Here, we showed that checkpoint kinases CHK1/2 regulate chromatin structure during DNA damage in Neurospora crassa to maintain robust circadian rhythms. Under DNA damage stress, deletion of chk1/2 disrupted the rhythmic transcription of the clock gene frq by suppressing the rhythmic binding of the transcription activator White Collar complex (WCC) at the frq promoter, as the chromatin structure remained condensed. Mechanistically, CHK1/2 interacted with WC-2 and were recruited by WCC to bind at the frq promoter to phosphorylate H3T11, promoting H3 acetylation, especially H3K56 acetylation, to counteract the histone variant H2A.Z deposition, thereby establishing a suitable chromatin state to maintain robust circadian rhythms despite DNA damage. Additionally, a genome-wide correlation was discovered between H3T11 phosphorylation and H3K56 acetylation, showing a specific function at the frq promoter that is dependent on CHK1/2. Furthermore, transcriptome analysis revealed that CHK1/2 are responsible for robust rhythmic transcription of metabolic and DNA repair genes during DNA damage. These findings highlight the essential role of checkpoint kinases in maintaining robust circadian rhythms under DNA damage stress.
Collapse
Affiliation(s)
- Yulin Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zeyu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Lan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhanbiao Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Zhenghao Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shimin Gong
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Qiaojia Lu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linhao Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zeyu Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemei Cao
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yunkun Dang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qun He
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li Y, Li B, Yang K, Zhu L, Tang H, Huang Y, Deng J, Duan J. PER3 suppresses tumor metastasis of oral squamous cell carcinoma by promoting HIF-1α degradation. Transl Oncol 2025; 52:102258. [PMID: 39733745 PMCID: PMC11743850 DOI: 10.1016/j.tranon.2024.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/29/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024] Open
Abstract
The low expression of period circadian regulator 3 (PER3) in head and neck squamous cell carcinoma is closely correlated with tumor size and invasion depth. Hypoxia-inducible factor 1 subunit alpha (HIF-1α) regulates epithelial-mesenchymal transition (EMT) transcription factors, activates EMT, and promotes tumor metastasis. Here, we investigated the role and molecular mechanism of PER3 in regulating HIF-1α and metastasis in oral squamous cell carcinoma (OSCC) by using bioinformatics analyses and in vitro and in vivo experiments. PER3 expression was decreased in OSCC, and PER3 expression was significantly negatively correlated with T stage, N stage, clinical classification, and survival time. PER3 overexpression inhibited, while PER3 knockdown prompted EMT and metastasis of OSCC cells. HIF-1α reversed the effects of alterations in PER3 expression on OSCC metastasis. Mechanistically, PER3 bound to HIF-1α via the Per-ARNT-Sim 1 domain and promoted its ubiquitination degradation. Hypermethylation at CpG site cg12258811 of PER3 promoter inhibited PER3 expression and prognosis of OSCC. Decitabine combined with LW6 upregulated PER3, downregulated HIF-1α, and inhibited lymph node metastasis of OSCC in nude mice. Our findings reveal the role and mechanism of HIF-1α regulation by PER3 and support the potential clinical application of targeting PER3 in treating OSCC metastasis.
Collapse
Affiliation(s)
- Yaoxu Li
- Department of Stomatology, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Wanzhou District, Chongqing, 404100, PR China; Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Wanzhou District, Chongqing, 404100, PR China.
| | - Bing Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Lihua Zhu
- Department of General Practice, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Wanzhou District, Chongqing, 404100, PR China
| | - Hong Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yinpei Huang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jinhai Deng
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Wanzhou District, Chongqing, 404100, PR China
| | - Jun Duan
- Department of Stomatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
3
|
Mao W, Ge X, Chen Q, Li JD. Epigenetic Mechanisms in the Transcriptional Regulation of Circadian Rhythm in Mammals. BIOLOGY 2025; 14:42. [PMID: 39857273 PMCID: PMC11762092 DOI: 10.3390/biology14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025]
Abstract
Almost all organisms, from the simplest bacteria to advanced mammals, havea near 24 h circadian rhythm. Circadian rhythms are highly conserved across different life forms and are regulated by circadian genes as well as by related transcription factors. Transcription factors are fundamental to circadian rhythms, influencing gene expression, behavior in plants and animals, and human diseases. This review examines the foundational research on transcriptional regulation of circadian rhythms, emphasizing histone modifications, chromatin remodeling, and Pol II pausing control. These studies have enhanced our understanding of transcriptional regulation within biological circadian rhythms and the importance of circadian biology in human health. Finally, we summarize the progress and challenges in these three areas of regulation to move the field forward.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xingnan Ge
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
4
|
Liu P, Nadeef S, Serag MF, Paytuví-Gallart A, Abadi M, Della Valle F, Radío S, Roda X, Dilmé Capó J, Adroub S, Hosny El Said N, Fallatah B, Celii M, Messa GM, Wang M, Li M, Tognini P, Aguilar-Arnal L, Habuchi S, Masri S, Sassone-Corsi P, Orlando V. PRC2-EZH1 contributes to circadian gene expression by orchestrating chromatin states and RNA polymerase II complex stability. EMBO J 2024; 43:6052-6075. [PMID: 39433902 PMCID: PMC11612306 DOI: 10.1038/s44318-024-00267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Circadian rhythmicity of gene expression is a conserved feature of cell physiology. This involves fine-tuning between transcriptional and post-transcriptional mechanisms and strongly depends on the metabolic state of the cell. Together these processes guarantee an adaptive plasticity of tissue-specific genetic programs. However, it is unclear how the epigenome and RNA Pol II rhythmicity are integrated. Here we show that the PcG protein EZH1 has a gateway bridging function in postmitotic skeletal muscle cells. On the one hand, the circadian clock master regulator BMAL1 directly controls oscillatory behavior and periodic assembly of core components of the PRC2-EZH1 complex. On the other hand, EZH1 is essential for circadian gene expression at alternate Zeitgeber times, through stabilization of RNA Polymerase II preinitiation complexes, thereby controlling nascent transcription. Collectively, our data show that PRC2-EZH1 regulates circadian transcription both negatively and positively by modulating chromatin states and basal transcription complex stability.
Collapse
Affiliation(s)
- Peng Liu
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Seba Nadeef
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Maged F Serag
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | | | - Maram Abadi
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Francesco Della Valle
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Altos Labs, Institute of Science, San Diego, CA, 92121, USA
| | - Santiago Radío
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Xènia Roda
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Jaïr Dilmé Capó
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Sabir Adroub
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nadine Hosny El Said
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bodor Fallatah
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mirko Celii
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Gian Marco Messa
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mengge Wang
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mo Li
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Paola Tognini
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, 56126, Italy
| | - Lorena Aguilar-Arnal
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Mexico City, 04510, Mexico
| | - Satoshi Habuchi
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Selma Masri
- University of California Irvine, Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, Irvine, CA, 92697, USA
| | - Paolo Sassone-Corsi
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
| | - Valerio Orlando
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Zhou Z, Zhang R, Zhang Y, Xu Y, Wang R, Chen S, Lv Y, Chen Y, Ren Y, Luo P, Cheng Q, Xu H, Weng S, Zuo A, Ba Y, Liu S, Han X, Liu Z. Circadian disruption in cancer hallmarks: Novel insight into the molecular mechanisms of tumorigenesis and cancer treatment. Cancer Lett 2024; 604:217273. [PMID: 39306230 DOI: 10.1016/j.canlet.2024.217273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Circadian rhythms are 24-h rhythms governing temporal organization of behavior and physiology generated by molecular clocks composed of autoregulatory transcription-translation feedback loops (TTFLs). Disruption of circadian rhythms leads to a spectrum of pathologies, including cancer by triggering or being involved in different hallmarks. Clock control of phenotypic plasticity involved in tumorigenesis operates in aberrant dedifferentiating to progenitor-like cell states, generation of cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) events. Circadian rhythms might act as candidates for regulatory mechanisms of cellular senescent and functional determinants of senescence-associated secretory phenotype (SASP). Reciprocal control between clock and epigenetics sheds light on post-transcriptional regulation of circadian rhythms and opens avenues for novel anti-cancer strategies. Additionally, disrupting circadian rhythms influences microbiota communities that could be associated with altered homeostasis contributing to cancer development. Herein, we summarize recent advances in support of the nexus between disruptions of circadian rhythms and cancer hallmarks of new dimensions, thus providing novel perspectives on potentially effective treatment approaches for cancer management.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruizhi Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Pediatrics, The Third Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yifeng Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Zee A, Deng DZ, DiTacchio L, Vollmers C. The Circadian Isoform Landscape of Mouse Livers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618716. [PMID: 39464136 PMCID: PMC11507890 DOI: 10.1101/2024.10.16.618716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The mammalian circadian clock is an autoregulatory feedback process that is responsible for homeostasis in mouse livers. These circadian processes are well understood at the gene-level, however, not well understood at the isoform-level. To investigate circadian oscillations at the isoform-level, we used the nanopore-based R2C2 method to create over 78 million highly-accurate, full-length cDNA reads for 12 RNA samples extracted from mouse livers collected at 2 hour intervals. To generate a circadian mouse liver isoform-level transcriptome, we processed these reads using the Mandalorion tool which identified and quantified 58,612 isoforms, 1806 of which showed circadian oscillations. We performed detailed analysis on the circadian oscillation of these isoforms, their coding sequences, and transcription start sites and compiled easy-to-access resources for other researchers. This study and its results add a new layer of detail to the quantitative analysis of transcriptomes.
Collapse
Affiliation(s)
- Alexander Zee
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Dori Z.Q. Deng
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Luciano DiTacchio
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66101, USA
- Current affiliation: Synexin LLC, Carlsbad, CA 92010
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
7
|
Uriu K, Hernandez-Sanchez JP, Kojima S. Impacts of the feedback loop between sense-antisense RNAs in regulating circadian rhythms. NPJ Syst Biol Appl 2024; 10:119. [PMID: 39414861 PMCID: PMC11484753 DOI: 10.1038/s41540-024-00451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Antisense transcripts are a unique group of non-coding RNAs and play regulatory roles in a variety of biological processes, including circadian rhythms. Per2AS is an antisense transcript to the sense core clock gene Period2 (Per2) in mouse and its expression is rhythmic and antiphasic to Per2. To understand the impact of Per2AS-Per2 interaction, we developed a new mathematical model that mechanistically described the mutually repressive relationship between Per2 and Per2AS. This mutual repression can regulate both amplitude and period of circadian oscillation by affecting a negative feedback regulation of Per2. Simulations from this model also fit with experimental observations that could not be fully explained by our previous model. Our revised model can not only serve as a foundation to build more detailed models to better understand the impact of Per2AS-Per2 interaction in the future, but also be used to analyze other sense-antisense RNA pairs that mutually repress each other.
Collapse
Affiliation(s)
- Koichiro Uriu
- School of Life Science and Technology, Institute of Science Tokyo, Meguro, Tokyo, Japan.
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Juan P Hernandez-Sanchez
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
- Center for the Mathematics of Biosystems, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Petoukhov SV. Genetic code, the problem of coding biological cycles, and cyclic Gray codes. Biosystems 2024; 246:105349. [PMID: 39395528 DOI: 10.1016/j.biosystems.2024.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
This article is devoted to the problem of genetically coding of inherited cyclic structures in biological bodies, whose life activity is based on a great inherited set of mutually coordinated cyclic processes. The author puts forward and arguments the idea that the genetic coding system is capable of encoding inherited cyclic processes because it itself is a system of cyclic codes connected with Boolean algebra of logic. In other words, the physiological processes in question are cyclical because they are genetically encoded by cyclic codes. In support of this idea, the author presents a set of his results on the connection of the genetic coding system with cyclic Gray codes, which are one of many known types of cyclic codes. This opens up the possibility of using for modeling inherited cyclic biostructures those algebraic and logical theories and constructions that are associated with Gray codes and have long been used in engineering technologies: Karnaugh maps, Hilbert curve, Hadamard matrices, Walsh functions, dyadic analysis, etc. The author believes that when studying the origin, evolution and function of the genetic code, it is necessary to take into account the ability of the genetic system to encode many mutually related cyclic processes.
Collapse
Affiliation(s)
- Sergey V Petoukhov
- Mechanical Engineering Research Institute of Russian Academy of Sciences, 101990, Moscow, M. Kharitonievskiy Pereulok, 4, Russia.
| |
Collapse
|
9
|
Zhou C, Hu Z, Liu X, Wang Y, Wei S, Liu Z. Disruption of the peripheral biological clock may play a role in sleep deprivation-induced dysregulation of lipid metabolism in both the daytime and nighttime phases. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159530. [PMID: 38964437 DOI: 10.1016/j.bbalip.2024.159530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
STUDY OBJECTIVES This study aimed to examine the effect of sleep deprivation (SD) on lipid metabolism or lipid metabolism regulation in the liver and white adipose tissue (WAT) during the light and dark phases and explored the possible mechanisms underlying the diurnal effect of SD on lipid metabolism associated with clock genes. METHODS Male C57BL/6J mice aged 2 months were deprived of sleep daily for 20 h for ten consecutive days with weakly forced locomotion. The body weights and food consumption levels of the SD and control mice were recorded, and the mice were then sacrificed at ZT (zeitgeber time) 2 and ZT 14. The peripheral clock genes, enzymes involved in fat synthesis and catabolism in the WAT, and melatonin signalling pathway-mediated lipid metabolism in the liver were assessed. Untargeted metabolomics and tandem mass tag (TMT) proteomics were used to identify differential lipid metabolism pathways in the liver. RESULTS Bodyweight gain and daily food consumption were dramatically elevated after SD. Profound disruptions in the diurnal regulation of the hepatic peripheral clock and enzymes involved in fat synthesis and catabolism in the WAT were observed, with a strong emphasis on hepatic lipid metabolic pathways, while melatonin signalling pathway-mediated lipid metabolism exhibited moderate changes. CONCLUSIONS In mice, ten consecutive days of SD increased body weight gain and daily food consumption. In addition, SD profoundly disrupted lipid metabolism in the WAT and liver during the light and dark periods. These diurnal changes may be related to disorders of the peripheral biological clock.
Collapse
Affiliation(s)
- Chufan Zhou
- Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China; Nanjing Children's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ziping Hu
- Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China.
| | - Xuan Liu
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yuefan Wang
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Shougang Wei
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Zhifeng Liu
- Nanjing Children's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
González-Suárez M, Aguilar-Arnal L. Histone methylation: at the crossroad between circadian rhythms in transcription and metabolism. Front Genet 2024; 15:1343030. [PMID: 38818037 PMCID: PMC11137191 DOI: 10.3389/fgene.2024.1343030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Circadian rhythms, essential 24-hour cycles guiding biological functions, synchronize organisms with daily environmental changes. These rhythms, which are evolutionarily conserved, govern key processes like feeding, sleep, metabolism, body temperature, and endocrine secretion. The central clock, located in the suprachiasmatic nucleus (SCN), orchestrates a hierarchical network, synchronizing subsidiary peripheral clocks. At the cellular level, circadian expression involves transcription factors and epigenetic remodelers, with environmental signals contributing flexibility. Circadian disruption links to diverse diseases, emphasizing the urgency to comprehend the underlying mechanisms. This review explores the communication between the environment and chromatin, focusing on histone post-translational modifications. Special attention is given to the significance of histone methylation in circadian rhythms and metabolic control, highlighting its potential role as a crucial link between metabolism and circadian rhythms. Understanding these molecular intricacies holds promise for preventing and treating complex diseases associated with circadian disruption.
Collapse
Affiliation(s)
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Usha Satheesan S, Chowdhury S, Kolthur-Seetharam U. Metabolic and circadian inputs encode anticipatory biogenesis of hepatic fed microRNAs. Life Sci Alliance 2024; 7:e202302180. [PMID: 38408795 PMCID: PMC10897495 DOI: 10.26508/lsa.202302180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.
Collapse
Affiliation(s)
- Sandra Usha Satheesan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shreyam Chowdhury
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, India
| |
Collapse
|
12
|
Uriu K, Hernandez-Sanchez JP, Kojima S. Impacts of the feedback loop between sense-antisense RNAs in regulating circadian rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591560. [PMID: 38746188 PMCID: PMC11092440 DOI: 10.1101/2024.04.28.591560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Antisense transcripts are a unique group of non-coding RNAs that are transcribed from the opposite strand of a sense coding gene in an antisense orientation. Even though they do not encode a protein, these transcripts play a regulatory role in a variety of biological processes, including circadian rhythms. We and others found an antisense transcript, Per2AS , that is transcribed from the strand opposite the sense transcript Period2 ( Per2 ) and exhibits a rhythmic and antiphasic expression pattern compared to Per2 in mouse. By assuming that Per2AS and Per2 mutually repress each other, our previous mathematical model predicted that Per2AS regulates the robustness and the amplitude of circadian rhythms. In this study, we revised our previous model and developed a new mathematical model that mechanistically described the mutually repressive relationship between Per2 and Per2AS via transcriptional interference. We found that the simulation results are largely consistent with experimental observations including the counterintuitive ones that could not be fully explained by our previous model. These results indicate that our revised model serves as a foundation to build more detailed models in the future to better understand the impact of Per2AS-Per2 interaction in the mammalian circadian clock. Our mechanistic description of Per2AS-Per2 interaction can also be extended to other mathematical models that involve sense-antisense RNA pairs that mutually repress each other.
Collapse
|
13
|
Wang L, Hu L, Wang X, Geng Z, Wan M, Hao J, Liu H, Fan Y, Xu T, Li Z. Long non-coding RNA LncCplx2 regulates glucose homeostasis and pancreatic β cell function. Mol Metab 2024; 80:101878. [PMID: 38218537 PMCID: PMC10832480 DOI: 10.1016/j.molmet.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Numerous studies have highlighted the role of clock genes in diabetes disease and pancreatic β cell functions. However, whether rhythmic long non-coding RNAs involve in this process is unknown. METHODS RNA-seq and 3' rapid amplification of cDNA ends (RACE)-PCR were used to identify the rat LncCplx2 in pancreatic β cells. The subcellular analysis with qRT-PCR and RNA-Scope were used to assess the localization of LncCplx2. The effects of LncCplx2 overexpression or knockout (KO) on the regulation of pancreatic β cell functions were assessed in vitro and in vivo. RNA-seq, immunoblotting (IB), Immunoprecipitation (IP), RNA pull-down, and chromatin immunoprecipitation (ChIP)-PCR assays were employed to explore the regulatory mechanisms through LncRNA-protein interaction. Metabolism cage was used to measure the circadian behaviors. RESULTS We first demonstrate that LncCplx2 is a conserved nuclear long non-coding RNA and enriched in pancreatic islets, which is driven by core clock transcription factor BMAL1. LncCplx2 is downregulated in the diabetic islets and repressed by high glucose, which regulates the insulin secretion in vitro and ex vivo. Furthermore, LncCplx2 KO mice exhibit diabetic phenotypes, such as high blood glucose and impaired glucose tolerance. Notably, LncCplx2 deficiency has significant effects on circadian behavior, including prolonged period duration, decreased locomotor activity, and reduced metabolic rates. Mechanistically, LncCplx2 recruits EZH2, a core subunit of polycomb repression complex 2 (PRC2), to the promoter of target genes, thereby silencing circadian gene expression, which leads to phase shifts and amplitude changes in insulin secretion and cell cycle genes. CONCLUSIONS Our results propose LncCplx2 as an unanticipated transcriptional regulator in a circadian system and suggest a more integral mechanism for the coordination of circadian rhythms and glucose homeostasis.
Collapse
Affiliation(s)
- Linlin Wang
- Guangzhou National Laboratory, Guangzhou, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liqiao Hu
- Guangzhou National Laboratory, Guangzhou, China
| | - Xingyue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoxu Geng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Meng Wan
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Junfeng Hao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Huisheng Liu
- Guangzhou National Laboratory, Guangzhou, China; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Yuying Fan
- School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Zonghong Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory Clinical Base, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
14
|
Tan X, Zhang J, Dong J, Huang M, Zhou Z, Wang D. Novel Insights into the Circadian Rhythms Based on Long Noncoding and Circular RNA Profiling. Int J Mol Sci 2024; 25:1161. [PMID: 38256234 PMCID: PMC10816401 DOI: 10.3390/ijms25021161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Circadian rhythm disorders pose major risks to human health and animal production activity, and the hypothalamus is the center of circadian rhythm regulation. However, the epigenetic regulation of circadian rhythm based on farm animal models has been poorly investigated. We collected chicken hypothalamus samples at seven time points in one light/dark cycle and performed long noncoding RNA (lncRNA), circular RNA (circRNA), and mRNA sequencing to detect biomarkers associated with circadian rhythm. We enhanced the comprehensive expression profiling of ncRNAs and mRNAs in the hypothalamus and found two gene sets (circadian rhythm and retinal metabolism) associated with the light/dark cycle. Noncoding RNA networks with circadian expression patterns were identified by differential expression and circadian analysis was provided that included 38 lncRNAs, 15 circRNAs, and 200 candidate genes. Three lncRNAs (ENSGALT00000098661, ENSGALT00000100816, and MSTRG.16980.1) and one circRNA (novel_circ_010168) in the ncRNA-mRNA regulatory network were identified as key molecules influencing circadian rhythm by regulating AOX1 in retinal metabolism. These ncRNAs were predicted to be related to pernicious anemia, gonadal, eye disease and other disorders in humans. Together, the findings of this study provide insights into the epigenetic mechanisms of circadian rhythm and reveal AOX1 as a promising target of circadian rhythm regulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.T.)
| |
Collapse
|
15
|
da Silveira EJD, Barros CCDS, Bottino MC, Castilho RM, Squarize C. The rhythms of histones in regeneration: The epigenetic modifications determined by clock genes. Exp Dermatol 2024; 33:e15005. [PMID: 38284199 PMCID: PMC10865818 DOI: 10.1111/exd.15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
The evolutionary establishment of an internal biological clock is a primordial event tightly associated with a 24-h period. Changes in the circadian rhythm can affect cellular functions, including proliferation, DNA repair and redox state. Even isolated organs, tissues and cells can maintain an autonomous circadian rhythm. These cell-autonomous molecular mechanisms are driven by intracellular clock genes, such as BMAL1. Little is known about the role of core clock genes and epigenetic modifications in the skin. Our focus was to identify BMAL1-driven epigenetic modifications associated with gene transcription by mapping the acetylation landscape of histones in epithelial cells responding to injury. We explored the role of BMAL1 in epidermal wound and tissue regeneration using a loss-of-function approach in vivo. We worked with BMAL1 knockout mice and a contraction-resistance wound healing protocol, determining the histone modifications using specific antibodies to detect the acetylation levels of histones H3 and H4. We found significant differences in the acetylation levels of histones in both homeostatic and injured skin with deregulated BMAL1. The intact skin displayed varied acetylation levels of histones H3 and H4, including hyperacetylation of H3 Lys 9 (H3K9). The most pronounced changes were observed at the repair site, with notable alterations in the acetylation pattern of histone H4. These findings reveal the importance of histone modifications in response to injury and indicate that modulation of BMAL1 and its associated epigenetic events could be therapeutically harnessed to improve skin regeneration.
Collapse
Affiliation(s)
- Ericka J. D. da Silveira
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Caio C. D. S. Barros
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Michigan Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Cristiane Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Michigan Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Xue Z, Gao B, Chen G, Liu J, Ouyang W, Foda MF, Zhang Q, Zhang X, Zhang W, Guo M, Li X, Yi B. Diurnal oscillations of epigenetic modifications are associated with variation in rhythmic expression of homoeologous genes in Brassica napus. BMC Biol 2023; 21:241. [PMID: 37907908 PMCID: PMC10617162 DOI: 10.1186/s12915-023-01735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Epigenetic modifications that exhibit circadian oscillations also promote circadian oscillations of gene expression. Brassica napus is a heterozygous polyploid species that has undergone distant hybridization and genome doubling events and has a young and distinct species origin. Studies incorporating circadian rhythm analysis of epigenetic modifications can offer new insights into differences in diurnal oscillation behavior among subgenomes and the regulation of diverse expressions of homologous gene rhythms in biological clocks. RESULTS In this study, we created a high-resolution and multioscillatory gene expression dataset, active histone modification (H3K4me3, H3K9ac), and RNAPII recruitment in Brassica napus. We also conducted the pioneering characterization of the diurnal rhythm of transcription and epigenetic modifications in an allopolyploid species. We compared the evolution of diurnal rhythms between subgenomes and observed that the Cn subgenome had higher diurnal oscillation activity in both transcription and active histone modifications than the An subgenome. Compared to the A subgenome in Brassica rapa, the An subgenome of Brassica napus displayed significant changes in diurnal oscillation characteristics of transcription. Homologous gene pairs exhibited a higher proportion of diurnal oscillation in transcription than subgenome-specific genes, attributed to higher chromatin accessibility and abundance of active epigenetic modification types. We found that the diurnal expression of homologous genes displayed diversity, and the redundancy of the circadian system resulted in extensive changes in the diurnal rhythm characteristics of clock genes after distant hybridization and genome duplication events. Epigenetic modifications influenced the differences in the diurnal rhythm of homologous gene expression, and the diurnal oscillation of homologous gene expression was affected by the combination of multiple histone modifications. CONCLUSIONS Herein, we presented, for the first time, a characterization of the diurnal rhythm characteristics of gene expression and its epigenetic modifications in an allopolyploid species. Our discoveries shed light on the epigenetic factors responsible for the diurnal oscillation activity imbalance between subgenomes and homologous genes' rhythmic expression differences. The comprehensive time-series dataset we generated for gene expression and epigenetic modifications provides a valuable resource for future investigations into the regulatory mechanisms of protein-coding genes in Brassica napus.
Collapse
Affiliation(s)
- Zhifei Xue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Baibai Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guoting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jie Liu
- Lushan Botanical Garden Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mohamed Frahat Foda
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Toukh, 13736, Qalyubiyya, Egypt
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiwen Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mingyue Guo
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
17
|
Abstract
Unlike genetic changes, epigenetics modulates gene expression without stable modification of the genome. Even though all cells, including sperm and egg, have an epigenome pattern, most of these modifications occur during lifetime and interestingly, some of them, are reversible. Lifestyle and especially nutrients as well as diet regimens are presently gaining importance due to their ability to affect the epigenome. On the other hand, since the epigenome profoundly affects gene expression profile it can be speculated that the epigenome could modulate individual response to nutrients. Recent years have thus seen growing interest on nutrients, macronutrients ratio and diet regimens capable to affect the epigenetic pattern. In fact, while genetic alterations are mostly detrimental at the individual level, reshaping the epigenome may be a feasible strategy to positively counteract the detrimental effect of aging. Here, I review nutrient consumption and diet regimens as a possible strategy to counteract aging-driven epigenome derangement.
Collapse
Affiliation(s)
- Mario G Mirisola
- STeBiCeF Department, Università di Palermo, Building 16, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
18
|
Zhang Y, Chen G, Deng L, Gao B, Yang J, Ding C, Zhang Q, Ouyang W, Guo M, Wang W, Liu B, Zhang Q, Sung WK, Yan J, Li G, Li X. Integrated 3D genome, epigenome and transcriptome analyses reveal transcriptional coordination of circadian rhythm in rice. Nucleic Acids Res 2023; 51:9001-9018. [PMID: 37572350 PMCID: PMC10516653 DOI: 10.1093/nar/gkad658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023] Open
Abstract
Photoperiods integrate with the circadian clock to coordinate gene expression rhythms and thus ensure plant fitness to the environment. Genome-wide characterization and comparison of rhythmic genes under different light conditions revealed delayed phase under constant darkness (DD) and reduced amplitude under constant light (LL) in rice. Interestingly, ChIP-seq and RNA-seq profiling of rhythmic genes exhibit synchronous circadian oscillation in H3K9ac modifications at their loci and long non-coding RNAs (lncRNAs) expression at proximal loci. To investigate how gene expression rhythm is regulated in rice, we profiled the open chromatin regions and transcription factor (TF) footprints by time-series ATAC-seq. Although open chromatin regions did not show circadian change, a significant number of TFs were identified to rhythmically associate with chromatin and drive gene expression in a time-dependent manner. Further transcriptional regulatory networks mapping uncovered significant correlation between core clock genes and transcription factors involved in light/temperature signaling. In situ Hi-C of ZT8-specific expressed genes displayed highly connected chromatin association at the same time, whereas this ZT8 chromatin connection network dissociates at ZT20, suggesting the circadian control of gene expression by dynamic spatial chromatin conformation. These findings together implicate the existence of a synchronization mechanism between circadian H3K9ac modifications, chromatin association of TF and gene expression, and provides insights into circadian dynamics of spatial chromatin conformation that associate with gene expression rhythms.
Collapse
Affiliation(s)
- Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Baibai Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Cheng Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wenxia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Beibei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wing-Kin Sung
- Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
19
|
Draijer S, Timmerman R, Pannekeet J, van Harten A, Farshadi EA, Kemmer J, van Gilst D, Chaves I, Hoekman MFM. FoxO3 Modulates Circadian Rhythms in Neural Stem Cells. Int J Mol Sci 2023; 24:13662. [PMID: 37686468 PMCID: PMC10563086 DOI: 10.3390/ijms241713662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Both FoxO transcription factors and the circadian clock act on the interface of metabolism and cell cycle regulation and are important regulators of cellular stress and stem cell homeostasis. Importantly, FoxO3 preserves the adult neural stem cell population by regulating cell cycle and cellular metabolism and has been shown to regulate circadian rhythms in the liver. However, whether FoxO3 is a regulator of circadian rhythms in neural stem cells remains unknown. Here, we show that loss of FoxO3 disrupts circadian rhythmicity in cultures of neural stem cells, an effect that is mediated via regulation of Clock transcriptional levels. Using Rev-Erbα-VNP as a reporter, we then demonstrate that loss of FoxO3 does not disrupt circadian rhythmicity at the single cell level. A meta-analysis of published data revealed dynamic co-occupancy of multiple circadian clock components within FoxO3 regulatory regions, indicating that FoxO3 is a Clock-controlled gene. Finally, we examined proliferation in the hippocampus of FoxO3-deficient mice and found that loss of FoxO3 delayed the circadian phase of hippocampal proliferation, indicating that FoxO3 regulates correct timing of NSC proliferation. Taken together, our data suggest that FoxO3 is an integral part of circadian regulation of neural stem cell homeostasis.
Collapse
Affiliation(s)
- Swip Draijer
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1018 WB Amsterdam, The Netherlands (M.F.M.H.)
| | - Raissa Timmerman
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1018 WB Amsterdam, The Netherlands (M.F.M.H.)
| | - Jesse Pannekeet
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1018 WB Amsterdam, The Netherlands (M.F.M.H.)
| | - Alexandra van Harten
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1018 WB Amsterdam, The Netherlands (M.F.M.H.)
| | - Elham Aida Farshadi
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Julius Kemmer
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Demy van Gilst
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Inês Chaves
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Marco F. M. Hoekman
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1018 WB Amsterdam, The Netherlands (M.F.M.H.)
| |
Collapse
|
20
|
Cheng Y, Chi Y, Sun L, Wang GZ. Dominant constraints on the evolution of rhythmic gene expression. Comput Struct Biotechnol J 2023; 21:4301-4311. [PMID: 37692081 PMCID: PMC10492206 DOI: 10.1016/j.csbj.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Although the individual transcriptional regulators of the core circadian clock are distinct among different organisms, the autoregulatory feedback loops they form are conserved. This unified design principle explains how daily physiological activities oscillate across species. However, it is unknown whether analogous design principles govern the gene expression output of circadian clocks. In this study, we performed a comparative analysis of rhythmic gene expression in eight diverse species and identified four common distribution patterns of cycling gene expression across these species. We hypothesized that the maintenance of reduced energetic costs constrains the evolution of rhythmic gene expression. Our large-scale computational simulations support this hypothesis by showing that selection against high-energy expenditure completely regenerates all cycling gene patterns. Moreover, we find that the peaks of rhythmic expression have been subjected to this type of selective pressure. The results suggest that selective pressure from circadian regulation efficiently removes unnecessary gene products from the transcriptome, thereby significantly impacting its evolutionary path.
Collapse
Affiliation(s)
| | | | | | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
21
|
Castillo KD, Chapa ED, Lamb TM, Gangopadhyay M, Bell-Pedersen D. Circadian clock control of tRNA synthetases in Neurospora crassa. F1000Res 2023; 11:1556. [PMID: 37841830 PMCID: PMC10576190 DOI: 10.12688/f1000research.125351.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/17/2023] Open
Abstract
Background: In Neurospora crassa, the circadian clock controls rhythmic mRNA translation initiation through regulation of the eIF2α kinase CPC-3 (the homolog of yeast and mammalian GCN2). Active CPC-3 phosphorylates and inactivates eIF2α, leading to higher phosphorylated eIF2α (P-eIF2α) levels and reduced translation initiation during the subjective day. This daytime activation of CPC-3 is driven by its binding to uncharged tRNA, and uncharged tRNA levels peak during the day under control of the circadian clock. The daily rhythm in uncharged tRNA levels could arise from rhythmic amino acid levels or aminoacyl-tRNA synthetase (aaRSs) levels. Methods: To determine if and how the clock potentially controls rhythms in aspartyl-tRNA synthetase (AspRS) and glutaminyl-tRNA synthetase (GlnRS), both observed to be rhythmic in circadian genomic datasets, transcriptional and translational fusions to luciferase were generated. These luciferase reporter fusions were examined in wild type (WT), clock mutant Δ frq, and clock-controlled transcription factor deletion strains. Results: Translational and transcriptional fusions of AspRS and GlnRS to luciferase confirmed that their protein levels are clock-controlled with peak levels at night. Moreover, clock-controlled transcription factors NCU00275 and ADV-1 drive robust rhythmic protein expression of AspRS and GlnRS, respectively. Conclusions: These data support a model whereby coordinate clock control of select aaRSs drives rhythms in uncharged tRNAs, leading to rhythmic CPC-3 activation, and rhythms in translation of specific mRNAs.
Collapse
Affiliation(s)
- Kathrina D. Castillo
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Emily D. Chapa
- Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Teresa M. Lamb
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Madhusree Gangopadhyay
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Deborah Bell-Pedersen
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
22
|
Guan Q, Wang Z, Cao J, Dong Y, Chen Y. The role of light pollution in mammalian metabolic homeostasis and its potential interventions: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120045. [PMID: 36030956 DOI: 10.1016/j.envpol.2022.120045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Irregular or unnatural artificial light causes severe environmental stress on the survival and health of organisms, which is rapidly becoming a widespread new type of environmental pollution. A series of disruptive behaviors to body homeostasis brought about by light pollution, including metabolic abnormalities, are likely to be the result of circadian rhythm disturbances. Recently, the proposed role of light pollution in metabolic dysregulation has accelerated it into an emerging field. Hence, the regulatory role of light pollution in mammalian metabolic homeostasis is reviewed in this contribution. Light at night is the most widely affected type of light pollution, which disrupts metabolic homeostasis largely due to its disruption of daily food intake patterns, alterations of hormone levels such as melatonin and glucocorticoids, and changes in the rhythm of inflammatory factor production. Besides, light pollution impairs mammalian metabolic processes in an intensity-, photoperiod-, and wavelength-dependent manner, and is also affected by species, gender, and diets. Nevertheless, metabolic disorders triggered by light pollution are not irreversible to some extent. Potential interventions such as melatonin supplementation, recovery to the LD cycle, time-restricted feeding, voluntary exercise, wearing blue light-shied goggles, and bright morning light therapy open a bright avenue to prevent light pollution. This work will help strengthen the relationship between light information and metabolic homeostasis and provide new insights for the better prevention of metabolic disorders and light pollution.
Collapse
Affiliation(s)
- Qingyun Guan
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
23
|
Miao L, Batty KR, Jackson AN, Pieno HA, Rhoades MW, Kojima S. Genetic and environmental perturbations alter the rhythmic expression pattern of a circadian long non-coding RNA, Per2AS, in mouse liver. F1000Res 2022; 11:1073. [PMID: 36250003 PMCID: PMC9551389 DOI: 10.12688/f1000research.125628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) play a wide variety of biological roles without encoding a protein. Although the functions of many lncRNAs have been uncovered in recent years, the regulatory mechanism of lncRNA expression is still poorly understood despite that the expression patterns of lncRNAs are much more specific compared to mRNAs. Here, we investigated the rhythmic expression of Per2AS, a novel lncRNA that regulates circadian rhythms. Given that Per2AS expression is antiphasic to Period2 ( Per2), a core circadian clock gene, and transcribed from the antisense strand of Per2, we hypothesized that the rhythmic Per2AS expression is driven either by its own promoter or by the rhythmic Per2 transcription via transcriptional interference. Methods: We leveraged existing circadian RNA-seq datasets and analyzed the expression patterns of Per2AS and Per2 in response to the genetic or environmental disruption of the circadian rhythm in mouse liver. We tested our hypotheses by comparing the changes in the expression patterns of Per2AS and Per2. Conclusions: We found that, in some cases, Per2AS expression is independently controlled by other circadian transcription factors. In other cases, the pattern of expression change is consistent with both transcriptional interference and independent regulation hypotheses. Although additional experiments will be necessary to distinguish these possibilities, findings from this work contribute to a deeper understanding of the mechanism of how the expression of lncRNA is regulated.
Collapse
Affiliation(s)
- Lin Miao
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kyle R. Batty
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ayana N. Jackson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Heather A. Pieno
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Maisy W. Rhoades
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA,
| |
Collapse
|
24
|
Pillon NJ, Sardón Puig L, Altıntaş A, Kamble PG, Casaní-Galdón S, Gabriel BM, Barrès R, Conesa A, Chibalin AV, Näslund E, Krook A, Zierath JR. Palmitate impairs circadian transcriptomics in muscle cells through histone modification of enhancers. Life Sci Alliance 2022; 6:6/1/e202201598. [PMID: 36302651 PMCID: PMC9614702 DOI: 10.26508/lsa.202201598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/10/2022] Open
Abstract
Obesity and elevated circulating lipids may impair metabolism by disrupting the molecular circadian clock. We tested the hypothesis that lipid overload may interact with the circadian clock and alter the rhythmicity of gene expression through epigenomic mechanisms in skeletal muscle. Palmitate reprogrammed the circadian transcriptome in myotubes without altering the rhythmic mRNA expression of core clock genes. Genes with enhanced cycling in response to palmitate were associated with post-translational modification of histones. The cycling of histone 3 lysine 27 acetylation (H3K27ac), a marker of active gene enhancers, was modified by palmitate treatment. Chromatin immunoprecipitation and sequencing confirmed that palmitate exposure altered the cycling of DNA regions associated with H3K27ac. The overlap between mRNA and DNA regions associated with H3K27ac and the pharmacological inhibition of histone acetyltransferases revealed novel cycling genes associated with lipid exposure of primary human myotubes. Palmitate exposure disrupts transcriptomic rhythmicity and modifies enhancers through changes in histone H3K27 acetylation in a circadian manner. Thus, histone acetylation is responsive to lipid overload and may redirect the circadian chromatin landscape, leading to the reprogramming of circadian genes and pathways involved in lipid biosynthesis in skeletal muscle.
Collapse
Affiliation(s)
- Nicolas J Pillon
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Sardón Puig
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Prasad G Kamble
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | - Brendan M Gabriel
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ana Conesa
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden .,Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Zhu B. Logic of the Temporal Compartmentalization of the Hepatic Metabolic Cycle. Physiology (Bethesda) 2022; 37:0. [PMID: 35658626 PMCID: PMC9394779 DOI: 10.1152/physiol.00003.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/28/2022] [Indexed: 12/25/2022] Open
Abstract
The mammalian liver must cope with various metabolic and physiological changes that normally recur every day and result primarily from rest-activity and fasting-feeding cycles. In this article, I present evidence supporting a temporal compartmentalization of rhythmic hepatic metabolic processes into four main clusters: regulation of energy homeostasis, maintenance of information integrity, immune response, and genetic information flow. I further review literatures and discuss how both the circadian and the newly discovered 12-h ultradian clock work together to regulate these four temporally separated processes in mouse liver, which, interestingly, is largely uncoupled from the liver zonation regulation.
Collapse
Affiliation(s)
- Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Bao W, Qi L, Bao Y, Wang S, Li W. Alleviating insomnia should decrease the risk of irritable bowel syndrome: Evidence from Mendelian randomization. Front Pharmacol 2022; 13:900788. [PMID: 36071849 PMCID: PMC9442781 DOI: 10.3389/fphar.2022.900788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Associations have been reported between sleep and irritable bowel syndrome (IBS). However, whether there exists a causation between them is still unknown. Methods: We employed the Mendelian randomization (MR) design to explore the causal relationship between sleep and IBS. All genetic associations with sleep-related traits reached genome-wide significance (p-value < 5 × 10-8). The genetic associations with IBS were obtained from two independent large genome-wide association studies (GWAS), where non-FinnGen GWAS was in the discovery stage and FinnGen GWAS was in the validation stage. Primarily, the inverse-variance weighted method was employed to estimate the causal effects, and a meta-analysis was performed to combine the MR estimates. Results: In the discovery, we observed that genetic liability to the “morning” chronotype could lower the risk of IBS [OR = 0.81 (0.76, 0.86)]. Also, the genetic liability to insomnia can increase the risk of IBS [OR = 2.86 (1.94, 4.23)] and such causation was supported by short sleep duration. In the validation stage, only insomnia displayed statistical significance [OR = 2.22 (1.09, 4.51)]. The meta-analysis suggested two genetically-determined sleep exposures can increase the risk of IBS, including insomnia [OR = 2.70 (1.92, 3.80)] and short sleep duration [OR = 2.46 (1.25, 4.86)]. Furthermore, the multivariable MR analysis suggested insomnia is an independent risk factor for IBS after adjusting for chronotype [OR = 2.32 (1.57, 3.43)] and short sleep duration [OR = 1.45 (1.13, 1.85)]. IBS cannot increase the risk of insomnia in the reverse MR analysis. Conclusion: Genetic susceptibility to insomnia can increase the risk of IBS, and improving sleep quality, especially targeting insomnia, can help to prevent IBS.
Collapse
Affiliation(s)
- Wenzhao Bao
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Li Qi
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Yin Bao
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Sai Wang
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Wei Li
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Wei Li,
| |
Collapse
|
27
|
Mammalian PERIOD2 regulates H2A.Z incorporation in chromatin to orchestrate circadian negative feedback. Nat Struct Mol Biol 2022; 29:549-562. [PMID: 35606517 DOI: 10.1038/s41594-022-00777-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Mammalian circadian oscillators are built on a feedback loop in which the activity of the transcription factor CLOCK-BMAL1 is repressed by the PER-CRY complex. Here, we show that murine Per-/- fibroblasts display aberrant nucleosome occupancy around transcription start sites (TSSs) and at promoter-proximal and distal CTCF sites due to impaired histone H2A.Z deposition. Knocking out H2A.Z mimicked the Per null chromatin state and disrupted cellular rhythms. We found that endogenous mPER2 complexes retained CTCF as well as the specific H2A.Z-deposition chaperone YL1-a component of the ATP-dependent remodeler SRCAP and p400-TIP60 complex. While depleting YL1 or mutating chaperone-binding sites on H2A.Z lengthened the circadian period, H2A.Z deletion abrogated BMAL1 chromatin recruitment and promoted its proteasomal degradation. We propose that a PER2-mediated H2A.Z deposition pathway (1) compacts CLOCK-BMAL1 binding sites to establish negative feedback, (2) organizes circadian chromatin landscapes using CTCF and (3) bookmarks genomic loci for BMAL1 binding to impinge on the positive arm of the subsequent cycle.
Collapse
|
28
|
Manoogian ENC, Chow LS, Taub PR, Laferrère B, Panda S. Time-restricted Eating for the Prevention and Management of Metabolic Diseases. Endocr Rev 2022; 43:405-436. [PMID: 34550357 PMCID: PMC8905332 DOI: 10.1210/endrev/bnab027] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 02/08/2023]
Abstract
Time-restricted feeding (TRF, animal-based studies) and time-restricted eating (TRE, humans) are an emerging behavioral intervention approach based on the understanding of the role of circadian rhythms in physiology and metabolism. In this approach, all calorie intake is restricted within a consistent interval of less than 12 hours without overtly attempting to reduce calories. This article will summarize the origin of TRF/TRE starting with concept of circadian rhythms and the role of chronic circadian rhythm disruption in increasing the risk for chronic metabolic diseases. Circadian rhythms are usually perceived as the sleep-wake cycle and dependent rhythms arising from the central nervous system. However, the recent discovery of circadian rhythms in peripheral organs and the plasticity of these rhythms in response to changes in nutrition availability raised the possibility that adopting a consistent daily short window of feeding can sustain robust circadian rhythm. Preclinical animal studies have demonstrated proof of concept and identified potential mechanisms driving TRF-related benefits. Pilot human intervention studies have reported promising results in reducing the risk for obesity, diabetes, and cardiovascular diseases. Epidemiological studies have indicated that maintaining a consistent long overnight fast, which is similar to TRE, can significantly reduce risks for chronic diseases. Despite these early successes, more clinical and mechanistic studies are needed to implement TRE alone or as adjuvant lifestyle intervention for the prevention and management of chronic metabolic diseases.
Collapse
Affiliation(s)
| | - Lisa S Chow
- University of Minnesota, Division of Diabetes, Endocrinology and Metabolism, Minneapolis, Minnesota 55455, USA
| | - Pam R Taub
- University of California, San Diego, Division of Cardiovascular Diseases, Department of Medicine, 9434 Medical Center Drive, La Jolla, California 92037, USA
| | - Blandine Laferrère
- New York Nutrition Obesity Research Center, Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center; New York, New York 10032, USA
| | | |
Collapse
|
29
|
Identification of novel small molecules targeting core clock proteins to regulate circadian rhythm. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
García-Eguren G, González-Ramírez M, Vizán P, Giró O, Vega-Beyhart A, Boswell L, Mora M, Halperin I, Carmona F, Gracia M, Casals G, Squarcia M, Enseñat J, Vidal O, Di Croce L, Hanzu FA. Glucocorticoid-induced Fingerprints on Visceral Adipose Tissue Transcriptome and Epigenome. J Clin Endocrinol Metab 2022; 107:150-166. [PMID: 34487152 DOI: 10.1210/clinem/dgab662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Chronic glucocorticoid (GC) overexposure, resulting from endogenous Cushing's syndrome (CS) or exogenous GC therapy, causes several adverse outcomes, including persistent central fat accumulation associated with a low-grade inflammation. However, no previous multiomics studies in visceral adipose tissue (VAT) from patients exposed to high levels of unsuppressed GC during active CS or after remission are available yet. OBJECTIVE To determine the persistent VAT transcriptomic alterations and epigenetic fingerprints induced by chronic hypercortisolism. METHODS We employed a translational approach combining high-throughput data on endogenous CS patients and a reversible CS mouse model. We performed RNA sequencing and chromatin immunoprecipitation sequencing on histone modifications (H3K4me3, H3K27ac, and H3K27me3) to identify persistent transcriptional and epigenetic signatures in VAT produced during active CS and maintained after remission. RESULTS VAT dysfunction was associated with low-grade proinflammatory status, macrophage infiltration, and extracellular matrix remodeling. Most notably, chronic hypercortisolism caused a persistent circadian rhythm disruption in VAT through core clock genes modulation. Importantly, changes in the levels of 2 histone modifications associated to gene transcriptional activation (H3K4me3 and H3K27ac) correlated with the observed differences in gene expression during active CS and after CS remission. CONCLUSION We identified for the first time the persistent transcriptional and epigenetic signatures induced by hypercortisolism in VAT, providing a novel integrated view of molecular components driving the long-term VAT impairment associated with CS.
Collapse
Affiliation(s)
- Guillermo García-Eguren
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar González-Ramírez
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Vizán
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oriol Giró
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Arturo Vega-Beyhart
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Boswell
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
| | - Mireia Mora
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Irene Halperin
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco Carmona
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Gynecology and Obstetrics Department, Hospital Clínic, Barcelona, Spain
| | - Meritxell Gracia
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Gynecology and Obstetrics Department, Hospital Clínic, Barcelona, Spain
| | - Gregori Casals
- Biomedical Diagnostics Centre, Hospital Clinic, Barcelona, Spain
| | - Mattia Squarcia
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Radiology, Hospital Clínic, Barcelona, Spain
| | - Joaquim Enseñat
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Endocrine Surgery Department, Hospital Clinic, Barcelona, Spain
| | - Oscar Vidal
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Luciano Di Croce
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Felicia A Hanzu
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Qu M, Qu H, Jia Z, Kay SA. HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping the rhythmic chromatin landscape. Nat Commun 2021; 12:6350. [PMID: 34732735 PMCID: PMC8566521 DOI: 10.1038/s41467-021-26567-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription modulated by the circadian clock is diverse across cell types, underlying circadian control of peripheral metabolism and its observed perturbation in human diseases. We report that knockout of the lineage-specifying Hnf4a gene in mouse liver causes associated reductions in the genome-wide distribution of core clock component BMAL1 and accessible chromatin marks (H3K4me1 and H3K27ac). Ectopically expressing HNF4A remodels chromatin landscape and nucleates distinct tissue-specific BMAL1 chromatin binding events, predominantly in enhancer regions. Circadian rhythms are disturbed in Hnf4a knockout liver and HNF4A-MODY diabetic model cells. Additionally, the epigenetic state and accessibility of the liver genome dynamically change throughout the day, synchronized with chromatin occupancy of HNF4A and clustered expression of circadian outputs. Lastly, Bmal1 knockout attenuates HNF4A genome-wide binding in the liver, likely due to downregulated Hnf4a transcription. Our results may provide a general mechanism for establishing circadian rhythm heterogeneity during development and disease progression, governed by chromatin structure.
Collapse
Affiliation(s)
- Meng Qu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Han Qu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, 92521, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
32
|
Tabibzadeh S. CircadiOmic medicine and aging. Ageing Res Rev 2021; 71:101424. [PMID: 34389481 DOI: 10.1016/j.arr.2021.101424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023]
Abstract
The earth displays daily, seasonal and annual environmental cycles that have led to evolutionarily adapted ultradian, circadian and infradian rhythmicities in the entire biosphere. All biological organisms must adapt to these cycles that synchronize the function of their circadiome. The objective of this review is to discuss the latest knowledge regarding the role of circadiomics in health and aging. The biological timekeepers are responsive to the environmental cues at microsecond to seasonal time-scales and act with precision of a clock machinery. The robustness of these rhythms is essential to normal daily function of cells, tissues and organs. Mis-alignment of circadian rhythms makes the individual prone to aging, sleep disorders, cancer, diabetes, and neuro-degenerative diseases. Circadian and CircadiOmic medicine are emerging fields that leverage our in-depth understanding of health issues, that arise as a result of disturbances in circadian rhythms, towards establishing better therapeutic approaches in personalized medicine and for geroprotection.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, 16471 Scientific Way, Irvine, CA 92618, United States.
| |
Collapse
|
33
|
Long-term variable photoperiod exposure impairs the mPFC and induces anxiety and depression-like behavior in male wistar rats. Exp Neurol 2021; 347:113908. [PMID: 34710402 DOI: 10.1016/j.expneurol.2021.113908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 01/15/2023]
Abstract
Long-term shift work can cause circadian misalignment, which has been linked to anxiety and depression. However, the associated pathophysiologic changes have not been described in detail, and the mechanism underlying this association is not fully understood. To address these points, we used a rat model of CM induced by long-term variable photoperiod exposure [L-VP] (ie, for 90 days). We compared the numbers of neurons, astrocytes, and dendritic spines; dendrite morphology; long-term potentiation (LTP), long-term depression (LTD) and paired-pulse ratio (PPR); expression of glutamate receptor [N-methyl-d-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)] subunits and brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC); and the anxiety and depression behaviors between rats in the circadian misalignment (CM) and circadian alignment (CA, with normal circadian rhythm) groups. The results showed that L-VP reduced the number of neurons and astrocytes in the mPFC and decreased the number of dendritic spines, dendrite complexity, LTP, LTD, PPR, and expression of glutamate receptors (GluR1, GluR2, GluR3, NMDAR2A, and NMDAR2B) and BDNF in the mPFC. L-VP also induced anxiety and depression-like behaviors, as measured by the open field test, elevated plus-maze, sucrose preference test, and forced swim test. These results suggest that CM induces a loss of neurons and astrocytes and synaptic damage in surviving pyramidal cells in the mPFC might be involved in the pathophysiology of anxiety and depression.
Collapse
|
34
|
Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021; 12:1263. [PMID: 34440437 PMCID: PMC8394526 DOI: 10.3390/genes12081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| |
Collapse
|
35
|
Sato T, Greco CM. Expanding the link between circadian rhythms and redox metabolism of epigenetic control. Free Radic Biol Med 2021; 170:50-58. [PMID: 33450380 DOI: 10.1016/j.freeradbiomed.2021.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Circadian rhythms play a central role in physiological and metabolic processes. This is mostly achieved through rhythmic regulation of myriad genes via dynamic epigenome changes. Accumulating evidence indicates that oxidative stress and redox balance are under circadian control and feedback on the clock system. Circadian perturbations induce oxidative stress accumulation and disturb redox balance. Along with these changes, epigenomic landscape changes are a remarkable hallmark of clock disruption. This review aims to summarize evidence supporting the link between the circadian clock and redox metabolism, focusing on possible connections through epigenetic mechanisms.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Carolina Magdalen Greco
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
36
|
Mosig RA, Kojima S. Timing without coding: How do long non-coding RNAs regulate circadian rhythms? Semin Cell Dev Biol 2021; 126:79-86. [PMID: 34116930 DOI: 10.1016/j.semcdb.2021.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a new class of regulatory RNAs that play important roles in disease development and a variety of biological processes. Recent studies have underscored the importance of lncRNAs in the circadian clock system and demonstrated that lncRNAs regulate core clock genes and the core clock machinery in mammals. In this review, we provide an overview of our current understanding of how lncRNAs regulate the circadian clock without coding a protein. We also offer additional insights into the challenges in understanding the functions of lncRNAs and other unresolved questions in the field. We do not cover other regulatory ncRNAs even though they also play important roles; readers are highly encouraged to refer to other excellent reviews on this topic.
Collapse
Affiliation(s)
- Rebecca A Mosig
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech 1015 Life Science Circle, Blacksburg, VA 24061, USA.
| |
Collapse
|
37
|
Aluru N, Krick KS, McDonald AM, Karchner SI. Developmental Exposure to PCB153 (2,2',4,4',5,5'-Hexachlorobiphenyl) Alters Circadian Rhythms and the Expression of Clock and Metabolic Genes. Toxicol Sci 2021; 173:41-52. [PMID: 31621872 DOI: 10.1093/toxsci/kfz217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are highly persistent and ubiquitously distributed environmental pollutants. Based on their chemical structure, PCBs are classified into non-ortho-substituted and ortho-substituted congeners. Non-ortho-substituted PCBs are structurally similar to dioxin and their toxic effects and mode of action are well-established. In contrast, very little is known about the effects of ortho-substituted PCBs, particularly, during early development. The objective of this study is to investigate the effects of exposure to an environmentally prominent ortho-substituted PCB (2,2',4,4',5,5'-hexachlorobiphenyl; PCB153) on zebrafish embryos. We exposed zebrafish embryos to 3 different concentrations of PCB153 starting from 4 to 120 hours post-fertilization (hpf). We quantified gross morphological changes, behavioral phenotypes, gene expression changes, and circadian behavior in the larvae. There were no developmental defects during the exposure period, but starting at 7 dpf, we observed spinal deformity in the 10 μM PCB153 treated group. A total of 633, 2227, and 3378 differentially expressed genes were observed in 0.1 μM (0.036 μg/ml), 1 μM (0.36 μg/ml), and 10 μM (3.6 μg/ml) PCB153-treated embryos, respectively. Of these, 301 genes were common to all treatment groups. KEGG pathway analysis revealed enrichment of genes related to circadian rhythm, FoxO signaling, and insulin resistance pathways. Behavioral analysis revealed that PCB153 exposure significantly alters circadian behavior. Disruption of circadian rhythms has been associated with the development of metabolic and neurological diseases. Thus, understanding the mechanisms of action of environmental chemicals in disrupting metabolism and other physiological processes is essential.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Keegan S Krick
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Adriane M McDonald
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543.,Biology Department, Spelman College, Atlanta, Georgia 30314
| | - Sibel I Karchner
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
38
|
Natural antisense transcript of Period2, Per2AS, regulates the amplitude of the mouse circadian clock. Genes Dev 2021; 35:899-913. [PMID: 34016691 PMCID: PMC8168560 DOI: 10.1101/gad.343541.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
In mammals, a set of core clock genes form transcription-translation feedback loops to generate circadian oscillations. We and others recently identified a novel transcript at the Period2 (Per2) locus that is transcribed from the antisense strand of Per2 This transcript, Per2AS, is expressed rhythmically and antiphasic to Per2 mRNA, leading to our hypothesis that Per2AS and Per2 mutually inhibit each other's expression and form a double negative feedback loop. By perturbing the expression of Per2AS, we found that Per2AS transcription, but not transcript, represses Per2 However, Per2 does not repress Per2AS, as Per2 knockdown led to a decrease in the Per2AS level, indicating that Per2AS forms a single negative feedback loop with Per2 and maintains the level of Per2 within the oscillatory range. Per2AS also regulates the amplitude of the circadian clock, and this function cannot be solely explained through its interaction with Per2, as Per2 knockdown does not recapitulate the phenotypes of Per2AS perturbation. Overall, our data indicate that Per2AS is an important regulatory molecule in the mammalian circadian clock machinery. Our work also supports the idea that antisense transcripts of core clock genes constitute a common feature of circadian clocks, as they are found in other organisms.
Collapse
|
39
|
Circadian Clock Control of Translation Initiation Factor eIF2α Activity Requires eIF2γ-Dependent Recruitment of Rhythmic PPP-1 Phosphatase in Neurospora crassa. mBio 2021; 12:mBio.00871-21. [PMID: 34006661 PMCID: PMC8262944 DOI: 10.1128/mbio.00871-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The circadian clock controls the phosphorylation and activity of eukaryotic translation initiation factor 2α (eIF2α). In Neurospora crassa, the clock drives a daytime peak in the activity of the eIF2α kinase CPC-3, the homolog of yeast and mammalian GCN2 kinase. This leads to increased levels of phosphorylated eIF2α (P-eIF2α) and reduced mRNA translation initiation during the day. We hypothesized that rhythmic eIF2α activity also requires dephosphorylation of P-eIF2α at night by phosphatases. In support of this hypothesis, we show that mutation of N. crassa PPP-1, a homolog of the yeast eIF2α phosphatase GLC7, leads to high and arrhythmic P-eIF2α levels, while maintaining core circadian oscillator function. PPP-1 levels are clock-controlled, peaking in the early evening, and rhythmic PPP-1 levels are necessary for rhythmic P-eIF2α accumulation. Deletion of the N terminus of N. crassa eIF2γ, the region necessary for eIF2γ interaction with GLC7 in yeast, led to high and arrhythmic P-eIF2α levels. These data supported that N. crassa eIF2γ functions to recruit PPP-1 to dephosphorylate eIF2α at night. Thus, in addition to the activity of CPC-3 kinase, circadian clock regulation of eIF2α activity requires dephosphorylation by PPP-1 phosphatase at night. These data show how the circadian clock controls the activity a central regulator of translation, critical for cellular metabolism and growth control, through the temporal coordination of phosphorylation and dephosphorylation events.
Collapse
|
40
|
Yi JS, Díaz NM, D'Souza S, Buhr ED. The molecular clockwork of mammalian cells. Semin Cell Dev Biol 2021; 126:87-96. [PMID: 33810978 DOI: 10.1016/j.semcdb.2021.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Most organisms contain self-sustained circadian clocks. These clocks can be synchronized by environmental stimuli, but can also oscillate indefinitely in isolation. In mammals this is true at the molecular level for the majority of cell types that have been examined. A core set of "clock genes" form a transcriptional/translational feedback loop (TTFL) which repeats with a period of approximately 24 h. The exact mechanism of the TTFL differs slightly in various cell types, but all involve similar family members of the core cohort of clock genes. The clock has many outputs which are unique for different tissues. Cells in diverse tissues will convert the timing signals provided by the TTFL into uniquely orchestrated transcriptional oscillations of many clock-controlled genes and cellular processes.
Collapse
Affiliation(s)
- Jonathan S Yi
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA
| | - Nicolás M Díaz
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA
| | - Shane D'Souza
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Ethan D Buhr
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA.
| |
Collapse
|
41
|
Fang B, Guan D, Lazar MA. Using GRO-Seq to Measure Circadian Transcription and Discover Circadian Enhancers. Methods Mol Biol 2021; 2130:127-148. [PMID: 33284441 DOI: 10.1007/978-1-0716-0381-9_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circadian gene transcription transmits timing information and drives cyclic physiological processes across various tissues. Recent studies indicate that oscillating enhancer activity is a major driving force of rhythmic gene transcription. Functional circadian enhancers can be identified in an unbiased manner by correlation with the rhythms of nearby gene transcription.Global run-on sequencing (GRO-seq) measures nascent transcription of both pre-mRNAs and enhancer RNAs (eRNAs) at a genome-wide level, making it a unique tool for unraveling complex gene regulation mechanisms in vivo. Here, we describe a comprehensive protocol, ranging from wet lab to in silico analysis, for detecting and quantifying circadian transcription of genes and eRNAs. Moreover, using gene-eRNA correlation, we detail the steps necessary to identify functional enhancers and transcription factors (TFs) that control circadian gene expression in vivo. While we use mouse liver as an example, this protocol is applicable for multiple tissues.
Collapse
Affiliation(s)
- Bin Fang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Dongyin Guan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Lim ASP. Diurnal and seasonal molecular rhythms in the human brain and their relation to Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:271-284. [PMID: 34225968 DOI: 10.1016/b978-0-12-819975-6.00017-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diurnal and seasonal rhythms influence many aspects of human physiology including brain function. Moreover, altered diurnal and seasonal behavioral and physiological rhythms have been linked to Alzheimer's disease and related dementias (ADRD). Understanding the molecular basis for these links may lead to identification of novel targets to mitigate the negative impact of normal and abnormal diurnal and seasonal rhythms on ADRD or to alleviate the adverse consequences of ADRD on normal diurnal and seasonal rhythms. Diurnally and seasonally rhythmic gene expression and epigenetic modification in the human neocortex may be a key mechanism underlying these links. This chapter will first review the observed epidemiological links between normal and abnormal diurnal and seasonal rhythmicity, cognitive impairment, and ADRD. Then it will review normal diurnal and seasonal rhythms of brain epigenetic modification and gene expression in model organisms. Finally, it will review evidence for diurnal and seasonal rhythms of epigenetic modification and gene expression the human brain in aging, Alzheimer's disease, and other brain disorders.
Collapse
Affiliation(s)
- Andrew S P Lim
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
43
|
Currenti W, Godos J, Castellano S, Mogavero MP, Ferri R, Caraci F, Grosso G, Galvano F. Time restricted feeding and mental health: a review of possible mechanisms on affective and cognitive disorders. Int J Food Sci Nutr 2020; 72:723-733. [PMID: 33356688 DOI: 10.1080/09637486.2020.1866504] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decades, a high increase in life expectancy not adequately balanced by an improvement in the quality of life has been observed, leading possibly to an increase in the prevalence of affective and cognitive disorders related to aging, such as depression, cognitive impairment, dementia and Alzheimer's disease. As mental illnesses have multifactorial aetiologies, many modifiable factors including lifestyle and nutrition play an essential role. Among nutritional factors, intermittent fasting has emerged as an innovative strategy to prevent and treat mental health disorders, sleep disturbances and cognitive impairment. Among all types of intermittent fasting regimens, the time restricted feeding appears to be the most promising protocol as it allows to induce benefits of a total fasting without reducing global calories and nutrients intake. This review summarises the evidence on the effect of time restricted feeding towards brain health, emphasising its role on brain signalling, neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Itaely
| | | | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Maria P Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Pavia, Italy
| | | | - Filippo Caraci
- Oasi Research Institute - IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Itaely
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Itaely
| |
Collapse
|
44
|
Zhang DY, Zhang XX, Li GZ, Li XL, Zhang YK, Zhao Y, Song QZ, Wang WM. Transcriptome analysis of long noncoding RNAs ribonucleic acids from the livers of Hu sheep with different residual feed intake. Animal 2020; 15:100098. [PMID: 33573993 DOI: 10.1016/j.animal.2020.100098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/24/2022] Open
Abstract
Long noncoding RNAs (LncRNAs), as key regulators, have vital functions in various biological activities. However, in sheep, little has been reported concerning the genetic mechanism of LncRNA regulation of feed efficiency. In the present study, we explored the genome-wide expression of LncRNAs and transcripts of uncertain coding potential (TUCPs) in the livers of sheep with extreme residual feed intake (RFI) using RNA sequencing. We identified 1 523 TUCPs and 1 996 LncRNAs, among which 10 LncRNAs and 16 TUCPs were identified as being differentially expressed between the High-RFI and Low-RFI groups. Co-expression and co-localization methods were used to search for LncRNA and TUCP target genes, which identified 970/1 538 and 23/27 genes, respectively. Ontology and pathways analysis revealed that the LncRNAs/TUCPs that were highly expressed in the Low-RFI group are mostly concentrated in energy metabolism pathways. For example, LNC_000890 and TUCP_000582 might regulate liver tissue metabolic efficiency. The LncRNAs/TUCPs that were highly expressed in the High-RFI group are mostly enriched in immune function pathways. For example, TUCP_000832 might regulate animal health, thereby affecting feed efficiency. Subsequently, a co-expression network was established by applying the expression information of both the differentially expressed LncRNAs and TUCPs and their target mRNAs. The network indicated that differentially expressed genes targeted by the upregulated LncRNAs and TUCPs were mainly related to energy metabolism, while those genes targeted by the downregulated LncRNAs and TUCPs were mainly related to immune response. These results provide the basis for further study of LncRNA/TUCP-mediated regulation of feed efficiency.
Collapse
Affiliation(s)
- D Y Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - X X Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China; Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin Zhongtian Sheep Industry Co. Ltd, Minqin, Gansu 733300, China
| | - G Z Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - X L Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Y K Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Y Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Q Z Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - W M Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
45
|
Littleton ES, Childress ML, Gosting ML, Jackson AN, Kojima S. Genome-wide correlation analysis to identify amplitude regulators of circadian transcriptome output. Sci Rep 2020; 10:21839. [PMID: 33318596 PMCID: PMC7736363 DOI: 10.1038/s41598-020-78851-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-autonomous circadian system, consisting of core clock genes, generates near 24-h rhythms and regulates the downstream rhythmic gene expression. While it has become clear that the percentage of rhythmic genes varies among mouse tissues, it remains unclear how this variation can be generated, particularly when the clock machinery is nearly identical in all tissues. In this study, we sought to characterize circadian transcriptome datasets that are publicly available and identify the critical component(s) involved in creating this variation. We found that the relative amplitude of 13 genes and the average level of 197 genes correlated with the percentage of cycling genes. Of those, the correlation of Rorc in both relative amplitude and the average level was one of the strongest. In addition, the level of Per2AS, a novel non-coding transcript that is expressed at the Period 2 locus, was also linearly correlated, although with a much lesser degree compared to Rorc. Overall, our study provides insight into how the variation in the percentage of clock-controlled genes can be generated in mouse tissues and suggests that Rorc and potentially Per2AS are involved in regulating the amplitude of circadian transcriptome output.
Collapse
Affiliation(s)
- Evan S Littleton
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Madison L Childress
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Michaela L Gosting
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Ayana N Jackson
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
46
|
Maniyadath B, Sandra US, Kolthur-Seetharam U. Metabolic choreography of gene expression: nutrient transactions with the epigenome. J Biosci 2020. [DOI: 10.1007/s12038-019-9987-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Greco CM, Cervantes M, Fustin JM, Ito K, Ceglia N, Samad M, Shi J, Koronowski KB, Forne I, Ranjit S, Gaucher J, Kinouchi K, Kojima R, Gratton E, Li W, Baldi P, Imhof A, Okamura H, Sassone-Corsi P. S-adenosyl-l-homocysteine hydrolase links methionine metabolism to the circadian clock and chromatin remodeling. SCIENCE ADVANCES 2020; 6:eabc5629. [PMID: 33328229 PMCID: PMC7744083 DOI: 10.1126/sciadv.abc5629] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/30/2020] [Indexed: 05/03/2023]
Abstract
Circadian gene expression driven by transcription activators CLOCK and BMAL1 is intimately associated with dynamic chromatin remodeling. However, how cellular metabolism directs circadian chromatin remodeling is virtually unexplored. We report that the S-adenosylhomocysteine (SAH) hydrolyzing enzyme adenosylhomocysteinase (AHCY) cyclically associates to CLOCK-BMAL1 at chromatin sites and promotes circadian transcriptional activity. SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases, and timely hydrolysis of SAH by AHCY is critical to sustain methylation reactions. We show that AHCY is essential for cyclic H3K4 trimethylation, genome-wide recruitment of BMAL1 to chromatin, and subsequent circadian transcription. Depletion or targeted pharmacological inhibition of AHCY in mammalian cells markedly decreases the amplitude of circadian gene expression. In mice, pharmacological inhibition of AHCY in the hypothalamus alters circadian locomotor activity and rhythmic transcription within the suprachiasmatic nucleus. These results reveal a previously unappreciated connection between cellular metabolism, chromatin dynamics, and circadian regulation.
Collapse
Affiliation(s)
- Carolina Magdalen Greco
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA.
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Jean-Michel Fustin
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Kakeru Ito
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Nicholas Ceglia
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Jiejun Shi
- Department of Biological Chemistry, School of Medicine, University of California Irvine (UCI), Irvine, CA, USA
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kevin Brian Koronowski
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Ignasi Forne
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Suman Ranjit
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine (UCI), Irvine, CA, USA
| | - Jonathan Gaucher
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Rika Kojima
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine (UCI), Irvine, CA, USA
| | - Wei Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine (UCI), Irvine, CA, USA
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Axel Imhof
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA.
| |
Collapse
|
48
|
Abstract
The identification and characterization of rhythmically expressed mRNAs have been an active area of research over the past 20 years, as these mRNAs are believed to produce the daily rhythms in a wide range of biological processes. Circadian transcriptome studies have used mature mRNA as a primary readout and focused largely on rhythmic RNA synthesis as a regulatory mechanism underlying rhythmic mRNA expression. However, RNA synthesis, RNA degradation, or a combination of both must be rhythmic to drive rhythmic RNA profiles, and it is still unclear to what extent rhythmic synthesis leads to rhythmic RNA profiles. In addition, circadian RNA expression is also often tissue specific. Although a handful of genes cycle in all or most tissues, others are rhythmic only in certain tissues, even though the same core clock mechanism is believed to control the rhythmic RNA profiles in all tissues. This review focuses on the dynamics of rhythmic RNA synthesis and degradation and discusses how these steps collectively determine the rhythmicity, phase, and amplitude of RNA accumulation. In particular, we highlight a possible role of RNA degradation in driving tissue-specific RNA rhythms. By unifying findings from experimental and theoretical studies, we will provide a comprehensive overview of how rhythmic gene expression can be achieved and how each regulatory step contributes to tissue-specific circadian transcriptome output in mammals.
Collapse
Affiliation(s)
| | - Shihoko Kojima
- To whom all correspondence should be addressed: Shihoko Kojima, Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA; .
| |
Collapse
|
49
|
Galagali H, Kim JK. The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol 2020; 67:118-140. [PMID: 33152557 DOI: 10.1016/j.ceb.2020.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are major drivers of cell fate specification and differentiation. The post-transcriptional regulation of key molecular factors by microRNAs contributes to the progression of embryonic and postembryonic development in several organisms. Following the discovery of lin-4 and let-7 in Caenorhabditis elegans and bantam microRNAs in Drosophila melanogaster, microRNAs have emerged as orchestrators of cellular differentiation and developmental timing. Spatiotemporal control of microRNAs and associated protein machinery can modulate microRNA activity. Additionally, adaptive modulation of microRNA expression and function in response to changing environmental conditions ensures that robust cell fate specification during development is maintained. Herein, we review the role of microRNAs in the regulation of differentiation during development.
Collapse
Affiliation(s)
- Himani Galagali
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
50
|
Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr Rev 2020; 41:5835826. [PMID: 32392281 PMCID: PMC7334005 DOI: 10.1210/endrev/bnaa014] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
All biological processes, living organisms, and ecosystems have evolved with the Sun that confers a 24-hour periodicity to life on Earth. Circadian rhythms arose from evolutionary needs to maximize daily organismal fitness by enabling organisms to mount anticipatory and adaptive responses to recurrent light-dark cycles and associated environmental changes. The clock is a conserved feature in nearly all forms of life, ranging from prokaryotes to virtually every cell of multicellular eukaryotes. The mammalian clock comprises transcription factors interlocked in negative feedback loops, which generate circadian expression of genes that coordinate rhythmic physiology. In this review, we highlight previous and recent studies that have advanced our understanding of the transcriptional architecture of the mammalian clock, with a specific focus on epigenetic mechanisms, transcriptomics, and 3-dimensional chromatin architecture. In addition, we discuss reciprocal ways in which the clock and metabolism regulate each other to generate metabolic rhythms. We also highlight implications of circadian biology in human health, ranging from genetic and environment disruptions of the clock to novel therapeutic opportunities for circadian medicine. Finally, we explore remaining fundamental questions and future challenges to advancing the field forward.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|