1
|
Marcuzzo MB, de Andrade Silveira J, Streck EL, Vockley J, Leipnitz G. Disruption of Mitochondrial Quality Control in Inherited Metabolic Disorders. Mol Neurobiol 2025; 62:6770-6784. [PMID: 39251562 DOI: 10.1007/s12035-024-04467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Inherited metabolic disorders (IMDs) are genetic disorders often characterized by the accumulation of toxic metabolites in patient tissues and bodily fluids. Although the pathophysiologic effect of these metabolites and their direct effect on cellular function is not yet established for many of these disorders, animal and cellular studies have shown that mitochondrial bioenergetic dysfunction with impairment of citric acid cycle activity and respiratory chain, along with secondary damage induced by oxidative stress are prominent in some. Mitochondrial quality control, requiring the coordination of multiple mechanisms such as mitochondrial biogenesis, dynamics, and mitophagy, is responsible for the correction of such defects. For inborn errors of enzymes located in the mitochondria, secondary abnormalities in quality control this organelle could play a role in their pathophysiology. This review summarizes preclinical data (animal models and patient-derived cells) on mitochondrial quality control disturbances in selected IMDs.
Collapse
Affiliation(s)
- Manuela Bianchin Marcuzzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Josyane de Andrade Silveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Emílio L Streck
- Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Jerry Vockley
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, 90035-190, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
2
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2025; 62:6827-6855. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
3
|
Dal Maso T, Sinisgalli C, Zilio G, Franzin E, Tessari I, Pardon E, Steyaert J, Ballet S, Greggio E, Versées W, Plotegher N. Developing nanobodies as allosteric molecular chaperones of glucocerebrosidase function. Nat Commun 2025; 16:4890. [PMID: 40425544 PMCID: PMC12117155 DOI: 10.1038/s41467-025-60134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The enzyme glucocerebrosidase (GCase) catalyses the hydrolysis of glucosylceramide to glucose and ceramide within lysosomes. Homozygous or compound heterozygous mutations in the GCase-encoding GBA1 gene cause the lysosomal storage disorder Gaucher disease, while heterozygous and homozygous mutations are the most frequent genetic risk factor for Parkinson's disease. These mutations commonly affect GCase stability, trafficking or activity. Here, we report the development and characterization of nanobodies (Nbs) targeting and acting as molecular chaperones for GCase. We identify several Nb families that bind with nanomolar affinity to GCase. Based on biochemical characterization, we group the Nbs in two classes: Nbs that improve the activity of the enzyme and Nbs that increase GCase stability in vitro. A selection of the most promising Nbs is shown to improve GCase function in cell models and positively impact the activity of the N370S mutant GCase. These results lay the foundation for the development of new therapeutic routes.
Collapse
Affiliation(s)
- Thomas Dal Maso
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Gianluca Zilio
- Department of Biology, University of Padova, Padova, Italy
| | - Elisa Franzin
- Department of Biology, University of Padova, Padova, Italy
| | | | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Wim Versées
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
4
|
Soung AL, Kyauk RV, Pandey S, Shen YA, Reichelt M, Lin H, Jiang Z, Kirshnamoorthy P, Foreman O, Lauffer BE, Yuen TJ. Modulation of OPC Mitochondrial Function by Inhibiting USP30 Promotes Their Differentiation. Glia 2025; 73:773-787. [PMID: 39601128 PMCID: PMC11845845 DOI: 10.1002/glia.24648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 10/03/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Multiple lines of evidence indicate that mitochondrial dysfunction occurs in demyelinating diseases, such as multiple sclerosis (MS). Failure of remyelination is thought to be caused in part by a block of oligodendrocyte progenitor cell (OPC) differentiation into oligodendrocytes, which generate myelin sheaths around axons. The process of OPC differentiation requires a substantial amount of energy and high demand for ATP which is supplied through the mitochondria. In this study, we highlight mitochondrial gene expression changes during OPC differentiation in two murine models of remyelination and in human postmortem MS brains. Given these transcriptional alterations, we then investigate whether genetic alteration of USP30, a mitochondrial deubiquitinase, enhances OPC differentiation and myelination. By genetic knockout of USP30, we observe increased OPC differentiation and myelination without affecting OPC proliferation and survival in in vitro and ex vivo assays. We also find that OPC differentiation is accelerated in vivo following focal demyelination in USP30 knockout mice. The promotion of OPC differentiation and myelination observed is associated with increased oxygen consumption rates in USP30 knockout OPCs. Together, these data indicate a role for mitochondrial function and USP30 in OPC differentiation and myelination.
Collapse
Affiliation(s)
- Allison L. Soung
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| | - Roxanne V. Kyauk
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| | - Shristi Pandey
- Department of Bioinformatics and Computational BiologyGenentech IncSouth San FranciscoCaliforniaUSA
| | - Yun‐An A. Shen
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| | - Mike Reichelt
- Department of PathologyGenentech IncSouth San FranciscoCaliforniaUSA
| | - Han Lin
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| | - Zhiyu Jiang
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| | | | - Oded Foreman
- Department of PathologyGenentech IncSouth San FranciscoCaliforniaUSA
| | | | - Tracy J. Yuen
- Department of NeuroscienceGenentech IncSouth San FranciscoCaliforniaUSA
| |
Collapse
|
5
|
Xu L, Zhang T, Zhu B, Tao H, Liu Y, Liu X, Zhang Y, Meng X. Mitochondrial quality control disorder in neurodegenerative disorders: Potential and advantages of traditional Chinese medicines. J Pharm Anal 2025; 15:101146. [PMID: 40291018 PMCID: PMC12032916 DOI: 10.1016/j.jpha.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 04/30/2025] Open
Abstract
Neurodegenerative disorders (NDDs) are prevalent chronic conditions characterized by progressive synaptic loss and pathological protein alterations. Increasing evidence suggested that mitochondrial quality control (MQC) serves as the key cellular process responsible for clearing misfolded proteins and impaired mitochondria. Herein, we provided a comprehensive analysis of the mechanisms through which MQC mediates the onset and progression of NDDs, emphasizing mitochondrial dynamic stability, the clearance of damaged mitochondria, and the generation of new mitochondria. In addition, traditional Chinese medicines (TCMs) and their active monomers targeting MQC in NDD treatment have been demonstrated. Consequently, we compiled the TCMs that show great potential in the treatment of NDDs by targeting MQC, aiming to offer novel insights and a scientific foundation for the use of MQC stabilizers in NDD prevention and treatment.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baojie Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
6
|
Lee RG, Rudler DL, Rackham O, Filipovska A. Interorganelle phospholipid communication, a house not so divided. Trends Endocrinol Metab 2024; 35:872-883. [PMID: 38972781 DOI: 10.1016/j.tem.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024]
Abstract
The presence of membrane-bound organelles with specific functions is one of the main hallmarks of eukaryotic cells. Organelle membranes are composed of specific lipids that govern their function and interorganelle communication. Discoveries in cell biology using imaging and omic technologies have revealed the mechanisms that drive membrane remodeling, organelle contact sites, and metabolite exchange. The interplay between multiple organelles and their interdependence is emerging as the next frontier for discovery using 3D reconstruction of volume electron microscopy (vEM) datasets. We discuss recent findings on the links between organelles that underlie common functions and cellular pathways. Specifically, we focus on the metabolism of ether glycerophospholipids that mediate organelle dynamics and their communication with each other, and the new imaging techniques that are powering these discoveries.
Collapse
Affiliation(s)
- Richard G Lee
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Danielle L Rudler
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Oliver Rackham
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Aleksandra Filipovska
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia; The University of Western Australia Centre for Child Health Research, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia.
| |
Collapse
|
7
|
Şoroğlu CV, Berkay EG. Old disease-New reflections: Gaucher, immunity, and inflammation. J Cell Mol Med 2024; 28:e70087. [PMID: 39463025 PMCID: PMC11513444 DOI: 10.1111/jcmm.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease. It is a multisystemic metabolic disease caused by GBA pathogenic mutations. Although the general symptoms have been known for a long time, new treatment possibilities, the detection of different biomarkers, and innovations in diagnosis and follow-up have paved the way for further studies. Recent studies have shown that the immune system has become an essential factor associated with disease progression. The role of Gaucher cells in the disease is well characterized. In addition to phagocytic macrophage cells, lymphocytes, complement system, and inflammatory pathway elements are also implicated in GD as they were shown to be the underlying factors causing associated pathologies such as Parkinson's. In this article, the relationship between the GD and the immune system has been examined and reviewed in light of new findings.
Collapse
Affiliation(s)
- Can Veysel Şoroğlu
- Department of Medical BiotechnologyAcıbadem Mehmet Ali Aydınlar University, Institute of Health SciencesIstanbulTurkey
| | - Ezgi Gizem Berkay
- Department of Basic Sciences, Dentistry FacultyIstanbul Kent UniversityIstanbulTurkey
| |
Collapse
|
8
|
Gao T, Huang Z. Novel insights into sevoflurane-induced developmental neurotoxicity mechanisms. Epigenomics 2024; 16:1231-1252. [PMID: 39316776 PMCID: PMC11485883 DOI: 10.1080/17501911.2024.2395250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: This study explores Sevoflurane (Sevo)-induced neurotoxicity mechanisms in neonates through transcriptome sequencing and models.Methods: Seven-day-old mice were exposed to 3% Sevo, and hippocampal tissue was collected for analysis of differentially expressed lncRNAs and mRNAs compared with normal mice. MiR-152-3p was selected, and the interaction between H19, USP30, and miR-152-3p was explored in BV2 microglial cells and mouse hippocampal neurons.Results: Sevo disrupts mitochondrial autophagy via USP30 upregulation, exacerbating neurotoxicity and activating NLRP1 inflammasome-mediated inflammation.Conclusion: Sevo neurotoxicity is mediated through the H19/miR-152-3p/USP30 axis, implicating microglial regulation of neuronal pyroptosis.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| | - Zeqing Huang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| |
Collapse
|
9
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
10
|
Hertz E, Chen Y, Sidransky E. Gaucher disease provides a unique window into Parkinson disease pathogenesis. Nat Rev Neurol 2024; 20:526-540. [PMID: 39107435 DOI: 10.1038/s41582-024-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
An exciting development in the field of neurodegeneration is the association between the rare monogenic disorder Gaucher disease and the common complex disorder Parkinson disease (PD). Gaucher disease is a lysosomal storage disorder resulting from an inherited deficiency of the enzyme glucocerebrosidase, encoded by GBA1, which hydrolyses the glycosphingolipids glucosylceramide and glucosylsphingosine. The observation of parkinsonism in a rare subgroup of individuals with Gaucher disease first directed attention to the role of glucocerebrosidase deficiency in the pathogenesis of PD. PD occurs more frequently in people heterozygous for Gaucher GBA1 mutations, and 3-25% of people with Parkinson disease carry a GBA1 variant. However, only a small percentage of individuals with GBA1 variants develop parkinsonism, suggesting that the penetrance is low. Despite over a decade of intense research in this field, including clinical and radiological evaluations, genetic studies and investigations using model systems, the mechanism underlying GBA1-PD is still being pursued. Insights from this association have emphasized the role of lysosomal pathways in parkinsonism. Furthermore, different therapeutic strategies considered or developed for Gaucher disease can now inform drug development for PD.
Collapse
Affiliation(s)
- Ellen Hertz
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Onal G, Yalçın‐Çakmaklı G, Özçelik CE, Boussaad I, Şeker UÖŞ, Fernandes HJR, Demir H, Krüger R, Elibol B, Dökmeci S, Salman MM. Variant-specific effects of GBA1 mutations on dopaminergic neuron proteostasis. J Neurochem 2024; 168:2543-2560. [PMID: 38641924 PMCID: PMC11898552 DOI: 10.1111/jnc.16114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
Glucocerebrosidase 1 (GBA1) mutations are the most important genetic risk factors for Parkinson's disease (PD). Clinically, mild (e.g., p.N370S) and severe (e.g., p.L444P and p.D409H) GBA1 mutations have different PD phenotypes, with differences in age at disease onset, progression, and the severity of motor and non-motor symptoms. We hypothesize that GBA1 mutations cause the accumulation of α-synuclein by affecting the cross-talk between cellular protein degradation mechanisms, leading to neurodegeneration. Accordingly, we tested whether mild and severe GBA1 mutations differentially affect the degradation of α-synuclein via the ubiquitin-proteasome system (UPS), chaperone-mediated autophagy (CMA), and macroautophagy and differentially cause accumulation and/or release of α-synuclein. Our results demonstrate that endoplasmic reticulum (ER) stress and total ubiquitination rates were significantly increased in cells with severe GBA1 mutations. CMA was found to be defective in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons with mild GBA1 mutations, but not in those with severe GBA1 mutations. When examining macroautophagy, we observed reduced formation of autophagosomes in cells with the N370S and D409H GBA1 mutations and impairments in autophagosome-lysosome fusion in cells with the L444P GBA1 mutation. Accordingly, severe GBA1 mutations were found to trigger the accumulation and release of oligomeric α-synuclein in iPSC-derived dopaminergic neurons, primarily as a result of increased ER stress and defective macroautophagy, while mild GBA1 mutations affected CMA, which is mainly responsible for the degradation of the monomeric form of α-synuclein. Overall, our findings provide new insight into the molecular basis of the clinical variability in PD associated with different GBA1 mutations.
Collapse
Affiliation(s)
- G. Onal
- Department of Physiology, Anatomy and Genetics, Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| | - G. Yalçın‐Çakmaklı
- Department of Neurology, Faculty of MedicineHacettepe UniversityAnkaraTurkey
| | - C. E. Özçelik
- National Nanotechnology Research Center, UNAM‐Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
| | - I. Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - U. Ö. Ş. Şeker
- Interdisciplinary Neuroscience Program, National Nanotechnology Research Center, UNAM‐Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
| | - Hugo J. R. Fernandes
- Department of Physiology, Anatomy and Genetics, Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| | - H. Demir
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Faculty of MedicineHacettepe UniversityAnkaraTurkey
| | - R. Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgEsch‐sur‐AlzetteLuxembourg
- Transversal Translational MedicineLuxembourg Institute of Health (LIH)StrassenLuxembourg
- Parkinson Research ClinicCentre Hospitalier de Luxembourg (CHL)Luxembourg CityLuxembourg
| | - B. Elibol
- Department of Neurology, Faculty of MedicineHacettepe UniversityAnkaraTurkey
| | - S. Dökmeci
- Department of Medical Biology, Faculty of MedicineHacettepe UniversityAnkaraTurkey
| | - M. M. Salman
- Department of Physiology, Anatomy and Genetics, Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
12
|
Rubilar JC, Outeiro TF, Klein AD. The lysosomal β-glucocerebrosidase strikes mitochondria: implications for Parkinson's therapeutics. Brain 2024; 147:2610-2620. [PMID: 38437875 DOI: 10.1093/brain/awae070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Parkinson's disease is a neurodegenerative disorder primarily known for typical motor features that arise due to the loss of dopaminergic neurons in the substantia nigra. However, the precise molecular aetiology of the disease is still unclear. Several cellular pathways have been linked to Parkinson's disease, including the autophagy-lysosome pathway, α-synuclein aggregation and mitochondrial function. Interestingly, the mechanistic link between GBA1, the gene that encodes for lysosomal β-glucocerebrosidase (GCase), and Parkinson's disease lies in the interplay between GCase functions in the lysosome and mitochondria. GCase mutations alter mitochondria-lysosome contact sites. In the lysosome, reduced GCase activity leads to glycosphingolipid build-up, disrupting lysosomal function and autophagy, thereby triggering α-synuclein accumulation. Additionally, α-synuclein aggregates reduce GCase activity, creating a self-perpetuating cycle of lysosomal dysfunction and α-synuclein accumulation. GCase can also be imported into the mitochondria, where it promotes the integrity and function of mitochondrial complex I. Thus, GCase mutations that impair its normal function increase oxidative stress in mitochondria, the compartment where dopamine is oxidized. In turn, the accumulation of oxidized dopamine adducts further impairs GCase activity, creating a second cycle of GCase dysfunction. The oxidative state triggered by GCase dysfunction can also induce mitochondrial DNA damage which, in turn, can cause dopaminergic cell death. In this review, we highlight the pivotal role of GCase in Parkinson's disease pathogenesis and discuss promising examples of GCase-based therapeutics, such as gene and enzyme replacement therapies, small molecule chaperones and substrate reduction therapies, among others, as potential therapeutic interventions.
Collapse
Affiliation(s)
- Juan Carlos Rubilar
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Max Planck Institute for Natural Sciences, 37073, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075, Göttingen, Germany
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| |
Collapse
|
13
|
Coukos R, Krainc D. Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci 2024; 25:393-413. [PMID: 38600347 DOI: 10.1038/s41583-024-00812-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
14
|
Nam Y, Na J, Ma SX, Park H, Park H, Lee E, Kim H, Jang SM, Ko HS, Kim S. DJ-1 protects cell death from a mitochondrial oxidative stress due to GBA1 deficiency. Genes Genomics 2024; 46:519-529. [PMID: 38460098 DOI: 10.1007/s13258-024-01506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND GBA1 mutations are the most common genetic risk factor for development of Parkinson's disease (PD). The loss of catalytic activity in GBA1, as well as the reduction of the GBA1 protein in certain cellular compartment, may increase disease progression. However, the mechanisms underlying cellular dysfunction caused by GBA1 deficiency are still mostly unknown. OBJECTIVE In this study, we focus on the genetic interaction between GBA1 deficiency and PD-causing genes, such as DJ-1, in mitochondrial dysfunction. METHODS GBA1 knockout (KO) SH-SY5Y cells were used to assess DJ-1 functions against oxidative stress in vitro. The levels of cellular reactive oxygen species were monitored with MitoSOX reagent. The expression of the PARK7 gene was analyzed using the quantitative real-time PCR (qRT-PCR). To understand the mechanism underlying DJ-1 upregulation in GBA1 KO cells, we assess ROS levels, antioxidant protein, and cell viability in GBA1 KO cells with treatment of ROS inhibitor N-acetyl-cysteine or miglustat, which is an inhibitor of glucosylceramide synthase. Dopaminergic degeneration was assessed from Gba1 L444P heterozygous mice mated with Park7 knockout mice. RESULTS We find that DJ-1 is significantly upregulated in GBA1 KO cells. Elevated levels of DJ-1 are attributed to the transcriptional expression of PARK7 mRNA, but not the inhibition of DJ-1 protein degradation. Because DJ-1 expression is highly linked to oxidative stress, we observe cellular reactive oxygen species (ROS) in GBA1 KO cells. Moreover, several antioxidant gene expressions and protein levels are increased in GBA1 KO cells. To this end, GBA1 KO cells are more susceptible to H2O2-induced cell death. Importantly, there is a significant reduction in dopaminergic neurons in the midbrain from Gba1 L444P heterozygous mice mated with Park7 knockout mice, followed by mild motor dysfunction. CONCLUSION Taken together, our results suggest that DJ-1 upregulation due to GBA1 deficiency has a protective role against oxidative stress. It may be supposed that mutations or malfunctions in the DJ-1 protein may have disadvantages in the survival of dopaminergic neurons in the brains of patients harboring GBA1 mutations.
Collapse
Affiliation(s)
- Younwoo Nam
- Department of Biology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jiyeon Na
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Haeun Park
- Department of Biology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyerynn Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang-Min Jang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Biochemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sangjune Kim
- Department of Biology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
15
|
Moors TE, Morella ML, Bertran-Cobo C, Geut H, Udayar V, Timmermans-Huisman E, Ingrassia AMT, Brevé JJP, Bol JGJM, Bonifati V, Jagasia R, van de Berg WDJ. Altered TFEB subcellular localization in nigral neurons of subjects with incidental, sporadic and GBA-related Lewy body diseases. Acta Neuropathol 2024; 147:67. [PMID: 38581586 PMCID: PMC10998821 DOI: 10.1007/s00401-024-02707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 04/08/2024]
Abstract
Transcription factor EB (TFEB) is a master regulator of genes involved in the maintenance of autophagic and lysosomal homeostasis, processes which have been implicated in the pathogenesis of GBA-related and sporadic Parkinson's disease (PD), and dementia with Lewy bodies (DLB). TFEB activation results in its translocation from the cytosol to the nucleus. Here, we investigated TFEB subcellular localization and its relation to intracellular alpha-synuclein (aSyn) accumulation in post-mortem human brain of individuals with either incidental Lewy body disease (iLBD), GBA-related PD/DLB (GBA-PD/DLB) or sporadic PD/DLB (sPD/DLB), compared to control subjects. We analyzed nigral dopaminergic neurons using high-resolution confocal and stimulated emission depletion (STED) microscopy and semi-quantitatively scored the TFEB subcellular localization patterns. We observed reduced nuclear TFEB immunoreactivity in PD/DLB patients compared to controls, both in sporadic and GBA-related cases, as well as in iLBD cases. Nuclear depletion of TFEB was more pronounced in neurons with Ser129-phosphorylated (pSer129) aSyn accumulation in all groups. Importantly, we observed previously-unidentified TFEB-immunopositive perinuclear clusters in human dopaminergic neurons, which localized at the Golgi apparatus. These TFEB clusters were more frequently observed and more severe in iLBD, sPD/DLB and GBA-PD/DLB compared to controls, particularly in pSer129 aSyn-positive neurons, but also in neurons lacking detectable aSyn accumulation. In aSyn-negative cells, cytoplasmic TFEB clusters were more frequently observed in GBA-PD/DLB and iLBD patients, and correlated with reduced GBA enzymatic activity as well as increased Braak LB stage. Altered TFEB distribution was accompanied by a reduction in overall mRNA expression levels of selected TFEB-regulated genes, indicating a possible early dysfunction of lysosomal regulation. Overall, we observed cytoplasmic TFEB retention and accumulation at the Golgi in cells without apparent pSer129 aSyn accumulation in iLBD and PD/DLB patients. This suggests potential TFEB impairment at the early stages of cellular disease and underscores TFEB as a promising therapeutic target for synucleinopathies.
Collapse
Affiliation(s)
- Tim E Moors
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Martino L Morella
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Cesc Bertran-Cobo
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Hanneke Geut
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Vinod Udayar
- Roche Pharma Research and Early Development; Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| | - Evelien Timmermans-Huisman
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Angela M T Ingrassia
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - John J P Brevé
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - John G J M Bol
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ravi Jagasia
- Roche Pharma Research and Early Development; Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| | - Wilma D J van de Berg
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Schulze MSED, Scholz D, Jnoff E, Hall A, Melin J, Sands ZA, Rodriguez E, Andre VM. Identification of ß-Glucocerebrosidase Activators for Glucosylceramide hydrolysis. ChemMedChem 2024; 19:e202300548. [PMID: 38381042 DOI: 10.1002/cmdc.202300548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Several novel chemical series were identified that modulate glucocerebrosidase (GCase). Compounds from these series are active on glucosylceramide, unlike other known GCase modulators. We obtained GCase crystal structures with two compounds that have distinct chemotypes. Positive allosteric modulators bind to a site on GCase and induce conformational changes, but also induce an equilibrium state between monomer and dimer.
Collapse
Affiliation(s)
| | - Diana Scholz
- UCB, Avenue de l'Industrie, Braine l'Alleud, 1420, Belgium
| | - Eric Jnoff
- UCB, Avenue de l'Industrie, Braine l'Alleud, 1420, Belgium
| | - Adrian Hall
- UCB, Avenue de l'Industrie, Braine l'Alleud, 1420, Belgium
| | - Jonathan Melin
- Present address: Grünenthal GmbH, 52099, Aachen, Germany
| | - Zara A Sands
- Present address: Eli Lilly, San Diego, CA92121, USA
| | | | | |
Collapse
|
17
|
Wang R, Sun H, Cao Y, Zhang Z, Chen Y, Wang X, Liu L, Wu J, Xu H, Wu D, Mu C, Hao Z, Qin S, Ren H, Han J, Fang M, Wang G. Glucosylceramide accumulation in microglia triggers STING-dependent neuroinflammation and neurodegeneration in mice. Sci Signal 2024; 17:eadk8249. [PMID: 38530880 DOI: 10.1126/scisignal.adk8249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GCase) are responsible for Gaucher disease (GD) and are considered the strongest genetic risk factor for Parkinson's disease (PD) and Lewy body dementia (LBD). GCase deficiency leads to extensive accumulation of glucosylceramides (GCs) in cells and contributes to the neuropathology of GD, PD, and LBD by triggering chronic neuroinflammation. Here, we investigated the mechanisms by which GC accumulation induces neuroinflammation. We found that GC accumulation within microglia induced by pharmacological inhibition of GCase triggered STING-dependent inflammation, which contributed to neuronal loss both in vitro and in vivo. GC accumulation in microglia induced mitochondrial DNA (mtDNA) leakage to the cytosol to trigger STING-dependent inflammation. Rapamycin, a compound that promotes lysosomal activity, improved mitochondrial function, thereby decreasing STING signaling. Furthermore, lysosomal damage caused by GC accumulation led to defects in the degradation of activated STING, further exacerbating inflammation mediated by microglia. Thus, limiting STING activity may be a strategy to suppress neuroinflammation caused by GCase deficiency.
Collapse
Affiliation(s)
- Rui Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
- Center of Translational Medicine, First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Cao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhixiong Zhang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yajing Chen
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiying Wang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200000, China
| | - Lele Liu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hao Xu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Institute of Trauma Medicine, Suzhou, Jiangsu 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junhai Han
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ming Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Guanghui Wang
- Center of Translational Medicine, First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, China
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
18
|
Gregorio I, Russo L, Torretta E, Barbacini P, Contarini G, Pacinelli G, Bizzotto D, Moriggi M, Braghetta P, Papaleo F, Gelfi C, Moro E, Cescon M. GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice. Mol Neurodegener 2024; 19:22. [PMID: 38454456 PMCID: PMC10921719 DOI: 10.1186/s13024-024-00713-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Mutations in the β-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of β-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a β-glucocerebrosidase irreversible inhibitor was used to dissect the impact of β-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of β-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which β-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for β-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of β-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS Here we show that β-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific β-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Loris Russo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Gabriella Contarini
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Department of Biomedical and Technological Sciences, University of Catania, 95125, Catania, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35131, Padua, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
19
|
Kim MJ, Kim S, Reinheckel T, Krainc D. Inhibition of cysteine protease cathepsin L increases the level and activity of lysosomal glucocerebrosidase. JCI Insight 2024; 9:e169594. [PMID: 38329128 PMCID: PMC10967467 DOI: 10.1172/jci.insight.169594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
The glucocerebrosidase (GCase) encoded by the GBA1 gene hydrolyzes glucosylceramide (GluCer) to ceramide and glucose in lysosomes. Homozygous or compound heterozygous GBA1 mutations cause the lysosomal storage disease Gaucher disease (GD) due to severe loss of GCase activity. Loss-of-function variants in the GBA1 gene are also the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Restoring lysosomal GCase activity represents an important therapeutic approach for GBA1-associated diseases. We hypothesized that increasing the stability of lysosomal GCase protein could correct deficient GCase activity in these conditions. However, it remains unknown how GCase stability is regulated in the lysosome. We found that cathepsin L, a lysosomal cysteine protease, cleaves GCase and regulates its stability. In support of these data, GCase protein was elevated in the brain of cathepsin L-KO mice. Chemical inhibition of cathepsin L increased both GCase levels and activity in fibroblasts from patients with GD. Importantly, inhibition of cathepsin L in dopaminergic neurons from a patient GBA1-PD led to increased GCase levels and activity as well as reduced phosphorylated α-synuclein. These results suggest that targeting cathepsin L-mediated GCase degradation represents a potential therapeutic strategy for GCase deficiency in PD and related disorders that exhibit decreased GCase activity.
Collapse
Affiliation(s)
- Myung Jong Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
20
|
Deng Z, He M, Hu H, Zhang W, Zhang Y, Ge Y, Ma T, Wu J, Li L, Sun M, An S, Li J, Huang Q, Gong S, Zhang J, Chen Z, Zeng Z. Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation. Autophagy 2024; 20:151-165. [PMID: 37651673 PMCID: PMC10761103 DOI: 10.1080/15548627.2023.2252265] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
ABBREVIATIONS AKI: acute kidney injury; ATP: adenosine triphosphate; BUN: blood urea nitrogen; CLP: cecal ligation and puncture; eGFR: estimated glomerular filtration rate; H&E: hematoxylin and eosin staining; LCN2/NGAL: lipocalin 2; LPS: lipopolysaccharide; LTL: lotus tetragonolobus lectin; mKeima: mitochondria-targeted Keima; mtDNA: mitochondrial DNA; PAS: periodic acid - Schiff staining; RTECs: renal tubular epithelial cells; SAKI: sepsis-induced acute kidney injury; Scr: serum creatinine; SIRT3: sirtuin 3; TFAM: transcription factor A, mitochondrial; TMRE: tetramethylrhodamine.
Collapse
Affiliation(s)
- Zhiya Deng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Man He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongbin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenqian Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Ge
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Tongtong Ma
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lulan Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Maomao Sun
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiaobing Huang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shenhai Gong
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiaxing Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Yang X, Zhang Y, Luo JX, Zhu T, Ran Z, Mu BR, Lu MH. Targeting mitophagy for neurological disorders treatment: advances in drugs and non-drug approaches. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3503-3528. [PMID: 37535076 DOI: 10.1007/s00210-023-02636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Mitochondria serve as a vital energy source for nerve cells. The mitochondrial network also acts as a defense mechanism against external stressors that can threaten the stability of the nervous system. However, excessive accumulation of damaged mitochondria can lead to neuronal death. Mitophagy is an essential pathway in the mitochondrial quality control system and can protect neurons by selectively removing damaged mitochondria. In most neurological disorders, dysfunctional mitochondria are a common feature, and drugs that target mitophagy can improve symptoms. Here, we reviewed the role of mitophagy in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, stroke, and traumatic brain injuries. We also summarized drug and non-drug approaches to promote mitophagy and described their therapeutic role in neurological disorders in order to provide valuable insight into the potential therapeutic agents available for neurological disease treatment. However, most studies on mitophagy regulation are based on preclinical research using cell and animal models, which may not accurately reflect the effects in humans. This poses a challenge to the clinical application of drugs targeting mitophagy. Additionally, these drugs may carry the risk of intolerable side effects and toxicity. Future research should focus on the development of safer and more targeted drugs for mitophagy.
Collapse
Affiliation(s)
- Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia-Xin Luo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
22
|
Rombaut A, Brautaset R, Williams PA, Tribble JR. Glial metabolic alterations during glaucoma pathogenesis. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1290465. [PMID: 38983068 PMCID: PMC11182098 DOI: 10.3389/fopht.2023.1290465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/10/2023] [Indexed: 07/11/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness. Current treatment options are limited and often only slow disease progression. Metabolic dysfunction has recently been recognized as a key early and persistent mechanism in glaucoma pathophysiology. Several intrinsic metabolic dysfunctions have been identified and treated in retinal ganglion cells to provide neuroprotection. Growing pre-clinical and clinical evidence has confirmed that metabolic alterations in glaucoma are widespread, occurring across visual system tissues, in ocular fluids, in blood/serum, and at the level of genomic and mitochondrial DNA. This suggests that metabolic dysfunction is not constrained to retinal ganglion cells and that metabolic alterations extrinsic to retinal ganglion cells may contribute to their metabolic compromise. Retinal ganglion cells are reliant on glial metabolic support under normal physiological conditions, but the implications of metabolic dysfunction in glia are underexplored. We highlight emerging evidence that has demonstrated metabolic alterations occurring within glia in glaucoma, and how this may affect neuro-glial metabolic coupling and the metabolic vulnerability of retinal ganglion cells. In other neurodegenerative diseases which share features with glaucoma, several other glial metabolic alterations have been identified, suggesting that similar mechanisms and therapeutic targets may exist in glaucoma.
Collapse
Affiliation(s)
| | | | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
LeVine SM. Examining the Role of a Functional Deficiency of Iron in Lysosomal Storage Disorders with Translational Relevance to Alzheimer's Disease. Cells 2023; 12:2641. [PMID: 37998376 PMCID: PMC10670892 DOI: 10.3390/cells12222641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The recently presented Azalea Hypothesis for Alzheimer's disease asserts that iron becomes sequestered, leading to a functional iron deficiency that contributes to neurodegeneration. Iron sequestration can occur by iron being bound to protein aggregates, such as amyloid β and tau, iron-rich structures not undergoing recycling (e.g., due to disrupted ferritinophagy and impaired mitophagy), and diminished delivery of iron from the lysosome to the cytosol. Reduced iron availability for biochemical reactions causes cells to respond to acquire additional iron, resulting in an elevation in the total iron level within affected brain regions. As the amount of unavailable iron increases, the level of available iron decreases until eventually it is unable to meet cellular demands, which leads to a functional iron deficiency. Normally, the lysosome plays an integral role in cellular iron homeostasis by facilitating both the delivery of iron to the cytosol (e.g., after endocytosis of the iron-transferrin-transferrin receptor complex) and the cellular recycling of iron. During a lysosomal storage disorder, an enzyme deficiency causes undigested substrates to accumulate, causing a sequelae of pathogenic events that may include cellular iron dyshomeostasis. Thus, a functional deficiency of iron may be a pathogenic mechanism occurring within several lysosomal storage diseases and Alzheimer's disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
24
|
Peggion C, Barazzuol L, Poggio E, Calì T, Brini M. Ca 2+ signalling: A common language for organelles crosstalk in Parkinson's disease. Cell Calcium 2023; 115:102783. [PMID: 37597300 DOI: 10.1016/j.ceca.2023.102783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by multifactorial pathogenic mechanisms. Familial PD is linked with genetic mutations in genes whose products are either associated with mitochondrial function or endo-lysosomal pathways. Of note, mitochondria are essential to sustain high energy demanding synaptic activity of neurons and alterations in mitochondrial Ca2+ signaling have been proposed as causal events for neurodegenerative process, although the mechanisms responsible for the selective loss of specific neuronal populations in the different neurodegenerative diseases is still not clear. Here, we specifically discuss the importance of a correct mitochondrial communication with the other organelles occurring at regions where their membranes become in close contact. We discuss the nature and the role of contact sites that mitochondria establish with ER, lysosomes, and peroxisomes, and how PD related proteins participate in the regulation/dysregulation of the tethering complexes. Unravelling molecular details of mitochondria tethering could contribute to identify specific therapeutic targets and develop new strategies to counteract the progression of the disease.
Collapse
Affiliation(s)
| | | | - Elena Poggio
- Department of Biology (DIBIO), University of Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences (DSB), University of Padova, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| | - Marisa Brini
- Department of Biology (DIBIO), University of Padova, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Italy.
| |
Collapse
|
25
|
Klein AD, Outeiro TF. Glucocerebrosidase mutations disrupt the lysosome and now the mitochondria. Nat Commun 2023; 14:6383. [PMID: 37821433 PMCID: PMC10567851 DOI: 10.1038/s41467-023-42107-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Affiliation(s)
- Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile.
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Natural Sciences, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK.
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| |
Collapse
|
26
|
Huh YE, Usnich T, Scherzer CR, Klein C, Chung SJ. GBA1 Variants and Parkinson's Disease: Paving the Way for Targeted Therapy. J Mov Disord 2023; 16:261-278. [PMID: 37302978 PMCID: PMC10548077 DOI: 10.14802/jmd.23023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
Glucosylceramidase beta 1 (GBA1) variants have attracted enormous attention as the most promising and important genetic candidates for precision medicine in Parkinson's disease (PD). A substantial correlation between GBA1 genotypes and PD phenotypes could inform the prediction of disease progression and promote the development of a preventive intervention for individuals at a higher risk of a worse disease prognosis. Moreover, the GBA1-regulated pathway provides new perspectives on the pathogenesis of PD, such as dysregulated sphingolipid metabolism, impaired protein quality control, and disrupted endoplasmic reticulum-Golgi trafficking. These perspectives have led to the development of novel disease-modifying therapies for PD targeting the GBA1-regulated pathway by repositioning treatment strategies for Gaucher's disease. This review summarizes the current hypotheses on a mechanistic link between GBA1 variants and PD and possible therapeutic options for modulating GBA1-regulated pathways in PD patients.
Collapse
Affiliation(s)
- Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Clemens R. Scherzer
- Advanced Center for Parkinson’s Disease Research, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Patel S, Bhatt AM, Bhansali P, Setty SRG. Pseudophosphatase STYXL1 depletion enhances glucocerebrosidase trafficking to lysosomes via ER stress. Traffic 2023; 24:254-269. [PMID: 37198709 DOI: 10.1111/tra.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of β-glucocerebrosidase (β-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated β-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the β-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.
Collapse
Affiliation(s)
- Saloni Patel
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anshul Milap Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
28
|
Sahasrabudhe SA, Terluk MR, Kartha RV. N-acetylcysteine Pharmacology and Applications in Rare Diseases-Repurposing an Old Antioxidant. Antioxidants (Basel) 2023; 12:1316. [PMID: 37507857 PMCID: PMC10376274 DOI: 10.3390/antiox12071316] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
N-acetylcysteine (NAC), a precursor of cysteine and, thereby, glutathione (GSH), acts as an antioxidant through a variety of mechanisms, including oxidant scavenging, GSH replenishment, antioxidant signaling, etc. Owing to the variety of proposed targets, NAC has a long history of use as a prescription product and in wide-ranging applications that are off-label as an over-the-counter (OTC) product. Despite its discovery in the early 1960s and its development for various indications, systematic clinical pharmacology explorations of NAC pharmacokinetics (PK), pharmacodynamic targets, drug interactions, and dose-ranging are sorely limited. Although there are anecdotal instances of NAC benefits in a variety of diseases, a comprehensive review of the use of NAC in rare diseases does not exist. In this review, we attempt to summarize the existing literature focused on NAC explorations in rare diseases targeting mitochondrial dysfunction along with the history of NAC usage, approved indications, mechanisms of action, safety, and PK characterization. Further, we introduce the research currently underway on other structural derivatives of NAC and acknowledge the continuum of efforts through pre-clinical and clinical research to facilitate further therapeutic development of NAC or its derivatives for rare diseases.
Collapse
Affiliation(s)
- Siddhee A Sahasrabudhe
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marcia R Terluk
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Menozzi E, Toffoli M, Schapira AHV. Targeting the GBA1 pathway to slow Parkinson disease: Insights into clinical aspects, pathogenic mechanisms and new therapeutic avenues. Pharmacol Ther 2023; 246:108419. [PMID: 37080432 DOI: 10.1016/j.pharmthera.2023.108419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
The GBA1 gene encodes the lysosomal enzyme glucocerebrosidase (GCase), which is involved in sphingolipid metabolism. Biallelic variants in GBA1 cause Gaucher disease (GD), a lysosomal storage disorder characterised by loss of GCase activity and aberrant intracellular accumulation of GCase substrates. Carriers of GBA1 variants have an increased risk of developing Parkinson disease (PD), with odds ratio ranging from 2.2 to 30 according to variant severity. GBA1 variants which do not cause GD in homozygosis can also increase PD risk. Patients with PD carrying GBA1 variants show a more rapidly progressive phenotype compared to non-carriers, emphasising the need for disease modifying treatments targeting the GBA1 pathway. Several mechanisms secondary to GCase dysfunction are potentially responsible for the pathological changes leading to PD. Misfolded GCase proteins induce endoplasmic reticulum stress and subsequent unfolded protein response and impair the autophagy-lysosomal pathway. This results in α-synuclein accumulation and spread, and promotes neurodegenerative changes. Preclinical evidence also shows that products of GCase activity can promote accumulation of α-synuclein, however there is no convincing evidence of substrate accumulation in GBA1-PD brains. Altered lipid homeostasis secondary to loss of GCase activity could also contribute to PD pathology. Treatments that target the GBA1 pathway could reverse these pathological processes and halt/slow the progression of PD. These range from augmentation of GCase activity via GBA1 gene therapy, restoration of normal intracellular GCase trafficking via molecular chaperones, and substrate reduction therapy. This review discusses the pathways associated with GBA1-PD and related novel GBA1-targeted interventions for PD treatment.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
30
|
Lin C, Li L, Xu Q, Xu S, Tang C. Yap1-Usp14 Axis Inhibits Neuronal Mitophagy During Neonatal Hypoxia-Ischemia Encephalopathy by Regulation of Beclin-1 Ubiquitination in Mouse. Mol Neurobiol 2023:10.1007/s12035-023-03344-5. [PMID: 37062801 DOI: 10.1007/s12035-023-03344-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) that results from perinatal cerebral hypoxia-ischemia has become one of the leading causes of acute mortality and chronic disability in infants and children. Despite that neuronal mitophagy and subsequent clearance of damaged neurons exert protective effect, the pathogenesis of HIE and effective treatment strategies for intervention of HIE remain poorly understood. Here, we report that ubiquitin-specific protease 14 (Usp14, a deubiquitinating enzyme) is closely associated with HIE progression by its negative regulation in neuronal mitophagy in mouse. The expression of Usp14 is elevated in both an oxygen-glucose deprivation (OGD) mouse neuronal cell line culture model in vitro and a HIE mouse model in vivo. Mechanistically, OGD treatment activates Hippo signaling that enhances Yap1 phosphorylation levels at Ser-127 but inhibits Yap1 protein level, which potentiates Usp14 transcription and leads to the downregulated ubiquitination at Lys-63 of Beclin-1, a key molecule in autophagy, resulting in the suppressed neuronal mitophagy, subsequent failure in the clearance of damaged neurons, and finally possible dysregulation in brain functions. Thus, our results provide with Usp14 as a novel target and treatment strategy for intervention of HIE, which may help diagnose and treat HIE in clinic.
Collapse
Affiliation(s)
- Chao Lin
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- Department of Neurosurgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Lin Li
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
31
|
Baden P, Perez MJ, Raji H, Bertoli F, Kalb S, Illescas M, Spanos F, Giuliano C, Calogero AM, Oldrati M, Hebestreit H, Cappelletti G, Brockmann K, Gasser T, Schapira AHV, Ugalde C, Deleidi M. Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism. Nat Commun 2023; 14:1930. [PMID: 37024507 PMCID: PMC10079970 DOI: 10.1038/s41467-023-37454-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Mutations in GBA1, the gene encoding the lysosomal enzyme β-glucocerebrosidase (GCase), which cause Gaucher's disease, are the most frequent genetic risk factor for Parkinson's disease (PD). Here, we employ global proteomic and single-cell genomic approaches in stable cell lines as well as induced pluripotent stem cell (iPSC)-derived neurons and midbrain organoids to dissect the mechanisms underlying GCase-related neurodegeneration. We demonstrate that GCase can be imported from the cytosol into the mitochondria via recognition of internal mitochondrial targeting sequence-like signals. In mitochondria, GCase promotes the maintenance of mitochondrial complex I (CI) integrity and function. Furthermore, GCase interacts with the mitochondrial quality control proteins HSP60 and LONP1. Disease-associated mutations impair CI stability and function and enhance the interaction with the mitochondrial quality control machinery. These findings reveal a mitochondrial role of GCase and suggest that defective CI activity and energy metabolism may drive the pathogenesis of GCase-linked neurodegeneration.
Collapse
Affiliation(s)
- Pascale Baden
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Maria Jose Perez
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Hariam Raji
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Federico Bertoli
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Stefanie Kalb
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - María Illescas
- Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, 28041, Spain
| | - Fokion Spanos
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Claudio Giuliano
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Alessandra Maria Calogero
- Department of Biosciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Marvin Oldrati
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Hannah Hebestreit
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Graziella Cappelletti
- Department of Biosciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Kathrin Brockmann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anthony H V Schapira
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, 28041, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, Spain
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Institut Imagine, INSERM UMR1163 Paris Cite' University, 24 boulevard du Montparnasse, 75015, Paris, France.
| |
Collapse
|
32
|
Chen L, Zhang Q, Meng Y, Zhao T, Mu C, Fu C, Deng C, Feng J, Du S, Liu W, Geng G, Ma K, Cheng H, Liu Q, Luo Q, Zhang J, Du Z, Cao L, Wang H, Liu Y, Lin J, Chen G, Liu L, Lam SM, Shui G, Zhu Y, Chen Q. Saturated fatty acids increase LPI to reduce FUNDC1 dimerization and stability and mitochondrial function. EMBO Rep 2023; 24:e54731. [PMID: 36847607 PMCID: PMC10074135 DOI: 10.15252/embr.202254731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Ectopic lipid deposition and mitochondrial dysfunction are common etiologies of obesity and metabolic disorders. Excessive dietary uptake of saturated fatty acids (SFAs) causes mitochondrial dysfunction and metabolic disorders, while unsaturated fatty acids (UFAs) counterbalance these detrimental effects. It remains elusive how SFAs and UFAs differentially signal toward mitochondria for mitochondrial performance. We report here that saturated dietary fatty acids such as palmitic acid (PA), but not unsaturated oleic acid (OA), increase lysophosphatidylinositol (LPI) production to impact on the stability of the mitophagy receptor FUNDC1 and on mitochondrial quality. Mechanistically, PA shifts FUNDC1 from dimer to monomer via enhanced production of LPI. Monomeric FUNDC1 shows increased acetylation at K104 due to dissociation of HDAC3 and increased interaction with Tip60. Acetylated FUNDC1 can be further ubiquitinated by MARCH5 for proteasomal degradation. Conversely, OA antagonizes PA-induced accumulation of LPI, and FUNDC1 monomerization and degradation. A fructose-, palmitate-, and cholesterol-enriched (FPC) diet also affects FUNDC1 dimerization and promotes its degradation in a non-alcoholic steatohepatitis (NASH) mouse model. We thus uncover a signaling pathway that orchestrates lipid metabolism with mitochondrial quality.
Collapse
Affiliation(s)
- Linbo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qianping Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yuanyuan Meng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Tian Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chenglong Mu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Changying Fu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Caijuan Deng
- College of Pharmacy, Frontiers Science Center for Cell ResponsesNankai UniversityTianjinChina
| | - Jianyu Feng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Siling Du
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Wei Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Guangfeng Geng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Kaili Ma
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongcheng Cheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qian Luo
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Zhanqiang Du
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Lin Cao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hui Wang
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Yong Liu
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Jianping Lin
- College of Pharmacy, Frontiers Science Center for Cell ResponsesNankai UniversityTianjinChina
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- LipidAll Technologies Company LimitedChangzhouChina
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
33
|
Winner LK, Beard H, Karageorgos L, Smith NJ, Hopwood JJ, Hemsley KM. The ovine Type II Gaucher disease model recapitulates aspects of human brain disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166658. [PMID: 36720445 DOI: 10.1016/j.bbadis.2023.166658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
Acute neuronopathic (type II) Gaucher disease (GD) is a devastating, untreatable neurological disorder resulting from mutations in the glucocerebrosidase gene (GBA1), with subsequent accumulation of glucosylceramide and glucosylsphingosine. Patients experience progressive decline in neurological function, with onset typically within the first three-to-six months of life and premature death before two years. Mice and drosophila with GD have been described, however little is known about the brain pathology observed in the naturally occurring ovine model of GD. We have characterised pathological changes in GD lamb brain and compared the histological findings to those in GD patient post-mortem tissue, to determine the validity of the sheep as a model of this disease. Five GD and five age-matched unaffected lamb brains were examined. We observed significant expansion of the endo/lysosomal system in GD lamb cingulate gyrus however TPP1 and cathepsin D levels were unchanged or reduced. H&E staining revealed neurons with shrunken, hypereosinophilic cytoplasm and hyperchromatic or pyknotic nuclei (red neurons) that were also shrunken and deeply Nissl stain positive. Amoeboid microglia were noted throughout GD brain. Spheroidal inclusions reactive for TOMM20, ubiquitin and most strikingly, p-Tau were observed in many brain regions in GD lamb brain, potentially indicating disturbed axonal trafficking. Our findings suggest that the ovine model of GD exhibits similar pathological changes to human, mouse, and drosophila type II GD brain, and represents a model suitable for evaluating therapeutic intervention, particularly in utero-targeted approaches.
Collapse
Affiliation(s)
- Leanne K Winner
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Helen Beard
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Litsa Karageorgos
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Nicholas J Smith
- Department of Neurology and Clinical Neurophysiology, Women's and Children's Health Network, North Adelaide, SA 5006, Australia; Faculty of Health Science, University of Adelaide, Australia
| | - John J Hopwood
- Faculty of Health Science, University of Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Australia
| | - Kim M Hemsley
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; Faculty of Health Science, University of Adelaide, Australia.
| |
Collapse
|
34
|
Senkevich K, Rudakou U, Gan-Or Z. Genetic mechanism vs genetic subtypes: The example of GBA. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:155-170. [PMID: 36803808 DOI: 10.1016/b978-0-323-85555-6.00016-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Genetic variants in GBA, encoding the lysosomal enzyme glucocerebrosidase (GCase), are common risk factors for Parkinson's disease (PD). Genotype-phenotype studies have demonstrated that different types of GBA variants have differential effects on the phenotype. Variants could be classified as mild or severe depending on the type of Gaucher disease they cause in the biallelic state. It was shown that severe GBA variants, as compared to mild variants, are associated with higher risk of PD, earlier age at onset, and faster progression of motor and nonmotor symptoms. The observed difference in phenotype might be caused by a diversity of cellular mechanisms related to the particular variants. The lysosomal function of GCase is thought to play a significant role in the development of GBA-associated PD, and other mechanisms such as endoplasmic reticulum retention, mitochondrial dysfunction, and neuroinflammation have also been suggested. Moreover, genetic modifiers such as LRRK2, TMEM175, SNCA, and CTSB can either affect GCase activity or modulate risk and age at onset of GBA-associated PD. To achieve ideal outcomes with precision medicine, therapies will have to be tailored to individuals with specific variants, potentially in combination with known modifiers.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
35
|
Kim S, Pajarillo E, Nyarko-Danquah I, Aschner M, Lee E. Role of Astrocytes in Parkinson's Disease Associated with Genetic Mutations and Neurotoxicants. Cells 2023; 12:622. [PMID: 36831289 PMCID: PMC9953822 DOI: 10.3390/cells12040622] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and the aggregation of Lewy bodies in the basal ganglia, resulting in movement impairment referred to as parkinsonism. However, the etiology of PD is not well known, with genetic factors accounting only for 10-15% of all PD cases. The pathogenetic mechanism of PD is not completely understood, although several mechanisms, such as oxidative stress and inflammation, have been suggested. Understanding the mechanisms of PD pathogenesis is critical for developing highly efficacious therapeutics. In the PD brain, dopaminergic neurons degenerate mainly in the basal ganglia, but recently emerging evidence has shown that astrocytes also significantly contribute to dopaminergic neuronal death. In this review, we discuss the role of astrocytes in PD pathogenesis due to mutations in α-synuclein (PARK1), DJ-1 (PARK7), parkin (PARK2), leucine-rich repeat kinase 2 (LRRK2, PARK8), and PTEN-induced kinase 1 (PINK1, PARK6). We also discuss PD experimental models using neurotoxins, such as paraquat, rotenone, 6-hydroxydopamine, and MPTP/MPP+. A more precise and comprehensive understanding of astrocytes' modulatory roles in dopaminergic neurodegeneration in PD will help develop novel strategies for effective PD therapeutics.
Collapse
Affiliation(s)
- Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
36
|
Smith AR, Richards DM, Lunnon K, Schapira AHV, Migdalska-Richards A. DNA Methylation of α-Synuclein Intron 1 Is Significantly Decreased in the Frontal Cortex of Parkinson's Individuals with GBA1 Mutations. Int J Mol Sci 2023; 24:ijms24032687. [PMID: 36769009 PMCID: PMC9917152 DOI: 10.3390/ijms24032687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is a common movement disorder, estimated to affect 4% of individuals by the age of 80. Mutations in the glucocerebrosidase 1 (GBA1) gene represent the most common genetic risk factor for PD, with at least 7-10% of non-Ashkenazi PD individuals carrying a GBA1 mutation (PD-GBA1). Although similar to idiopathic PD, the clinical presentation of PD-GBA1 includes a slightly younger age of onset, a higher incidence of neuropsychiatric symptoms, and a tendency to earlier, more prevalent and more significant cognitive impairment. The pathophysiological mechanisms underlying PD-GBA1 are incompletely understood, but, as in idiopathic PD, α-synuclein accumulation is thought to play a key role. It has been hypothesized that this overexpression of α-synuclein is caused by epigenetic modifications. In this paper, we analyze DNA methylation levels at 17 CpG sites located within intron 1 and the promoter of the α-synuclein (SNCA) gene in three different brain regions (frontal cortex, putamen and substantia nigra) in idiopathic PD, PD-GBA1 and elderly non-PD controls. In all three brain regions we find a tendency towards a decrease in DNA methylation within an eight CpG region of intron 1 in both idiopathic PD and PD-GBA1. The trend towards a reduction in DNA methylation was more pronounced in PD-GBA1, with a significant decrease in the frontal cortex. This suggests that PD-GBA1 and idiopathic PD have distinct epigenetic profiles, and highlights the importance of separating idiopathic PD and PD-GBA1 cases. This work also provides initial evidence that different genetic subtypes might exist within PD, each characterized by its own pathological mechanism. This may have important implications for how PD is diagnosed and treated.
Collapse
Affiliation(s)
- Adam R. Smith
- Faculty of Health and Life Sciences, University of Exeter, Exeter EX2 5DW, UK
| | - David M. Richards
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QD, UK
| | - Katie Lunnon
- Faculty of Health and Life Sciences, University of Exeter, Exeter EX2 5DW, UK
| | - Anthony H. V. Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London NW3 2PF, UK
| | - Anna Migdalska-Richards
- Faculty of Health and Life Sciences, University of Exeter, Exeter EX2 5DW, UK
- Correspondence:
| |
Collapse
|
37
|
GBA1 Gene Mutations in α-Synucleinopathies-Molecular Mechanisms Underlying Pathology and Their Clinical Significance. Int J Mol Sci 2023; 24:ijms24032044. [PMID: 36768367 PMCID: PMC9917178 DOI: 10.3390/ijms24032044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
α-Synucleinopathies comprise a group of neurodegenerative diseases characterized by altered accumulation of a protein called α-synuclein inside neurons and glial cells. This aggregation leads to the formation of intraneuronal inclusions, Lewy bodies, that constitute the hallmark of α-synuclein pathology. The most prevalent α-synucleinopathies are Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). To date, only symptomatic treatment is available for these disorders, hence new approaches to their therapy are needed. It has been observed that GBA1 mutations are one of the most impactful risk factors for developing α-synucleinopathies such as PD and DLB. Mutations in the GBA1 gene, which encodes a lysosomal hydrolase β-glucocerebrosidase (GCase), cause a reduction in GCase activity and impaired α-synuclein metabolism. The most abundant GBA1 gene mutations are N370S or N409S, L444P/L483P and E326K/E365K. The mechanisms by which GCase impacts α-synuclein aggregation are poorly understood and need to be further investigated. Here, we discuss some of the potential interactions between α-synuclein and GCase and show how GBA1 mutations may impact the course of the most prevalent α-synucleinopathies.
Collapse
|
38
|
Tufi R, Clark EH, Hoshikawa T, Tsagkaraki C, Stanley J, Takeda K, Staddon JM, Briston T. High-content phenotypic screen to identify small molecule enhancers of Parkin-dependent ubiquitination and mitophagy. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:73-87. [PMID: 36608804 DOI: 10.1016/j.slasd.2022.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Mitochondrial dysfunction and aberrant mitochondrial homeostasis are key aspects of Parkinson's disease (PD) pathophysiology. Mutations in PINK1 and Parkin proteins lead to autosomal recessive PD, suggesting that defective mitochondrial clearance via mitophagy is key in PD etiology. Accelerating the identification and/or removal of dysfunctional mitochondria could therefore provide a disease-modifying approach to treatment. To that end, we performed a high-content phenotypic screen (HCS) of ∼125,000 small molecules to identify compounds that positively modulate mitochondrial accumulation of the PINK1-Parkin-dependent mitophagy initiation marker p-Ser65-Ub in Parkin haploinsufficiency (Parkin +/R275W) human fibroblasts. Following confirmatory counter-screening and orthogonal assays, we selected compounds of interest that enhance mitophagy-related biochemical and functional endpoints in patient-derived fibroblasts. Identification of inhibitors of the ubiquitin-specific peptidase and negative regulator of mitophagy USP30 within our hits further validated our approach. The compounds identified in this work provide a novel starting point for further investigation and optimization.
Collapse
Affiliation(s)
- Roberta Tufi
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Emily H Clark
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Tamaki Hoshikawa
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Christiana Tsagkaraki
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Jack Stanley
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Kunitoshi Takeda
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - James M Staddon
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Thomas Briston
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom.
| |
Collapse
|
39
|
The Consequences of GBA Deficiency in the Autophagy-Lysosome System in Parkinson's Disease Associated with GBA. Cells 2023; 12:cells12010191. [PMID: 36611984 PMCID: PMC9818455 DOI: 10.3390/cells12010191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
GBA gene variants were the first genetic risk factor for Parkinson's disease. GBA encodes the lysosomal enzyme glucocerebrosidase (GBA), which is involved in sphingolipid metabolism. GBA exhibits a complex physiological function that includes not only the degradation of its substrate glucosylceramide but also the metabolism of other sphingolipids and additional lipids such as cholesterol, particularly when glucocerebrosidase activity is deficient. In the context of Parkinson's disease associated with GBA, the loss of GBA activity has been associated with the accumulation of α-synuclein species. In recent years, several hypotheses have proposed alternative and complementary pathological mechanisms to explain why lysosomal enzyme mutations lead to α-synuclein accumulation and become important risk factors in Parkinson's disease etiology. Classically, loss of GBA activity has been linked to a dysfunctional autophagy-lysosome system and to a subsequent decrease in autophagy-dependent α-synuclein turnover; however, several other pathological mechanisms underlying GBA-associated parkinsonism have been proposed. This review summarizes and discusses the different hypotheses with a special focus on autophagy-dependent mechanisms, as well as autophagy-independent mechanisms, where the role of other players such as sphingolipids, cholesterol and other GBA-related proteins make important contributions to Parkinson's disease pathogenesis.
Collapse
|
40
|
Mucopolysaccharidoses: Cellular Consequences of Glycosaminoglycans Accumulation and Potential Targets. Int J Mol Sci 2022; 24:ijms24010477. [PMID: 36613919 PMCID: PMC9820209 DOI: 10.3390/ijms24010477] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) constitute a heterogeneous group of lysosomal storage disorders characterized by the lysosomal accumulation of glycosaminoglycans (GAGs). Although lysosomal dysfunction is mainly affected, several cellular organelles such as mitochondria, endoplasmic reticulum, Golgi apparatus, and their related process are also impaired, leading to the activation of pathophysiological cascades. While supplying missing enzymes is the mainstream for the treatment of MPS, including enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), or gene therapy (GT), the use of modulators available to restore affected organelles for recovering cell homeostasis may be a simultaneous approach. This review summarizes the current knowledge about the cellular consequences of the lysosomal GAGs accumulation and discusses the use of potential modulators that can reestablish normal cell function beyond ERT-, HSCT-, or GT-based alternatives.
Collapse
|
41
|
Genovese I, Fornetti E, Ruocco G. Mitochondria inter-organelle relationships in cancer protein aggregation. Front Cell Dev Biol 2022; 10:1062993. [PMID: 36601538 PMCID: PMC9806238 DOI: 10.3389/fcell.2022.1062993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are physically associated with other organelles, such as ER and lysosomes, forming a complex network that is crucial for cell homeostasis regulation. Inter-organelle relationships are finely regulated by both tether systems, which maintain physical proximity, and by signaling cues that induce the exchange of molecular information to regulate metabolism, Ca2+ homeostasis, redox state, nutrient availability, and proteostasis. The coordinated action of the organelles is engaged in the cellular integrated stress response. In any case, pathological conditions alter functional communication and efficient rescue pathway activation, leading to cell distress exacerbation and eventually cell death. Among these detrimental signals, misfolded protein accumulation and aggregation cause major damage to the cells, since defects in protein clearance systems worsen cell toxicity. A cause for protein aggregation is often a defective mitochondrial redox balance, and the ER freshly translated misfolded proteins and/or a deficient lysosome-mediated clearance system. All these features aggravate mitochondrial damage and enhance proteotoxic stress. This review aims to gather the current knowledge about the complex liaison between mitochondria, ER, and lysosomes in facing proteotoxic stress and protein aggregation, highlighting both causes and consequences. Particularly, specific focus will be pointed to cancer, a pathology in which inter-organelle relations in protein aggregation have been poorly investigated.
Collapse
Affiliation(s)
- Ilaria Genovese
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,*Correspondence: Ilaria Genovese,
| | - Ersilia Fornetti
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
Sarkar A, Kumar L, Hameed R, Nazir A. Multiple checkpoints of protein clearance machinery are modulated by a common microRNA, miR-4813-3p, through its putative target genes: Studies employing transgenic C. elegans model. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119342. [PMID: 35998789 DOI: 10.1016/j.bbamcr.2022.119342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
In order to maintain cellular homeostasis and a healthy state, aberrant and aggregated proteins are to be recognized and rapidly cleared from cells. Parkinson's disease, known to be associated with multiple factors; presents with impaired clearance of aggregated alpha synuclein as a key factor. We endeavored to study microRNA molecules with potential role on regulating multiple checkpoints of protein quality control within cells. Carrying out global miRNA profiling in a transgenic C. elegans model that expresses human alpha synuclein, we identified novel miRNA, miR-4813-3p, as a significantly downregulated molecule. Further studying its putative downstream target genes, we were able to mechanistically characterize six genes gbf-1, vha-5, cup-5, cpd-2, acs-1 and C27A12.7, which relate to endpoints associated with alpha synuclein expression, oxidative stress, locomotory behavior, autophagy and apoptotic pathways. Our study reveals the novel role of miR-4813-3p and provides potential functional characterization of its putative target genes, in regulating the various pathways associated with PQC network. miR-4813-3p modulates ERUPR, MTUPR, autophagosome-lysosomal-pathway and the ubiquitin-proteasomal-system, making this molecule an interesting target for further studies towards therapeutically addressing multifactorial aspect of Parkinson's disease.
Collapse
Affiliation(s)
- Arunabh Sarkar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Lalit Kumar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
43
|
Yanagaki M, Shirai Y, Shimada Y, Hamura R, Taniai T, Horiuchi T, Takada N, Haruki K, Furukawa K, Uwagawa T, Kobayashi H, Ikegami T. Inhibition of lysosomal acid β-glucosidase induces cell apoptosis via impairing mitochondrial clearance in pancreatic cancer. Carcinogenesis 2022; 43:826-837. [PMID: 35781559 DOI: 10.1093/carcin/bgac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/12/2022] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipid metabolism plays an important role in the formation of cellular membranes and is associated with malignant potential and chemosensitivity of cancer cells. Sphingolipid degradation depends on multiple lysosomal glucosidases. We focused on acid β-glucosidase (GBA), a lysosomal enzyme the deficiency of which is related to mitochondrial dysfunction. We analyzed the function of GBA in pancreatic ductal adenocarcinoma (PDAC). Human PDAC cell lines (PANC-1, BxPC-3 and AsPC-1) were examined under conditions of GBA knockdown via the short interfering RNA (siRNA) method. We assessed the morphological changes, GBA enzyme activity, GBA protein expression, cell viability, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) and mitophagy flux of PDAC cells. The GBA protein level and enzyme activity differed among cell lines. GBA knockdown suppressed cell proliferation and induced apoptosis, especially in PANC-1 and BxPC-3 cells, with low GBA enzyme activity. GBA knockdown also decreased the MMP and impaired mitochondrial clearance. This impaired mitochondrial clearance further induced dysfunctional mitochondria accumulation and ROS generation in PDAC cells, inducing apoptosis. The antiproliferative effects of the combination of GBA suppression and gemcitabine were higher than those of gemcitabine alone. These results showed that GBA suppression exerts a significant antitumor effect and may have therapeutic potential in the clinical treatment of PDAC.
Collapse
Affiliation(s)
- Mitsuru Yanagaki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryoga Hamura
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Taniai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Takada
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Vaughen JP, Theisen E, Rivas-Serna IM, Berger AB, Kalakuntla P, Anreiter I, Mazurak VC, Rodriguez TP, Mast JD, Hartl T, Perlstein EO, Reimer RJ, Clandinin MT, Clandinin TR. Glial control of sphingolipid levels sculpts diurnal remodeling in a circadian circuit. Neuron 2022; 110:3186-3205.e7. [PMID: 35961319 PMCID: PMC10868424 DOI: 10.1016/j.neuron.2022.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
Structural plasticity in the brain often necessitates dramatic remodeling of neuronal processes, with attendant reorganization of the cytoskeleton and membranes. Although cytoskeletal restructuring has been studied extensively, how lipids might orchestrate structural plasticity remains unclear. We show that specific glial cells in Drosophila produce glucocerebrosidase (GBA) to locally catabolize sphingolipids. Sphingolipid accumulation drives lysosomal dysfunction, causing gba1b mutants to harbor protein aggregates that cycle across circadian time and are regulated by neural activity, the circadian clock, and sleep. Although the vast majority of membrane lipids are stable across the day, a specific subset that is highly enriched in sphingolipids cycles daily in a gba1b-dependent fashion. Remarkably, both sphingolipid biosynthesis and degradation are required for the diurnal remodeling of circadian clock neurites, which grow and shrink across the day. Thus, dynamic sphingolipid regulation by glia enables diurnal circuit remodeling and proper circadian behavior.
Collapse
Affiliation(s)
- John P Vaughen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Emma Theisen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Irma Magaly Rivas-Serna
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew B Berger
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Prateek Kalakuntla
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Ina Anreiter
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Vera C Mazurak
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Joshua D Mast
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Tom Hartl
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | | | - Richard J Reimer
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - M Thomas Clandinin
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Secondary Mitochondrial Dysfunction as a Cause of Neurodegenerative Dysfunction in Lysosomal Storage Diseases and an Overview of Potential Therapies. Int J Mol Sci 2022; 23:ijms231810573. [PMID: 36142486 PMCID: PMC9503973 DOI: 10.3390/ijms231810573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial dysfunction has been recognised a major contributory factor to the pathophysiology of a number of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs is as yet uncertain, but appears to be triggered by a number of different factors, although oxidative stress and impaired mitophagy appear to be common inhibitory mechanisms shared amongst this group of disorders, including Gaucher’s disease, Niemann–Pick disease, type C, and mucopolysaccharidosis. Many LSDs resulting from defects in lysosomal hydrolase activity show neurodegeneration, which remains challenging to treat. Currently available curative therapies are not sufficient to meet patients’ needs. In view of the documented evidence of mitochondrial dysfunction in the neurodegeneration of LSDs, along with the reciprocal interaction between the mitochondrion and the lysosome, novel therapeutic strategies that target the impairment in both of these organelles could be considered in the clinical management of the long-term neurodegenerative complications of these diseases. The purpose of this review is to outline the putative mechanisms that may be responsible for the reported mitochondrial dysfunction in LSDs and to discuss the new potential therapeutic developments.
Collapse
|
46
|
Lu G, Wang Y, Shi Y, Zhang Z, Huang C, He W, Wang C, Shen H. Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm (Beijing) 2022; 3:e150. [PMID: 35845350 PMCID: PMC9271889 DOI: 10.1002/mco2.150] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionally conserved catabolic process in which cytosolic contents, such as aggregated proteins, dysfunctional organelle, or invading pathogens, are sequestered by the double-membrane structure termed autophagosome and delivered to lysosome for degradation. Over the past two decades, autophagy has been extensively studied, from the molecular mechanisms, biological functions, implications in various human diseases, to development of autophagy-related therapeutics. This review will focus on the latest development of autophagy research, covering molecular mechanisms in control of autophagosome biogenesis and autophagosome-lysosome fusion, and the upstream regulatory pathways including the AMPK and MTORC1 pathways. We will also provide a systematic discussion on the implication of autophagy in various human diseases, including cancer, neurodegenerative disorders (Alzheimer disease, Parkinson disease, Huntington's disease, and Amyotrophic lateral sclerosis), metabolic diseases (obesity and diabetes), viral infection especially SARS-Cov-2 and COVID-19, cardiovascular diseases (cardiac ischemia/reperfusion and cardiomyopathy), and aging. Finally, we will also summarize the development of pharmacological agents that have therapeutic potential for clinical applications via targeting the autophagy pathway. It is believed that decades of hard work on autophagy research is eventually to bring real and tangible benefits for improvement of human health and control of human diseases.
Collapse
Affiliation(s)
- Guang Lu
- Department of Physiology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yin Shi
- Department of BiochemistryZhejiang University School of MedicineHangzhouChina
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn ResearchSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of PathophysiologyNingbo University School of MedicineNingboZhejiangChina
| | - Han‐Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
47
|
Vieira SRL, Schapira AHV. Glucocerebrosidase mutations and Parkinson disease. J Neural Transm (Vienna) 2022; 129:1105-1117. [PMID: 35932311 PMCID: PMC9463283 DOI: 10.1007/s00702-022-02531-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
The discovery of glucocerebrosidase (GBA1) mutations as the greatest numerical genetic risk factor for the development of Parkinson disease (PD) resulted in a paradigm shift within the research landscape. Efforts to elucidate the mechanisms behind GBA1-associated PD have highlighted shared pathways in idiopathic PD including the loss and gain-of-function hypotheses, endoplasmic reticulum stress, lipid metabolism, neuroinflammation, mitochondrial dysfunction and altered autophagy-lysosomal pathway responsible for degradation of aggregated and misfolded a-synuclein. GBA1-associated PD exhibits subtle differences in phenotype and disease progression compared to idiopathic counterparts notably an earlier age of onset, faster motor decline and greater frequency of non-motor symptoms (which also constitute a significant aspect of the prodromal phase of the disease). GBA1-targeted therapies have been developed and are being investigated in clinical trials. The most notable are Ambroxol, a small molecule chaperone, and Venglustat, a blood-brain-barrier-penetrant substrate reduction therapy agent. It is imperative that further studies clarify the aetiology of GBA1-associated PD, enabling the development of a greater abundance of targeted therapies in this new era of precision medicine.
Collapse
Affiliation(s)
- Sophia R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Rowland Hill St., London, NW3 2PF, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Rowland Hill St., London, NW3 2PF, UK.
| |
Collapse
|
48
|
Sahyadri M, Nadiga APR, Mehdi S, Mruthunjaya K, Nayak PG, Parihar VK, Manjula SN. Mitochondria-lysosome crosstalk in GBA1-associated Parkinson's disease. 3 Biotech 2022; 12:230. [PMID: 35992895 PMCID: PMC9388709 DOI: 10.1007/s13205-022-03261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022] Open
Abstract
Organelle crosstalk is significant in regulating their respective functions and subsequent cell fate. Mitochondria and lysosomes are amongst the essential organelles in maintaining cellular homeostasis. Mitochondria-lysosome connections, which may develop dynamically in the human neurons, have been identified as sites of bidirectional communication. Aberrancies are often associated with neurodegenerative disorders like Parkinson's disease (PD), suggesting the physical and functional link between these two organelles. PD is often linked with genetic mutations of several mutations discovered in the familial forms of the disease; some are considered risk factors. Many of these genes are either associated with mitochondrial function or belong to endo-lysosomal pathways. The recent investigations have indicated that neurons with mutant glucosylceramidase beta (GBA1) exhibit extended mitochondria-lysosome connections in individuals with PD. This may be due to impaired control of the untethering protein, which aids in the hydrolysis of Rab7 GTP required for contact untethering. A GCase modulator may be used to augment the reduced GBA1 lysosomal enzyme activity in the neurons of PD patients. This review focuses on how GBA1 mutation in PD is interlinked with mitochondria-lysosome (ML) crosstalk, exploring the pathways governing these interactions and mechanistically comprehending the mitochondrial and lysosomal miscommunication in the pathophysiology of PD. This review is based on the limited literature available on the topic and hence may be subject to bias in its views. Our estimates may be conservative and limited due to the lack of studies under the said discipline due to its inherent complex nature. The current association of GBA1 to PD pathogenesis is based on the limited scope of study and further research is necessary to explore the risk factors further and identify the relationship with more detail.
Collapse
Affiliation(s)
- M. Sahyadri
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - Abhishek P. R. Nadiga
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - K. Mruthunjaya
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| | - Vipan K. Parihar
- Department of Pharmacology and Toxicology, NIPER-Hajipur, Bihar, 844102 India
| | - S. N. Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| |
Collapse
|
49
|
Zou Y, Pei J, Wang Y, Chen Q, Sun M, Kang L, Zhang X, Zhang L, Gao X, Lin Z. The Deficiency of SCARB2/LIMP-2 Impairs Metabolism via Disrupted mTORC1-Dependent Mitochondrial OXPHOS. Int J Mol Sci 2022; 23:ijms23158634. [PMID: 35955761 PMCID: PMC9368982 DOI: 10.3390/ijms23158634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
Deficiency in scavenger receptor class B, member 2 (SCARB2) is related to both Gaucher disease (GD) and Parkinson’s disease (PD), which are both neurodegenerative-related diseases without cure. Although both diseases lead to weight loss, which affects the quality of life and the progress of diseases, the underlying molecular mechanism is still unclear. In this study, we found that Scarb2−/− mice showed significantly reduced lipid storage in white fat tissues (WAT) compared to WT mice on a regular chow diet. However, the phenotype is independent of heat production, activity, food intake or energy absorption. Furthermore, adipocyte differentiation and cholesterol homeostasis were unaffected. We found that the impaired lipid accumulation of Adiponectin-cre; Scarb2fl/fl mice was due to the imbalance between glycolysis and oxidative phosphorylation (OXPHOS). Mechanistically, the mechanistic target of rapamycin complex 1 (mTORC1)/ eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) pathway was down-regulated in Scarb2 deficient adipocytes, leading to impaired mitochondrial respiration and enhanced glycolysis. Altogether, we reveal the role of SCARB2 in metabolism regulation besides the nervous system, which provides a theoretical basis for weight loss treatment of patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yujie Zou
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Jingwen Pei
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Yushu Wang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Qin Chen
- Department of Oral Surgery, Shanghai Jiao Tong University, 639 Zhizaoju Road, Huangpu District, Shanghai 200240, China;
| | - Minli Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Lulu Kang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Xuyuan Zhang
- The Center of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.Z.); (L.Z.)
| | - Liguo Zhang
- The Center of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.Z.); (L.Z.)
| | - Xiang Gao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
- Correspondence: (X.G.); (Z.L.)
| | - Zhaoyu Lin
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
- Correspondence: (X.G.); (Z.L.)
| |
Collapse
|
50
|
Arévalo NB, Lamaizon CM, Cavieres VA, Burgos PV, Álvarez AR, Yañez MJ, Zanlungo S. Neuronopathic Gaucher disease: Beyond lysosomal dysfunction. Front Mol Neurosci 2022; 15:934820. [PMID: 35992201 PMCID: PMC9381931 DOI: 10.3389/fnmol.2022.934820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Gaucher disease (GD) is an inherited disorder caused by recessive mutations in the GBA1 gene that encodes the lysosomal enzyme β-glucocerebrosidase (β-GC). β-GC hydrolyzes glucosylceramide (GluCer) into glucose and ceramide in the lysosome, and the loss of its activity leads to GluCer accumulation in different tissues. In severe cases, enzymatic deficiency triggers inflammation, organomegaly, bone disease, and neurodegeneration. Neuronopathic Gaucher disease (nGD) encompasses two different forms of the disease, characterized by chronic or acute damage to the central nervous system (CNS). The cellular and molecular studies that uncover the pathological mechanisms of nGD mainly focus on lysosomal dysfunction since the lysosome is the key organelle affected in GD. However, new studies show alterations in other organelles that contribute to nGD pathology. For instance, abnormal accumulation of GluCer in lysosomes due to the loss of β-GC activity leads to excessive calcium release from the endoplasmic reticulum (ER), activating the ER-associated degradation pathway and the unfolded protein response. Recent evidence indicates mitophagy is altered in nGD, resulting in the accumulation of dysfunctional mitochondria, a critical factor in disease progression. Additionally, nGD patients present alterations in mitochondrial morphology, membrane potential, ATP production, and increased reactive oxygen species (ROS) levels. Little is known about potential dysfunction in other organelles of the secretory pathway, such as the Golgi apparatus and exosomes. This review focuses on collecting evidence regarding organelle dysfunction beyond lysosomes in nGD. We briefly describe cellular and animal models and signaling pathways relevant to uncovering the pathological mechanisms and new therapeutic targets in GD.
Collapse
Affiliation(s)
- Nohela B. Arévalo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica, Santiago, Chile
| | - Cristian M. Lamaizon
- Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica, Santiago, Chile
| | - Viviana A. Cavieres
- Facultad de Medicina y Ciencia, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica, Santiago, Chile
| | - Patricia V. Burgos
- Facultad de Medicina y Ciencia, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Alejandra R. Álvarez
- Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica, Santiago, Chile
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica, Santiago, Chile
| | - María J. Yañez
- Faculty of Medicine and Science, School of Medical Technology, Universidad San Sebastian, Concepción, Chile
- *Correspondence: María J. Yañez
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Silvana Zanlungo
| |
Collapse
|