1
|
Sun Q, Cui X, Yin D, Li J, Li J, Du L. Molecular mechanisms of UCP1-independent thermogenesis: the role of futile cycles in energy dissipation. J Physiol Biochem 2025:10.1007/s13105-025-01090-x. [PMID: 40380026 DOI: 10.1007/s13105-025-01090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 05/01/2025] [Indexed: 05/19/2025]
Abstract
Adipose tissue thermogenesis has emerged as a prominent research focus for the treatment of metabolic diseases, particularly through mitochondrial uncoupling, which oxidizes nutrients to produce heat rather than synthesizing ATP. Uncoupling protein 1 (UCP1) has garnered significant attention as a core protein mediating non-shivering thermogenesis(NST). However, recent studies indicate that energy dissipation can also occur via UCP1-independent thermogenesis, partially driven by futile metabolic cycles. These cycles involve ATP depletion coupled with reversible energy reactions, resulting in futile energy expenditure. Unlike classical UCP1-mediated thermogenesis, futile cycling is not confined to brown and beige adipose tissue, suggesting a broader range of therapeutic targets. These findings open new avenues for targeting these pathways to enhance metabolic health. This review explores the characteristics and distinctions of the primary metabolic organs (adipose tissue, liver, and skeletal muscle) involved in the futile cycles of thermogenesis. It further elaborates on the cellular and molecular mechanisms underlying calcium, creatine, and lipid cycling, emphasizing their strengths, limitations, and roles beyond thermogenesis.
Collapse
Affiliation(s)
- Quanhao Sun
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Xinyue Cui
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Dong Yin
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Juan Li
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Jiarui Li
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Likun Du
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
2
|
Chu Y, Yang S, Chen X. Fibroblast growth factor receptor signaling in metabolic dysfunction-associated fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2025; 269:108844. [PMID: 40113178 DOI: 10.1016/j.pharmthera.2025.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as a significant hepatic manifestation of metabolic syndrome, with its prevalence increasing globally alongside the epidemics of obesity and diabetes. MAFLD represents a continuum of liver damage, spanning from uncomplicated steatosis to metabolic dysfunction-associated steatohepatitis (MASH). This condition can advance to more severe outcomes, including fibrosis and cirrhosis. Fibroblast growth factor receptors (FGFRs) are a family of four receptor tyrosine kinases (FGFR1-4) that interact with both paracrine and endocrine fibroblast growth factors (FGFs). This interaction activates the phosphorylation of tyrosine kinase residues, thereby triggering downstream signaling pathways, including RAS-MAPK, JAK-STAT, PI3K-AKT, and PLCγ. In the context of MAFLD, paracrine FGF-FGFR signaling is predominantly biased toward the development of liver fibrosis and carcinogenesis. In contrast, endocrine FGF-FGFR signaling is primarily biased toward regulating the metabolism of bile acids, carbohydrates, lipids, and phosphate, as well as maintaining the overall balance of energy metabolism in the body. The interplay between these biased signaling pathways significantly influences the progression of MAFLD. This review explores the critical functions of FGFR signaling in MAFLD from three perspectives: first, it examines the primary roles of FGFRs relative to their structure; second, it summarizes FGFR signaling in hepatic lipid metabolism, elucidating mechanisms underlying the occurrence and progression of MAFLD; finally, it highlights recent advancements in drug development aimed at targeting FGFR signaling for the treatment of MAFLD and its associated diseases.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Su Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Wei G, Shen FJ, Liu JL, Zhao JH, Xie RR, Lu J, Zhang CY, Wang Y, Shi TT, Yang FY, Chen SQ, Huang YJ, Yang JK. Resinacein S, a novel triterpenoid from functional mushroom Ganoderma resinaceum, curbs obesity by regulating thermogenesis and energy metabolism. J Food Sci 2025; 90:e70161. [PMID: 40243376 DOI: 10.1111/1750-3841.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/12/2025] [Accepted: 03/07/2025] [Indexed: 04/18/2025]
Abstract
Ganoderma mushrooms are popularly used as dietary supplements to promote health around the world. However, their potential applications for the prevention and treatment of obesity needs to be further investigated. In this study, we isolated a novel triterpenoid from Ganoderma resinaceum, Resinacein S (Res S), and determined its absolute configuration. We reported that Res S treatment significantly inhibited the high-fat HF diet-induced body weight gain though increased thermogenesis and energy metabolism. Specifically, treatment with Res S promoted brown adipose tissue activation and browning of inguinal white adipose tissue, improving whole-body glucose and lipid homeostasis. Mechanistically, Res S treatment induced the expression of thermogenic genes and related protein, for example, uncoupling protein 1 and mitochondrial biogenesis in a cell-autonomous manner by activating the AMPK-PGC1α signaling pathway. These findings identify Res S as a potential therapeutic alternative for obesity in the setting of its increasingly high prevalence. HIGHLIGHTS: Resinacein S (Res S) exhibited potent anti-obesity effects in high-fat diet-fed mice; Res S treatment significantly promoted brown adipose tissue activation and browning of inguinal white adipose tissue; Res S treatment stimulated UCP1 expression and enhanced mitochondrial function; Res S induced adipocyte thermogenic activity through activating the AMPK-PGC1α axis.
Collapse
Affiliation(s)
- Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Feng-Jie Shen
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jun-Li Liu
- Henan Key Laboratory of Neural Regeneration, Henan International Joint Laboratory of Neurorestoratology for Senile Dementia, Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Jian-Hua Zhao
- Henan Key Laboratory of Neural Regeneration, Henan International Joint Laboratory of Neurorestoratology for Senile Dementia, Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Rong-Rong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Lu
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chen-Yang Zhang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ting-Ting Shi
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Fang-Yuan Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shu-Qin Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yan-Jie Huang
- College of Life Science, Tarim University, Alar, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Slattery JD, Rambousek JR, Tsui E, Honeycutt MK, Goldberg M, Graham JL, Wietecha TA, Wolden-Hanson T, Williams AL, O’Brien KD, Havel PJ, Blevins JE. Effects of systemic oxytocin and beta-3 receptor agonist (CL 316243) treatment on body weight and adiposity in male diet-induced obese rats. Front Endocrinol (Lausanne) 2025; 16:1503096. [PMID: 40104132 PMCID: PMC11913664 DOI: 10.3389/fendo.2025.1503096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
Previous studies have implicated hindbrain oxytocin (OT) receptors in the control of food intake and brown adipose tissue (BAT) thermogenesis. We recently demonstrated that hindbrain [fourth ventricle (4V)] administration of oxytocin (OT) could be used as an adjunct to drugs that directly target beta-3 adrenergic receptors (β3-AR) to elicit weight loss in diet-induced obese (DIO) rodents. What remains unclear is whether systemic OT can be used as an adjunct with the β3-AR agonist, CL 316243, to increase BAT thermogenesis and elicit weight loss in DIO rats. We hypothesized that systemic OT and β3-AR agonist (CL 316243) treatment would produce an additive effect to reduce body weight and adiposity in DIO rats by decreasing food intake and stimulating BAT thermogenesis. To test this hypothesis, we determined the effects of systemic (subcutaneous) infusions of OT (50 nmol/day) or vehicle (VEH) when combined with daily systemic (intraperitoneal) injections of CL 316243 (0.5 mg/kg) or VEH on body weight, adiposity, food intake and brown adipose tissue temperature (TIBAT). OT and CL 316243 monotherapy decreased body weight by 8.0 ± 0.9% (P<0.05) and 8.6 ± 0.6% (P<0.05), respectively, but OT in combination with CL 316243 produced more substantial weight loss (14.9 ± 1.0%; P<0.05) compared to either treatment alone. These effects were associated with decreased adiposity, energy intake and elevated TIBAT during the treatment period. The findings from the current study suggest that the effects of systemic OT and CL 316243 to elicit weight loss are additive and appear to be driven primarily by OT-elicited changes in food intake and CL 316243-elicited increases in BAT thermogenesis.
Collapse
Affiliation(s)
- Jared D. Slattery
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - June R. Rambousek
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Edison Tsui
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Mackenzie K. Honeycutt
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Matvey Goldberg
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - James L. Graham
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington (UW) School of Medicine, Seattle, WA, United States
- University of Washington (UW) Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Tami Wolden-Hanson
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Amber L. Williams
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kevin D. O’Brien
- University of Washington (UW) Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - James E. Blevins
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington (UW) School of Medicine, Seattle, WA, United States
| |
Collapse
|
5
|
Nicolaisen TS, Lyster AE, Sjøberg KA, Haas DT, Voldstedlund CT, Lundsgaard AM, Jensen JK, Madsen EM, Nielsen CK, Bloch-Ibenfeldt M, Wewer Albrechtsen NJ, Rose AJ, Krahmer N, Clemmensen C, Richter EA, Fritzen AM, Kiens B. Dietary protein restriction elevates FGF21 levels and energy requirements to maintain body weight in lean men. Nat Metab 2025; 7:602-616. [PMID: 40050437 PMCID: PMC11946896 DOI: 10.1038/s42255-025-01236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
Dietary protein restriction increases energy expenditure and enhances insulin sensitivity in mice. However, the effects of a eucaloric protein-restricted diet in healthy humans remain unexplored. Here, we show in lean, healthy men that a protein-restricted diet meeting the minimum protein requirements for 5 weeks necessitates an increase in energy intake to uphold body weight, regardless of whether proteins are replaced with fats or carbohydrates. Upon reverting to the customary higher protein intake in the following 5 weeks, energy requirements return to baseline levels, thus preventing weight gain. We also show that fasting plasma FGF21 levels increase during protein restriction. Proteomic analysis of human white adipose tissue and in FGF21-knockout mice reveal alterations in key components of the electron transport chain within white adipose tissue mitochondria. Notably, in male mice, these changes appear to be dependent on FGF21. In conclusion, we demonstrate that maintaining body weight during dietary protein restriction in healthy, lean men requires a higher energy intake, partially driven by FGF21-mediated mitochondrial adaptations in adipose tissue.
Collapse
Affiliation(s)
- Trine S Nicolaisen
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aslak E Lyster
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Daniel T Haas
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian T Voldstedlund
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lundsgaard
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk A/S, Novo Nordisk, Søborg, Denmark
| | - Jakob K Jensen
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ea M Madsen
- Novo Nordisk A/S, Novo Nordisk, Søborg, Denmark
| | - Casper K Nielsen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Mads Bloch-Ibenfeldt
- Institute of Sports Medicine Copenhagen (ISMC), Department of Orthopedic Surgery M81, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | | | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Slattery JD, Rambousek JR, Tsui E, Honeycutt MK, Goldberg M, Graham JL, Wietecha TA, Wolden-Hanson T, Williams AL, O'Brien KD, Havel PJ, Blevins JE. Effects of systemic oxytocin and beta-3 receptor agonist (CL 316243) treatment on body weight and adiposity in male diet-induced obese rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.27.615550. [PMID: 39502365 PMCID: PMC11537314 DOI: 10.1101/2024.09.27.615550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Previous studies have implicated hindbrain oxytocin (OT) receptors in the control of food intake and brown adipose tissue (BAT) thermogenesis. We recently demonstrated that hindbrain [fourth ventricle (4V)] administration of oxytocin (OT) could be used as an adjunct to drugs that directly target beta-3 adrenergic receptors (β3-AR) to elicit weight loss in diet-induced obese (DIO) rodents. What remains unclear is whether systemic OT can be used as an adjunct with the β3-AR agonist, CL 316243, to increase BAT thermogenesis and elicit weight loss in DIO rats. We hypothesized that systemic OT and β3-AR agonist (CL 316243) treatment would produce an additive effect to reduce body weight and adiposity in DIO rats by decreasing food intake and stimulating BAT thermogenesis. To test this hypothesis, we determined the effects of systemic (subcutaneous) infusions of OT (50 nmol/day) or vehicle (VEH) when combined with daily systemic (intraperitoneal) injections of CL 316243 (0.5 mg/kg) or VEH on body weight, adiposity, food intake and brown adipose tissue temperature (TIBAT). OT and CL 316243 monotherapy decreased body weight by 8.0±0.9% (P<0.05) and 8.6±0.6% (P<0.05), respectively, but OT in combination with CL 316243 produced more substantial weight loss (14.9±1.0%; P<0.05) compared to either treatment alone. These effects were associated with decreased adiposity, energy intake and elevated TIBAT during the treatment period. The findings from the current study suggest that the effects of systemic OT and CL 316243 to elicit weight loss are additive and appear to be driven primarily by OT-elicited changes in food intake and CL 316243-elicited increases in BAT thermogenesis.
Collapse
Affiliation(s)
- Jared D Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - June R Rambousek
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Mackenzie K Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Matvey Goldberg
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - James L Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Tomasz A Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Amber L Williams
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Jacobsen JM, Petersen N, Torz L, Gerstenberg MK, Pedersen K, Østergaard S, Wulff BS, Andersen B, Raun K, Christoffersen BØ, John LM, Reitman ML, Kuhre RE. Housing mice near vs. below thermoneutrality affects drug-induced weight loss but does not improve prediction of efficacy in humans. Cell Rep 2024; 43:114501. [PMID: 39067024 PMCID: PMC11380917 DOI: 10.1016/j.celrep.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Evaluation of weight loss drugs is usually performed in diet-induced obese mice housed at ∼22°C. This is a cold stress that increases energy expenditure by ∼35% compared to thermoneutrality (∼30°C), which may overestimate drug-induced weight loss. We investigated five anti-obesity mechanisms that have been in clinical development, comparing weight loss in mice housed at 22°C vs. 30°C. Glucagon-like peptide-1 (GLP-1), human fibroblast growth factor 21 (hFGF21), and melanocortin-4 receptor (MC4R) agonist induced similar weight losses. Peptide YY elicited greater vehicle-subtracted weight loss at 30°C (7.2% vs. 1.4%), whereas growth differentiation factor 15 (GDF15) was more effective at 22°C (13% vs. 6%). Independent of ambient temperature, GLP-1 and hFGF21 prevented the reduction in metabolic rate caused by weight loss. There was no simple rule for a better prediction of human drug efficacy based on ambient temperature, but since humans live at thermoneutrality, drug testing using mice should include experiments near thermoneutrality.
Collapse
Affiliation(s)
- Julie M Jacobsen
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Natalia Petersen
- Liver and Gut Biology, Obesity & NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | - Lola Torz
- Liver and Gut Biology, Obesity & NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | | | - Kent Pedersen
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Søren Østergaard
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Birgitte S Wulff
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Birgitte Andersen
- Diabetes, Obesity and NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | - Kirsten Raun
- Lead Portfolio Projects, Research and Early Development, Novo Nordisk A/S, Bagsværd, Denmark
| | | | - Linu M John
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Rune E Kuhre
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: An emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Dis 2024; 11:101064. [PMID: 38292170 PMCID: PMC10825286 DOI: 10.1016/j.gendis.2023.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiaming Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
9
|
Stanic S, Bardova K, Janovska P, Rossmeisl M, Kopecky J, Zouhar P. Prolonged FGF21 treatment increases energy expenditure and induces weight loss in obese mice independently of UCP1 and adrenergic signaling. Biochem Pharmacol 2024; 221:116042. [PMID: 38325495 DOI: 10.1016/j.bcp.2024.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Fibroblast growth factor 21 (FGF21) reduces body weight, which was attributed to induced energy expenditure (EE). Conflicting data have been published on the role of uncoupling protein 1 (UCP1) in this effect. Therefore, we aimed to revisit the thermoregulatory effects of FGF21 and their implications for body weight regulation. We found that an 8-day treatment with FGF21 lowers body weight to similar extent in both wildtype (WT) and UCP1-deficient (KO) mice fed high-fat diet. In WT mice, this effect is solely due to increased EE, associated with a strong activation of UCP1 and with excess heat dissipated through the tail. This thermogenesis takes place in the interscapular region and can be attenuated by a β-adrenergic inhibitor propranolol. In KO mice, FGF21-induced weight loss correlates with a modest increase in EE, which is independent of adrenergic signaling, and with a reduced energy intake. Interestingly, the gene expression profile of interscapular brown adipose tissue (but not subcutaneous white adipose tissue) of KO mice is massively affected by FGF21, as shown by increased expression of genes encoding triacylglycerol/free fatty acid cycle enzymes. Thus, FGF21 elicits central thermogenic and pyretic effects followed by a concomitant increase in EE and body temperature, respectively. The associated weight loss is strongly dependent on UCP1-based thermogenesis. However, in the absence of UCP1, alternative mechanisms of energy dissipation may contribute, possibly based on futile triacylglycerol/free fatty acid cycling in brown adipose tissue and reduced food intake.
Collapse
Affiliation(s)
- Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Faculty of Science, Charles University in Prague, Vinicna 7, Prague 128 44, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| |
Collapse
|
10
|
Solon-Biet SM, Clark X, Bell-Anderson K, Rusu PM, Perks R, Freire T, Pulpitel T, Senior AM, Hoy AJ, Aung O, Le Couteur DG, Raubenheimer D, Rose AJ, Conigrave AD, Simpson SJ. Toward reconciling the roles of FGF21 in protein appetite, sweet preference, and energy expenditure. Cell Rep 2023; 42:113536. [PMID: 38060447 DOI: 10.1016/j.celrep.2023.113536] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), an endocrine signal robustly increased by protein restriction independently of an animal's energy status, exerts profound effects on feeding behavior and metabolism. Here, we demonstrate that considering the nutritional contexts within which FGF21 is elevated can help reconcile current controversies over its roles in mediating macronutrient preference, food intake, and energy expenditure. We show that FGF21 is primarily a driver of increased protein intake in mice and that the effect of FGF21 on sweet preference depends on the carbohydrate balance of the animal. Under no-choice feeding, FGF21 infusion either increased or decreased energy expenditure depending on whether the animal was fed a high- or low-energy diet, respectively. We show that while the role of FGF21 in mediating feeding behavior is complex, its role in promoting protein appetite is robust and that the effects on sweet preference and energy expenditure are macronutrient-state-dependent effects of FGF21.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; School of Medicine, The University of Notre Dame, Darlinghurst, NSW 2010, Australia.
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kim Bell-Anderson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patricia M Rusu
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ruth Perks
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Therese Freire
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J Hoy
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Okka Aung
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord, NSW 2139, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Arthur D Conigrave
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Goyon V, Besse‐Patin A, Zunino R, Ignatenko O, Nguyen M, Coyaud É, Lee JM, Nguyen BN, Raught B, McBride HM. MAPL loss dysregulates bile and liver metabolism in mice. EMBO Rep 2023; 24:e57972. [PMID: 37962001 PMCID: PMC10702803 DOI: 10.15252/embr.202357972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Mitochondrial and peroxisomal anchored protein ligase (MAPL) is a dual ubiquitin and small ubiquitin-like modifier (SUMO) ligase with roles in mitochondrial quality control, cell death and inflammation in cultured cells. Here, we show that MAPL function in the organismal context converges on metabolic control, as knockout mice are viable, insulin-sensitive, and protected from diet-induced obesity. MAPL loss leads to liver-specific activation of the integrated stress response, inducing secretion of stress hormone FGF21. MAPL knockout mice develop fully penetrant spontaneous hepatocellular carcinoma. Mechanistically, the peroxisomal bile acid transporter ABCD3 is a primary MAPL interacting partner and SUMOylated in a MAPL-dependent manner. MAPL knockout leads to increased bile acid production coupled with defective regulatory feedback in liver in vivo and in isolated primary hepatocytes, suggesting cell-autonomous function. Together, our findings establish MAPL function as a regulator of bile acid synthesis whose loss leads to the disruption of bile acid feedback mechanisms. The consequences of MAPL loss in liver, along with evidence of tumor suppression through regulation of cell survival pathways, ultimately lead to hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Vanessa Goyon
- Montreal Neurological InstituteMcGill UniversityMontrealQCCanada
| | | | - Rodolfo Zunino
- Montreal Neurological InstituteMcGill UniversityMontrealQCCanada
| | - Olesia Ignatenko
- Montreal Neurological InstituteMcGill UniversityMontrealQCCanada
| | - Mai Nguyen
- Montreal Neurological InstituteMcGill UniversityMontrealQCCanada
| | - Étienne Coyaud
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
| | - Jonathan M Lee
- Biochemistry, Microbiology & ImmunologyUniversity of OttawaOttawaONCanada
| | - Bich N Nguyen
- Department of Pathology and Cell BiologyUniversity of MontrealMontrealQCCanada
- University of Montreal Health NetworkMontrealQCCanada
| | - Brian Raught
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
| | - Heidi M McBride
- Montreal Neurological InstituteMcGill UniversityMontrealQCCanada
| |
Collapse
|
12
|
Ortiz-Silva M, Leonardi BF, Castro É, Peixoto ÁS, Gilio GR, Oliveira TE, Tomazelli CA, Andrade ML, Moreno MF, Belchior T, Magdalon J, Vieira TS, Donado-Pestana CM, Festuccia WT. Chloroquine attenuates diet-induced obesity and glucose intolerance through a mechanism that might involve FGF-21, but not UCP-1-mediated thermogenesis and inhibition of adipocyte autophagy. Mol Cell Endocrinol 2023; 578:112074. [PMID: 37742789 DOI: 10.1016/j.mce.2023.112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Chloroquine diphosphate (CQ), a weak base used to inhibit autophagic flux and treat malaria and rheumatoid diseases, has been shown, through unknown mechanisms, to improve glucose and lipid homeostasis in patients and rodents. We investigate herein the molecular mechanisms underlying these CQ beneficial metabolic actions in diet-induced obese mice. For this, C57BL6/J mice fed with either a chow or a high-fat diet (HFD) and uncoupling protein 1 (UCP-1) KO and adipocyte Atg7-deficient mice fed with a HFD were treated or not with CQ (60 mg/kg of body weight/day) during 8 weeks and evaluated for body weight, adiposity, glucose homeostasis and brown and white adipose tissues (BAT and WAT) UCP-1 content. CQ reduced body weight gain and adipose tissue and liver masses in mice fed with a HFD, without altering food intake, oxygen consumption, respiratory exchange ratio, spontaneous motor activity and feces caloric content. CQ attenuated the insulin intolerance, hyperglycemia, hyperinsulinemia, hypertriglyceridemia and hypercholesterolemia induced by HFD intake, such effects that were associated with increases in serum and liver fibroblast growth factor 21 (FGF-21) and BAT and WAT UCP-1 content. Interestingly, CQ beneficial metabolic actions of reducing body weight and adiposity and improving glucose homeostasis were preserved in HFD-fed UCP-1 KO and adipocyte Atg7 deficient mice. CQ reduces body weight gain and adiposity and improves glucose homeostasis in diet-induced obese mice through mechanisms that might involve FGF-21, but not UCP1-mediated nonshivering thermogenesis or inhibition of adipocyte autophagy.
Collapse
Affiliation(s)
- Milene Ortiz-Silva
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil
| | - Bianca F Leonardi
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil
| | - Érique Castro
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil
| | - Álbert S Peixoto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil
| | - Gustavo R Gilio
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil
| | - Tiago E Oliveira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil
| | - Caroline A Tomazelli
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil
| | - Maynara L Andrade
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil
| | - Mayara F Moreno
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil
| | - Thiago Belchior
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil
| | - Juliana Magdalon
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, Sao Paulo, SP, 05606300, Brazil
| | - Thayna S Vieira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil
| | - Carlos M Donado-Pestana
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 580, Sao Paulo, SP, 05508000, Brazil; Food Research Center FoRC, Universidade de Sao Paulo, Av. Prof Lineu Prestes 580, Sao Paulo, SP, 05508000, Brazil
| | - William T Festuccia
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Av. Prof Lineu Prestes 1524, Sao Paulo, 05508000, Brazil.
| |
Collapse
|
13
|
Dong H, Qin M, Wang P, Li S, Wang X. Regulatory effects and mechanisms of exercise on activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT). Adipocyte 2023; 12:2266147. [PMID: 37795948 PMCID: PMC10563630 DOI: 10.1080/21623945.2023.2266147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Exercise is a universally acknowledged and healthy way to reducing body weight. However, the roles and mechanisms of exercise on metabolism of adipose tissue remain largely unclear. Adipose tissues include white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue (BeAT). The main function of WAT is to store energy, while the BAT and BeAT can generate heat and consume energy. Therefore, promotion of BAT activation and WAT browning contributes to body weight loss. To date, many studies have suggested that exercise exerts the potential regulatory effects on BAT activation and WAT browning. In the present review, we compile the evidence for the regulatory effects of exercise on BAT activation and WAT browning and summarize the possible mechanisms whereby exercise modulates BAT activation and WAT browning, including activating sympathetic nervous system (SNS) and promoting the secretion of exerkines, with special focus on exerkines. These data might provide reference for prevention or treatment of obesity and the related metabolic disease through exercise.
Collapse
Affiliation(s)
- Haijun Dong
- Department of Physical Education, University of Shanghai for Science and Technology, Shanghai, China
| | - Man Qin
- School of Sports and Health, Shanghai Lixin Accounting and Finance University, Shanghai, China
| | - Peng Wang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Shufan Li
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Xing Wang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
14
|
Otani Y, Nozaki Y, Mizunoe Y, Kobayashi M, Higami Y. Effect of mitochondrial quantity and quality controls in white adipose tissue on healthy lifespan: Essential roles of GH/IGF-1-independent pathways in caloric restriction-mediated metabolic remodeling. Pathol Int 2023; 73:479-489. [PMID: 37606202 PMCID: PMC11551837 DOI: 10.1111/pin.13371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023]
Abstract
Long-term caloric restriction is a conventional and reproducible dietary intervention to improve whole body metabolism, suppress age-related pathophysiology, and extend lifespan. The beneficial actions of caloric restriction are widely accepted to be regulated in both growth hormone/insulin-like growth factor 1-dependent and -independent manners. Although growth hormone/insulin-like growth factor 1-dependent regulatory mechanisms are well described, those occurring independent of growth hormone/insulin-like growth factor 1 are poorly understood. In this review, we focus on molecular mechanisms of caloric restriction regulated in a growth hormone/insulin-like growth factor 1-independent manner. Caloric restriction increases mitochondrial quantity and improves mitochondrial quality by activating an axis involving sterol regulatory element binding protein-c/peroxisome proliferator-activated receptor γ coactivator-1α/mitochondrial intermediate peptidase in a growth hormone/insulin-like growth factor 1-independent manner, particularly in white adipose tissue. Fibroblast growth factor 21 is also involved in this axis. Moreover, the axis may be regulated by lower leptin signaling. Thus, caloric restriction appears to induce beneficial actions partially by regulating mitochondrial quantity and quality in white adipose tissue in a growth hormone/insulin-like growth factor 1-independent manner.
Collapse
Grants
- Fostering Joint International Research (B) / 20KK0 Ministry of Education, Culture, Sports, Science and Technology
- Grant-in-Aid for Scientific Research (B) / 17H0217 Ministry of Education, Culture, Sports, Science and Technology
- Grant-in-Aid for Scientific Research (B) / 20H0413 Ministry of Education, Culture, Sports, Science and Technology
- Japan Society for the Promotion of Science Ministry of Education, Culture, Sports, Science and Technology
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Yuina Otani
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
| | - Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
| | - Yuhei Mizunoe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
| | - Masaki Kobayashi
- Department of Nutrition and Food Science, Graduate School of Humanities and SciencesOchanomizu UniversityTokyoJapan
- Institute for Human Life InnovationOchanomizu UniversityTokyoJapan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
- Research Institute for Biomedical Sciences (RIBS)Tokyo University of ScienceChibaJapan
| |
Collapse
|
15
|
Klein Hazebroek M, Laterveer R, Kutschke M, Ramšak Marčeta V, Barthem CS, Keipert S. Hyperphagia of female UCP1-deficient mice blunts anti-obesity effects of FGF21. Sci Rep 2023; 13:10288. [PMID: 37355753 PMCID: PMC10290677 DOI: 10.1038/s41598-023-37264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023] Open
Abstract
Increasing energy expenditure through uncoupling protein 1 (UCP1) activity in thermogenic adipose tissue is widely investigated to correct diet-induced obesity (DIO). Paradoxically, UCP1-deficient male mice are resistant to DIO at room temperature. Recently, we uncovered a key role for fibroblast growth factor 21 (FGF21), a promising drug target for treatment of metabolic disease, in this phenomenon. As the metabolic action of FGF21 is so far understudied in females, we aim to investigate potential sexual dimorphisms. Here, we confirm that male UCP1 KO mice display resistance to DIO in mild cold, without significant changes in metabolic parameters. Surprisingly, females gained the same amount of body fat as WT controls. Molecular regulation was similar between UCP1 KO males and females, with an upregulation of serum FGF21, coinciding with beiging of inguinal white adipose tissue and induced lipid metabolism. While energy expenditure did not display significant differences, UCP1 KO females significantly increased their food intake. Altogether, our results indicate that hyperphagia is likely counteracting the beneficial effects of FGF21 in female mice. This underlines the importance of sex-specific studies in (pre)clinical research for personalized drug development.
Collapse
Affiliation(s)
- Marlou Klein Hazebroek
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Rutger Laterveer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Maria Kutschke
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Vida Ramšak Marčeta
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Clarissa S Barthem
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
16
|
Pokhrel S, Dilts M, Stahl Z, Boehme S, Frame G, Chiang JY, Ferrell JM. Tgr5-/- mice are protected from ethanol-induced metabolic alterations through enhanced leptin and Fgf21 signaling. Hepatol Commun 2023; 7:e0138. [PMID: 37185802 PMCID: PMC10145946 DOI: 10.1097/hc9.0000000000000138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/23/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is caused by chronic use of alcohol and ranges from hepatic steatosis to fibrosis and cirrhosis. Bile acids are physiological detergents that also regulate hepatic glucose and lipid homeostasis by binding to several receptors. One such receptor, Takeda G protein-coupled receptor 5 (TGR5), may represent a therapeutic target for ALD. Here, we used a chronic 10-day + binge ethanol-feeding model in mice to study the role of TGR5 in alcohol-induced liver injury. METHODS Female C57BL/6J wild-type mice and Tgr5-/- mice were pair-fed Lieber-DeCarli liquid diet with ethanol (5% v/v) or isocaloric control diet for 10 days followed by a gavage of 5% ethanol or isocaloric maltose control, respectively, to represent a binge-drinking episode. Tissues were harvested 9 hours following the binge, and metabolic phenotypes were characterized through examination of liver, adipose, and brain mechanistic pathways. RESULTS Tgr5-/- mice were protected from alcohol-induced accumulation of hepatic triglycerides. Interestingly, liver and serum levels of Fgf21 were significantly increased during ethanol feeding in Tgr5-/- mice, as was phosphorylation of Stat3. Parallel to Fgf21 levels, increased leptin gene expression in white adipose tissue and increased leptin receptor in liver were detected in Tgr5-/- mice fed ethanol diet. Adipocyte lipase gene expression was significantly increased in Tgr5-/- mice regardless of diet, whereas adipose browning markers were also increased in ethanol-fed Tgr5-/- mice, indicating potential for enhanced white adipose metabolism. Lastly, hypothalamic mRNA targets of leptin, involved in the regulation of food intake, were significantly increased in Tgr5-/- mice fed ethanol diet. CONCLUSIONS Tgr5-/- mice are protected from ethanol-induced liver damage and lipid accumulation. Alterations in lipid uptake and Fgf21 signaling, and enhanced metabolic activity of white adipose tissue, may mediate these effects.
Collapse
Affiliation(s)
- Sabita Pokhrel
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Matthew Dilts
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Zachary Stahl
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Shannon Boehme
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - John Y.L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
17
|
Li Z, Zhang X, Zhu W, Zhang C, Sadak K, Halberstam AA, Brown JR, Perry CJ, Bunn A, Braun DA, Adeniran A, Lee S, Wang A, Perry RJ. FGF-21 Conducts a Liver-Brain-Kidney Axis to Promote Renal Cell Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536558. [PMID: 37090652 PMCID: PMC10120688 DOI: 10.1101/2023.04.12.536558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Metabolic homeostasis is one of the most exquisitely tuned systems in mammalian physiology. Metabolic homeostasis requires multiple redundant systems to cooperate to maintain blood glucose concentrations in a narrow range, despite a multitude of physiological and pathophysiological pressures. Cancer is one of the canonical pathophysiological settings in which metabolism plays a key role. In this study, we utilized REnal Gluconeogenesis Analytical Leads (REGAL), a liquid chromatography-mass spectrometry/mass spectrometry-based stable isotope tracer method that we developed to show that in conditions of metabolic stress, the fasting hepatokine fibroblast growth factor-21 (FGF-21)1,2 coordinates a liver-brain-kidney axis to promote renal gluconeogenesis. FGF-21 promotes renal gluconeogenesis by enhancing β2 adrenergic receptor (Adrb2)-driven, adipose triglyceride lipase (ATGL)-mediated intrarenal lipolysis. Further, we show that this liver-brain-kidney axis promotes gluconeogenesis in the renal parenchyma in mice and humans with renal cell carcinoma (RCC). This increased gluconeogenesis is, in turn, associated with accelerated RCC progression. We identify Adrb2 blockade as a new class of therapy for RCC in mice, with confirmatory data in human patients. In summary, these data reveal a new metabolic function of FGF-21 in driving renal gluconeogenesis, and demonstrate that inhibition of renal gluconeogenesis by FGF-21 antagonism deserves attention as a new therapeutic approach to RCC.
Collapse
Affiliation(s)
- Zongyu Li
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Xinyi Zhang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Wanling Zhu
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Cuiling Zhang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Immunobiology, Yale University School of Medicine
| | - Katherine Sadak
- Department of Internal Medicine, Yale University School of Medicine
| | - Alexandra A Halberstam
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Jason R Brown
- Department of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center
- Case Western Reserve University
| | - Curtis J Perry
- Department of Internal Medicine, Yale University School of Medicine
| | - Azia Bunn
- Department of Internal Medicine, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| | - David A Braun
- Department of Internal Medicine, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| | | | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine
| | - Andrew Wang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Immunobiology, Yale University School of Medicine
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| |
Collapse
|
18
|
Hope DCD, Tan TMM. Glucagon and energy expenditure; Revisiting amino acid metabolism and implications for weight loss therapy. Peptides 2023; 162:170962. [PMID: 36736539 DOI: 10.1016/j.peptides.2023.170962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Glucagon receptor (GCGR)-targeted multi-agonists are being developed for the treatment of obesity and metabolic disease. GCGR activity is utilised for its favourable weight loss and metabolic properties, including increased energy expenditure (EE) and hepatic lipid metabolism. GLP1R and GIPR activities are increasingly present in a multi-agonist strategy. Due to the compound effect of increased satiety, reduced food intake and increased energy expenditure, the striking weight loss effects of these multi-agonists has been demonstrated in pre-clinical models of obesity. The precise contribution and mechanism of GCGR activity to enhanced energy expenditure and weight loss in both rodents and humans is not fully understood. In this review, our understanding of glucagon-mediated EE is explored, and an amino acid-centric paradigm contributing to this phenomenon is presented. The current progress of GCGR-targeted multi-agonists in development is also highlighted with a focus on the implications of glucagon-stimulated hypoaminoacidemia.
Collapse
Affiliation(s)
- D C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - T M-M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
19
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
20
|
Jin L, Yang R, Geng L, Xu A. Fibroblast Growth Factor-Based Pharmacotherapies for the Treatment of Obesity-Related Metabolic Complications. Annu Rev Pharmacol Toxicol 2023; 63:359-382. [PMID: 36100222 DOI: 10.1146/annurev-pharmtox-032322-093904] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
21
|
Lee B, An HJ, Kim DH, Lee MK, Jeong HH, Chung KW, Go Y, Seo AY, Kim IY, Seong JK, Yu BP, Lee J, Im E, Lee IK, Lee MS, Yamada KI, Chung HY. SMP30-mediated synthesis of vitamin C activates the liver PPARα/FGF21 axis to regulate thermogenesis in mice. Exp Mol Med 2022; 54:2036-2046. [PMID: 36434042 PMCID: PMC9723126 DOI: 10.1038/s12276-022-00888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
The vitamin-C-synthesizing enzyme senescent marker protein 30 (SMP30) is a cold resistance gene in Drosophila, and vitamin C concentration increases in brown adipose tissue post-cold exposure. However, the roles of SMP30 in thermogenesis are unknown. Here, we tested the molecular mechanism of thermogenesis using wild-type (WT) and vitamin C-deficient SMP30-knockout (KO) mice. SMP30-KO mice gained more weight than WT mice without a change in food intake in response to short-term high-fat diet feeding. Indirect calorimetry and cold-challenge experiments indicated that energy expenditure is lower in SMP30-KO mice, which is associated with decreased thermogenesis in adipose tissues. Therefore, SMP30-KO mice do not lose weight during cold exposure, whereas WT mice lose weight markedly. Mechanistically, the levels of serum FGF21 were notably lower in SMP30-KO mice, and vitamin C supplementation in SMP30-KO mice recovered FGF21 expression and thermogenesis, with a marked reduction in body weight during cold exposure. Further experiments revealed that vitamin C activates PPARα to upregulate FGF21. Our findings demonstrate that SMP30-mediated synthesis of vitamin C activates the PPARα/FGF21 axis, contributing to the maintenance of thermogenesis in mice.
Collapse
Affiliation(s)
- Bonggi Lee
- grid.412576.30000 0001 0719 8994Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, South Korea
| | - Hye Jin An
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Dae Hyun Kim
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| | - Min-Kyeong Lee
- grid.412576.30000 0001 0719 8994Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, South Korea
| | - Hyeon Hak Jeong
- grid.412576.30000 0001 0719 8994Department of Smart Green Technology Engineering, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, 48513 South Korea
| | - Ki Wung Chung
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Younghoon Go
- grid.418980.c0000 0000 8749 5149Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Arnold Y. Seo
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Il Yong Kim
- grid.31501.360000 0004 0470 5905Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Plus Program for Creative Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Je Kyung Seong
- grid.31501.360000 0004 0470 5905Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Plus Program for Creative Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX Institute, Seoul National University, Seoul, South Korea
| | - Byung Pal Yu
- grid.267309.90000 0001 0629 5880Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Jaewon Lee
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| | - Eunok Im
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| | - In-Kyu Lee
- grid.258803.40000 0001 0661 1556Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Myung-Shik Lee
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute and Department of Internal Medicine Yonsei University College of Medicine, Seoul, South Korea
| | - Ken-ichi Yamada
- grid.177174.30000 0001 2242 4849Department of Bio-functional Science, Kyushu University, Fukuoka, Japan
| | - Hae Young Chung
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| |
Collapse
|
22
|
Zamboni M, Mazzali G, Brunelli A, Saatchi T, Urbani S, Giani A, Rossi AP, Zoico E, Fantin F. The Role of Crosstalk between Adipose Cells and Myocytes in the Pathogenesis of Sarcopenic Obesity in the Elderly. Cells 2022; 11:3361. [PMID: 36359757 PMCID: PMC9655977 DOI: 10.3390/cells11213361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2023] Open
Abstract
As a result of aging, body composition changes, with a decline in muscle mass and an increase in adipose tissue (AT), which reallocates from subcutaneous to visceral depots and stores ectopically in the liver, heart and muscles. Furthermore, with aging, muscle and AT, both of which have recognized endocrine activity, become dysfunctional and contribute, in the case of positive energy balance, to the development of sarcopenic obesity (SO). SO is defined as the co-existence of excess adiposity and low muscle mass and function, and its prevalence increases with age. SO is strongly associated with greater morbidity and mortality. The pathogenesis of SO is complex and multifactorial. This review focuses mainly on the role of crosstalk between age-related dysfunctional adipose and muscle cells as one of the mechanisms leading to SO. A better understanding of this mechanisms may be useful for development of prevention strategies and treatments aimed at reducing the occurrence of SO.
Collapse
Affiliation(s)
- Mauro Zamboni
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Gloria Mazzali
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Anna Brunelli
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Tanaz Saatchi
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Silvia Urbani
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Anna Giani
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Andrea P. Rossi
- Geriatrics Division, Department of Medicine, AULSS2, Ospedale Ca’Foncello, 31100 Treviso, Italy
| | - Elena Zoico
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Francesco Fantin
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| |
Collapse
|
23
|
Claflin KE, Sullivan AI, Naber MC, Flippo KH, Morgan DA, Neff TJ, Jensen-Cody SO, Zhu Z, Zingman LV, Rahmouni K, Potthoff MJ. Pharmacological FGF21 signals to glutamatergic neurons to enhance leptin action and lower body weight during obesity. Mol Metab 2022; 64:101564. [PMID: 35944896 PMCID: PMC9403559 DOI: 10.1016/j.molmet.2022.101564] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Fibroblast growth factor 21 (FGF21) is a peripherally-derived endocrine hormone that acts on the central nervous system (CNS) to regulate whole body energy homeostasis. Pharmacological administration of FGF21 promotes weight loss in obese animal models and human subjects with obesity. However, the central targets mediating these effects are incompletely defined. METHODS To explore the mechanism for FGF21's effects to lower body weight, we pharmacologically administer FGF21 to genetic animal models lacking the obligate FGF21 co-receptor, β-klotho (KLB), in either glutamatergic (Vglut2-Cre) or GABAergic (Vgat-Cre) neurons. In addition, we abolish FGF21 signaling to leptin receptor (LepR-Cre) positive cells. Finally, we examine the synergistic effects of FGF21 and leptin to lower body weight and explore the importance of physiological leptin levels in FGF21-mediated regulation of body weight. RESULTS Here we show that FGF21 signaling to glutamatergic neurons is required for FGF21 to modulate energy expenditure and promote weight loss. In addition, we demonstrate that FGF21 signals to leptin receptor-expressing cells to regulate body weight, and that central leptin signaling is required for FGF21 to fully stimulate body weight loss during obesity. Interestingly, co-administration of FGF21 and leptin synergistically leads to robust weight loss. CONCLUSIONS These data reveal an important endocrine crosstalk between liver- and adipose-derived signals which integrate in the CNS to modulate energy homeostasis and body weight regulation.
Collapse
Affiliation(s)
- Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Meghan C Naber
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tate J Neff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, Iowa City, IA 52242, USA
| | | | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Department of Internal Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA.
| |
Collapse
|
24
|
She QY, Li LJ, Liu MH, Tan RY, Zhong YW, Bao JF, Xie JD. Bibliometric analysis of fibroblast growth factor 21 research over the period 2000 to 2021. Front Pharmacol 2022; 13:1011008. [PMID: 36238554 PMCID: PMC9551462 DOI: 10.3389/fphar.2022.1011008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Fibroblast growth factor 21 (FGF-21) is an evolutionarily conserved protein that plays multiple roles in metabolic regulation. Over the past two decades, numerous studies have deepened our understanding of its various functions and its pharmacological value. Nevertheless, most clinical trials have not achieved the desired results, which raises issues regarding its clinical value. In this bibliometric analysis, we evaluated the state of FGF-21 research over the last 20 years and identified important topics, achievements, and potential future directions. Methods: Publications related to FGF-21 were collected from the Web of Science Core Collection-Science Citation Index Expanded. HistCite, VOSviewer, and CiteSpace were used for bibliometric analysis and visualization, including the analysis of annual publications, leading countries, active institutions and authors, core journals, co-cited references, and keywords. Results: Altogether, 2,490 publications related to FGF-21 were obtained. A total of 12,872 authors from 2,628 institutions in 77 countries or regions reported studies on FGF-21. The United States of America was the most influential country in FGF-21 research. Alexei Kharitonenkov, Steven A. Kliewer, and David J. Mangelsdorf were the most influential scholars, and endocrinology journals had a core status in the field. The physiological roles, clinical translation, and FGF-21-based drug development were the main topics of research, and future studies may concentrate on the central effects of FGF-21, FGF-21-based drug development, and the effects of FGF-21 on non-metabolic diseases. Conclusion: The peripheral metabolic effects of FGF-21, FGF-21-based drug development, and translational research on metabolic diseases are the three major topics in FGF-21 research, whereas the central metabolic effects of FGF-21 and the effects of FGF-21 on metabolic diseases are the emerging trends and may become the following hot topics in FGF-21 research.
Collapse
Affiliation(s)
- Qin-Ying She
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Li-Juan Li
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ming-Hong Liu
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ru-Yu Tan
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Wen Zhong
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jie-Dong Xie
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jie-Dong Xie,
| |
Collapse
|
25
|
John LM, Petersen N, Gerstenberg MK, Torz L, Pedersen K, Christoffersen BØ, Kuhre RE. Housing-temperature reveals energy intake counter-balances energy expenditure in normal-weight, but not diet-induced obese, male mice. Commun Biol 2022; 5:946. [PMID: 36088386 PMCID: PMC9464191 DOI: 10.1038/s42003-022-03895-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Most metabolic studies on mice are performed at room temperature, although under these conditions mice, unlike humans, spend considerable energy to maintain core temperature. Here, we characterize the impact of housing temperature on energy expenditure (EE), energy homeostasis and plasma concentrations of appetite- and glucoregulatory hormones in normal-weight and diet-induced obese (DIO) C57BL/6J mice fed chow or 45% high-fat-diet, respectively. Mice were housed for 33 days at 22, 25, 27.5, and 30 °C in an indirect-calorimetry-system. We show that energy expenditure increases linearly from 30 °C towards 22 °C and is ~30% higher at 22 °C in both mouse models. In normal-weight mice, food intake counter-balances EE. In contrast, DIO mice do not reduce food intake when EE is lowered. By end of study, mice at 30 °C, therefore, had higher body weight, fat mass and plasma glycerol and triglycerides than mice at 22 °C. Dysregulated counterbalancing in DIO mice may result from increased pleasure-based eating. The impact of ambient housing temperature on the interaction of energy intake, energy expenditure and glycemic control in normal and diet-induced obese mice is examined.
Collapse
|
26
|
Kaur N, Gare SR, Shen J, Raja R, Fonseka O, Liu W. Multi-organ FGF21-FGFR1 signaling in metabolic health and disease. Front Cardiovasc Med 2022; 9:962561. [PMID: 35983184 PMCID: PMC9378980 DOI: 10.3389/fcvm.2022.962561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic syndrome is a chronic systemic disease that is particularly manifested by obesity, diabetes, and hypertension, affecting multiple organs. The increasing prevalence of metabolic syndrome poses a threat to public health due to its complications, such as liver dysfunction and cardiovascular disease. Impaired adipose tissue plasticity is another factor contributing to metabolic syndrome. Emerging evidence demonstrates that fibroblast growth factors (FGFs) are critical players in organ crosstalk via binding to specific FGF receptors (FGFRs) and their co-receptors. FGFRs activation modulates intracellular responses in various cell types under metabolic stress. FGF21, in particular is considered as the key regulator for mediating systemic metabolic effects by binding to receptors FGFR1, FGFR3, and FGFR4. The complex of FGFR1 and beta Klotho (β-KL) facilitates endocrine and paracrine communication networks that physiologically regulate global metabolism. This review will discuss FGF21-mediated FGFR1/β-KL signaling pathways in the liver, adipose, and cardiovascular systems, as well as how this signaling is involved in the interplay of these organs during the metabolic syndrome. Furthermore, the clinical implications and therapeutic strategies for preventing metabolic syndrome and its complications by targeting FGFR1/β-KL are also discussed.
Collapse
Affiliation(s)
| | | | - Jiahan Shen
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Oveena Fonseka
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
27
|
She QY, Bao JF, Wang HZ, Liang H, Huang W, Wu J, Zhong Y, Ling H, Li A, Qin SL. Fibroblast growth factor 21: A "rheostat" for metabolic regulation? Metabolism 2022; 130:155166. [PMID: 35183545 DOI: 10.1016/j.metabol.2022.155166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 is an evolutionarily conserved factor that plays multiple important roles in metabolic homeostasis. During the past two decades, extensive investigations have improved our understanding of its delicate metabolic roles and identified its pharmacological potential to mitigate metabolic disorders. However, most clinical trials have failed to obtain the desired results, which raises issues regarding its clinical value. Fibroblast growth factor 21 is dynamically regulated by nutrients derived from food intake and hepatic/adipose release, which in turn act on the central nervous system, liver, and adipose tissues to influence food preference, hepatic glucose, and adipose fatty acid output. Based on this information, we propose that fibroblast growth factor 21 should not be considered merely an anti-hyperglycemia or anti-obesity factor, but rather a means of balancing of nutrient fluctuations to maintain an appropriate energy supply. Hence, the specific functions of fibroblast growth factor 21 in glycometabolism and lipometabolism depend on specific metabolic states, indicating that its pharmacological effects require further consideration.
Collapse
Affiliation(s)
- Qin-Ying She
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China; Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Hui-Zhen Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Huixin Liang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Wentao Huang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing Wu
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Yiwen Zhong
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Hanxin Ling
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China.
| | - Shu-Lan Qin
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China.
| |
Collapse
|
28
|
Szczepańska E, Gietka-Czernel M. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Horm Metab Res 2022; 54:203-211. [PMID: 35413740 DOI: 10.1055/a-1778-4159] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fibroblast growth factor (FGF) 21 is a recently recognized metabolic regulator that evokes interest due to its beneficial action of maintaining whole-body energy balance and protecting the liver from excessive triglyceride production and storage. Together with FGF19 and FGF23, FGF21 belongs to the FGF family with hormone-like activity. Serum FGF21 is generated primarily in the liver under nutritional stress stimuli like prolonged fasting or the lipotoxic diet, but also during increased mitochondrial and endoplasmic reticulum stress. FGF21 exerts its endocrine action in the central nervous system and adipose tissue. Acting in the ventromedial hypothalamus, FGF21 diminishes simple sugar intake. In adipose tissue, FGF21 promotes glucose utilization and increases energy expenditure by enhancing adipose tissue insulin sensitivity and brown adipose tissue thermogenesis. Therefore, FGF21 favors glucose consumption for heat production instead of energy storage. Furthermore, FGF21 specifically acts in the liver, where it protects hepatocytes from metabolic stress caused by lipid overload. FGF21 stimulates hepatic fatty acid oxidation and reduces lipid flux into the liver by increasing peripheral lipoprotein catabolism and reducing adipocyte lipolysis. Paradoxically, and despite its beneficial action, FGF21 is elevated in insulin resistance states, that is, fatty liver, obesity, and type 2 diabetes.
Collapse
Affiliation(s)
- Ewa Szczepańska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | |
Collapse
|
29
|
Yano K, Yamaguchi K, Seko Y, Okishio S, Ishiba H, Tochiki N, Takahashi A, Kataoka S, Okuda K, Liu Y, Fujii H, Umemura A, Moriguchi M, Okanoue T, Itoh Y. Hepatocyte-specific fibroblast growth factor 21 overexpression ameliorates high-fat diet-induced obesity and liver steatosis in mice. J Transl Med 2022; 102:281-289. [PMID: 34732847 DOI: 10.1038/s41374-021-00680-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022] Open
Abstract
Fibroblast growth factor (FGF) 21 is an endocrine growth factor mainly secreted by the liver in response to a ketogenic diet and alcohol consumption. FGF21 signaling requires co-receptor β-klotho (KLB) co-acting with FGF receptors, which has pleiotropic metabolic effects, including induced hepatic fatty acid oxidation and ketogenesis, in human and animal models of obesity. We examined the hepatocyte-specific enhancer/promoter of FGF21 expression plasmids in high-fat diet-fed mice for 12 weeks. Hydrodynamic injection for FGF21 delivery every 6 weeks sustained high circulating levels of FGF21, resulting in marked reductions in body weight, epididymal fat mass, insulin resistance, and liver steatosis. FGF21-induced lipolysis in the adipose tissue enabled the liver to be flooded with fat-derived FFAs. The hepatic expression of Glut2 and Bdh1 was upregulated, whereas that of gluconeogenesis-related genes, G6p and Pepck, and lipogenesis-related genes, Srebp-1 and Srebp-2, was significantly suppressed. FGF21 induced the phosphorylation of AMPK at Thr172 and Raptor at ser792 and suppressed that of mTOR at ser2448, which downregulated mTORC1 signaling and reduced IRS-1 phosphorylation at ser1101. Finally, in the skeletal muscle, FGF21 increased Glut4 and Mct2, a membrane protein that acts as a carrier for ketone bodies. Enzymes for ketone body catabolism (Scot) and citrate cycle (Cs, Idh3a), and a marker of regenerating muscle (myogenin) were also upregulated via increased KLB expression. Thus, FGF21-induced lipolysis was continuously induced by a high-fat diet and fat-derived FFAs might cause liver damage. Hepatic fatty acid oxidation and ketone body synthesis may act as hepatic FFAs' disposal mechanisms and contribute to improved liver steatosis. Liver-derived ketone bodies might be used for energy in the skeletal muscle. The potential FGF21-related crosstalk between the liver and extraliver organs is a promising strategy to prevent and treat metabolic syndrome-related nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Kota Yano
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Okishio
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ishiba
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nozomi Tochiki
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aya Takahashi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seita Kataoka
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichiroh Okuda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yu Liu
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Fujii
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Umemura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology & Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
30
|
Endo Y, Hashimoto M, Kusudo T, Okada T, Takeuchi T, Goto A, Yamashita H. CREG1 improves diet-induced obesity via uncoupling protein 1-dependent manner in mice. Genes Cells 2022; 27:202-213. [PMID: 35007381 DOI: 10.1111/gtc.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Abstract
Thermogenic brown and beige adipocytes express uncoupling protein 1 (UCP1) and stimulate energy metabolism, protecting against obesity and metabolic diseases such as type 2 diabetes and hyperlipidemia. Cellular repressor of E1A-stimulated genes 1 (CREG1) can stimulate thermogenic fat formation, induce UCP1, and reduce diet-induced obesity (DIO) in mice at normal room temperature. In this study, we investigated the effect of CREG1 administration and the importance of UCP1 in DIO inhibition under thermoneutral conditions at 30°C, which attenuate thermogenic fat formation. Interestingly, subcutaneous administration of recombinant CREG1 protein via an osmotic pump in C57BL/6J mice for four weeks increased UCP1 expression in interscapular brown adipose tissue (IBAT), inhibited visceral white fat hypertrophy with partial browning, and reduced DIO compared with that in PBS-treated mice. The mRNA expression of energy metabolism-related genes was significantly increased in the IBAT of CREG1-treated mice compared to that in PBS-treated mice. In contrast, adipocyte-specific overexpression of CREG1 failed to improve DIO in UCP1-knockout mice at thermoneutrality. Our results indicate the therapeutic potential of CREG1 administration for obesity under thermogenic fat-attenuating conditions and highlight the indispensable role of UCP1 in the DIO-inhibitory effect of CREG1.
Collapse
Affiliation(s)
- Yuki Endo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Michihiro Hashimoto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Tatsuya Kusudo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Tadashi Okada
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Tamaki Takeuchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Ayumi Goto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Hitoshi Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| |
Collapse
|
31
|
Conceição-Furber E, Coskun T, Sloop KW, Samms RJ. Is Glucagon Receptor Activation the Thermogenic Solution for Treating Obesity? Front Endocrinol (Lausanne) 2022; 13:868037. [PMID: 35547006 PMCID: PMC9081793 DOI: 10.3389/fendo.2022.868037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
A major challenge of obesity therapy is to sustain clinically relevant weight loss over time. Achieving this goal likely requires both reducing daily caloric intake and increasing caloric expenditure. Over the past decade, advances in pharmaceutical engineering of ligands targeting G protein-coupled receptors have led to the development of highly effective anorectic agents. These include mono-agonists of the GLP-1R and dual GIPR/GLP-1R co-agonists that have demonstrated substantial weight loss in experimental models and in humans. By contrast, currently, there are no medicines available that effectively augment metabolic rate to promote weight loss. Here, we present evidence indicating that activation of the GCGR may provide a solution to this unmet therapeutic need. In adult humans, GCGR agonism increases energy expenditure to a magnitude sufficient for inducing a negative energy balance. In preclinical studies, the glucagon-GCGR system affects key metabolically relevant organs (including the liver and white and brown adipose tissue) to boost whole-body thermogenic capacity and protect from obesity. Further, activation of the GCGR has been shown to augment both the magnitude and duration of weight loss that is achieved by either selective GLP-1R or dual GIPR/GLP-1R agonism in rodents. Based on the accumulation of such findings, we propose that the thermogenic activity of GCGR agonism will also complement other anti-obesity agents that lower body weight by suppressing appetite.
Collapse
|
32
|
Klein Hazebroek M, Keipert S. Obesity-resistance of UCP1-deficient mice associates with sustained FGF21 sensitivity in inguinal adipose tissue. Front Endocrinol (Lausanne) 2022; 13:909621. [PMID: 36034414 PMCID: PMC9402904 DOI: 10.3389/fendo.2022.909621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Metabolic diseases represent the major health burden of our modern society. With the need of novel therapeutic approaches, fibroblast growth factor 21 (FGF21) is a promising target, based on metabolic improvements upon FGF21 administration in mice and humans. Endogenous FGF21 serum levels, however, are increased during obesity-related diseases, suggesting the development of FGF21 resistance during obesity and thereby lowering FGF21 efficacy. In uncoupling protein 1 knockout (UCP1 KO) mice, however, elevated endogenous FGF21 levels mediate resistance against diet-induced obesity. Here, we show that after long-term high fat diet feeding (HFD), circulating FGF21 levels become similarly high in obese wildtype and obesity-resistant UCP1 KO mice, suggesting improved FGF21 sensitivity in UCP1 KO mice. To test this hypothesis, we injected FGF21 after long-term HFD and assessed the metabolic and molecular effects. The UCP1 KO mice lost weight directly upon FGF21 administration, whereas body weights of WT mice resisted weight loss in the initial phase of the treatment. The FGF21 treatment induced expression of liver Pck1, a typical FGF21-responsive gene, in both genotypes. In iWAT, FGF21-responsive genes were selectively induced in UCP1 KO mice, strongly associating FGF21-sensitivity in iWAT with healthy body weights. Thus, these data support the concept that FGF21-sensitivity in adipose tissue is key for metabolic improvements during obesogenic diets.
Collapse
|
33
|
Abstract
Regular physical activity has an impact on all human organ systems and mediates multiple beneficial effects on overall health. Physical activity alone is a poor strategy for weight loss; however, physical activity is of crucial importance for weight loss maintenance. The role of exercise in maintaining a stable body weight is not clear but might be related to better appetite regulation and food preference. In relation to exercise, muscle secretes myokines and other factors that can influence the metabolism in other organs, not least fat and brain tissues. Thereby, physical activity reduces the risk of obesity-associated diseases, such as type 2 diabetes and cardiovascular diseases, independently of weight loss and BMI. Therefore, physical activity should always be included in weight loss strategies and as a tool to maintain a healthy weight, despite its modest effect on energy expenditure and overall body weight.
Collapse
Affiliation(s)
- Claus Brandt
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
34
|
Yuko OO, Saito M. Brown Fat as a Regulator of Systemic Metabolism beyond Thermogenesis. Diabetes Metab J 2021; 45:840-852. [PMID: 34176254 PMCID: PMC8640153 DOI: 10.4093/dmj.2020.0291] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 12/01/2022] Open
Abstract
Brown adipose tissue (BAT) is a specialized tissue for nonshivering thermogenesis to dissipate energy as heat. Although BAT research has long been limited mostly in small rodents, the rediscovery of metabolically active BAT in adult humans has dramatically promoted the translational studies on BAT in health and diseases. Moreover, several remarkable advancements have been made in brown fat biology over the past decade: The molecular and functional analyses of inducible thermogenic adipocytes (socalled beige adipocytes) arising from a developmentally different lineage from classical brown adipocytes have been accelerated. In addition to a well-established thermogenic activity of uncoupling protein 1 (UCP1), several alternative thermogenic mechanisms have been discovered, particularly in beige adipocytes. It has become clear that BAT influences other peripheral tissues and controls their functions and systemic homeostasis of energy and metabolic substrates, suggesting BAT as a metabolic regulator, other than for thermogenesis. This notion is supported by discovering that various paracrine and endocrine factors are secreted from BAT. We review the current understanding of BAT pathophysiology, particularly focusing on its role as a metabolic regulator in small rodents and also in humans.
Collapse
Affiliation(s)
| | - Masayuki Saito
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Nutrition, Tenshi College, Sapporo, Japan
- Corresponding author: Masayuki Saito https://orcid.org/0000-0002-3058-3003 Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan E-mail:
| |
Collapse
|
35
|
Anekonda VT, Thompson BW, Ho JM, Roberts ZS, Edwards MM, Nguyen HK, Dodson AD, Wolden-Hanson T, Chukri DW, Herbertson AJ, Graham JL, Havel PJ, Wietecha TA, O’Brien KD, Blevins JE. Hindbrain Administration of Oxytocin Reduces Food Intake, Weight Gain and Activates Catecholamine Neurons in the Hindbrain Nucleus of the Solitary Tract in Rats. J Clin Med 2021; 10:5078. [PMID: 34768597 PMCID: PMC8584350 DOI: 10.3390/jcm10215078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Existing studies show that CNS oxytocin (OT) signaling is important in the control of energy balance, but it is unclear which neurons may contribute to these effects. Our goals were to examine (1) the dose-response effects of acute OT administration into the third (3V; forebrain) and fourth (4V; hindbrain) ventricles to assess sensitivity to OT in forebrain and hindbrain sites, (2) the extent to which chronic 4V administration of OT reduces weight gain associated with the progression of diet-induced obesity, and (3) whether nucleus tractus solitarius (NTS) catecholamine neurons are downstream targets of 4V OT. Initially, we examined the dose-response effects of 3V and 4V OT (0.04, 0.2, 1, or 5 μg). 3V and 4V OT (5 μg) suppressed 0.5-h food intake by 71.7 ± 6.0% and 60 ± 12.9%, respectively. 4V OT (0.04, 0.2, 1 μg) reduced food intake by 30.9 ± 12.9, 42.1 ± 9.4, and 56.4 ± 9.0%, respectively, whereas 3V administration of OT (1 μg) was only effective at reducing 0.5-h food intake by 38.3 ± 10.9%. We subsequently found that chronic 4V OT infusion, as with chronic 3V infusion, reduced body weight gain (specific to fat mass) and tended to reduce plasma leptin in high-fat diet (HFD)-fed rats, in part, through a reduction in energy intake. Lastly, we determined that 4V OT increased the number of hindbrain caudal NTS Fos (+) neurons (156 ± 25) relative to vehicle (12 ± 3). The 4V OT also induced Fos in tyrosine hydroxylase (TH; marker of catecholamine neurons) (+) neurons (25 ± 7%) relative to vehicle (0.8 ± 0.3%). Collectively, these findings support the hypothesis that OT within the hindbrain is effective at reducing food intake, weight gain, and adiposity and that NTS catecholamine neurons in addition to non-catecholaminergic neurons are downstream targets of CNS OT.
Collapse
Affiliation(s)
- Vishwanath T. Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Benjamin W. Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Jacqueline M. Ho
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA;
| | - Zachary S. Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Melise M. Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Ha K. Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Daniel W. Chukri
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
| | - James L. Graham
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (J.L.G.); (P.J.H.)
| | - Peter J. Havel
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (J.L.G.); (P.J.H.)
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA;
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA;
| | - Kevin D. O’Brien
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA;
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (V.T.A.); (B.W.T.); (J.M.H.); (Z.S.R.); (M.M.E.); (H.K.N.); (A.D.D.); (T.W.-H.); (D.W.C.); (A.J.H.)
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA;
| |
Collapse
|
36
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wietecha TA, Wolden-Hanson T, Graham JL, Honeycutt MK, Slattery JD, O’Brien KD, Havel PJ, Blevins JE. Effects of Combined Oxytocin and Beta-3 Receptor Agonist (CL 316243) Treatment on Body Weight and Adiposity in Male Diet-Induced Obese Rats. Front Physiol 2021; 12:725912. [PMID: 34566687 PMCID: PMC8457402 DOI: 10.3389/fphys.2021.725912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have indicated that oxytocin (OT) reduces body weight in diet-induced obese (DIO) rodents through reductions in energy intake and increases in energy expenditure. We recently demonstrated that hindbrain [fourth ventricular (4V)] administration of OT evokes weight loss and elevates interscapular brown adipose tissue temperature (T IBAT ) in DIO rats. What remains unclear is whether OT can be used as an adjunct with other drugs that directly target beta-3 receptors in IBAT to promote BAT thermogenesis and reduce body weight in DIO rats. We hypothesized that the combined treatment of OT and the beta-3 agonist, CL 316243, would produce an additive effect to decrease body weight and adiposity in DIO rats by reducing energy intake and increasing BAT thermogenesis. We assessed the effects of 4V infusions of OT (16 nmol/day) or vehicle (VEH) in combination with daily intraperitoneal injections of CL 316243 (0.5 mg/kg) or VEH on food intake, T IBAT , body weight and body composition. OT and CL 316243 alone reduced body weight by 7.8 ± 1.3% (P < 0.05) and 9.1 ± 2.1% (P < 0.05), respectively, but the combined treatment produced more pronounced weight loss (15.5 ± 1.2%; P < 0.05) than either treatment alone. These effects were associated with decreased adiposity, adipocyte size, energy intake and increased uncoupling protein 1 (UCP-1) content in epididymal white adipose tissue (EWAT) (P < 0.05). In addition, CL 316243 alone (P < 0.05) and in combination with OT (P < 0.05) elevated T IBAT and IBAT UCP-1 content and IBAT thermogenic gene expression. These findings are consistent with the hypothesis that the combined treatment of OT and the beta-3 agonist, CL 316243, produces an additive effect to decrease body weight. The findings from the current study suggest that the effects of the combined treatment on energy intake, fat mass, adipocyte size and browning of EWAT were not additive and appear to be driven, in part, by transient changes in energy intake in response to OT or CL 316243 alone as well as CL 316243-elicited reduction of fat mass and adipocyte size and induction of browning of EWAT.
Collapse
Affiliation(s)
- Melise M. Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Ha K. Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - James L. Graham
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kevin D. O’Brien
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
37
|
Zouhar P, Janovska P, Stanic S, Bardova K, Funda J, Haberlova B, Andersen B, Rossmeisl M, Cannon B, Kopecky J, Nedergaard J. A pyrexic effect of FGF21 independent of energy expenditure and UCP1. Mol Metab 2021; 53:101324. [PMID: 34418595 PMCID: PMC8452799 DOI: 10.1016/j.molmet.2021.101324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Administration of FGF21 to mice reduces body weight and increases body temperature. The increase in body temperature is generally interpreted as hyperthermia, i.e. a condition secondary to the increase in energy expenditure (heat production). Here, we examine an alternative hypothesis: that FGF21 has a direct pyrexic effect, i.e. FGF21 increases body temperature independently of any effect on energy expenditure. METHODS We studied the effects of FGF21 treatment on body temperature and energy expenditure in high-fat-diet-fed and chow-fed mice exposed acutely to various ambient temperatures, in high-fat diet-fed mice housed at 30 °C (i.e. at thermoneutrality), and in mice lacking uncoupling protein 1 (UCP1). RESULTS In every model studied, FGF21 increased body temperature, but energy expenditure was increased only in some models. The effect of FGF21 on body temperature was more (not less, as expected in hyperthermia) pronounced at lower ambient temperatures. Effects on body temperature and energy expenditure were temporally distinct (daytime versus nighttime). FGF21 enhanced UCP1 protein content in brown adipose tissue (BAT); there was no measurable UCP1 protein in inguinal brite/beige adipose tissue. FGF21 increased energy expenditure through adrenergic stimulation of BAT. In mice lacking UCP1, FGF21 did not increase energy expenditure but increased body temperature by reducing heat loss, e.g. a reduced tail surface temperature. CONCLUSION The effect of FGF21 on body temperature is independent of UCP1 and can be achieved in the absence of any change in energy expenditure. Since elevated body temperature is a primary effect of FGF21 and can be achieved without increasing energy expenditure, only limited body weight-lowering effects of FGF21 may be expected.
Collapse
Affiliation(s)
- Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Haberlova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
38
|
Ozaki-Masuzawa Y, Kosaka H, Abiru R, Toda Y, Kawabata K, Nagata M, Hara S, Konishi M, Itoh N, Hosono T, Takenaka A, Seki T. The role of increased FGF21 in VLDL-TAG secretion and thermogenic gene expression in mice under protein malnutrition. Biosci Biotechnol Biochem 2021; 85:1104-1113. [PMID: 33751045 DOI: 10.1093/bbb/zbab030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/13/2021] [Indexed: 11/13/2022]
Abstract
Protein malnutrition promotes hepatic lipid accumulation in growing animals. In these animals, fibroblast growth factor 21 (FGF21) rapidly increases in the liver and circulation and plays a protective role in hepatic lipid accumulation. To investigate the mechanism by which FGF21 protects against liver lipid accumulation under protein malnutrition, we determined whether upregulated FGF21 promotes the thermogenesis or secretion of very-low-density lipoprotein (VLDL)-triacylglycerol (TAG). The results showed that protein malnutrition decreased VLDL-TAG secretion, but the upregulation of FGF21 did not oppose this effect. In addition, protein malnutrition increased expression of the thermogenic gene uncoupling protein 1 in inguinal white adipose and brown adipose tissue in an FGF21-dependent manner. However, surgically removing inguinal white adipose tissue did not affect liver triglyceride levels in protein-malnourished mice. These data suggest that FGF21 stimulates thermogenesis under protein malnutrition, but this is not the causative factor underlying the protective role of FGF21 against liver lipid accumulation.
Collapse
Affiliation(s)
- Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Hiroki Kosaka
- Department of Applied Life Science, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Rino Abiru
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yumiko Toda
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kota Kawabata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Mari Nagata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Shohei Hara
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Takashi Hosono
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.,Department of Applied Life Science, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Asako Takenaka
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Taiichiro Seki
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.,Department of Applied Life Science, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
39
|
Ryan CR, Finch MS, Dunham TC, Murphy JE, Roy BD, MacPherson REK. Creatine Monohydrate Supplementation Increases White Adipose Tissue Mitochondrial Markers in Male and Female Rats in a Depot Specific Manner. Nutrients 2021; 13:2406. [PMID: 34371916 PMCID: PMC8308802 DOI: 10.3390/nu13072406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
White adipose tissue (WAT) is a dynamic endocrine organ that can play a significant role in thermoregulation. WAT has the capacity to adopt structural and functional characteristics of the more metabolically active brown adipose tissue (BAT) and contribute to non-shivering thermogenesis under specific stimuli. Non-shivering thermogenesis was previously thought to be uncoupling protein 1 (UCP1)-dependent however, recent evidence suggests that UCP1-independent mechanisms of thermogenesis exist. Namely, futile creatine cycling has been identified as a contributor to WAT thermogenesis. The purpose of this study was to examine the efficacy of creatine supplementation to alter mitochondrial markers as well as adipocyte size and multilocularity in inguinal (iWAT), gonadal (gWAT), and BAT. Thirty-two male and female Sprague-Dawley rats were treated with varying doses (0 g/L, 2.5 g/L, 5 g/L, and 10 g/L) of creatine monohydrate for 8 weeks. We demonstrate that mitochondrial markers respond in a sex and depot specific manner. In iWAT, female rats displayed significant increases in COXIV, PDH-E1alpha, and cytochrome C protein content. Male rats exhibited gWAT specific increases in COXIV and PDH-E1alpha protein content. This study supports creatine supplementation as a potential method of UCP1-independant thermogenesis and highlights the importance of taking a sex-specific approach when examining the efficacy of browning therapeutics in future research.
Collapse
Affiliation(s)
- Chantal R. Ryan
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (C.R.R.); (M.S.F.)
| | - Michael S. Finch
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (C.R.R.); (M.S.F.)
| | - Tyler C. Dunham
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; (T.C.D.); (J.E.M.); (B.D.R.)
| | - Jensen E. Murphy
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; (T.C.D.); (J.E.M.); (B.D.R.)
| | - Brian D. Roy
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; (T.C.D.); (J.E.M.); (B.D.R.)
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (C.R.R.); (M.S.F.)
| |
Collapse
|
40
|
Krumm CS, Xu X, Bare CJ, Holman CD, Kersten S, Dow LE, Lee AH, Cohen DE. Inducible hepatic expression of CREBH mitigates diet-induced obesity, insulin resistance, and hepatic steatosis in mice. J Biol Chem 2021; 297:100815. [PMID: 34023388 PMCID: PMC8246594 DOI: 10.1016/j.jbc.2021.100815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic AMP-responsive element-binding protein H (CREBH encoded by Creb3l3) is a transcription factor that regulates the expression of genes that control lipid and glucose metabolism as well as inflammation. CREBH is upregulated in the liver under conditions of overnutrition, and mice globally lacking the gene (CREBH-/-) are highly susceptible to diet-induced obesity, insulin resistance, and hepatic steatosis. The net protective effects of CREBH have been attributed in large part to the activities of fibroblast growth factor (Fgf)-21 (Fgf21), a target gene that promotes weight loss, improves glucose homeostasis, and reduces hepatic lipid accumulation. To explore the possibility that activation of the CREBH-Fgf21 axis could ameliorate established effects of high-fat feeding, we generated an inducible transgenic hepatocyte-specific CREBH overexpression mouse model (Tg-rtTA). Acute overexpression of CREBH in livers of Tg-rtTA mice effectively reversed diet-induced obesity, insulin resistance, and hepatic steatosis. These changes were associated with increased activities of thermogenic brown and beige adipose tissues in Tg-rtTA mice, leading to reductions in fat mass, along with enhanced insulin sensitivity and glucose tolerance. Genetically silencing Fgf21 in Tg-rtTA mice abrogated the CREBH-mediated reductions in body weight loss, but only partially reversed the observed improvements in glucose metabolism. These findings reveal that the protective effects of CREBH activation may be leveraged to mitigate diet-induced obesity and associated metabolic abnormalities in both Fgf21-dependent and Fgf21-independent pathways.
Collapse
Affiliation(s)
- Christopher S Krumm
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Xu Xu
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Curtis J Bare
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Corey D Holman
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Lukas E Dow
- Division of Hematology & Medical Oncology, Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| | - Ann-Hwee Lee
- Department of Pathology & Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - David E Cohen
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
41
|
Moro J, Chaumontet C, Even PC, Blais A, Piedcoq J, Gaudichon C, Tomé D, Azzout-Marniche D. Severe protein deficiency induces hepatic expression and systemic level of FGF21 but inhibits its hypothalamic expression in growing rats. Sci Rep 2021; 11:12436. [PMID: 34127689 PMCID: PMC8203610 DOI: 10.1038/s41598-021-91274-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
To study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.
Collapse
Affiliation(s)
- Joanna Moro
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Catherine Chaumontet
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Patrick C. Even
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Anne Blais
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Julien Piedcoq
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Claire Gaudichon
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Daniel Tomé
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| | - Dalila Azzout-Marniche
- grid.460789.40000 0004 4910 6535UMR PNCA, AgroParisTech, INRAe, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France
| |
Collapse
|
42
|
Abu-Odeh M, Zhang Y, Reilly SM, Ebadat N, Keinan O, Valentine JM, Hafezi-Bakhtiari M, Ashayer H, Mamoun L, Zhou X, Zhang J, Yu RT, Dai Y, Liddle C, Downes M, Evans RM, Kliewer SA, Mangelsdorf DJ, Saltiel AR. FGF21 promotes thermogenic gene expression as an autocrine factor in adipocytes. Cell Rep 2021; 35:109331. [PMID: 34192547 PMCID: PMC8293281 DOI: 10.1016/j.celrep.2021.109331] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
The contribution of adipose-derived FGF21 to energy homeostasis is unclear. Here we show that browning of inguinal white adipose tissue (iWAT) by β-adrenergic agonists requires autocrine FGF21 signaling. Adipose-specific deletion of the FGF21 co-receptor β-Klotho renders mice unresponsive to β-adrenergic stimulation. In contrast, mice with liver-specific ablation of FGF21, which eliminates circulating FGF21, remain sensitive to β-adrenergic browning of iWAT. Concordantly, transgenic overexpression of FGF21 in adipocytes promotes browning in a β-Klotho-dependent manner without increasing circulating FGF21. Mechanistically, we show that β-adrenergic stimulation of thermogenic gene expression requires FGF21 in adipocytes to promote phosphorylation of phospholipase C-γ and mobilization of intracellular calcium. Moreover, we find that the β-adrenergic-dependent increase in circulating FGF21 occurs through an indirect mechanism in which fatty acids released by adipocyte lipolysis subsequently activate hepatic PPARα to increase FGF21 expression. These studies identify FGF21 as a cell-autonomous autocrine regulator of adipose tissue function. Abu-Odeh et al. demonstrate that autocrine action of FGF21 is a required second signal promoting thermogenic gene expression in catecholamine-stimulated adipocytes. Hepatic FGF21 secretions, secondary to catecholamine-stimulated adipocyte lipolysis, are dispensable for adipose tissue browning. These studies identify FGF21 as a cell-autonomous autocrine regulator of adipose tissue function.
Collapse
Affiliation(s)
- Mohammad Abu-Odeh
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Yuan Zhang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shannon M Reilly
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Nima Ebadat
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Omer Keinan
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Joseph M Valentine
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | | | - Hadeel Ashayer
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Lana Mamoun
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Xin Zhou
- Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA; Moores Cancer Center at UC San Diego Health, La Jolla, CA 92037, USA; Department of Bioengineering, University of California San Diego, San Diego, CA 92093; Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yang Dai
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead, NSW, Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Steven A Kliewer
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - David J Mangelsdorf
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute
| | - Alan R Saltiel
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
43
|
Adaptive and maladaptive roles for ChREBP in the liver and pancreatic islets. J Biol Chem 2021; 296:100623. [PMID: 33812993 PMCID: PMC8102921 DOI: 10.1016/j.jbc.2021.100623] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive sugar consumption is a contributor to the worldwide epidemic of cardiometabolic disease. Understanding mechanisms by which sugar is sensed and regulates metabolic processes may provide new opportunities to prevent and treat these epidemics. Carbohydrate Responsive-Element Binding Protein (ChREBP) is a sugar-sensing transcription factor that mediates genomic responses to changes in carbohydrate abundance in key metabolic tissues. Carbohydrate metabolites activate the canonical form of ChREBP, ChREBP-alpha, which stimulates production of a potent, constitutively active ChREBP isoform called ChREBP-beta. Carbohydrate metabolites and other metabolic signals may also regulate ChREBP activity via posttranslational modifications including phosphorylation, acetylation, and O-GlcNAcylation that can affect ChREBP’s cellular localization, stability, binding to cofactors, and transcriptional activity. In this review, we discuss mechanisms regulating ChREBP activity and highlight phenotypes and controversies in ChREBP gain- and loss-of-function genetic rodent models focused on the liver and pancreatic islets.
Collapse
|
44
|
Moure R, Cairó M, Morón-Ros S, Quesada-López T, Campderrós L, Cereijo R, Hernáez A, Villarroya F, Giralt M. Levels of β-klotho determine the thermogenic responsiveness of adipose tissues: involvement of the autocrine action of FGF21. Am J Physiol Endocrinol Metab 2021; 320:E822-E834. [PMID: 33615874 DOI: 10.1152/ajpendo.00270.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor-21 (FGF21) is a hormonal regulator of metabolism; it promotes glucose oxidation and the thermogenic capacity of adipose tissues. The levels of β-klotho (KLB), the co-receptor required for FGF21 action, are decreased in brown (BAT) and white (WAT) adipose tissues during obesity, diabetes, and lipodystrophy. Reduced β-klotho levels have been proposed to account for FGF21 resistance in these conditions. In this study, we explored whether downregulation of β-klotho affects metabolic regulation and the thermogenic responsiveness of adipose tissues using mice with total (KLB-KO) or partial (KLB-heterozygotes) ablation of β-klotho. We herein show that KLB gene dosage was inversely associated with adiposity in mice. Upon cold exposure, impaired browning of subcutaneous WAT and milder alterations in BAT were associated with reduced KLB gene dosage in mice. Cultured brown and beige adipocytes from mice with total or partial ablation of the KLB gene showed reduced thermogenic responsiveness to β3-adrenergic activation by treatment with CL316,243, indicating that these effects were cell-autonomous. Deficiency in FGF21 mimicked the KLB-reduction-induced impairment of thermogenic responsiveness in brown and beige adipocytes. These results indicate that the levels of KLB in adipose tissues determine their thermogenic capacity to respond to cold and/or adrenergic stimuli. Moreover, an autocrine action of FGF21 in brown and beige adipocytes may account for the ability of the KLB level to influence thermogenic responsiveness.NEW & NOTEWORTHY Reduced levels of KLB (the obligatory FGF21 co-receptor), as occurring in obesity and type 2 diabetes, reduce the thermogenic responsiveness of adipose tissues in cold-exposed mice. Impaired response to β3-adrenergic activation in brown and beige adipocytes with reduced KLB occurs in a cell-autonomous manner involving an autocrine action of FGF21.
Collapse
Affiliation(s)
- Ricardo Moure
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Montserrat Cairó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Samantha Morón-Ros
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Tania Quesada-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Laura Campderrós
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Rubén Cereijo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Alvaro Hernáez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
- Cardiovascular Risk, Nutrition and Aging Research Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Marta Giralt
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| |
Collapse
|
45
|
Ahnak deficiency attenuates high-fat diet-induced fatty liver in mice through FGF21 induction. Exp Mol Med 2021; 53:468-482. [PMID: 33785868 PMCID: PMC8080712 DOI: 10.1038/s12276-021-00573-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/01/2023] Open
Abstract
The AHNAK nucleoprotein has been determined to exert an anti-obesity effect in adipose tissue and further inhibit adipogenic differentiation. In this study, we examined the role of AHNAK in regulating hepatic lipid metabolism to prevent diet-induced fatty liver. Ahnak KO mice have reportedly exhibited reduced fat accumulation in the liver and decreased serum triglyceride (TG) levels when provided with either a normal chow diet or a high-fat diet (HFD). Gene expression profiling was used to identify novel factors that could be modulated by genetic manipulation of the Ahnak gene. The results revealed that fibroblast growth factor 21 (FGF21) was markedly increased in the livers of Ahnak KO mice compared with WT mice fed a HFD. Ahnak knockdown in hepatocytes reportedly prevented excessive lipid accumulation induced by palmitate treatment and was associated with increased secretion of FGF21 and the expression of genes involved in fatty acid oxidation, which are primarily downstream of PPARα. These results indicate that pronounced obesity and hepatic steatosis are attenuated in HFD-fed Ahnak KO mice. This may be attributed, in part, to the induction of FGF21 and regulation of lipid metabolism, which are considered to be involved in increased fatty acid oxidation and reduced lipogenesis in the liver. These findings suggest that targeting AHNAK may have beneficial implications in preventing or treating hepatic steatosis.
Collapse
|
46
|
Abstract
As a non-canonical fibroblast growth factor, fibroblast growth factor 21 (FGF21) functions as an endocrine hormone that signals to distinct targets throughout the body. Interest in therapeutic applications for FGF21 was initially sparked by its ability to correct metabolic dysfunction and decrease body weight associated with diabetes and obesity. More recently, new functions for FGF21 signalling have emerged, thus indicating that FGF21 is a dynamic molecule capable of regulating macronutrient preference and energy balance. Here, we highlight the major physiological and pharmacological effects of FGF21 related to nutrient and energy homeostasis and summarize current knowledge regarding FGF21’s pharmacodynamic properties. In addition, we provide new perspectives and highlight critical unanswered questions surrounding this unique metabolic messenger.
Collapse
Affiliation(s)
- Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA.
| |
Collapse
|
47
|
Adipose Tissue T Regulatory Cells: Implications for Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:125-139. [PMID: 33523447 DOI: 10.1007/978-981-15-6407-9_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity dramatically increases the risk of numerous conditions, including type 2 diabetes mellitus and other components of the metabolic syndrome. Pro-inflammatory changes that occur in adipose tissue are critical to the pathogenesis of these obesity-induced complications. Adipose tissue is one of the body's largest endocrine organs, and the cells that comprise the adipose tissue immunoenvironment secrete multiple factors (including adipokines and cytokines) that impact systemic metabolism. In particular, immunosuppressive regulatory T cells (Tregs) decline in obesity, partly in response to its complex interaction with adipocytes, and this decline contributes to disruption of the typical homeostasis observed in lean adipose tissue. Although the regulation of Treg differentiation, function, and enrichment is incompletely understood, factors including various cell-surface co-stimulatory molecules, certain lipid species, and cytokines such as PPARγ, adiponectin, and leptin are important mediators. It is also clear that there may be depot-specific differences in Tregs, rendering adipose tissue Tregs distinct from lymphoid or circulating Tregs, with implications on maintenance and functionality. While most of these findings are derived from studies in murine models, comparatively little is known about the human adipose tissue Treg signature, which requires further investigation.
Collapse
|
48
|
Kang SG, Choi MJ, Jung SB, Chung HK, Chang JY, Kim JT, Kang YE, Lee JH, Hong HJ, Jun SM, Ro HJ, Suh JM, Kim H, Auwerx J, Yi HS, Shong M. Differential roles of GDF15 and FGF21 in systemic metabolic adaptation to the mitochondrial integrated stress response. iScience 2021; 24:102181. [PMID: 33718833 PMCID: PMC7920832 DOI: 10.1016/j.isci.2021.102181] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Perturbation of mitochondrial proteostasis provokes cell autonomous and cell non-autonomous responses that contribute to homeostatic adaptation. Here, we demonstrate distinct metabolic effects of hepatic metabokines as cell non-autonomous factors in mice with mitochondrial OxPhos dysfunction. Liver-specific mitochondrial stress induced by a loss-of-function mutation in Crif1 (LKO) leads to aberrant oxidative phosphorylation and promotes the mitochondrial unfolded protein response. LKO mice are highly insulin sensitive and resistant to diet-induced obesity. The hepatocytes of LKO mice secrete large quantities of metabokines, including GDF15 and FGF21, which confer metabolic benefits. We evaluated the metabolic phenotypes of LKO mice with global deficiency of GDF15 or FGF21 and show that GDF15 regulates body and fat mass and prevents diet-induced hepatic steatosis, whereas FGF21 upregulates insulin sensitivity, energy expenditure, and thermogenesis in white adipose tissue. This study reveals that the mitochondrial integrated stress response (ISRmt) in liver mediates metabolic adaptation through hepatic metabokines.
Collapse
Affiliation(s)
- Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Hyun Jung Hong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea
| | - Sang Mi Jun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea.,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyun-Joo Ro
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea.,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Johan Auwerx
- Laboratory for Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Switzerland
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| |
Collapse
|
49
|
Lin W, Zhang T, Zhou Y, Zheng J, Lin Z. Advances in Biological Functions and Clinical Studies of FGF21. Diabetes Metab Syndr Obes 2021; 14:3281-3290. [PMID: 34295169 PMCID: PMC8291585 DOI: 10.2147/dmso.s317096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) regulates many crucial biological processes in human and mammals, particularly metabolic modulation and protective effect after injury. Therefore, determining complex regulatory mechanisms and elucidating the signaling pathway may greatly promote the prevention, diagnosis, and treatment of related injury and metabolic diseases. This review focused on the metabolic modulation and protective effect of FGF21 and summarized the molecular mechanisms and clinical research developments.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tianlei Zhang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Yiyang Zhou
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Jinyu Zheng
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
- Correspondence: Zhenlang Lin Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China Email
| |
Collapse
|
50
|
Badakhshi Y, Jin T. Current understanding and controversies on the clinical implications of fibroblast growth factor 21. Crit Rev Clin Lab Sci 2020; 58:311-328. [PMID: 33382006 DOI: 10.1080/10408363.2020.1864278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metabolic functions of the hepatic hormone fibroblast growth factor 21 (FGF21) have been recognized for more than a decade in studying the responses of human subjects and rodent models to nutritional stresses such as fasting, high-fat diet or ketogenic diet consumption, and ethanol intake. Our interest in the beneficial metabolic effects of FGF21 has risen due to its potential ability to serve as a therapeutic agent for various metabolic disorders, including type 2 diabetes, obesity, and fatty liver diseases, as well as its potential to act as a diagnostic or prognostic biomarker for metabolic and other disorders. Here, we briefly review the FGF21 gene and protein structures, its expression pattern, and cellular signaling cascades that mediate FGF21 production and function. We mainly focus on discussing experimental and clinical literature pertaining to FGF21 as a therapeutic agent. Furthermore, we present several lines of investigation, including a few studies conducted by our team, suggesting that FGF21 expression and function can be regulated by dietary polyphenol interventions. Finally, we discuss the literature debating FGF21 as a potential biomarker in various disorders.
Collapse
Affiliation(s)
- Yasaman Badakhshi
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|