1
|
Lee SH, Tonello R, Lee K, Roh J, Prudente AS, Kim YH, Park CK, Berta T. The Parkinson's disease DJ-1/PARK7 gene controls peripheral neuronal excitability and painful neuropathy. Brain 2025; 148:1639-1651. [PMID: 39486088 PMCID: PMC12073980 DOI: 10.1093/brain/awae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease with well-documented motor symptoms and less recognized, but significant, non-motor symptoms. These non-motor symptoms include prodromal pain and peripheral neuropathy, the causes of which are unknown. We investigated the role of DJ-1/PARK7, a Parkinson's disease-associated gene, in prodromal pain and peripheral neuropathy. Using Dj-1-deficient mice, we conducted comprehensive sensory tests, cutaneous staining, molecular analyses and electrophysiological studies on mouse and human primary sensory neurons from dorsal root ganglia. We found that these mice exhibited cold hypersensitivity, oxidative stress, and neuropathy of the cutaneous fibres of primary sensory neurons before any motor impairments were observed. Mechanistically, DJ-1 in primary sensory neurons regulated this hypersensitivity and neuropathy via TRPA1 signalling. Interestingly, we discovered that DJ-1 also plays a role in the progression of chemotherapy-induced peripheral neuropathies. Pain and mechanisms associated with these neuropathies were exacerbated in Dj-1-deficient mice but were significantly reduced by the pharmacological activation of Dj-1. Importantly, we also confirmed the expression of DJ-1 and its therapeutic potential in human primary sensory neurons. Thus, we uncover a peripheral mechanism of DJ-1 and propose that it might serve as a new target for developing therapeutic approaches for Parkinson's disease-linked and other painful neuropathies.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York, NY 10010, USA
| | - Kihwan Lee
- Tooth-Periodontium Complex Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Jueun Roh
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Kong D, Huang Y, Song B, Zhang X, Yuan J. Screening of Methylglyoxal Fluctuations in the Kidneys of Diabetic Nephropathy Mice Using a Europium(III) Complex-Based Dual-Mode Luminescence Probe. Anal Chem 2025; 97:5753-5761. [PMID: 40042103 DOI: 10.1021/acs.analchem.4c06973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The global surge in diabetes mellitus (DM) and its associated complications has prompted significant efforts to mitigate this growing public health challenge. Among these complications, diabetic nephropathy (DN) is of particular concern due to its high rates of morbidity and mortality. Extensive research has identified methylglyoxal (MGO) and MGO-derived advanced glycation end products (AGEs) as critical contributors to the pathogenesis of DN. Thus, there is a pressing need for precise and effective methodologies for monitoring MGO levels in complicated biological systems. Herein, we report the first Eu3+ complex-based dual-mode luminescence probe, DAPTTA-Eu3+, for accurate MGO detection using time-gated luminescence (TGL) and luminescence lifetime measurements. The probe initially exists in a "dark state" characterized by a relatively short luminescence lifetime. Upon interaction with MGO, intense Eu3+ emission is restored, accompanied by a significant increase in luminescence lifetime. These features enable DAPTTA-Eu3+ to serve as a reliable luminescence probe for accurate MGO quantification, utilizing TGL and the luminescence lifetime as complementary detection strategies. Moreover, the cell membrane-permeable derivative of the probe, AM-DAPTTA-Eu3+, was prepared and used for TGL imaging of both exogenous and endogenous MGO in live cells, which also allowed the MGO fluctuations in the kidneys of DN mice and the nephroprotective effects of metformin against DN to be assessed. Notably, by exploiting the differential expressions of renal MGO, the DN and cisplatin-induced acute kidney injury (AKI) were successfully distinguished. These results underscored the practicability of AM-DAPTTA-Eu3+ across varying kidney-related pathophysiological conditions, suggesting its high potential in clinical DN diagnosis.
Collapse
Affiliation(s)
- Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yundi Huang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xinyue Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
3
|
Martin MS, Jacob-Dolan JW, Pham VTT, Sjoblom NM, Scheck RA. The chemical language of protein glycation. Nat Chem Biol 2025; 21:324-336. [PMID: 38942948 PMCID: PMC12020258 DOI: 10.1038/s41589-024-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/10/2024] [Indexed: 06/30/2024]
Abstract
Glycation is a non-enzymatic post-translational modification (PTM) that is correlated with many diseases, including diabetes, cancer and age-related disorders. Although recent work points to the importance of glycation as a functional PTM, it remains an open question whether glycation has a causal role in cellular signaling and/or disease development. In this Review, we contextualize glycation as a specific mechanism of carbon stress and consolidate what is known about advanced glycation end-product (AGE) structures and mechanisms. We highlight the current understanding of glycation as a PTM, focusing on mechanisms for installing, removing or recognizing AGEs. Finally, we discuss challenges that have hampered a more complete understanding of the biological consequences of glycation. The development of tools for predicting, modulating, mimicking or capturing glycation will be essential for interpreting a post-translational glycation network. Therefore, continued insights into the chemistry of glycation will be necessary to advance understanding of glycation biology.
Collapse
|
4
|
Yuan R, Xu H, Wang M, Guo L, Yao Y, Zhang X, Wang X. Promoting the transition from pyroptosis to apoptosis in endothelial cells: a novel approach to alleviate methylglyoxal-induced vascular damage. J Transl Med 2025; 23:170. [PMID: 39930472 PMCID: PMC11809013 DOI: 10.1186/s12967-025-06195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/01/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Methylglyoxal (MGO)-induced cell death in vascular endothelial cells (VECs) plays a critical role in the progression of diabetic vascular complications (DVCs). Previous studies have shown that MGO can induce inflammatory pyroptosis, leading to VEC damage. However, the underlying mechanism remains unclear, and effective interventions are yet to be developed. METHODS Human umbilical vein endothelial cells (HUVECs) were used for in vitro experiments. Cell death modes were assessed through morphological observations. Mechanistic investigations were performed using immunofluorescence, flow cytometry, Western blotting, and ELISA. Inhibitors and adenoviruses were employed to validate the mechanisms. Vascular organoids in conjunction with AngioTool plug-in assays were used to evaluate VEC damage and angiogenic capacity. Mouse blood pressure was measured using the tail-cuff method, and vascular morphology was examined through hematoxylin and eosin (H&E) staining as well as immunofluorescence staining. Data were analyzed using the GraphPad Prism software. RESULTS Our study revealed that MGO induces pyroptosis in VECs via the Caspase3/gasdermin E (GSDME) pathway. Furthermore, the saponin monomer 13 of dwarf lilyturf tuber (DT-13), inhibited MGO-induced pyroptosis and promoted the generation of apoptotic bodies, facilitating the transition from pyroptosis to apoptosis. Mechanistically, DT-13 suppressed the Caspase3-mediated cleavage of GSDME and non-muscle myosin heavy chain IIA (NMMHC IIA), while increasing the phosphorylation of myosin light chain 2 (MLC2), which facilitated apoptotic body formation. Additionally, DT-13 was shown to mitigate VEC damage, inhibit angiogenesis, reduce vascular remodeling, and alleviate MGO-induced hypertension. CONCLUSIONS This study uncovers a novel mechanism through which MGO induces VEC damage, highlighting the therapeutic significance of the transition from pyroptosis to apoptosis in this process. These findings suggest potential therapeutic strategies for managing diabetic angiopathy. Furthermore, DT-13 emerges as a promising compound for therapeutic intervention, offering new possibilities for clinical applications.
Collapse
Affiliation(s)
- Ruqiang Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Hu Xu
- Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Mingqi Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Lina Guo
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yang Yao
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Xiaoru Zhang
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
5
|
Cely I, Blencowe M, Shu L, Diamante G, Ahn IS, Zhang G, LaGuardia J, Liu R, Saleem Z, Wang S, Davis R, Lusis AJ, Yang X. Glo1 reduction in mice results in age- and sex-dependent metabolic dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634754. [PMID: 39896461 PMCID: PMC11785252 DOI: 10.1101/2025.01.24.634754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Objectives Advanced glycation end products (AGEs) have been implicated as an important mediator of metabolic disorders including obesity, insulin resistance, and coronary artery disease. Glyoxalase 1 (Glo1) is a critical enzyme in the clearance of toxic dicarbonyl such as methylglyoxal, precursors of AGEs. The role of AGE-independent mechanisms that underly Glo1-induced metabolic disorders have yet to be elucidated. Methods We performed a longitudinal study of female and male Glo1 heterozygous knockdown (Glo1 +/- ) mice with ~50% gene expression and screened metabolic phenotypes such as body weight, adiposity, glycemic control and plasma lipids. We also evaluated atherosclerotic burden, AGE levels, and gene expression profiles across cardiometabolic tissues (liver, adipose, muscle, kidney and aorta) to identify pathway perturbations and potential regulatory genes of Glo1 actions. Results Partial loss of Glo1 resulted in obesity, hyperglycemia, dyslipidemia, and alterations in lipid metabolism in metabolic tissues in an age- and sex-dependent manner. Glo1 +/- females displayed altered glycemic control and increased plasma triglycerides, which aligned with significant perturbations in genes involved in adipogenesis, PPARg, insulin signaling, and fatty acid metabolism pathways in liver and adipose tissues. Conversely, Glo1 +/- males developed increased skeletal muscle mass and visceral adipose depots along with changes in lipid metabolism pathways. For both cohorts, most phenotypes manifested after 14 weeks of age. Evaluation of methylglyoxal-derived AGEs demonstrated changes in only male skeletal muscle but not in female tissues, which cannot explain the broad metabolic changes observed in Glo1 +/- mice. Transcriptional profiles suggest that altered glucose and lipid metabolism may be partially explained by alternative detoxification of methylglyoxal to metabolites such as pyruvate. Moreover, transcription factor (TF) analysis of the tissue-specific gene expression data identified TFs involved in cardiometabolic diseases such as Hnf4a (all tissues) and Arntl (aorta, liver, and kidney) which are female-biased regulators and whose targets are altered in response to Glo1 +/- . Conclusions Our results indicate that Glo1 reduction perturbs metabolic health and metabolic pathways in a sex- and age-dependent manner without significant changes in AGEs across metabolic tissues. Rather, tissue-specific gene expression analysis suggests that key transcription factors such as Hfn4a and Arntl as well as metabolite changes from alternative methylglyoxal detoxification such as pyruvate, likely contribute to metabolic dysregulation in Glo1 +/- mice.
Collapse
Affiliation(s)
- Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonnby LaGuardia
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruoshui Liu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zara Saleem
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard Davis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J. Lusis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA, United States of America
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Yang Z, Huang C, Huang W, Yan C, Wen X, Hu D, Xie H, He K, Tsang CK, Li K. Exacerbated ischemic brain damage in type 2 diabetes via methylglyoxal-mediated miR-148a-3p decline. BMC Med 2024; 22:557. [PMID: 39593147 PMCID: PMC11590287 DOI: 10.1186/s12916-024-03768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Although microvascular dysfunction is a widespread phenomenon in type 2 diabetes (T2D) and is recognized as a main cause of T2D-aggravated ischemic stroke injury, the underlying mechanisms by which T2D-mediated exacerbation of cerebral damage after ischemic stroke is still largely uncharacterized. Here, we found that methylglyoxal-mediated miR-148a-3p decline can trigger blood-brain barrier dysfunction, thereby exacerbating cerebrovascular injury in diabetic stroke. METHODS Using T2D models generated with streptozotocin plus a high-fat diet or db/db mice, and then inducing focal ischemic stroke through middle cerebral artery occlusion and reperfusion (MCAO/R), we established a diabetic stroke mouse model. RNA-sequencing was applied to identify the differentially expressed miRNAs in peri-cerebral infarction of diabetic stroke mice. RT-qPCR confirmed the potential miRNA in the plasma of ischemic stroke patients with or without T2D. Fluorescence in situ hybridization was used to image the localization of the miRNA. Brain pathology was analyzed using magnetic resonance imaging, laser-Doppler flowmetry, and transmission electron microscope in diabetic stroke mice. Immunofluorescence and immunoblotting were performed to elucidate the molecular mechanisms. RESULTS miR-148a-3p level was downregulated in the peri-infarct cortex of stroke mice and this downregulation was even more enhanced in diabetic stroke mice. A similar decrease in miR-148a-3p expression was also confirmed in the plasma of ischemic stroke patients with T2D compared to patients with ischemic stroke only. This miR-148a-3p downregulation intensified the severity of BBB damage, infarct size, and neurological function impairment caused by stroke. Notably, the reduction in miR-148a-3p levels was primarily triggered by methylglyoxal, a toxic byproduct of glucose metabolism commonly associated with T2D. Furthermore, methylglyoxal somewhat replicated the influence of T2D in exacerbating BBB damage and increasing infarct size caused by ischemia. Mechanistically, we found that downregulation of miR-148a-3p de-repressed SMAD2 and activated matrix metalloproteinase 9 signaling pathway, promoting blood-brain barrier impairment, and exacerbating the cerebral ischemic injury. CONCLUSIONS Blood-brain barrier damage caused by methylglyoxal-mediated miR-148a-3p downregulation may provide a novel target for the therapeutic intervention for the treatment of stroke patients with diabetes.
Collapse
Affiliation(s)
- Zhenguo Yang
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Cheng Huang
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Wenhui Huang
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chao Yan
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xueyi Wen
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Di Hu
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hesong Xie
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Kejing He
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chi Kwan Tsang
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Keshen Li
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
7
|
Klochkov V, Chan CM, Lin WW. Methylglyoxal: A Key Factor for Diabetic Retinopathy and Its Effects on Retinal Damage. Biomedicines 2024; 12:2512. [PMID: 39595078 PMCID: PMC11592103 DOI: 10.3390/biomedicines12112512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Diabetic retinopathy is the most common retinal vascular disease, affecting the retina's blood vessels and causing chronic inflammation, oxidative stress, and, ultimately, vision loss. Diabetes-induced elevated glucose levels increase glycolysis, the main methylglyoxal (MGO) formation pathway. MGO is a highly reactive dicarbonyl and the most rapid glycation compound to form endogenous advanced glycation end products (AGEs). MGO can act both intra- and extracellularly by glycating molecules and activating the receptor for AGEs (RAGE) pathway. Conclusions: This review summarizes the sources of MGO formation and its actions on various cell pathways in retinal cells such as oxidative stress, glycation, autophagy, ER stress, and mitochondrial dysfunction. Finally, the detoxification of MGO by glyoxalases is discussed.
Collapse
Affiliation(s)
- Vladlen Klochkov
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wan-Wan Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
8
|
Wu Y, Liu W, Jiang Y, Lv H, Lu Y, Zhang Y, Wang S. Long-Term Casein-Bound Lactulosyllysine Consumption Induced Nonobese Nonalcoholic Fatty Liver Disease by Promoting Carbonyl Glycation in the Liver of C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356723 DOI: 10.1021/acs.jafc.4c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lactulosyllysine (LL) is abundant in thermally processed dairy products, with its concentration increasing in response to more intense heat treatment. However, there are limited studies on the potential harmful effects of LL on human health. This study investigated the negative impact of casein-bound LL on liver health by feeding healthy C57BL/6 mice diets containing varying levels of casein-bound LL. After 16 weeks of LL diet administration, mice exhibited a nonobese nonalcoholic fatty liver disease (NONAFLD) phenotype, characterized by reduced body weight gain, hypolipidemia, and intrahepatic lipid accumulation. Nontarget metabolomic analysis showed that casein-bound LL induced alterations in plasma levels of compounds associated with lipid degradation. Mechanistically, casein-bound LL may impair the function of 5'-adenosine monophosphate-activated protein kinase and apolipoprotein B100 by inducing dicarbonyl stress, thereby promoting carbonyl glycation in the liver. Consequently, the long-term consumption of LL-rich dairy products may be a contributing factor to the risk of developing NONAFLD.
Collapse
Affiliation(s)
- Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Weiye Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yu Jiang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Miranda ER, Varshney P, Mazo CE, Shadiow J, Ludlow AT, Haus JM. Loss of NAMPT and SIRT2 but not SIRT1 attenuate GLO1 expression and activity in human skeletal muscle. Redox Biol 2024; 75:103300. [PMID: 39142179 PMCID: PMC11367650 DOI: 10.1016/j.redox.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Glyoxalase I (GLO1) is the primary enzyme for detoxification of the reactive dicarbonyl methylglyoxal (MG). Loss of GLO1 promotes accumulation of MG resulting in a recapitulation of diabetic phenotypes. We previously demonstrated attenuated GLO1 protein in skeletal muscle from individuals with type 2 diabetes (T2D). However, whether GLO1 attenuation occurs prior to T2D and the mechanisms regulating GLO1 abundance in skeletal muscle are unknown. GLO1 expression and activity were determined in skeletal muscle tissue biopsies from 15 lean healthy individuals (LH, BMI: 22.4 ± 0.7) and 5 individuals with obesity (OB, BMI: 32.4 ± 1.3). GLO1 protein was attenuated by 26 ± 0.3 % in OB compared to LH skeletal muscle (p = 0.019). Similar reductions for GLO1 activity were observed (p = 0.102). NRF2 and Keap1 expression were equivocal between groups despite a 2-fold elevation in GLO1 transcripts in OB skeletal muscle (p = 0.008). GLO1 knock-down (KD) in human immortalized myotubes promoted downregulation of muscle contraction and organization proteins indicating the importance of GLO1 expression for skeletal muscle function. SIRT1 KD had no effect on GLO1 protein or activity whereas, SIRT2 KD attenuated GLO1 protein by 28 ± 0.29 % (p < 0.0001) and GLO1 activity by 42 ± 0.12 % (p = 0.0150). KD of NAMPT also resulted in attenuation of GLO1 protein (28 ± 0.069 %, p = 0.003), activity (67 ± 0.09 %, p = 0.011) and transcripts (50 ± 0.13 %, p = 0.049). Neither the provision of the NAD+ precursors NR nor NMN were able to prevent this attenuation in GLO1 protein. However, NR did augment GLO1 specific activity (p = 0.022 vs NAMPT KD). These perturbations did not alter GLO1 acetylation status. SIRT1, SIRT2 and NAMPT protein levels were all equivocal in skeletal muscle tissue biopsies from individuals with obesity and lean individuals. These data implicate NAD+-dependent regulation of GLO1 in skeletal muscle independent of altered GLO1 acetylation and provide rationale for exploring NR supplementation to rescue attenuated GLO1 abundance and activity in conditions such as obesity.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Pallavi Varshney
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Corey E Mazo
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Akiki P, Delamotte P, Montagne J. Lipid Metabolism in Relation to Carbohydrate Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39192070 DOI: 10.1007/5584_2024_821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Carbohydrates and lipids integrate into a complex metabolic network that is essential to maintain homeostasis. In insects, as in most metazoans, dietary carbohydrates are taken up as monosaccharides whose excess is toxic, even at relatively low concentrations. To cope with this toxicity, monosaccharides are stored either as glycogen or neutral lipids, the latter constituting a quasi-unlimited energy store. Breakdown of these stores in response to energy demand depends on insect species and on several physiological parameters. In this chapter, we review the multiple metabolic pathways and strategies linking carbohydrates and lipids that insects utilize to respond to nutrient availability, food scarcity or physiological activities.
Collapse
Affiliation(s)
- Perla Akiki
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Vizuete AFK, Gonçalves CA. Is Methylglyoxal a Potential Biomarker for the Warburg Effect Induced by the Lipopolysaccharide Neuroinflammation Model? Neurochem Res 2024; 49:1823-1837. [PMID: 38727985 DOI: 10.1007/s11064-024-04142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024]
Abstract
Methylglyoxal (MG) is considered a classical biomarker of diabetes mellitus and its comorbidities. However, a role for this compound in exacerbated immune responses, such as septicemia, is being increasingly observed and requires clarification, particularly in the context of neuroinflammatory responses. Herein, we used two different approaches (in vivo and acute hippocampal slice models) to investigate MG as a biomarker of neuroinflammation and the neuroimmunometabolic shift to glycolysis in lipopolysaccharide (LPS) inflammation models. Our data reinforce the hypothesis that LPS-induced neuroinflammation stimulates the cerebral innate immune response by increasing IL-1β, a classical pro-inflammatory cytokine, and the astrocyte reactive response, via elevating S100B secretion and GFAP levels. Acute neuroinflammation promotes an early neuroimmunometabolic shift to glycolysis by elevating glucose uptake, lactate release, PFK1, and PK activities. We observed high serum and cerebral MG levels, in association with a reduction in glyoxalase 1 detoxification activity, and a close correlation between serum and hippocampus MG levels with the systemic and neuroinflammatory responses to LPS. Findings strongly suggest a role for MG in immune responses.
Collapse
Affiliation(s)
- Adriana Fernanda Kuckartz Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Ramio Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Ramio Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Vizuete AFK, Fróes F, Seady M, Hansen F, Ligabue-Braun R, Gonçalves CA, Souza DO. A Mechanism of Action of Metformin in the Brain: Prevention of Methylglyoxal-Induced Glutamatergic Impairment in Acute Hippocampal Slices. Mol Neurobiol 2024; 61:3223-3239. [PMID: 37980327 DOI: 10.1007/s12035-023-03774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Metformin, a biguanide compound (N-1,1-dimethylbiguanide), is widely prescribed for diabetes mellitus type 2 (T2D) treatment. It also presents a plethora of properties, such as anti-oxidant, anti-inflammatory, anti-apoptosis, anti-tumorigenic, and anti-AGE formation activity. However, the precise mechanism of action of metformin in the central nervous system (CNS) needs to be clarified. Herein, we investigated the neuroprotective role of metformin in acute hippocampal slices exposed to methylglyoxal (MG), a highly reactive dicarbonyl compound and a key molecule in T2D developmental pathophysiology. Metformin protected acute hippocampal slices from MG-induced glutamatergic neurotoxicity and neuroinflammation by reducing IL-1β synthesis and secretion and RAGE protein expression. The drug also improved astrocyte function, particularly with regard to the glutamatergic system, increasing glutamate uptake. Moreover, we observed a direct effect of metformin on glutamate transporters, where the compound prevented glycation, by facilitating enzymatic phosphorylation close to Lys residues, suggesting a new neuroprotective role of metformin via PKC ζ in preventing dysfunction in glutamatergic system induced by MG.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Fernanda Fróes
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre, 90050-130, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo O Souza
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
13
|
Dobariya P, Xie W, Rao SP, Xie J, Seelig DM, Vince R, Lee MK, More SS. Deletion of Glyoxalase 1 Exacerbates Acetaminophen-Induced Hepatotoxicity in Mice. Antioxidants (Basel) 2024; 13:648. [PMID: 38929087 PMCID: PMC11200933 DOI: 10.3390/antiox13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Acetaminophen (APAP) overdose triggers a cascade of intracellular oxidative stress events, culminating in acute liver injury. The clinically used antidote, N-acetylcysteine (NAC), has a narrow therapeutic window, and early treatment is essential for a satisfactory therapeutic outcome. For more versatile therapies that can be effective even at late presentation, the intricacies of APAP-induced hepatotoxicity must be better understood. Accumulation of advanced glycation end products (AGEs) and the consequent activation of the receptor for AGEs (RAGE) are considered one of the key mechanistic features of APAP toxicity. Glyoxalase 1 (Glo-1) regulates AGE formation by limiting the levels of methylglyoxal (MEG). In this study, we studied the relevance of Glo-1 in the APAP-mediated activation of RAGE and downstream cell death cascades. Constitutive Glo-1-knockout mice (GKO) and a cofactor of Glo-1, ψ-GSH, were used as tools. Our findings showed elevated oxidative stress resulting from the activation of RAGE and hepatocyte necrosis through steatosis in GKO mice treated with high-dose APAP compared to wild-type controls. A unique feature of the hepatic necrosis in GKO mice was the appearance of microvesicular steatosis as a result of centrilobular necrosis, rather than the inflammation seen in the wild type. The GSH surrogate and general antioxidant ψ-GSH alleviated APAP toxicity irrespective of the Glo-1 status, suggesting that oxidative stress is the primary driver of APAP toxicity. Overall, the exacerbation of APAP hepatotoxicity in GKO mice suggests the importance of this enzyme system in antioxidant defense against the initial stages of APAP overdose.
Collapse
Affiliation(s)
- Prakashkumar Dobariya
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Swetha Pavani Rao
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Davis M. Seelig
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, MN 55108, USA;
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Michael K. Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA;
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| |
Collapse
|
14
|
Zambre S, Bangar N, Mistry A, Katarmal P, Khan MS, Ahmed I, Tupe R, Roy B. Aldosterone, Methylglyoxal, and Glycated Albumin Interaction with Macrophage Cells Affects Their Viability, Activation, and Differentiation. ACS OMEGA 2024; 9:11848-11859. [PMID: 38497023 PMCID: PMC10938338 DOI: 10.1021/acsomega.3c09420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The inflammatory response in diabetes is strongly correlated with increasing amounts of advanced glycation end products (AGEs), methylglyoxal (MGO), aldosterone (Aldo), and activation of macrophages. Aldo is known to be associated with increased pro-inflammatory responses in general, but its significance in inflammatory responses under glycated circumstances has yet to be understood. In the current work, the aim of our study was to study the macrophage immune response in the presence of AGEs, MGO, and Aldo to comprehend their combined impact on diabetes-associated complications. METHODS AND RESULTS The viability of macrophages upon treatment with glycated HSA (Gly-HSA) promoted cell growth as the concentration increased from 100 to 500 μg/mL, whereas MGO at a high concentration (≥300 μM) significantly hampered cell growth. At lower concentrations (0.5-5 nM), Aldo strongly promoted cell growth, whereas at higher concentrations (50 nM), it was seen to inhibit growth when used for cell treatment for 24 h. Aldo had no effect on MGO-induced cell growth inhibition after 24 h of treatment. However, compared to MGO or Aldo treatment alone, an additional decrease in viability could be seen after 48 h of treatment with a combination of MGO and Aldo. Treatment with Aldo and MGO induced expression of TNF-α independently and when combined. However, when combined, Aldo and MGO significantly suppressed the expression of TGF-β. Aldo, Gly-HSA, and MGO strongly induced the transcription of NF-κB and RAGE mRNA and, as expected, also promoted the formation of reactive oxygen species. Also, by inducing iNOS and MHC-II and suppressing CD206 transcript expression, Gly-HSA strongly favored the differentiation of macrophages into M1 type (pro-inflammatory). On the other hand, the combination of Aldo and MGO strongly induced the expression of MHC-II, CD206, and ARG1 (M2 macrophage marker). These findings suggest that Gly-HSA, MGO, and Aldo differently influence macrophage survival, activation, and differentiation. CONCLUSIONS Overall, this study gives an insight into the effects of glycated protein and MGO in the presence of Aldo on macrophage survival, activation, differentiation, and inflammatory response.
Collapse
Affiliation(s)
- Saee Zambre
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Nilima Bangar
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Armaan Mistry
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Poonam Katarmal
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Mohd Shahnawaz Khan
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Irshad Ahmed
- Department
of Biochemistry and Structural Biology, School of Medicine, UT Health Science Center, San Antonio, Texas 78229, United States
| | - Rashmi Tupe
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Bishnudeo Roy
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| |
Collapse
|
15
|
Pang N, Laiva AL, Sulaiman NZ, Das P, O’Brien FJ, Keogh MB. Dual Glyoxalase-1 and β-Klotho Gene-Activated Scaffold Reduces Methylglyoxal and Reprograms Diabetic Adipose-Derived Stem Cells: Prospects in Improved Wound Healing. Pharmaceutics 2024; 16:265. [PMID: 38399319 PMCID: PMC10892312 DOI: 10.3390/pharmaceutics16020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Tissue engineering approaches aim to provide biocompatible scaffold supports that allow healing to progress often in healthy tissue. In diabetic foot ulcers (DFUs), hyperglycemia impedes ulcer regeneration, due to complications involving accumulations of cellular methylglyoxal (MG), a key component of oxidated stress and premature cellular aging which further limits repair. In this study, we aim to reduce MG using a collagen-chondroitin sulfate gene-activated scaffold (GAS) containing the glyoxalase-1 gene (GLO-1) to scavenge MG and anti-fibrotic β-klotho to restore stem cell activity in diabetic adipose-derived stem cells (dADSCs). dADSCs were cultured on dual GAS constructs for 21 days in high-glucose media in vitro. Our results show that dADSCs cultured on dual GAS significantly reduced MG accumulation (-84%; p < 0.05) compared to the gene-free controls. Similar reductions in profibrotic proteins α-smooth muscle actin (-65%) and fibronectin (-76%; p < 0.05) were identified in dual GAS groups. Similar findings were observed in the expression of pro-scarring structural proteins collagen I (-62%), collagen IV (-70%) and collagen VII (-86%). A non-significant decrease in the expression of basement membrane protein E-cadherin (-59%) was noted; however, the dual GAS showed a significant increase in the expression of laminin (+300%). We conclude that dual GAS-containing Glo-1 and β-klotho had a synergistic MG detoxification and anti-fibrotic role in dADSC's. This may be beneficial to provide better wound healing in DFUs by controlling the diabetic environment and rejuvenating the diabetic stem cells towards improved wound healing.
Collapse
Affiliation(s)
- Nadia Pang
- Tissue Engineering Research Group—Bahrain, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (N.P.); (N.Z.S.); (P.D.)
| | - Ashang L. Laiva
- Tissue Engineering Research Group—Bahrain, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (N.P.); (N.Z.S.); (P.D.)
| | - Noof Z. Sulaiman
- Tissue Engineering Research Group—Bahrain, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (N.P.); (N.Z.S.); (P.D.)
| | - Priya Das
- Tissue Engineering Research Group—Bahrain, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (N.P.); (N.Z.S.); (P.D.)
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Michael B. Keogh
- Tissue Engineering Research Group—Bahrain, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (N.P.); (N.Z.S.); (P.D.)
| |
Collapse
|
16
|
Lee D, Yoon E, Ham SJ, Lee K, Jang H, Woo D, Lee DH, Kim S, Choi S, Chung J. Diabetic sensory neuropathy and insulin resistance are induced by loss of UCHL1 in Drosophila. Nat Commun 2024; 15:468. [PMID: 38212312 PMCID: PMC10784524 DOI: 10.1038/s41467-024-44747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Diabetic sensory neuropathy (DSN) is one of the most common complications of type 2 diabetes (T2D), however the molecular mechanistic association between T2D and DSN remains elusive. Here we identify ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinase highly expressed in neurons, as a key molecule underlying T2D and DSN. Genetic ablation of UCHL1 leads to neuronal insulin resistance and T2D-related symptoms in Drosophila. Furthermore, loss of UCHL1 induces DSN-like phenotypes, including numbness to external noxious stimuli and axonal degeneration of sensory neurons in flies' legs. Conversely, UCHL1 overexpression improves DSN-like defects of T2D model flies. UCHL1 governs insulin signaling by deubiquitinating insulin receptor substrate 1 (IRS1) and antagonizes an E3 ligase of IRS1, Cullin 1 (CUL1). Consistent with these results, genetic and pharmacological suppression of CUL1 activity rescues T2D- and DSN-associated phenotypes. Therefore, our findings suggest a complete set of genetic factors explaining T2D and DSN, together with potential remedies for the diseases.
Collapse
Affiliation(s)
- Daewon Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunju Yoon
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su Jin Ham
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kunwoo Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hansaem Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Daihn Woo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da Hyun Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sehyeon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sekyu Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Jongkyeong Chung
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Miranda ER, Haus JM. Glyoxalase I is a novel target for the prevention of metabolic derangement. Pharmacol Ther 2023; 250:108524. [PMID: 37722607 DOI: 10.1016/j.pharmthera.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Obesity prevalence in the US has nearly tripled since 1975 and a parallel increase in prevalence of type 2 diabetes (T2D). Obesity promotes a myriad of metabolic derangements with insulin resistance (IR) being perhaps the most responsible for the development of T2D and other related diseases such as cardiovascular disease. The precarious nature of IR development is such that it provides a valuable target for the prevention of further disease development. However, the mechanisms driving IR are numerous and complex making the development of viable interventions difficult. The development of metabolic derangement in the context of obesity promotes accumulation of reactive metabolites such as the reactive alpha-dicarbonyl methylglyoxal (MG). MG accumulation has long been appreciated as a marker of disease progression in patients with T2D as well as the development of diabetic complications. However, recent evidence suggests that the accumulation of MG occurs with obesity prior to T2D onset and may be a primary driving factor for the development of IR and T2D. Further, emerging evidence also suggests that this accumulation of MG with obesity may be a result in a loss of MG detoxifying capacity of glyoxalase I. In this review, we will discuss the evidence that posits MG accumulation because of GLO1 attenuation is a novel target mechanism of the development of metabolic derangement. In addition, we will also explore the regulation of GLO1 and the strategies that have been investigated so far to target GLO1 regulation for the prevention and treatment of metabolic derangement.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
18
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
19
|
Kim HS, Parker DJ, Hardiman MM, Munkácsy E, Jiang N, Rogers AN, Bai Y, Brent C, Mobley JA, Austad SN, Pickering AM. Early-adulthood spike in protein translation drives aging via juvenile hormone/germline signaling. Nat Commun 2023; 14:5021. [PMID: 37596266 PMCID: PMC10439225 DOI: 10.1038/s41467-023-40618-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Protein translation (PT) declines with age in invertebrates, rodents, and humans. It has been assumed that elevated PT at young ages is beneficial to health and PT ends up dropping as a passive byproduct of aging. In Drosophila, we show that a transient elevation in PT during early-adulthood exerts long-lasting negative impacts on aging trajectories and proteostasis in later-life. Blocking the early-life PT elevation robustly improves life-/health-span and prevents age-related protein aggregation, whereas transiently inducing an early-life PT surge in long-lived fly strains abolishes their longevity/proteostasis benefits. The early-life PT elevation triggers proteostatic dysfunction, silences stress responses, and drives age-related functional decline via juvenile hormone-lipid transfer protein axis and germline signaling. Our findings suggest that PT is adaptively suppressed after early-adulthood, alleviating later-life proteostatic burden, slowing down age-related functional decline, and improving lifespan. Our work provides a theoretical framework for understanding how lifetime PT dynamics shape future aging trajectories.
Collapse
Affiliation(s)
- Harper S Kim
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Danitra J Parker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, 77030, USA
| | - Madison M Hardiman
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Nisi Jiang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Aric N Rogers
- MDI Biological Laboratory, Bar Harbor, ME, 04672, USA
| | - Yidong Bai
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Colin Brent
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Andrew M Pickering
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, 77030, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
20
|
Fu ZW, Feng YR, Gao X, Ding F, Li JH, Yuan TT, Lu YT. Salt stress-induced chloroplastic hydrogen peroxide stimulates pdTPI sulfenylation and methylglyoxal accumulation. THE PLANT CELL 2023; 35:1593-1616. [PMID: 36695476 PMCID: PMC10118271 DOI: 10.1093/plcell/koad019] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 06/17/2023]
Abstract
High salinity, an adverse environmental factor affecting about 20% of irrigated arable land worldwide, inhibits plant growth and development by causing oxidative stress, damaging cellular components, and disturbing global metabolism. However, whether and how reactive oxygen species disturb the metabolism of salt-stressed plants remain elusive. Here, we report that salt-induced hydrogen peroxide (H2O2) inhibits the activity of plastid triose phosphate isomerase (pdTPI) to promote methylglyoxal (MG) accumulation and stimulates the sulfenylation of pdTPI at cysteine 74. We also show that MG is a key factor limiting the plant growth, as a decrease in MG levels completely rescued the stunted growth and repressed salt stress tolerance of the pdtpi mutant. Furthermore, targeting CATALASE 2 into chloroplasts to prevent salt-induced overaccumulation of H2O2 conferred salt stress tolerance, revealing a role for chloroplastic H2O2 in salt-caused plant damage. In addition, we demonstrate that the H2O2-mediated accumulation of MG in turn induces H2O2 production, thus forming a regulatory loop that further inhibits the pdTPI activity in salt-stressed plants. Our findings, therefore, illustrate how salt stress induces MG production to inhibit the plant growth.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yu-Rui Feng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Feng Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Jian-Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Maasen K, Eussen SJ, Dagnelie PC, Stehouwer CDA, Opperhuizen A, van Greevenbroek MM, Schalkwijk CG. Habitual intake of dietary dicarbonyls is associated with greater insulin sensitivity and lower prevalence of type 2 diabetes: The Maastricht Study. Am J Clin Nutr 2023:S0002-9165(23)46840-2. [PMID: 37054886 DOI: 10.1016/j.ajcnut.2023.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/11/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Dicarbonyls are reactive precursors of advanced glycation endproducts (AGEs). Dicarbonyls are formed endogenously, but also during food processing. Circulating dicarbonyls are positively associated with insulin resistance and type 2 diabetes, but consequences of dietary dicarbonyls are unknown. OBJECTIVE To examine the associations of dietary intake of dicarbonyls with insulin sensitivity, β-cell function, and prevalence of prediabetes or type 2 diabetes. METHODS In 6282 participants (60±9 years, 50% men, 23% type 2 diabetes (oversampled)) of the population-based cohort The Maastricht Study, we estimated habitual intake of the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) using Food Frequency Questionnaires. Insulin sensitivity (n=2390), β-cell function (n=2336) and glucose metabolism status (n=6282) were measured by a seven-point oral glucose tolerance test. Insulin sensitivity was assessed as the Matsuda index. Additionally, insulin sensitivity was measured as HOMA2-IR (n=2611). β-cell function was assessed as C-peptidogenic index, overall insulin secretion, glucose sensitivity, potentiation factor, and rate sensitivity. Cross-sectional associations of dietary dicarbonyls with these outcomes were investigated using linear or logistic regression adjusting for age, sex, cardio-metabolic risk-factors, lifestyle, and dietary factors. RESULTS Higher dietary MGO and 3-DG intakes were associated with greater insulin sensitivity after full adjustment, indicated by both a higher Matsuda index (MGO: Std. β [95% CI]=0.08 [0.04, 0.12] and 3-DG: 0.09 [0.05, 0.13]) and a lower HOMA2-IR (MGO: Std. β=-0.05 [-0.09, -0.01] and 3-DG: -0.04 [-0.08, -0.01]). Moreover, higher MGO and 3-DG intakes were associated with lower prevalence of newly diagnosed type 2 diabetes (OR [95%CI]=0.78 [0.65, 0.93] and 0.81 [0.66, 0.99]). There were no consistent associations of MGO, GO, and 3-DG intakes with β-cell function. CONCLUSIONS Higher habitual consumption of the dicarbonyls MGO and 3-DG was associated with better insulin sensitivity and with lower prevalence of type 2 diabetes, after excluding individuals with known diabetes. These novel observations warrant further exploration in prospective cohorts and intervention studies.
Collapse
Affiliation(s)
- Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Simone Jpm Eussen
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Coen DA Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands; Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Marleen Mj van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
22
|
Huang YN, Chen SY, Lin JA, Chiang IC, Yen GC. Phyllanthus emblica L. extract alleviates leptin resistance and lipid accumulation by inhibiting methylglyoxal production. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
23
|
Dube G, Tiamiou A, Bizet M, Boumahd Y, Gasmi I, Crake R, Bellier J, Nokin MJ, Calonne E, Deplus R, Wissocq T, Peulen O, Castronovo V, Fuks F, Bellahcène A. Methylglyoxal: a novel upstream regulator of DNA methylation. J Exp Clin Cancer Res 2023; 42:78. [PMID: 36998085 PMCID: PMC10064647 DOI: 10.1186/s13046-023-02637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/02/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Aerobic glycolysis, also known as the Warburg effect, is predominantly upregulated in a variety of solid tumors, including breast cancer. We have previously reported that methylglyoxal (MG), a very reactive by-product of glycolysis, unexpectedly enhanced the metastatic potential in triple negative breast cancer (TNBC) cells. MG and MG-derived glycation products have been associated with various diseases, such as diabetes, neurodegenerative disorders, and cancer. Glyoxalase 1 (GLO1) exerts an anti-glycation defense by detoxifying MG to D-lactate. METHODS Here, we used our validated model consisting of stable GLO1 depletion to induce MG stress in TNBC cells. Using genome-scale DNA methylation analysis, we report that this condition resulted in DNA hypermethylation in TNBC cells and xenografts. RESULTS GLO1-depleted breast cancer cells showed elevated expression of DNMT3B methyltransferase and significant loss of metastasis-related tumor suppressor genes, as assessed using integrated analysis of methylome and transcriptome data. Interestingly, MG scavengers revealed to be as potent as typical DNA demethylating agents at triggering the re-expression of representative silenced genes. Importantly, we delineated an epigenomic MG signature that effectively stratified TNBC patients based on survival. CONCLUSION This study emphasizes the importance of MG oncometabolite, occurring downstream of the Warburg effect, as a novel epigenetic regulator and proposes MG scavengers to reverse altered patterns of gene expression in TNBC.
Collapse
Affiliation(s)
- Gaurav Dube
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Assia Tiamiou
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yasmine Boumahd
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Imène Gasmi
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Rebekah Crake
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tom Wissocq
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO (Walloon Excellence in Lifesciences & Biotechnology), Brussels, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
24
|
Abstract
Diabetes mellitus is the ninth leading cause of mortality worldwide. It is a complex disease that manifests as chronic hyperglycemia. Glucose exposure causes biochemical changes at the proteome level as reflected in accumulation of glycated proteins. A prominent example is hemoglobin A1c (HbA1c), a glycated protein widely accepted as a diabetic indicator. Another emerging biomarker is glycated albumin which has demonstrated utility in situations where HbA1c cannot be used. Other proteins undergo glycation as well thus impacting cellular function, transport and immune response. Accordingly, these glycated counterparts may serve as predictors for diabetic complications and thus warrant further inquiry. Fortunately, modern proteomics has provided unique analytic capability to enable improved and more comprehensive exploration of glycating agents and glycated proteins. This review broadly covers topics from epidemiology of diabetes to modern analytical tools such as mass spectrometry to facilitate a better understanding of diabetes pathophysiology. This serves as an attempt to connect clinically relevant questions with findings of recent proteomic studies to suggest future avenues of diabetes research.
Collapse
Affiliation(s)
- Aleks Shin
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shawn Connolly
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kuanysh Kabytaev
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
25
|
de Faria Lopes L, Jandova J, Justiniano R, Perer J, Baptista MS, Wondrak GT. The Glycolysis-derived α-Dicarbonyl Metabolite Methylglyoxal is a UVA-photosensitizer Causing the Photooxidative Elimination of HaCaT Keratinocytes with Induction of Oxidative and Proteotoxic Stress Response Gene Expression †. Photochem Photobiol 2023; 99:826-834. [PMID: 36109156 PMCID: PMC10321145 DOI: 10.1111/php.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/28/2022] [Indexed: 12/01/2022]
Abstract
Cellular oxidative stress contributes to solar ultraviolet (UV) radiation-induced skin photoaging and photocarcinogenesis. Light-driven electron and energy transfer reactions involving non-DNA chromophores are a major source of reactive oxygen species (ROS) in skin, and the molecular identity of numerous endogenous chromophores acting as UV-photosensitizers has been explored. Methylglyoxal (MG), a glycolytic byproduct bearing a UV-active α-dicarbonyl-chromophore, is generated under metabolic conditions of increased glycolytic flux, associated with posttranslational protein adduction in human tissue. Here, we undertook a photophysical and photochemical characterization of MG substantiating its fluorescence properties (Stokes shift), phosphorescence lifetime, and quantum yield of singlet oxygen (1 O2 ) formation. Strikingly, upon UV-excitation (290 nm), a clear emission (around 490 nm) was observed (phosphorescence-lifetime: 224.2 milliseconds). At micromolar concentrations, MG acts as a UVA-photosensitizer targeting human HaCaT-keratinocytes inducing photooxidative stress and caspase-dependent cell death substantiated by zVADfmk-rescue and Alexa-488 caspase-3 flow cytometry. Transcriptomic analysis indicated that MG (photoexcited by noncytotoxic doses of UVA) elicits expression changes not observable upon isolated MG- or UVA-treatment, with upregulation of the proteotoxic (CRYAB, HSPA6) and oxidative (HMOX1) stress response. Given the metabolic origin of MG and its role in human pathology, future investigations should address the potential involvement of MG-photosensitizer activity in human skin photodamage.
Collapse
Affiliation(s)
- Lohanna de Faria Lopes
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jana Jandova
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Rebecca Justiniano
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Jessica Perer
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Maurício S. Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
26
|
Hu Z, Li C, Wu T, Zhou J, Han L, Liu J, Qiang S, Zhao W, Li X, Liu X, Li J, Chen X. Sulfathiazole treats type 2 diabetes by restoring metabolism through activating CYP19A1. Biochim Biophys Acta Gen Subj 2023; 1867:130303. [PMID: 36627088 DOI: 10.1016/j.bbagen.2023.130303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Globally, diabetes mellitus has been a major epidemic bringing metabolic and endocrine disorders. Currently, 1 in 11 adults suffers from diabetes mellitus, among the patients >90% contract type 2 diabetes mellitus (T2DM). Therefore, it is urgent to develop new drugs that effectively prevent and treat type 2 diabetes through new targets. With high-throughput screening, we found that sulfathiazole decreased the blood glucose and improved glucose metabolism in T2DM mice. Notably, we discovered that sulfathiazole treated T2DM by activating CYP19A1 protein to synthesize estrogen. Collectively, sulfathiazole along with CYP19A1 target bring new promise for the better therapy of T2DM.
Collapse
Affiliation(s)
- Zhuozhou Hu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Chun Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Tongyu Wu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Jing Zhou
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Liang Han
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Jingjing Liu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Shaojia Qiang
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Wenyang Zhao
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Xiangxiang Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Xiaohua Liu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China.
| | - Xinping Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China; Southeast Research Institute of LZU, Putian, Fujian 351152, PR China; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
27
|
Dorenkamp M, Nasiry M, Semo D, Koch S, Löffler I, Wolf G, Reinecke H, Godfrey R. Pharmacological Targeting of the RAGE-NFκB Signalling Axis Impedes Monocyte Activation under Diabetic Conditions through the Repression of SHP-2 Tyrosine Phosphatase Function. Cells 2023; 12:cells12030513. [PMID: 36766855 PMCID: PMC9914555 DOI: 10.3390/cells12030513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 02/09/2023] Open
Abstract
Monocytes play a vital role in the development of cardiovascular diseases. Type 2 diabetes mellitus (T2DM) is a major CVD risk factor, and T2DM-induced aberrant activation and enhanced migration of monocytes is a vital pathomechanism that leads to atherogenesis. We recently reported the upregulation of SHP-2 phosphatase expression in mediating the VEGF resistance of T2DM patient-derived monocytes or methylglyoxal- (MG, a glucose metabolite and advanced glycation end product (AGE) precursor) treated monocytes. However, the exact mechanisms leading to SHP-2 upregulation in hyperglycemic monocytes are unknown. Since inflammation and accumulation of AGEs is a hallmark of T2DM, we hypothesise that inflammation and AGE-RAGE (Receptor-for-AGEs) signalling drive SHP-2 expression in monocytes and blockade of these pathways will repress SHP-2 function. Indeed, monocytes from T2DM patients revealed an elevated SHP-2 expression. Under normoglycemic conditions, the serum from T2DM patients strongly induced SHP-2 expression, indicating that the T2DM serum contains critical factors that directly regulate SHP-2 expression. Activation of pro-inflammatory TNFα signalling cascade drove SHP-2 expression in monocytes. In line with this, linear regression analysis revealed a significant positive correlation between TNFα expression and SHP-2 transcript levels in T2DM monocytes. Monocytes exposed to MG or AGE mimetic AGE-BSA, revealed an elevated SHP-2 expression and co-treatment with an NFκB inhibitor or genetic inhibition of p65 reversed it. The pharmacological inhibition of RAGE was sufficient to block MG- or AGE-BSA-induced SHP-2 expression and activity. Confirming the importance of RAGE-NFκB signalling in regulating SHP-2 expression, the elevated binding of NFκB to the SHP-2 promoter-induced by MG or AGE-BSA-was reversed by RAGE and NFκB inhibition. Besides, we detected elevated RAGE levels in human and murine T2DM monocytes and monocytes exposed to MG or AGE-BSA. Importantly, MG and AGE-BSA treatment of non-T2DM monocytes phenocopied the aberrant pro-migratory phenotype of T2DM monocytes, which was reversed entirely by either SHP-2- or RAGE inhibition. In conclusion, these findings suggest a new therapeutic approach to prevent accelerated atherosclerosis in T2DM patients since inhibiting the RAGE-NFκB-SHP-2 axis impeded the T2DM-driven, SHP-2-dependent monocyte activation.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Madina Nasiry
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Dilvin Semo
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Sybille Koch
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Ivonne Löffler
- Department of Internal Medicine III, University Hospital Jena, 07743 Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, 07743 Jena, Germany
| | - Holger Reinecke
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Rinesh Godfrey
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-83-57089; Fax: +49-251-83-55747
| |
Collapse
|
28
|
Coukos JS, Lee CW, Pillai KS, Liu KJ, Moellering RE. Widespread, Reversible Cysteine Modification by Methylglyoxal Regulates Metabolic Enzyme Function. ACS Chem Biol 2023; 18:91-101. [PMID: 36562291 PMCID: PMC9872086 DOI: 10.1021/acschembio.2c00727] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Methylglyoxal (MGO), a reactive metabolite byproduct of glucose metabolism, is known to form a variety of posttranslational modifications (PTMs) on nucleophilic amino acids. For example, cysteine, the most nucleophilic proteinogenic amino acid, forms reversible hemithioacetal and stable mercaptomethylimidazole adducts with MGO. The high reactivity of cysteine toward MGO and the rate of formation of such modifications provide the opportunity for mechanisms by which proteins and pathways might rapidly sense and respond to alterations in levels of MGO. This indirect measure of alterations in glycolytic flux would thereby allow disparate cellular processes to dynamically respond to changes in nutrient availability and utilization. Here we report the use of quantitative LC-MS/MS-based chemoproteomic profiling approaches with a cysteine-reactive probe to map the proteome-wide landscape of MGO modification of cysteine residues. This approach led to the identification of many sites of potential functional regulation by MGO. We further characterized the role that such modifications have in a catalytic cysteine residue in a key metabolic enzyme and the resulting effects on cellular metabolism.
Collapse
Affiliation(s)
- John S. Coukos
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Chris W. Lee
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Kavya S. Pillai
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Kimberly J. Liu
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Raymond E. Moellering
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
29
|
de Graaf MCG, Scheijen JLJM, Spooren CEGM, Mujagic Z, Pierik MJ, Feskens EJM, Keszthelyi D, Schalkwijk CG, Jonkers DMAE. The Intake of Dicarbonyls and Advanced Glycation Endproducts as Part of the Habitual Diet Is Not Associated with Intestinal Inflammation in Inflammatory Bowel Disease and Irritable Bowel Syndrome Patients. Nutrients 2022; 15:nu15010083. [PMID: 36615740 PMCID: PMC9824683 DOI: 10.3390/nu15010083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
A Western diet comprises high levels of dicarbonyls and advanced glycation endproducts (AGEs), which may contribute to flares and symptoms in inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). We therefore investigated the intake of dietary dicarbonyls and AGEs in IBD and IBS patients as part of the habitual diet, and their association with intestinal inflammation. Food frequency questionnaires from 238 IBD, 261 IBS as well as 195 healthy control (HC) subjects were used to calculate the intake of dicarbonyls methylglyoxal, glyoxal, and 3-deoxyglucosone, and of the AGEs Nε-(carboxymethyl)lysine, Nε-(1-carboxyethyl)lysine and methylglyoxal-derived hydroimidazolone-1. Intestinal inflammation was assessed using faecal calprotectin. The absolute dietary intake of all dicarbonyls and AGEs was higher in IBD and HC as compared to IBS (all p < 0.05). However, after energy-adjustment, only glyoxal was lower in IBD versus IBS and HC (p < 0.05). Faecal calprotectin was not significantly associated with dietary dicarbonyls and AGEs in either of the subgroups. The absolute intake of methylglyoxal was significantly higher in patients with low (<15 μg/g) compared to moderate calprotectin levels (15−<50 μg/g, p = 0.031). The concentrations of dietary dicarbonyls and AGEs generally present in the diet of Dutch patients with IBD or IBS are not associated with intestinal inflammation, although potential harmful effects might be counteracted by anti-inflammatory components in the food matrix.
Collapse
Affiliation(s)
- Marlijne C. G. de Graaf
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-38-84-237
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Corinne E. G. M. Spooren
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Zlatan Mujagic
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Marieke J. Pierik
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Edith J. M. Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Daniel Keszthelyi
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
30
|
Tabler CT, Lodd E, Bennewitz K, Middel CS, Erben V, Ott H, Poth T, Fleming T, Morgenstern J, Hausser I, Sticht C, Poschet G, Szendroedi J, Nawroth PP, Kroll J. Loss of glyoxalase 2 alters the glucose metabolism in zebrafish. Redox Biol 2022; 59:102576. [PMID: 36535130 PMCID: PMC9792892 DOI: 10.1016/j.redox.2022.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Glyoxalase 2 is the second enzyme of the glyoxalase system, catalyzing the detoxification of methylglyoxal to d-lactate via SD-Lactoylglutathione. Recent in vitro studies have suggested Glo2 as a regulator of glycolysis, but if Glo2 regulates glucose homeostasis and related organ specific functions in vivo has not yet been evaluated. Therefore, a CRISPR-Cas9 knockout of glo2 in zebrafish was created and analyzed. Consistent with its function in methylglyoxal detoxification, SD-Lactoylglutathione, but not methylglyoxal accumulated in glo2-/- larvae, without altering the glutathione metabolism or affecting longevity. Adult glo2-/- livers displayed a reduced hexose concentration and a reduced postprandial P70-S6 kinase activation, but upstream postprandial AKT phosphorylation remained unchanged. In contrast, glo2-/- skeletal muscle remained metabolically intact, possibly compensating for the dysfunctional liver through increased glucose uptake and glycolytic activity. glo2-/- zebrafish maintained euglycemia and showed no damage of the retinal vasculature, kidney, liver and skeletal muscle. In conclusion, the data identified Glo2 as a regulator of cellular energy metabolism in liver and skeletal muscle, but the redox state and reactive metabolite accumulation were not affected by the loss of Glo2.
Collapse
Affiliation(s)
- Christoph Tobias Tabler
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Elisabeth Lodd
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Chiara Simone Middel
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Vanessa Erben
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Hannes Ott
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Tanja Poth
- CMCP - Center for Model System and Comparative Pathology, Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Ingrid Hausser
- Institute of Pathology IPH, EM Lab, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| |
Collapse
|
31
|
Xie W, Cao B, Zhu H, Raza A, Juckel N, Xie J, Jiang R, Vince R, Lee MK, More SS. Orally Bioavailable Prodrugs of ψ-GSH: A Potential Treatment for Alzheimer's Disease. J Med Chem 2022; 65:14441-14455. [PMID: 36353871 PMCID: PMC9662183 DOI: 10.1021/acs.jmedchem.2c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/30/2022]
Abstract
Addressing glycation-induced oxidative stress in Alzheimer's disease (AD) is an emerging pharmacotherapeutic strategy. Restoration of the brain glyoxalase enzyme system that neutralizes reactive dicarbonyls is one such approach. Toward this end, we designed, synthesized, and evaluated a γ-glutamyl transpeptidase-resistant glyoxalase substrate, ψ-GSH. Although mechanistically successful, the oral efficacy of ψ-GSH appeared as an area in need of improvement. Herein, we describe our rationale for the creation of prodrugs that mask the labile sulfhydryl group. In vitro and in vivo stability studies identified promising prodrugs that could deliver pharmacologically relevant brain levels of ψ-GSH. When administered orally to a mouse model generated by the intracerebroventricular injection of Aβ1-42, the compounds conferred cognitive benefits. Biochemical and histological examination confirmed their effects on neuroinflammation and oxidative stress. Collectively, we have identified orally efficacious prodrugs of ψ-GSH that are able to restore brain glyoxalase activity and mitigate inflammatory and oxidative pathology associated with AD.
Collapse
Affiliation(s)
- Wei Xie
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bin Cao
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haizhou Zhu
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abbas Raza
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas Juckel
- Department
of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiashu Xie
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rongrong Jiang
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Vince
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael K. Lee
- Department
of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute
for Translational Neuroscience, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S. More
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
33
|
Nawroth PP, Kumar V, Kopf S. Diabetische Folgeschäden: Eine Erkrankung der DNA? – Paul-Langerhans-Medaille 2022 – eine Kurzübersicht über den Preisträger Peter Nawroth. DIABETOL STOFFWECHS 2022. [DOI: 10.1055/a-1902-4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Prisco SZ, Hartweck L, Keen JL, Vogel N, Kazmirczak F, Eklund M, Hemnes AR, Brittain EL, Prins KW. Glyoxylase-1 combats dicarbonyl stress and right ventricular dysfunction in rodent pulmonary arterial hypertension. Front Cardiovasc Med 2022; 9:940932. [PMID: 36093169 PMCID: PMC9452736 DOI: 10.3389/fcvm.2022.940932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 01/06/2023] Open
Abstract
Background Heightened glycolytic flux is associated with right ventricular (RV) dysfunction in pulmonary arterial hypertension (PAH). Methylglyoxal, a glycolysis byproduct, is a highly reactive dicarbonyl that has toxic effects via non-enzymatic post-translational modifications (protein glycation). Methylglyoxal is degraded by the glyoxylase system, which includes the rate-limiting enzyme glyoxylase-1 (GLO1), to combat dicarbonyl stress. However, the potential consequences of excess protein glycation on RV function are unknown. Methods Bioinformatics analysis of previously identified glycated proteins predicted how protein glycation regulated cardiac biology. Methylglyoxal treatment of H9c2 cardiomyocytes evaluated the consequences of excess protein glycation on mitochondrial respiration. The effects of adeno-associated virus serotype 9-mediated (AAV9) GLO1 expression on RV function in monocrotaline rats were quantified with echocardiography and hemodynamic studies. Immunoblots and immunofluorescence were implemented to probe the effects of AAV-Glo1 on total protein glycation and fatty acid oxidation (FAO) and fatty acid binding protein levels. Results In silico analyses highlighted multiple mitochondrial metabolic pathways may be affected by protein glycation. Exogenous methylglyoxal minimally altered mitochondrial respiration when cells metabolized glucose, however methylglyoxal depressed FAO. AAV9-Glo1 increased RV cardiomyocyte GLO1 expression, reduced total protein glycation, partially restored mitochondrial density, and decreased lipid accumulation. In addition, AAV9-Glo1 increased RV levels of FABP4, a fatty acid binding protein, and hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunits alpha and beta (HADHA and HADHB), the two subunits of the mitochondrial trifunctional protein for FAO. Finally, AAV9-Glo1 blunted RV fibrosis and improved RV systolic and diastolic function. Conclusion Excess protein glycation promotes RV dysfunction in preclinical PAH, potentially through suppression of FAO.
Collapse
Affiliation(s)
- Sasha Z. Prisco
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Lynn Hartweck
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Jennifer L. Keen
- Pulmonary and Critical Care, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Neal Vogel
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Felipe Kazmirczak
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan Eklund
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Anna R. Hemnes
- Division of Allergy Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Evan L. Brittain
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, United States
| | - Kurt W. Prins
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
35
|
Herraiz T, Peña A, Mateo H, Herraiz M, Salgado A. Formation, Characterization, and Occurrence of β-Carboline Alkaloids Derived from α-Dicarbonyl Compounds and l-Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9143-9153. [PMID: 35819924 PMCID: PMC9335879 DOI: 10.1021/acs.jafc.2c03187] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
β-Carbolines (βCs) are naturally occurring bioactive alkaloids, whereas α-dicarbonyl compounds are reactive substances generated in foods and in vivo. In this work, l-tryptophan reacted with α-dicarbonyl compounds affording new β-carbolines. Glyoxal afforded 1-hydroxymethyl-β-carboline (HME-βC) and its 3-carboxylic acid, and methylglyoxal afforded 1-(1-hydroxyethyl)-β-carboline (HET-βC) and its 3-carboxylic acid. 3-Deoxyglucosone afforded 1-(1,3,4,5-tetrahydroxypent-1-yl)-β-carboline isomers (1a/b), 1-(1,4,5-trihydroxypent-1-yl)-β-carboline (2), and 1-(1,5-dihydroxypent-3-en-1-yl)-β-carboline (3). The formation of these βCs increased under acidic conditions and with increasing temperature. A mechanism is proposed explaining the conversion of a carbonyl into a hydroxy group based on tautomerism and cyclization to the dihydro-βC-3-COOH intermediates, which were isolated and gave the βCs. These α-dicarbonyl-derived βCs occurred in model reactions of l-tryptophan with fructose or glucose incubated under heating and can be considered as advanced glycation end products (AGEs). They were also present in foods and formed during heating processes. HET-βC appeared in processed foods, reaching up to 309 ng/g, with the highest amount found in dried tomato, fried onion, toasted bread, and Manuka honey. HME-βC was only detected in some foods with lower amounts than HET-βC. HET-βC appeared in foods as a racemic mixture of enantiomers suggesting the same mechanism of formation as the synthetized product. α-Dicarbonyl-derived βCs (HET-βC, HME-βC, and 1a/b-3) occur in foods and food processing and, therefore, they are ingested during diet.
Collapse
Affiliation(s)
- Tomás Herraiz
- Spanish
National Research Council (CSIC), Instituto
de Ciencia y Tenología de Alimentos y Nutrición (ICTAN-CSIC), Jose Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain
| | - Adriana Peña
- Spanish
National Research Council (CSIC), Instituto
de Ciencia y Tenología de Alimentos y Nutrición (ICTAN-CSIC), Jose Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain
| | - Haroll Mateo
- Spanish
National Research Council (CSIC), Instituto
de Ciencia y Tenología de Alimentos y Nutrición (ICTAN-CSIC), Jose Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain
| | - Marta Herraiz
- Spanish
National Research Council (CSIC), Instituto
de Ciencia y Tenología de Alimentos y Nutrición (ICTAN-CSIC), Jose Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain
| | - Antonio Salgado
- Centro
de Espectroscopía de RMN (CERMN), Universidad de Alcalá (UAH), Campus Universitario Ctra. Madrid-Barcelona km
33.6, 28805 Alcalá
de Henares, Madrid, Spain
| |
Collapse
|
36
|
Abstract
Diabetes has become one of the most prevalent endocrine and metabolic diseases that threaten human health, and it is accompanied by serious complications. Therefore, it is vital and pressing to develop novel strategies or tools for prewarning and therapy of diabetes and its complications. Fluorescent probes have been widely applied in the detection of diabetes due to the fact of their attractive advantages. In this report, we comprehensively summarize the recent progress and development of fluorescent probes in detecting the changes in the various biomolecules in diabetes and its complications. We also discuss the design of fluorescent probes for monitoring diabetes in detail. We expect this review will provide new ideas for the development of fluorescent probes suitable for the prewarning and therapy of diabetes in future clinical transformation and application.
Collapse
|
37
|
Prevenzano I, Leone A, Longo M, Nicolò A, Cabaro S, Collina F, Panarese I, Botti G, Formisano P, Napoli R, Beguinot F, Miele C, Nigro C. Glyoxalase 1 knockdown induces age-related β-cell dysfunction and glucose intolerance in mice. EMBO Rep 2022; 23:e52990. [PMID: 35620868 PMCID: PMC9253754 DOI: 10.15252/embr.202152990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 09/09/2023] Open
Abstract
Tight control of glycemia is a major treatment goal for type 2 diabetes mellitus (T2DM). Clinical studies indicated that factors other than poor glycemic control may be important in fostering T2DM progression. Increased levels of methylglyoxal (MGO) associate with complications development, but its role in the early steps of T2DM pathogenesis has not been defined. Here, we show that MGO accumulation induces an age-dependent impairment of glucose tolerance and glucose-stimulated insulin secretion in mice knockdown for glyoxalase 1 (Glo1KD). This metabolic alteration associates with the presence of insular inflammatory infiltration (F4/80-positive staining), the islet expression of senescence markers, and higher levels of cytokines (MCP-1 and TNF-α), part of the senescence-activated secretory profile, in the pancreas from 10-month-old Glo1KD mice, compared with their WT littermates. In vitro exposure of INS832/13 β-cells to MGO confirms its casual role on β-cell dysfunction, which can be reverted by senolytic treatment. These data indicate that MGO is capable to induce early phenotypes typical of T2D progression, paving the way for novel prevention approaches to T2DM.
Collapse
Affiliation(s)
- Immacolata Prevenzano
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Alessia Leone
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Michele Longo
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Antonella Nicolò
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Serena Cabaro
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Francesca Collina
- Pathology UnitIstituto Nazionale Tumori‐IRCCS‐Fondazione G.PascaleNaplesItaly
| | - Iacopo Panarese
- Unità di Anatomia PatologicaDipartimento di Salute Mentale e Fisica e Medicina PreventivaUniversità degli Studi della Campania "L. Vanvitelli"NaplesItaly
| | - Gerardo Botti
- Scientific DirectionIstituto Nazionale Tumori‐IRCCS‐Fondazione G.PascaleNaplesItaly
| | - Pietro Formisano
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Raffaele Napoli
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Francesco Beguinot
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Claudia Miele
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Cecilia Nigro
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| |
Collapse
|
38
|
Xu H, Liu XR, Cai ZH, Zheng J, Wang YW, Peng Y. Rapid sensing and imaging of methylglyoxal in living cells enabled by a near-infrared fluorescent probe. Org Biomol Chem 2022; 20:4782-4786. [PMID: 35635197 DOI: 10.1039/d2ob00698g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel near-infrared fluorescent probe (SWJT-2) has been designed and synthesized for the detection of methylglyoxal (MGO). It showed a low detection limit (0.32 μM), high selectivity and the fastest detection (15 min) over various reactive carbonyl compounds in aqueous solution. SWJT-2 had been successfully applied to bioimaging in HeLa cells to detect exogenous and endogenous MGO.
Collapse
Affiliation(s)
- Hai Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Xin-Rong Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Zheng-Hong Cai
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Jianfeng Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Peng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
39
|
Fedele G, Loh SHY, Celardo I, Leal NS, Lehmann S, Costa AC, Martins LM. Suppression of intestinal dysfunction in a Drosophila model of Parkinson's disease is neuroprotective. NATURE AGING 2022; 2:317-331. [PMID: 37117744 DOI: 10.1038/s43587-022-00194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/16/2022] [Indexed: 04/30/2023]
Abstract
The innate immune response mounts a defense against foreign invaders and declines with age. An inappropriate induction of this response can cause diseases. Previous studies showed that mitochondria can be repurposed to promote inflammatory signaling. Damaged mitochondria can also trigger inflammation and promote diseases. Mutations in pink1, a gene required for mitochondrial health, cause Parkinson's disease, and Drosophila melanogaster pink1 mutants accumulate damaged mitochondria. Here, we show that defective mitochondria in pink1 mutants activate Relish targets and demonstrate that inflammatory signaling causes age-dependent intestinal dysfunction in pink1-mutant flies. These effects result in the death of intestinal cells, metabolic reprogramming and neurotoxicity. We found that Relish signaling is activated downstream of a pathway stimulated by cytosolic DNA. Suppression of Relish in the intestinal midgut of pink1-mutant flies restores mitochondrial function and is neuroprotective. We thus conclude that gut-brain communication modulates neurotoxicity in a fly model of Parkinson's disease through a mechanism involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giorgio Fedele
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Susann Lehmann
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Ana C Costa
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
40
|
Zhang X, Schalkwijk CG, Wouters K. Immunometabolism and the modulation of immune responses and host defense: A role for methylglyoxal? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166425. [DOI: 10.1016/j.bbadis.2022.166425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
|
41
|
Intestinal AMPK modulation of microbiota mediates crosstalk with brown fat to control thermogenesis. Nat Commun 2022; 13:1135. [PMID: 35241650 PMCID: PMC8894485 DOI: 10.1038/s41467-022-28743-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/02/2022] [Indexed: 01/28/2023] Open
Abstract
The energy-dissipating capacity of brown adipose tissue through thermogenesis can be targeted to improve energy balance. Mammalian 5'-AMP-activated protein kinase, a key nutrient sensor for maintaining cellular energy status, is a known therapeutic target in Type II diabetes. Despite its well-established roles in regulating glucose metabolism in various tissues, the functions of AMPK in the intestine remain largely unexplored. Here we show that AMPKα1 deficiency in the intestine results in weight gain and impaired glucose tolerance under high fat diet feeding, while metformin administration fails to ameliorate these metabolic disorders in intestinal AMPKα1 knockout mice. Further, AMPKα1 in the intestine communicates with brown adipose tissue to promote thermogenesis. Mechanistically, we uncover a link between intestinal AMPKα1 activation and BAT thermogenic regulation through modulating anti-microbial peptide-controlled gut microbiota and the metabolites. Our findings identify AMPKα1-mediated mechanisms of intestine-BAT communication that may partially underlie the therapeutic effects of metformin.
Collapse
|
42
|
Impact of Advanced Glycation End products (AGEs) and its receptor (RAGE) on cancer metabolic signaling pathways and its progression. Glycoconj J 2022; 38:717-734. [PMID: 35064413 DOI: 10.1007/s10719-021-10031-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
|
43
|
冯 苑, 羊 冬, 智 喜, 邓 海, 张 伟, 王 瑞, 吴 文. [Role of interaction between reactive oxygen species and ferroptosis pathway in methylglyoxal-induced injury in mouse embryonic osteoblasts]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:108-115. [PMID: 35249877 PMCID: PMC8901398 DOI: 10.12122/j.issn.1673-4254.2022.01.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To explore the interaction between reactive oxygen species (ROS) and ferroptosis in methylglyoxalinduced injury of mouse embryonic osteoblasts (MC3T3-E1 cells). METHODS MC3T3-E1 cells were treated with methylglyoxal to establish a cell model of diabetic osteoporosis. CCK-8 assay was used to detect the viability of MC3T3-E1 cells. Rhodamine 123 staining followed by photofluorography was used to examine mitochondrial membrane potential (MMP). The intracellular ROS level was detected by 2', 7'-dichlorodihydrofluorescein diacetate staining with photofluorograph. Alkaline phosphatase (ALP) activity in the cells was detected using an ALP kit, the number of mineralized nodules was determined with alizarin red S staining, and the level of iron ions was detected using a detection kit. The expression level of glutathione peroxidase 4 (GPX4, a marker protein that inhibits ferroptosis) in the osteoblasts was determined using Western blotting. RESULTS Treatment of MC3T3-E1 cells with 0.6 mmol/L methylglyoxal for 24 h significantly inhibited the expression level of GPX4 (P < 0.001), increased intracellular iron ion concentration, decreased the cell viability, increased the loss of MMP and intracellular ROS level, decreased both ALP activity and the number of mineralized nodules in the cells (P < 0.001). Co-treatment of MC3T3-E1 cells with 2 mmol/L N-acetylcysteine (NAC, a ROS scavenger) and methylglyoxal significantly increased the expression level of GPX4 (P < 0.01); co-treatment with 4 mmo/L FER-1 (a ferroptosis inhibitor) and methylglyoxal obviously decreased the intracellular ROS level (P < 0.001). Co-treatment of the cells either with NAC and methylglyoxal or with FER-1 and methylglyoxal attenuated methylglyoxal-induced injuries in the osteoblasts (P < 0.001). CONCLUSION The interaction between ROS and ferroptosis pathway plays an important role in methylglyoxal-induced injury of mouse embryonic osteoblasts.
Collapse
Affiliation(s)
- 苑仪 冯
- 南方医科大学第二临床医学院,广东 广州 510515Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- 广东省人民医院//广东省医学科学院//广东省老年医学研 究所东病区内分泌科,广东 广州 510080Department of Endocrinology, East Ward of Guangdong Geriatric Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 冬梅 羊
- 南方医科大学第二临床医学院,广东 广州 510515Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- 广东省人民医院//广东省医学科学院//广东省老年医学研 究所东病区内分泌科,广东 广州 510080Department of Endocrinology, East Ward of Guangdong Geriatric Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 喜梅 智
- 广东省人民医院//广东省医学科学院//广东省老年医学研 究所东病区内分泌科,广东 广州 510080Department of Endocrinology, East Ward of Guangdong Geriatric Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 海鸥 邓
- 广东省人民医院//广东省医学科学院//广东省老年医学研 究所东病区内分泌科,广东 广州 510080Department of Endocrinology, East Ward of Guangdong Geriatric Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 伟杰 张
- 广东省人民医院//广东省医学科学院//广东省老年医学研 究所东病区内分泌科,广东 广州 510080Department of Endocrinology, East Ward of Guangdong Geriatric Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 瑞雪 王
- 广东省人民医院//广东省医学科学院//广东省老年医学研 究所东病区内分泌科,广东 广州 510080Department of Endocrinology, East Ward of Guangdong Geriatric Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 文 吴
- 广东省人民医院//广东省医学科学院//广东省老年医学研 究所东病区内分泌科,广东 广州 510080Department of Endocrinology, East Ward of Guangdong Geriatric Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
44
|
Maasen K, Eussen SJPM, Scheijen JLJM, van der Kallen CJH, Dagnelie PC, Opperhuizen A, Stehouwer CDA, van Greevenbroek MMJ, Schalkwijk CG. Higher habitual intake of dietary dicarbonyls is associated with higher corresponding plasma dicarbonyl concentrations and skin autofluorescence: the Maastricht Study. Am J Clin Nutr 2022; 115:34-44. [PMID: 34625788 DOI: 10.1093/ajcn/nqab329] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dicarbonyls are highly reactive compounds and major precursors of advanced glycation end products (AGEs). Both dicarbonyls and AGEs are associated with development of age-related diseases. Dicarbonyls are formed endogenously but also during food processing. To what extent dicarbonyls from the diet contribute to circulating dicarbonyls and AGEs in tissues is unknown. OBJECTIVES To examine cross-sectional associations of dietary dicarbonyl intake with plasma dicarbonyl concentrations and skin AGEs. METHODS In 2566 individuals of the population-based Maastricht Study (age: 60 ± 8 y, 50% males, 26% with type 2 diabetes), we estimated habitual intake of the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) by combining FFQs with our dietary dicarbonyl database of MGO, GO, and 3-DG concentrations in > 200 commonly consumed food products. Fasting plasma concentrations of MGO, GO, and 3-DG were measured by ultra-performance liquid chromatography-tandem mass spectrometry. Skin AGEs were measured as skin autofluorescence (SAF), using the AGE Reader. Associations of dietary dicarbonyl intake with their respective plasma concentrations and SAF (all standardized) were examined using linear regression models, adjusted for age, sex, potential confounders related to cardiometabolic risk factors, and lifestyle. RESULTS Median intake of MGO, GO, and 3-DG was 3.6, 3.5, and 17 mg/d, respectively. Coffee was the main dietary source of MGO, whereas this was bread for GO and 3-DG. In the fully adjusted models, dietary MGO was associated with plasma MGO (β: 0.08; 95% CI: 0.02, 0.13) and SAF (β: 0.12; 95% CI: 0.07, 0.17). Dietary GO was associated with plasma GO (β: 0.10; 95% CI: 0.04, 0.16) but not with SAF. 3-DG was not significantly associated with either plasma 3-DG or SAF. CONCLUSIONS Higher habitual intake of dietary MGO and GO, but not 3-DG, was associated with higher corresponding plasma concentrations. Higher intake of MGO was also associated with higher SAF. These results suggest dietary absorption of MGO and GO. Biological implications of dietary absorption of MGO and GO need to be determined. The study has been approved by the institutional medical ethical committee (NL31329.068.10) and the Minister of Health, Welfare and Sports of the Netherlands (Permit 131088-105234-PG).
Collapse
Affiliation(s)
- Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Carla J H van der Kallen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.,Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, Utrecht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
45
|
Dang Y, Lai Y, Chen F, Sun Q, Ding C, Zhang W, Xu Z. Activatable NIR-II Fluorescent Nanoprobe for Rapid Detection and Imaging of Methylglyoxal Facilitated by the Local Nonpolar Microenvironment. Anal Chem 2022; 94:1076-1084. [DOI: 10.1021/acs.analchem.1c04076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yi Lai
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Fengping Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chunyong Ding
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
46
|
Cortizo FG, Pfaff D, Wirth A, Schlotterer A, Medert R, Morgenstern J, Weber T, Hammes HP, Fleming T, Nawroth PP, Freichel M, Teleman AA. The activity of glyoxylase 1 is regulated by glucose-responsive phosphorylation on Tyr136. Mol Metab 2022; 55:101406. [PMID: 34838714 PMCID: PMC8715127 DOI: 10.1016/j.molmet.2021.101406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Methylglyoxal (MG) is a highly reactive α-oxoaldehyde that glycates proteins. MG has been linked to the development of diabetic complications: MG is the major precursor of advanced glycation end products (AGEs), a risk marker for diabetic complications in humans. Furthermore, flies and fish with elevated MG develop insulin resistance, obesity, and hyperglycemia. MG is detoxified in large part through the glyoxalase system, whose rate-limiting enzyme is glyoxalase I (Glo1). Hence, we aimed to study how Glo1 activity is regulated. METHODS We studied the regulation and effect of post-translational modifications of Glo1 in tissue culture and in mouse models of diabetes. RESULTS We show that Glo1 activity is promoted by phosphorylation on Tyrosine 136 via multiple kinases. We find that Glo1 Y136 phosphorylation responds in a bimodal fashion to glucose levels, increasing in cell culture from 0 mM to 5 mM (physiological) glucose, and then decreasing at higher glucose concentrations, both in cell culture and in mouse models of hyperglycemia. CONCLUSIONS These data, together with published findings that elevated MG leads to hyperglycemia, suggest the existence of a deleterious positive feedback loop whereby hyperglycemia leads to reduced Glo1 activity, contributing to elevated MG levels, which in turn promote hyperglycemia. Hence, perturbations elevating either glucose or MG have the potential to start an auto-amplifying feedback loop contributing to diabetic complications.
Collapse
Affiliation(s)
- Fabiola Garcia Cortizo
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Heidelberg University, 69120, Heidelberg, Germany
| | - Daniel Pfaff
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany
| | - Angela Wirth
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebekka Medert
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tobias Weber
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Heidelberg University, 69120, Heidelberg, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
47
|
Tang D, He WJ, Zhang ZT, Shi JJ, Wang X, Gu WT, Chen ZQ, Xu YH, Chen YB, Wang SM. Protective effects of Huang-Lian-Jie-Du Decoction on diabetic nephropathy through regulating AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling in db/db mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153777. [PMID: 34815154 DOI: 10.1016/j.phymed.2021.153777] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/20/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe diabetic complication that is the principal cause of end-stage kidney disease worldwide. Huang-Lian-Jie-Du Decoction (HLJDD) is widely used to treat diabetes clinically. However, the nephroprotective effects and potential mechanism of action of HLJDD against DN have not yet been fully elucidated. PURPOSE This study aimed to investigate the potential roles of HLJDD in DN and elucidate its mechanisms in db/db mice. METHODS An integrated strategy of network pharmacology, pharmacodynamics, molecular biology, and metabolomics was used to reveal the mechanisms of HLJDD in the treatment of DN. First, network pharmacology was utilized to predict the possible pathways for DN using the absorbed ingredients of HLJDD in rat plasma in silico. Then, combined with histopathological examination, biochemical evaluation immunohistochemistry/immunofluorescence assay, western blot analysis, and UPLC-Q-Orbitrap HRMS/MS-based metabolomics approach were applied to evaluate the efficacy of HLJDD against DN and its underlying mechanisms in vivo. RESULTS In silico, network pharmacology indicated that the AGEs/RAGE pathway was the most prominent pathway for HLJDD against DN. In vivo, HLJDD exerted protective effects against DN by ameliorating glycolipid metabolic disorders and kidney injury. Furthermore, we verified that HLJDD protected against DN by regulating the AGEs/RAGE/Akt/Nrf2 pathway for the first time. In addition, 22 potential biomarkers were identified in urine, including phenylalanine metabolism, tryptophan metabolism, glucose metabolism, and sphingolipid metabolism. CONCLUSION These findings suggest that HLJDD ameliorates DN by regulating the AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling.
Collapse
Affiliation(s)
- Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen-Jiao He
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhi-Tong Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing-Jing Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xue Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhi-Quan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - You-Hua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yun-Bo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
48
|
Jiang M, Yakupu A, Guan H, Dong J, Liu Y, Song F, Tang J, Tian M, Niu Y, Lu S. Pyridoxamine ameliorates methylglyoxal-induced macrophage dysfunction to facilitate tissue repair in diabetic wounds. Int Wound J 2022; 19:52-63. [PMID: 33792156 PMCID: PMC8684884 DOI: 10.1111/iwj.13597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/13/2023] Open
Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl compound formed during hyperglycaemia. MGO combines with proteins to form advanced glycation end products (AGEs), leading to cellular dysfunction and organ damage. In type 2 diabetes mellitus (T2DM), the higher the plasma MGO concentration, the higher the lower extremity amputation rate. Here, we aimed to identify the mechanisms of MGO-induced dysfunction. We observed that the accumulation of MGO-derived AGEs in human diabetic wounds increased, whereas the expression of glyoxalase 1 (GLO1), a key metabolic enzyme of MGO, decreased. We show for the first time that topical application of pyridoxamine (PM), a natural vitamin B6 analogue, reduced the accumulation of MGO-derived AGEs in the wound tissue of type-2 diabetic mice, promoted the influx of macrophages in the early stage of tissue repair, improved the dysfunctional inflammatory response, and accelerated wound healing. In vitro, MGO damaged the phagocytic functions of M1-like macrophages induced by lipopolysaccharide (LPS), but not those of M0-like macrophages induced by PMA or of M2-like macrophages induced by interleukins 4 (IL-4) and 13 (IL-13); the impaired phagocytosis of M1-like macrophages was rescued by PM administration. These findings suggest that the increase in MGO metabolism in vivo might contribute to macrophage dysfunction, thereby affecting wound healing. Our results indicate that PM may be a novel therapeutic approach for treating diabetic wounds. MGO forms protein adducts that cause macrophage dysfunction. These adducts cause cell and organ dysfunction that is common in diabetes. Pyridoxamine scavenges MGO to ameliorate this dysfunction, promoting wound healing. Pyridoxamine could be used therapeutically to treat non-healing diabetic wounds.
Collapse
Affiliation(s)
- Minfei Jiang
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Aobuliaximu Yakupu
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haonan Guan
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiaoyun Dong
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingkai Liu
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fei Song
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiajun Tang
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Tian
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiwen Niu
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuliang Lu
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
49
|
Tao R, Liao M, Wang Y, Wang H, Tan Y, Qin S, Wei W, Tang C, Liang X, Han Y, Li X. In Situ Imaging of Formaldehyde in Live Mice with High Spatiotemporal Resolution Reveals Aldehyde Dehydrogenase-2 as a Potential Target for Alzheimer's Disease Treatment. Anal Chem 2021; 94:1308-1317. [PMID: 34962779 DOI: 10.1021/acs.analchem.1c04520] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alterations in formaldehyde (FA) homeostasis are associated with the pathology of Alzheimer's disease (AD). In vivo tracking of FA flux is important for understanding the underlying molecular mechanisms, but is challenging due to the lack of sensitive probes favoring a selective, rapid, and reversible response toward FA. In this study, we re-engineered the promiscuous and irreversible phenylhydrazines to make them selective and reversible toward FA by tuning their nucleophilicity. This effort resulted in PFM309, a selective (selectivity coefficient KFA,methylglyoxal = 0.06), rapid (t1/2 = 32 s at [FA] = 200 μM), and reversible fluorogenic probe (K = 6.24 mM-1) that tracks the FA flux in both live cells and live mice. In vivo tracking of the FA flux was realized by PFM309 imaging, which revealed the gradual accumulation of FA in the live mice brain during normal aging and its further increase in AD mice. We further identified the age-dependent loss of catabolism enzymes ALDH2 and ADH5 as the primary mechanism responsible for formaldehyde excess. Activating ALDH2 with the small molecular activator Alda1 significantly protected neurovascular cells from formaldehyde overload and consequently from impairment during AD progress both in vitro and in vivo. These findings revealed PFM309 as a robust tool to study AD pathology and highlight ALDH2 as a potential target for AD drug development.
Collapse
Affiliation(s)
- Rongrong Tao
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Meihua Liao
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Yuxiang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Huan Wang
- College of Life Science and Technology, Dalian University, Dalian 116622 Liaoning, China
| | - Yuhang Tan
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Siyao Qin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 Zhejiang, China
| | - Wenjing Wei
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Xingguang Liang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 Zhejiang, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| |
Collapse
|
50
|
Ng SP, Nomura W, Takahashi H, Inoue K, Kawada T, Goto T. Methylglyoxal attenuates isoproterenol-induced increase in uncoupling protein 1 expression through activation of JNK signaling pathway in beige adipocytes. Biochem Biophys Rep 2021; 28:101127. [PMID: 34527816 PMCID: PMC8430270 DOI: 10.1016/j.bbrep.2021.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Methylglyoxal (MG) is a metabolite derived from glycolysis whose levels in the blood and tissues of patients with diabetes are higher than those of healthy individuals, suggesting that MG is associated with the development of diabetic complications. However, it remains unknown whether high levels of MG are a cause or consequence of diabetes. Here, we show that MG negatively affects the expression of uncoupling protein 1 (UCP1), which is involved in thermogenesis and the regulation of systemic metabolism. Decreased Ucp1 expression is associated with obesity and type 2 diabetes. We found that MG attenuated the increase in Ucp1 expression following treatment with isoproterenol in beige adipocytes. However, MG did not affect protein kinase A signaling, the core coordinator of isoproterenol-induced Ucp1 expression. Instead, MG activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases. We found that JNK inhibition, but not p38, recovered isoproterenol-stimulated Ucp1 expression under MG treatment. Altogether, these results suggest an inhibitory role of MG on the thermogenic function of beige adipocytes through the JNK signaling pathway.
Collapse
Key Words
- BBGC, S-p-bromobenzylglutathione cyclopentyl diester
- Beige adipocytes
- CREB, cAMP response element-binding protein
- ERK, extracellular receptor kinase
- HSL, hormone-sensitive lipase
- JNK
- JNK, c-Jun N-terminal kinase
- MG, methylglyoxal
- Methylglyoxal
- NAC, N-acetyl-l-cysteine
- NEFA, non-esterified fatty acids
- PKA, protein kinase A
- SEM, standard error of the mean
- Ucp1
- iWAT, inguinal white adipose tissue
Collapse
Affiliation(s)
- Su-Ping Ng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
- Corresponding author. Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuo Inoue
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
- Corresponding author. Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|