1
|
Lee AH, Orliaguet L, Youm YH, Maeda R, Dlugos T, Lei Y, Coman D, Shchukina I, Andhey PS, Smith SR, Ravussin E, Stadler K, Chen B, Artyomov MN, Hyder F, Horvath TL, Schneeberger M, Sugiura Y, Dixit VD. Cysteine depletion triggers adipose tissue thermogenesis and weight loss. Nat Metab 2025:10.1038/s42255-025-01297-8. [PMID: 40461845 DOI: 10.1038/s42255-025-01297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/09/2025] [Indexed: 06/11/2025]
Abstract
Caloric restriction and methionine restriction-driven enhanced lifespan and healthspan induces 'browning' of white adipose tissue, a metabolic response that increases heat production to defend core body temperature. However, how specific dietary amino acids control adipose thermogenesis is unknown. Here, we identified that weight loss induced by caloric restriction in humans reduces thiol-containing sulfur amino acid cysteine in white adipose tissue. Systemic cysteine depletion in mice causes lethal weight loss with increased fat utilization and browning of adipocytes that is rescued upon restoration of cysteine in diet. Mechanistically, cysteine-restriction-induced adipose browning and weight loss requires sympathetic nervous system-derived noradrenaline signalling via β3-adrenergic-receptors that is independent of FGF21 and UCP1. In obese mice, cysteine deprivation induced rapid adipose browning, increased energy expenditure leading to 30% weight loss and reversed metabolic inflammation. These findings establish that cysteine is essential for organismal metabolism as removal of cysteine in the host triggers adipose browning and rapid weight loss.
Collapse
Affiliation(s)
- Aileen H Lee
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Lucie Orliaguet
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yun-Hee Youm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Rae Maeda
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tamara Dlugos
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yuanjiu Lei
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Prabhakar Sairam Andhey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Bandy Chen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Yuki Sugiura
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Zhang Y, Naaz A, Cheng TYN, Lin JJ, Gao M, Dorajoo R, Alfatah M. Systematic transcriptomics analysis of calorie restriction and rapamycin unveils their synergistic interaction in prolonging cellular lifespan. Commun Biol 2025; 8:753. [PMID: 40369174 PMCID: PMC12078523 DOI: 10.1038/s42003-025-08178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Aging is a multifaceted biological process marked by the decline in both mitotic and postmitotic cellular function, often central to the development of age-related diseases. In the pursuit of slowing or even reversing the aging process, a prominent strategy of significant interest is calorie restriction (CR), also known as dietary restriction, and the potential influence of a drug called rapamycin (RM). Both CR and RM have demonstrated the capacity to extend healthspan and lifespan across a diverse array of species, including yeast, worms, flies, and mice. Nevertheless, their individual and combined effects on mitotic and postmitotic cells, as well as their comparative analysis, remain areas that demand a thorough investigation. In this study, we employ RNA-sequencing methodologies to comprehensively analyze the impact of CR, RM, and their combination (CR + RM) on gene expression in yeast cells. Our analysis uncovers distinctive, overlapping, and even contrasting patterns of gene regulation, illuminating the unique and shared effects of CR and RM. Furthermore, the transcriptional synergistic interaction of CR + RM is validated in extending the lifespan of both yeast and human cells.
Collapse
Affiliation(s)
- Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jovian Jing Lin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mingtong Gao
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore.
| |
Collapse
|
3
|
Dai X, Li X, Tyshkovskiy A, Zuckerman C, Cheng N, Lin P, Paris D, Qureshi S, Kruglyak L, Mao X, Nandakumar J, Gladyshev VN, Pletcher S, Sobota J, Guo L. Regeneration leads to global tissue rejuvenation in aging sexual planarians. NATURE AGING 2025; 5:780-798. [PMID: 40181188 DOI: 10.1038/s43587-025-00847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
The possibility of reversing the adverse impacts of aging could significantly reduce age-related diseases and improve quality of life in older populations. Here we report that the sexual lineage of the planarian Schmidtea mediterranea exhibits physiological decline within 18 months of birth, including altered tissue architecture, impaired fertility and motility, and increased oxidative stress. Single-cell profiling of young and older planarian heads uncovered loss of neurons and muscle, increase of glia, and revealed minimal changes in somatic pluripotent stem cells, along with molecular signatures of aging across tissues. Remarkably, amputation followed by regeneration of lost tissues in older planarians led to reversal of these age-associated changes in tissues both proximal and distal to the injury at physiological, cellular and molecular levels. Our work suggests mechanisms of rejuvenation in both new and old tissues concurring with planarian regeneration, which may provide valuable insights for antiaging interventions.
Collapse
Affiliation(s)
- Xiaoting Dai
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Xinghua Li
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cassandra Zuckerman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nan Cheng
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Lin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - David Paris
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Saad Qureshi
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Scott Pletcher
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Sobota
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Longhua Guo
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Mitchell W, Pharaoh G, Tyshkovskiy A, Campbell M, Marcinek DJ, Gladyshev VN. The Mitochondria-Targeted Peptide Therapeutic Elamipretide Improves Cardiac and Skeletal Muscle Function During Aging Without Detectable Changes in Tissue Epigenetic or Transcriptomic Age. Aging Cell 2025:e70026. [PMID: 40080911 DOI: 10.1111/acel.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 03/15/2025] Open
Abstract
Aging-related decreases in cardiac and skeletal muscle function are strongly associated with various comorbidities. Elamipretide (ELAM), a novel mitochondria-targeted peptide, has demonstrated broad therapeutic efficacy in ameliorating disease conditions associated with mitochondrial dysfunction across both clinical and pre-clinical models. Herein, we investigated the impact of 8-week ELAM treatment on pre- and post-measures of C57BL/6J mice frailty, skeletal muscle, and cardiac muscle function, coupled with post-treatment assessments of biological age and affected molecular pathways. We found that health status, as measured by frailty index, cardiac strain, diastolic function, and skeletal muscle force, is significantly diminished with age, with skeletal muscle force changing in a sex-dependent manner. Conversely, ELAM mitigated frailty accumulation and was able to partially reverse these declines, as evidenced by treatment-induced increases in cardiac strain and muscle fatigue resistance. Despite these improvements, we did not detect statistically significant changes in gene expression or DNA methylation profiles indicative of molecular reorganization or reduced biological age in most ELAM-treated groups. However, pathway analyses revealed that ELAM treatment showed pro-longevity shifts in gene expression, such as upregulation of genes involved in fatty acid metabolism, mitochondrial translation, and oxidative phosphorylation, and downregulation of inflammation. Together, these results indicate that ELAM treatment is effective at mitigating signs of sarcopenia and cardiac dysfunction in an aging mouse model, but that these functional improvements occur independently of detectable changes in epigenetic and transcriptomic age. Thus, some age-related changes in function may be uncoupled from changes in molecular biological age.
Collapse
Affiliation(s)
- Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gavin Pharaoh
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Campbell
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Jayne L, Lavin-Peter A, Roessler J, Tyshkovskiy A, Antoszewski M, Ren E, Markovski A, Sun S, Yao H, Sankaran VG, Gladyshev VN, Brooke RT, Horvath S, Griffith EC, Hrvatin S. A torpor-like state in mice slows blood epigenetic aging and prolongs healthspan. NATURE AGING 2025; 5:437-449. [PMID: 40055478 PMCID: PMC11922754 DOI: 10.1038/s43587-025-00830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/03/2025] [Indexed: 03/12/2025]
Abstract
Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase healthspan, remain unknown. Here we demonstrate that the activity of a spatially defined neuronal population in the preoptic area, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor-like state (TLS) in mice. Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves healthspan. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (Tb) on blood epigenetic aging and find that the decelerating effect of TLSs on aging is mediated by decreased Tb. Taken together, our findings provide novel mechanistic insight into the decelerating effects of torpor and hibernation on aging and support the growing body of evidence that Tb is an important mediator of the aging processes.
Collapse
Affiliation(s)
- Lorna Jayne
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Aurora Lavin-Peter
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Julian Roessler
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erika Ren
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aleksandar Markovski
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Senmiao Sun
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Hanqi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steve Horvath
- Epigenetic Clock Development Foundation, Torrance, CA, USA
- Altos Labs, Cambridge, UK
| | - Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sinisa Hrvatin
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Zhang L, Yu J, Gao X, Yan Y, Wang X, Shi H, Fang M, Liu Y, Kim YB, Zhu H, Wu X, Huang C, Fan S. Targeting farnesoid X receptor as aging intervention therapy. Acta Pharm Sin B 2025; 15:1359-1382. [PMID: 40370561 PMCID: PMC12069902 DOI: 10.1016/j.apsb.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 05/16/2025] Open
Abstract
Environmental toxicants have been linked to aging and age-related diseases. The emerging evidence has shown that the enhancement of detoxification gene expression is a common transcriptome marker of long-lived mice, Drosophila melanogaster, and Caenorhabditis elegans. Meanwhile, the resistance to toxicants was increased in long-lived animals. Here, we show that farnesoid X receptor (FXR) agonist obeticholic acid (OCA), a marketed drug for the treatment of cholestasis, may extend the lifespan and healthspan both in C. elegans and chemical-induced early senescent mice. Furthermore, OCA increased the resistance of worms to toxicants and activated the expression of detoxification genes in both mice and C. elegans. The longevity effects of OCA were attenuated in Fxr -/- mice and Fxr homologous nhr-8 and daf-12 mutant C. elegans. In addition, metabolome analysis revealed that OCA increased the endogenous agonist levels of the pregnane X receptor (PXR), a major nuclear receptor for detoxification regulation, in the liver of mice. Together, our findings suggest that OCA has the potential to lengthen lifespan and healthspan by activating nuclear receptor-mediated detoxification functions, thus, targeting FXR may offer to promote longevity.
Collapse
Affiliation(s)
- Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
7
|
Yu J, Gao X, Shi H, Zhang L, Nie W, Zhang R, Fang M, Liu Y, Yan Y, Fan B, Wu C, Huang C, Fan S. Activation of Nuclear Receptor CAR: A Pathway to Delay Aging through Enhanced Capacity for Xenobiotic Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416823. [PMID: 39887667 PMCID: PMC11948022 DOI: 10.1002/advs.202416823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Environmental factors are linked to aging and age-related diseases. Emerging evidence suggests that enhancing body's resistance to xenobiotics might be an anti-aging strategy. The constitutive androstane receptor (CAR) regulates drug-metabolizing enzymes and transporters, coordinating metabolism and immune responses to adapt to stress triggered by exogenous exposure. However, the impact of activating CAR on aging remains unknown. In this study, Caenorhabditis elegans (C. elegans), drug-induced premature aging mice, and senescence accelerated P8 (SAMP8) mice are used as models to explore the effects of CAR activation on lifespan and healthspan, along with the underlying mechanisms. The results showed that hCAR agonist CITCO and mCAR agonist TCPOBOP prolonged the lifespan and healthspan in model organism. The longevity effects of CITCO and TCPOBOP were attenuated in CAR homozygous nhr-8/daf-12 mutant C. elegans as well as CAR-/- mice. In C. elegans, CITCO activated both anti-stress and detoxification genes, and increased the resistance to environmental adversities. Additionally, the lifespan-extending and xenobiotic resistant effects of CITCO might be related to the regulation of age-related pathways. Furthermore, CITCO improved age-related neurodegeneration in C. elegans models. Taken together, the results suggest that the longevity effects of CAR agonists may be related to the enhancement of xenobiotic resistance of animals.
Collapse
Affiliation(s)
- Jing Yu
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Xiaoyan Gao
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Hang Shi
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Lijun Zhang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Wenlong Nie
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Ruochen Zhang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Minglv Fang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Ying Liu
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yingxuan Yan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Bingbing Fan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Chengyuan Wu
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Cheng Huang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Shengjie Fan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
8
|
Petrovic D, Slade L, Paikopoulos Y, D'Andrea D, Savic N, Stancic A, Miljkovic JL, Vignane T, Drekolia MK, Mladenovic D, Sutulovic N, Refeyton A, Kolakovic M, Jovanovic VM, Zivanovic J, Miler M, Vellecco V, Brancaleone V, Bucci M, Casey AM, Yu C, Kasarla SS, Smith KW, Kalfe-Yildiz A, Stenzel M, Miranda-Vizuete A, Hergenröder R, Phapale P, Stanojlovic O, Ivanovic-Burmazovic I, Vlaski-Lafarge M, Bibli SI, Murphy MP, Otasevic V, Filipovic MR. Ergothioneine improves healthspan of aged animals by enhancing cGPDH activity through CSE-dependent persulfidation. Cell Metab 2025; 37:542-556.e14. [PMID: 39842434 DOI: 10.1016/j.cmet.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/22/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
Ergothioneine (ET), a dietary thione/thiol, is receiving growing attention for its possible benefits in healthy aging and metabolic resilience. Our study investigates ET's effects on healthspan in aged animals, revealing lifespan extension and enhanced mobility in Caenorhabditis elegans, accompanied by improved stress resistance and reduced age-associated biomarkers. In aged rats, ET administration enhances exercise endurance, muscle mass, and vascularization, concomitant with higher NAD+ levels in muscle. Mechanistically, ET acts as an alternative substrate for cystathionine gamma-lyase (CSE), stimulating H2S production, which increases protein persulfidation of more than 300 protein targets. Among these, protein-persulfidation-driven activation of cytosolic glycerol-3-phosphate dehydrogenase (cGPDH) primarily contributes to the ET-induced NAD+ increase. ET's effects are abolished in models lacking CSE or cGPDH, highlighting the essential role of H2S signaling and protein persulfidation. These findings elucidate ET's multifaceted actions and provide insights into its therapeutic potential for combating age-related muscle decline and metabolic perturbations.
Collapse
Affiliation(s)
- Dunja Petrovic
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | - Luke Slade
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | | | - Davide D'Andrea
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | - Nevena Savic
- Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Stancic
- Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jan Lj Miljkovic
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Thibaut Vignane
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | - Maria Kyriaki Drekolia
- Department of Vascular Dysfunction, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dusan Mladenovic
- Institute for Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Sutulovic
- Laboratory for Neurophysiology, Institute for Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Alice Refeyton
- Inserm U1211 Maladies Rares: Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Milica Kolakovic
- Department of Chemistry, Ludwig Maximilians University of Munich, Munich, Germany
| | - Vladimir M Jovanovic
- Bioinformatics Solution Center, Institute for Informatics, Freie Universität Berlin, Berlin, Germany
| | - Jasmina Zivanovic
- Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marko Miler
- Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alva M Casey
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge CB2 0XY, UK
| | - ChakShun Yu
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge CB2 0XY, UK
| | | | | | | | - Martin Stenzel
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Prasad Phapale
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | - Olivera Stanojlovic
- Laboratory for Neurophysiology, Institute for Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Marija Vlaski-Lafarge
- Inserm U1211 Maladies Rares: Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Sofia-Iris Bibli
- Department of Vascular Dysfunction, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Vesna Otasevic
- Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos R Filipovic
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany; School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
9
|
Monroe TB, Hertzel AV, Dickey DM, Hagen T, Santibanez SV, Berdaweel IA, Halley C, Puchalska P, Anderson EJ, Camell CD, Robbins PD, Bernlohr DA. Lipid peroxidation products induce carbonyl stress, mitochondrial dysfunction, and cellular senescence in human and murine cells. Aging Cell 2025; 24:e14367. [PMID: 39394673 PMCID: PMC11709094 DOI: 10.1111/acel.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/14/2024] Open
Abstract
Lipid enals are electrophilic products of lipid peroxidation that induce genotoxic and proteotoxic stress by covalent modification of DNA and proteins, respectively. As lipid enals accumulate to substantial amounts in visceral adipose during obesity and aging, we hypothesized that biogenic lipid enals may represent an endogenously generated, and therefore physiologically relevant, senescence inducers. To that end, we identified that 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE) or 4-oxo-2-nonenal (4-ONE) initiate the cellular senescence program of IMR90 fibroblasts and murine adipose stem cells. In such cells, lipid enals induced accumulation of γH2AX foci, increased p53 signaling, enhanced expression of p21Cip1, and upregulated the expression and secretion of numerous cytokines, chemokines, and regulatory factors independently from NF-κB activation. Concomitantly, lipid enal treatment resulted in covalent modification of mitochondrial proteins, reduced mitochondrial spare respiratory capacity, altered nucleotide pools, and increased the phosphorylation of AMP kinase. Lipid-induced senescent cells upregulated BCL2L1 (Bcl-xL) and BCL2L2 (Bcl-w). and were resistant to apoptosis while pharmacologic inhibition of BAX/BAK macropores attenuated lipid-induced senescence. In situ, the 4-HNE scavenger L-carnosine ameliorated the development of the cellular senescence, while in visceral fat of obese C57BL/6J mice, L-carnosine reduced the abundance of 4-HNE-modified proteins and blunted the expression of senescence biomarkers CDKN1A (p21Cip1), PLAUR, BCL2L1, and BCL2L2. Taken together, the results suggest that lipid enals are endogenous regulators of cellular senescence and that biogenic lipid-induced senescence (BLIS) may represent a mechanistic link between oxidative stress and age-dependent pathologies.
Collapse
Affiliation(s)
- T. Blake Monroe
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Deborah M. Dickey
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Thomas Hagen
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Simon Vergara Santibanez
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Islam A. Berdaweel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowaUSA
- Present address:
Department of Clinical Pharmacy and Pharmacy Practice, College of PharmacyYarmouk UniversityIrbidJordan
| | - Catherine Halley
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Patrycja Puchalska
- Department of MedicineUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowaUSA
| | - Christina D. Camell
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
- Institute for the Biology of Aging and MetabolismUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
- Institute for the Biology of Aging and MetabolismUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| |
Collapse
|
10
|
Elmansi AM, Kassem A, Castilla RM, Miller RA. Downregulation of the NF-κB protein p65 is a shared phenotype among most anti-aging interventions. GeroScience 2024:10.1007/s11357-024-01466-9. [PMID: 39666139 DOI: 10.1007/s11357-024-01466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Many aspects of inflammation increase with aging in mice and humans. Transcriptomic analysis revealed that many murine anti-aging interventions produce lower levels of pro-inflammatory proteins. Here, we explore the hypothesis that different longevity interventions diminish NF-κB levels, potentially mediating some of the anti-inflammatory benefits of lifespan-extending interventions. We found that the NF-κB protein p65 is significantly downregulated in the liver of several kinds of slow-aging mice. These included both sexes of GHRKO and Snell Dwarf mutant mice, and in females only of PAPPA KO mice. P65 is also lower in both sexes of mice treated with rapamycin, canagliflozin, meclizine, or acarbose, and in mice undergoing caloric restriction. Two drugs that extend lifespan of male mice, i.e. 17α-estradiol and astaxanthin, however, did not produce lower levels of p65. We also measured other canonical NF-κB signaling regulators, including the activators IKKα and IKKβ and the inhibitor IκB-α. We found that those regulators do not consistently change in a direction that would lead to of NF-κB inhibition. In contrast, we found that NCoR1, an HDAC3 cofactor and a transcription co-repressor that regulates p65 activity, was also downregulated in many of these mouse models. Finally, we report downregulation of three p65 target proteins that regulate the metabolic and inflammatory states of the liver (HNF4α, IL-1β, and CRP) in multiple slow-aging mouse models. Together, these data suggest that NF-κB signaling, might be inhibited in liver of multiple varieties of slow aging mice. This establishes p65 as a potential target for novel longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Abraham Kassem
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Rafael M Castilla
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Monroe TB, Robbins PD, Bernlohr DA. The Peroxidation of Lipids, Cellular Senescence and Aging. JOURNAL OF AGING SCIENCE 2024; 12:385. [PMID: 40443964 PMCID: PMC12121948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
The inducers of cellular senescence as a determinant in organismal aging are complex and likely driven by a combination of hormonal and metabolic factors. Lipids have recently been implicated as inducers of cellular senescence in vitro and in vivo across human and animal models and more directly, the electrophilic products of lipid peroxidation have been shown in a number of systems to initiate the senescence program. This review summarizes recent research at the interface of lipid biology and senescence. The review will emphasize the types of electrophilic lipids that induce senescence and how lipid scavengers are used to alleviate senescence burden and combat age-related disease.
Collapse
Affiliation(s)
- T Blake Monroe
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Paul D Robbins
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Elmansi AM, Miller RA. Oxidative phosphorylation and fatty acid oxidation in slow-aging mice. Free Radic Biol Med 2024; 224:246-255. [PMID: 39153667 DOI: 10.1016/j.freeradbiomed.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Oxidative metabolism declines with aging in humans leading to multiple metabolic ailments and subsequent inflammation. In mice, there is evidence of age-related suppression of fatty acid oxidation and oxidative phosphorylation in the liver, heart, and muscles. Many interventions that extend healthy lifespan of mice have been developed, including genetic, pharmacological, and dietary interventions. In this article, we review the literature on oxidative metabolism changes in response to those interventions. We also discuss the molecular pathways that mediate those changes, and their potential as targets for future longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Mitchell W, Pharaoh G, Tyshkovskiy A, Campbell M, Marcinek DJ, Gladyshev VN. The mitochondrial-targeted peptide therapeutic elamipretide improves cardiac and skeletal muscle function during aging without detectable changes in tissue epigenetic or transcriptomic age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620676. [PMID: 39554099 PMCID: PMC11565897 DOI: 10.1101/2024.10.30.620676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Aging-related decreases in cardiac and skeletal muscle function are strongly associated with various comorbidities. Elamipretide (ELAM), a novel mitochondrial-targeted peptide, has demonstrated broad therapeutic efficacy in ameliorating disease conditions associated with mitochondrial dysfunction across both clinical and pre-clinical models. ELAM is proposed to restore mitochondrial bioenergetic function by stabilizing inner membrane structure and increasing oxidative phosphorylation coupling and efficiency. Although ELAM treatment effectively attenuates physiological declines in multiple tissues in rodent aging models, it remains unclear whether these functional improvements correlate with favorable changes in molecular biomarkers of aging. Herein, we investigated the impact of 8-week ELAM treatment on pre- and post- measures of C57BL/6J mice frailty, skeletal muscle, and cardiac muscle function, coupled with post-treatment assessments of biological age and affected molecular pathways. We found that health status, as measured by frailty index, cardiac strain, diastolic function, and skeletal muscle force are significantly diminished with age, with skeletal muscle force changing in a sex-dependent manner. Conversely, ELAM mitigated frailty accumulation and was able to partially reverse these declines, as evidenced by treatment-induced increases in cardiac strain and muscle fatigue resistance. Despite these improvements, we did not detect statistically significant changes in gene expression or DNA methylation profiles indicative of molecular reorganization or reduced biological age in most ELAM-treated groups. However, pathway analyses revealed that ELAM treatment showed pro-longevity shifts in gene expression such as upregulation of genes involved in fatty acid metabolism, mitochondrial translation and oxidative phosphorylation, and downregulation of inflammation. Together, these results indicate that ELAM treatment is effective at mitigating signs of sarcopenia and heart failure in an aging mouse model, but that these functional improvements occur independently of detectable changes in epigenetic and transcriptomic age. Thus, some age-related changes in function may be uncoupled from changes in molecular biological age.
Collapse
Affiliation(s)
- Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Gavin Pharaoh
- Department of Radiology, University of Washington, Seattle, WA 98195 United States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Matthew Campbell
- Department of Radiology, University of Washington, Seattle, WA 98195 United States
| | - David J. Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98195 United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 United States
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| |
Collapse
|
14
|
Shi H, Gao X, Yu J, Zhang L, Fan B, Liu Y, Wang X, Fan S, Huang C. Isotschimgine promotes lifespan, healthspan and neuroprotection of Caenorhabditis elegans via the activation of nuclear hormone receptors. Biogerontology 2024; 26:2. [PMID: 39470855 DOI: 10.1007/s10522-024-10142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Isotschimgine (ITG) is a bornane-type monoterpenoid derivative naturally occurring in genus Ferula plants and propolis. Its effects on aging and the underlying mechanisms are not yet well understood. This study employed Caenorhabditis elegans (C. elegans) as a model organism to evaluate the potential of ITG in extending lifespan, enhancing healthspan, and promoting neuroprotection, while exploring the underlying mechanisms involved. The results showed that ITG extended the lifespan and healthspan of C. elegans, significantly enhanced stress resistance and detoxification functions. Studies on mutants and qPCR data indicated that ITG-mediated lifespan extension was modulated by the insulin/IGF-1 signaling pathway and nuclear hormone receptors. Furthermore, ITG markedly increased stress-responsive genes, including daf-16 and its downstream genes sod-3 and hsp-16.2, as well as NHR downstream detoxification-related genes cyp35a1, cyp35b3, cyp35c1, gst-4, pgp-3 and pgp-13. Additionally, ITG alleviated β-amyloid-induced paralysis and behavioral dysfunction in transgenic C. elegans strains. The neuroprotective efficacy of ITG was weakened by RNAi knockdown of nuclear hormone receptors daf-12 and nhr-8. Overall, our study identifies ITG as a potential compound for promoting longevity and neuroprotection, mediated through nuclear hormone receptors.
Collapse
Affiliation(s)
- Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bingbing Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
15
|
Ying K, Castro JP, Shindyapina AV, Tyshkovskiy A, Moqri M, Goeminne LJE, Milman S, Zhang ZD, Barzilai N, Gladyshev VN. Depletion of loss-of-function germline mutations in centenarians reveals longevity genes. Nat Commun 2024; 15:9030. [PMID: 39424787 PMCID: PMC11489729 DOI: 10.1038/s41467-024-52967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
While previous studies identified common genetic variants associated with longevity in centenarians, the role of the rare loss-of-function (LOF) mutation burden remains largely unexplored. Here, we investigated the burden of rare LOF mutations in Ashkenazi Jewish individuals from the Longevity Genes Project and LonGenity study cohorts using whole-exome sequencing data. We found that centenarians had a significantly lower burden (11-22%) of LOF mutations compared to controls. Similar effects were also observed in their offspring. Gene-level burden analysis identified 35 genes with depleted LOF mutations in centenarians, with 14 of these validated in the UK Biobank. Mendelian randomization and multi-omic analyses on these genes identified RGP1, PCNX2, and ANO9 as longevity genes with consistent causal effects on multiple aging-related traits and altered expression during aging. Our findings suggest that a protective genetic background, characterized by a reduced burden of damaging variants, contributes to exceptional longevity, likely acting in concert with specific protective variants to promote healthy aging.
Collapse
Affiliation(s)
- Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- T. H. Chan School of Public Health, Harvard University, Boston, USA
| | - José P Castro
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Retro Biosciences, Redwood City, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Ludger J E Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Sofiya Milman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
16
|
Choudhary S, Kumar V, Sharma K, Gour A, Sahrawat A, Jotshi A, Manhas D, Nandi U, Bharate SB, Ahmed Z, Kumar A. Crocetin Delays Brain and Body Aging by Increasing Cellular Energy Levels in Aged C57BL/6J Mice. ACS Pharmacol Transl Sci 2024; 7:3017-3033. [PMID: 39416964 PMCID: PMC11475333 DOI: 10.1021/acsptsci.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 10/19/2024]
Abstract
Aging is usually accompanied by mitochondrial dysfunction, reduced energy levels, and cell death in the brain and other tissues. Mitochondria play a crucial role in maintaining cellular energy through oxidative phosphorylation (OXPHOS). However, OXPHOS is impaired as the mitochondrial oxygen supply decreases with age. We explored whether pharmacologically increased oxygen diffusion by crocetin can restore OXPHOS and help delay the aging of the brain and other vital organs. We found that aged mice treated with crocetin for four months displayed significantly improved memory behavior, neuromuscular coordination, and ATP and NAD+ levels in the brain and other vital organs, leading to an increased median life span. The transcriptomic analysis of hippocampi from crocetin-treated mice revealed that enhanced brain energy level was caused by the upregulation of genes linked to OXPHOS, and their expression was close to that in young mice. The chronic treatment of aged astrocytes also showed improved mitochondrial membrane potential and energy state of the cells. Moreover, chronic treatment with crocetin did not cause any oxidative stress. Our data suggest that restoring OXPHOS and the normal energy state of the cell can delay aging and enhance longevity. Therefore, molecules such as crocetin should be further explored to treat age-related diseases.
Collapse
Affiliation(s)
- Sushil Choudhary
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Vishnu Kumar
- Institute
of Anatomy and Cell Biology, Justus Liebig
University of Giessen, Giessen 35390, Germany
| | - Kuhu Sharma
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Abhishek Gour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ashish Sahrawat
- Molecular
Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Anshika Jotshi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Diksha Manhas
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
- Bose
Institute, Unified Academic Campus, Kolkata 700091, India
| | - Sandip B. Bharate
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
- Natural Product
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
| | - Zabeer Ahmed
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
17
|
Wimer LA, Davis-Castillo A, Galkina S, Ciotlos S, Patterson C, Prado L, Munoz MC, Martin N, Epstein S, Schaum N, Melov S. Characterizing phenotypic data of Peromyscus leucopus compared to C57BL/6J Mus musculus and diversity outbred (DO) Mus musculus. GeroScience 2024; 46:4647-4656. [PMID: 38871964 PMCID: PMC11335981 DOI: 10.1007/s11357-024-01175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/24/2024] [Indexed: 06/15/2024] Open
Abstract
Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Collapse
Affiliation(s)
- Lauren A Wimer
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Asia Davis-Castillo
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Sofiya Galkina
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Serban Ciotlos
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Cavan Patterson
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Leandro Prado
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Maria Castro Munoz
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Nicolas Martin
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Sharon Epstein
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | | | - Simon Melov
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA.
| |
Collapse
|
18
|
Castro JP, Shindyapina AV, Barbieri A, Ying K, Strelkova OS, Paulo JA, Tyshkovskiy A, Meinl R, Kerepesi C, Petrashen AP, Mariotti M, Meer MV, Hu Y, Karamyshev A, Losyev G, Galhardo M, Logarinho E, Indzhykulian AA, Gygi SP, Sedivy JM, Manis JP, Gladyshev VN. Age-associated clonal B cells drive B cell lymphoma in mice. NATURE AGING 2024; 4:1403-1417. [PMID: 39117982 DOI: 10.1038/s43587-024-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/19/2024] [Indexed: 08/10/2024]
Abstract
Although cancer is an age-related disease, how the processes of aging contribute to cancer progression is not well understood. In this study, we uncovered how mouse B cell lymphoma develops as a consequence of a naturally aged system. We show here that this malignancy is associated with an age-associated clonal B cell (ACBC) population that likely originates from age-associated B cells. Driven by c-Myc activation, promoter hypermethylation and somatic mutations, IgM+ ACBCs clonally expand independently of germinal centers and show increased biological age. ACBCs become self-sufficient and support malignancy when transferred into young recipients. Inhibition of mTOR or c-Myc in old mice attenuates pre-malignant changes in B cells during aging. Although the etiology of mouse and human B cell lymphomas is considered distinct, epigenetic changes in transformed mouse B cells are enriched for changes observed in human B cell lymphomas. Together, our findings characterize the spontaneous progression of cancer during aging through both cell-intrinsic and microenvironmental changes and suggest interventions for its prevention.
Collapse
Affiliation(s)
- José P Castro
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | - Kejun Ying
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga S Strelkova
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - João A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Rico Meinl
- Retro Biosciences, Redwood City, CA, USA
| | - Csaba Kerepesi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Loránd Eötvös Research Network, Budapest, Hungary
| | - Anna P Petrashen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Marco Mariotti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Margarita V Meer
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- San Diego Institute of Sciences, Altos Labs, San Diego, CA, USA
| | - Yan Hu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Grigoriy Losyev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mafalda Galhardo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elsa Logarinho
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Artur A Indzhykulian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John P Manis
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Ying K, Tyshkovskiy A, Chen Q, Latorre-Crespo E, Zhang B, Liu H, Matei-Dediu B, Poganik JR, Moqri M, Kirschne K, Lasky-Su J, Gladyshev VN. High-dimensional Ageome Representations of Biological Aging across Functional Modules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613599. [PMID: 39345525 PMCID: PMC11429788 DOI: 10.1101/2024.09.17.613599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The aging process involves numerous molecular changes that lead to functional decline and increased disease and mortality risk. While epigenetic aging clocks have shown accuracy in predicting biological age, they typically provide single estimates for the samples and lack mechanistic insights. In this study, we challenge the paradigm that aging can be sufficiently described with a single biological age estimate. We describe Ageome, a computational framework for measuring the epigenetic age of thousands of molecular pathways simultaneously in mice and humans. Ageome is based on the premise that an organism's overall biological age can be approximated by the collective ages of its functional modules, which may age at different rates and have different biological ages. We show that, unlike conventional clocks, Ageome provides a high-dimensional representation of biological aging across cellular functions, enabling comprehensive assessment of aging dynamics within an individual, in a population, and across species. Application of Ageome to longevity intervention models revealed distinct patterns of pathway-specific age deceleration. Notably, cell reprogramming, while rejuvenating cells, also accelerated aging of some functional modules. When applied to human cohorts, Ageome demonstrated heterogeneity in predictive power for mortality risk, and some modules showed better performance in predicting the onset of age-related diseases, especially cancer, compared to existing clocks. Together, the Ageome framework offers a comprehensive and interpretable approach for assessing aging, providing insights into mechanisms and targets for intervention.
Collapse
Affiliation(s)
- Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanna Liu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
| | - Benyamin Matei-Dediu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jesse R. Poganik
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kristina Kirschne
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Mayo Clinic, Rochester, MN, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Lee AH, Orliaguet L, Youm YH, Maeda R, Dlugos T, Lei Y, Coman D, Shchukina I, Andhey S, Smith SR, Ravussin E, Stadler K, Hyder F, Artyomov MN, Sugiura Y, Dixit VD. Cysteine depletion triggers adipose tissue thermogenesis and weight-loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606880. [PMID: 39149397 PMCID: PMC11326254 DOI: 10.1101/2024.08.06.606880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Dietary interventions such as caloric restriction (CR)1 and methionine restriction2 that prolong lifespan induce the 'browning' of white adipose tissue (WAT), an adaptive metabolic response that increases heat production to maintain health3,4. However, how diet influences adipose browning and metabolic health is unclear. Here, we identified that weight-loss induced by CR in humans5 reduces cysteine concentration in WAT suggesting depletion of this amino-acid may be involved in metabolic benefits of CR. To investigate the role of cysteine on organismal metabolism, we created a cysteine-deficiency mouse model in which dietary cysteine was eliminated and cystathionine γ-lyase (CTH)6, the enzyme that synthesizes cysteine was conditionally deleted. Using this animal model, we found that systemic cysteine-depletion causes drastic weight-loss with increased fat utilization and browning of adipose tissue. The restoration of dietary cysteine in cysteine-deficient mice rescued weight loss together with reversal of adipose browning and increased food-intake in an on-demand fashion. Mechanistically, cysteine deficiency induced browning and weight loss is dependent on sympathetic nervous system derived noradrenaline signaling via β3-adrenergic-receptors and does not require UCP1. Therapeutically, in high-fat diet fed obese mice, one week of cysteine-deficiency caused 30% weight-loss and reversed inflammation. These findings thus establish that cysteine is essential for organismal metabolism as removal of cysteine in the host triggers adipose browning and rapid weight loss.
Collapse
Affiliation(s)
- Aileen H. Lee
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lucie Orliaguet
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yun-Hee Youm
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Tamara Dlugos
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yuanjiu Lei
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, School of Engineering and Applied Science, Yale University
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University
| | - Irina Shchukina
- Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sairam Andhey
- Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, School of Engineering and Applied Science, Yale University
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University
| | - Maxim N. Artyomov
- Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Kolb AF, Mayer C, Zitskaja A, Petrie L, Hasaballah K, Warren C, Carlisle A, Lillico S, Whitelaw B. Maternal α-casein deficiency extends the lifespan of offspring and programmes their body composition. GeroScience 2024:10.1007/s11357-024-01273-2. [PMID: 38992336 DOI: 10.1007/s11357-024-01273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Early nutrition has significant effects on physiological outcomes during adult life. We have analysed the effect of maternal α-casein (CSN1S1) deficiency on the physiological fate of dams and their offspring. α-casein deficiency reduces maternal milk protein concentration by more than 50% and attenuates the growth of pups to 27% (p < 0.001) of controls at the point of weaning. This is associated with a permanent reduction in adult body weight (- 31% at 25 weeks). Offspring nursed by α-casein deficient dams showed a significantly increased lifespan (+ 20%, χ2: 10.6; p = 0.001). Liver transcriptome analysis of offspring nursed by α-casein deficient dams at weaning revealed gene expression patterns similar to those found in dwarf mice (reduced expression of somatotropic axis signalling genes, increased expression of xenobiotic metabolism genes). In adult mice, the expression of somatotropic axis genes returned to control levels. This demonstrates that, in contrast to dwarf mice, attenuation of the GH-IGF signalling axis in offspring nursed by α-casein deficient dams is transient, while the changes in body size and lifespan are permanent. Offspring nursed by α-casein deficient dams showed permanent changes in body composition. Absolute and relative adipose tissue weights (p < 0.05), the percentage of body fat (p < 0.001) as well as adipocyte size in epididymal white adipose tissue are all reduced. Serum leptin levels were 25% of those found in control mice (p < 0.001). Liver lipid content and lipid composition were significantly altered in response to postnatal nutrition. This demonstrates the nutrition in early life programmes adult lipid metabolism, body composition and lifespan.
Collapse
Affiliation(s)
- Andreas F Kolb
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland.
| | - Claus Mayer
- Biomathematics and Statistics Scotland (BioSS), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Alina Zitskaja
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Linda Petrie
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Khulod Hasaballah
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Claire Warren
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Ailsa Carlisle
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Simon Lillico
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Bruce Whitelaw
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
22
|
Tregub PP, Komleva YK, Kulikov VP, Chekulaev PA, Tregub OF, Maltseva LD, Manasova ZS, Popova IA, Andriutsa NS, Samburova NV, Salmina AB, Litvitskiy PF. Relationship between Hypoxia and Hypercapnia Tolerance and Life Expectancy. Int J Mol Sci 2024; 25:6512. [PMID: 38928217 PMCID: PMC11204369 DOI: 10.3390/ijms25126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The review discusses the potential relationship between hypoxia resistance and longevity, the influence of carbon dioxide on the mechanisms of aging of the mammalian organism, and intermittent hypercapnic-hypoxic effects on the signaling pathways of aging mechanisms. In the article, we focused on the potential mechanisms of the gero-protective efficacy of carbon dioxide when combined with hypoxia. The review summarizes the possible influence of intermittent hypoxia and hypercapnia on aging processes in the nervous system. We considered the perspective variants of the application of hypercapnic-hypoxic influences for achieving active longevity and the prospects for the possibilities of developing hypercapnic-hypoxic training methods.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
| | - Yulia K. Komleva
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Vladimir P. Kulikov
- Department of Ultrasound and Functional Diagnostics, Altay State Medical University, 656040 Barnaul, Russia
| | - Pavel A. Chekulaev
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Larisa D. Maltseva
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia S. Andriutsa
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia V. Samburova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
23
|
Pilsova A, Pilsova Z, Klusackova B, Zelenkova N, Chmelikova E, Postlerova P, Sedmikova M. Hydrogen sulfide and its role in female reproduction. Front Vet Sci 2024; 11:1378435. [PMID: 38933705 PMCID: PMC11202402 DOI: 10.3389/fvets.2024.1378435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule produced in the body by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S is crucial in various physiological processes associated with female mammalian reproduction. These include estrus cycle, oocyte maturation, oocyte aging, ovulation, embryo transport and early embryo development, the development of the placenta and fetal membranes, pregnancy, and the initiation of labor. Despite the confirmed presence of H2S-producing enzymes in all female reproductive tissues, as described in this review, the exact mechanisms of H2S action in these tissues remain in most cases unclear. Therefore, this review aims to summarize the knowledge about the presence and effects of H2S in these tissues and outline possible signaling pathways that mediate these effects. Understanding these pathways may lead to the development of new therapeutic strategies in the field of women's health and perinatal medicine.
Collapse
Affiliation(s)
- Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | | | | | | | | | | | | |
Collapse
|
24
|
Moses E, Atlan T, Sun X, Franěk R, Siddiqui A, Marinov GK, Shifman S, Zucker DM, Oron-Gottesman A, Greenleaf WJ, Cohen E, Ram O, Harel I. The killifish germline regulates longevity and somatic repair in a sex-specific manner. NATURE AGING 2024; 4:791-813. [PMID: 38750187 DOI: 10.1038/s43587-024-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Classical evolutionary theories propose tradeoffs among reproduction, damage repair and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. In this study, we used the turquoise killifish (Nothobranchius furzeri) to genetically arrest germline development at discrete stages and examine how different modes of infertility impact life history. We first constructed a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. We show here that germline depletion-but not arresting germline differentiation-enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted Caenorhabditis elegans. Our results, therefore, demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.
Collapse
Affiliation(s)
- Eitan Moses
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Tehila Atlan
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Xue Sun
- Department of Biochemistry, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Roman Franěk
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Atif Siddiqui
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | | | - Sagiv Shifman
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David M Zucker
- Department of Statistics and Data Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | - Oren Ram
- Department of Biochemistry, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Itamar Harel
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
25
|
Gao X, Yu J, Zhang L, Shi H, Yan Y, Han Y, Fang M, Liu Y, Wu C, Fan S, Huang C. Mulberrin extends lifespan in Caenorhabditis elegans through detoxification function. J Appl Toxicol 2024; 44:833-845. [PMID: 38291015 DOI: 10.1002/jat.4578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
Mulberrin, a naturally occurring flavone found in mulberry and Romulus Mori, exhibits diverse biological functions. Here, we showed that mulberrin extended both the lifespan and healthspan in C. elegans. Moreover, mulberrin increased the worms' resistance to toxicants and activated the expression of detoxification genes. The longevity-promoting effect of mulberrin was attenuated in nuclear hormone receptor (NHR) homologous nhr-8 and daf-12 mutants, indicating that the lifespan extending effects of mulberrin in C. elegans may depend on nuclear hormone receptors NHR-8/DAF-12. Further analyses revealed the potential associations between the longevity effects of mulberrin and the insulin/insulin-like growth factor signaling (IIS) and adenosine 5'-monophosphate-activated protein kinase (AMPK) pathways. Together, our findings suggest that mulberrin may prolong lifespan and healthspan by activating detoxification functions mediated by nuclear receptors.
Collapse
Affiliation(s)
- Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyuan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Gujjala VA, Klimek I, Abyadeh M, Tyshkovskiy A, Oz N, Castro JP, Gladyshev VN, Newton J, Kaya A. A disease similarity approach identifies short-lived Niemann-Pick type C disease mice with accelerated brain aging as a novel mouse model for Alzheimer's disease and aging research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590328. [PMID: 38712089 PMCID: PMC11071364 DOI: 10.1101/2024.04.19.590328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Since its first description in 1906 by Dr. Alois Alzheimer, Alzheimer's disease (AD) has been the most common type of dementia. Initially thought to be caused by age-associated accumulation of plaques, in recent years, research has increasingly associated AD with lysosomal storage and metabolic disorders, and the explanation of its pathogenesis has shifted from amyloid and tau accumulation to oxidative stress and impaired lipid and glucose metabolism aggravated by hypoxic conditions. However, the underlying mechanisms linking those cellular processes and conditions to disease progression have yet to be defined. Here, we applied a disease similarity approach to identify unknown molecular targets of AD by using transcriptomic data from congenital diseases known to increase AD risk, namely Down Syndrome, Niemann Pick Disease Type C (NPC), and Mucopolysaccharidoses I. We uncovered common pathways, hub genes, and miRNAs across in vitro and in vivo models of these diseases as potential molecular targets for neuroprotection and amelioration of AD pathology, many of which have never been associated with AD. We then investigated common molecular alterations in brain samples from an NPC disease mouse model by juxtaposing them with brain samples of both human and mouse models of AD. Detailed phenotypic and molecular analyses revealed that the NPC mut mouse model can serve as a potential short-lived in vivo model for AD research and for understanding molecular factors affecting brain aging. This research represents the first comprehensive approach to congenital disease association with neurodegeneration and a new perspective on AD research while highlighting shortcomings and lack of correlation in diverse in vitro models. Considering the lack of an AD mouse model that recapitulates the physiological hallmarks of brain aging, the characterization of a short-lived NPC mouse model will further accelerate the research in these fields and offer a unique model for understanding the molecular mechanisms of AD from a perspective of accelerated brain aging.
Collapse
|
27
|
Moses E, Atlan T, Sun X, Franek R, Siddiqui A, Marinov GK, Shifman S, Zucker DM, Oron-Gottesman A, Greenleaf WJ, Cohen E, Ram O, Harel I. The killifish germline regulates longevity and somatic repair in a sex-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572041. [PMID: 38187630 PMCID: PMC10769255 DOI: 10.1101/2023.12.18.572041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Classical evolutionary theories propose tradeoffs between reproduction, damage repair, and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. Here, we use the turquoise killifish ( N. furzeri ) to genetically arrest germline development at discrete stages, and examine how different modes of infertility impact life-history. We first construct a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. Next, we show that germline depletion - but not arresting germline differentiation - enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted C. elegans . Our results therefore demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.
Collapse
|
28
|
Landsberger T, Amit I, Alon U. Geroprotective interventions converge on gene expression programs of reduced inflammation and restored fatty acid metabolism. GeroScience 2024; 46:1627-1639. [PMID: 37698783 PMCID: PMC10828297 DOI: 10.1007/s11357-023-00915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023] Open
Abstract
Understanding the mechanisms of geroprotective interventions is central to aging research. We compare four prominent interventions: senolysis, caloric restriction, in vivo partial reprogramming, and heterochronic parabiosis. Using published mice transcriptomic data, we juxtapose these interventions against normal aging. We find a gene expression program common to all four interventions, in which inflammation is reduced and several metabolic processes, especially fatty acid metabolism, are increased. Normal aging exhibits the inverse of this signature across multiple organs and tissues. A similar inverse signature arises in three chronic inflammation disease models in a non-aging context, suggesting that the shift in metabolism occurs downstream of inflammation. Chronic inflammation is also shown to accelerate transcriptomic age. We conclude that a core mechanism of geroprotective interventions acts through the reduction of inflammation with downstream effects that restore fatty acid metabolism. This supports the notion of directly targeting genes associated with these pathways to mitigate age-related deterioration.
Collapse
Affiliation(s)
- Tomer Landsberger
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
29
|
Burns AR, Wiedrick J, Feryn A, Maes M, Midha MK, Baxter DH, Morrone SR, Prokop TJ, Kapil C, Hoopmann MR, Kusebauch U, Deutsch EW, Rappaport N, Watanabe K, Moritz RL, Miller RA, Lapidus JA, Orwoll ES. Proteomic changes induced by longevity-promoting interventions in mice. GeroScience 2024; 46:1543-1560. [PMID: 37653270 PMCID: PMC10828338 DOI: 10.1007/s11357-023-00917-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023] Open
Abstract
Using mouse models and high-throughput proteomics, we conducted an in-depth analysis of the proteome changes induced in response to seven interventions known to increase mouse lifespan. This included two genetic mutations, a growth hormone receptor knockout (GHRKO mice) and a mutation in the Pit-1 locus (Snell dwarf mice), four drug treatments (rapamycin, acarbose, canagliflozin, and 17α-estradiol), and caloric restriction. Each of the interventions studied induced variable changes in the concentrations of proteins across liver, kidney, and gastrocnemius muscle tissue samples, with the strongest responses in the liver and limited concordance in protein responses across tissues. To the extent that these interventions promote longevity through common biological mechanisms, we anticipated that proteins associated with longevity could be identified by characterizing shared responses across all or multiple interventions. Many of the proteome alterations induced by each intervention were distinct, potentially implicating a variety of biological pathways as being related to lifespan extension. While we found no protein that was affected similarly by every intervention, we identified a set of proteins that responded to multiple interventions. These proteins were functionally diverse but tended to be involved in peroxisomal oxidation and metabolism of fatty acids. These results provide candidate proteins and biological mechanisms related to enhancing longevity that can inform research on therapeutic approaches to promote healthy aging.
Collapse
Affiliation(s)
- Adam R Burns
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA.
| | - Jack Wiedrick
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Alicia Feryn
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Michal Maes
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | | | - Charu Kapil
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | | | | | | | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jodi A Lapidus
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Eric S Orwoll
- Department of Endocrinology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
30
|
Soheili-Nezhad S, Ibáñez-Solé O, Izeta A, Hoeijmakers JHJ, Stoeger T. Time is ticking faster for long genes in aging. Trends Genet 2024; 40:299-312. [PMID: 38519330 PMCID: PMC11003850 DOI: 10.1016/j.tig.2024.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/24/2024]
Abstract
Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer's disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Olga Ibáñez-Solé
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ander Izeta
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Tecnun-University of Navarra, 20018 Donostia-San Sebastian, Spain.
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute for Genome Stability in Ageing and Disease, Cologne, Germany; Princess Maxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands.
| | - Thomas Stoeger
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA; Potocsnak Longevity Institute, Northwestern University, Chicago, IL, USA; Simpson Querrey Lung Institute for Translational Science, Chicago, IL, USA.
| |
Collapse
|
31
|
Jayne L, Lavin-Peter A, Roessler J, Tyshkovskiy A, Antoszewski M, Ren E, Markovski A, Sun S, Yao H, Sankaran VG, Gladyshev VN, Brooke RT, Horvath S, Griffith EC, Hrvatin S. A torpor-like state (TLS) in mice slows blood epigenetic aging and prolongs healthspan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585828. [PMID: 38585858 PMCID: PMC10996477 DOI: 10.1101/2024.03.20.585828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase health span, remain unknown. We demonstrate that the activity of a spatially defined neuronal population in the avMLPA, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor like state (TLS) in mice. Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves health span. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (Tb) on blood epigenetic aging and find that the pro-longevity effect of torpor-like states is mediated by decreased Tb. Taken together, our findings provide novel mechanistic insight into the pro-longevity effects of torpor and hibernation and support the growing body of evidence that Tb is an important mediator of aging processes.
Collapse
Affiliation(s)
- Lorna Jayne
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Present address: Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Aurora Lavin-Peter
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Julian Roessler
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erika Ren
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Aleksandar Markovski
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Senmiao Sun
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Hanqi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steve Horvath
- Epigenetic Clock Development Foundation, Torrance, CA, USA
- Altos Labs, Cambridge, UK
| | - Eric C. Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Sinisa Hrvatin
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| |
Collapse
|
32
|
Mitchell W, Goeminne LJE, Tyshkovskiy A, Zhang S, Chen JY, Paulo JA, Pierce KA, Choy AH, Clish CB, Gygi SP, Gladyshev VN. Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation. eLife 2024; 12:RP90579. [PMID: 38517750 PMCID: PMC10959535 DOI: 10.7554/elife.90579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Partial reprogramming by cyclic short-term expression of Yamanaka factors holds promise for shifting cells to younger states and consequently delaying the onset of many diseases of aging. However, the delivery of transgenes and potential risk of teratoma formation present challenges for in vivo applications. Recent advances include the use of cocktails of compounds to reprogram somatic cells, but the characteristics and mechanisms of partial cellular reprogramming by chemicals remain unclear. Here, we report a multi-omics characterization of partial chemical reprogramming in fibroblasts from young and aged mice. We measured the effects of partial chemical reprogramming on the epigenome, transcriptome, proteome, phosphoproteome, and metabolome. At the transcriptome, proteome, and phosphoproteome levels, we saw widescale changes induced by this treatment, with the most notable signature being an upregulation of mitochondrial oxidative phosphorylation. Furthermore, at the metabolome level, we observed a reduction in the accumulation of aging-related metabolites. Using both transcriptomic and epigenetic clock-based analyses, we show that partial chemical reprogramming reduces the biological age of mouse fibroblasts. We demonstrate that these changes have functional impacts, as evidenced by changes in cellular respiration and mitochondrial membrane potential. Taken together, these results illuminate the potential for chemical reprogramming reagents to rejuvenate aged biological systems and warrant further investigation into adapting these approaches for in vivo age reversal.
Collapse
Affiliation(s)
- Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Ludger JE Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Sirui Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Julie Y Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Kerry A Pierce
- Broad Institute of MIT and HarvardCambridgeUnited States
| | | | - Clary B Clish
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
33
|
Agius T, Emsley R, Lyon A, MacArthur MR, Kiesworo K, Faivre A, Stavart L, Lambelet M, Legouis D, de Seigneux S, Golshayan D, Lazeyras F, Yeh H, Markmann JF, Uygun K, Ocampo A, Mitchell SJ, Allagnat F, Déglise S, Longchamp A. Short-term hypercaloric carbohydrate loading increases surgical stress resilience by inducing FGF21. Nat Commun 2024; 15:1073. [PMID: 38316771 PMCID: PMC10844297 DOI: 10.1038/s41467-024-44866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Dietary restriction promotes resistance to surgical stress in multiple organisms. Counterintuitively, current medical protocols recommend short-term carbohydrate-rich drinks (carbohydrate loading) prior to surgery, part of a multimodal perioperative care pathway designed to enhance surgical recovery. Despite widespread clinical use, preclinical and mechanistic studies on carbohydrate loading in surgical contexts are lacking. Here we demonstrate in ad libitum-fed mice that liquid carbohydrate loading for one week drives reductions in solid food intake, while nearly doubling total caloric intake. Similarly, in humans, simple carbohydrate intake is inversely correlated with dietary protein intake. Carbohydrate loading-induced protein dilution increases expression of hepatic fibroblast growth factor 21 (FGF21) independent of caloric intake, resulting in protection in two models of surgical stress: renal and hepatic ischemia-reperfusion injury. The protection is consistent across male, female, and aged mice. In vivo, amino acid add-back or genetic FGF21 deletion blocks carbohydrate loading-mediated protection from ischemia-reperfusion injury. Finally, carbohydrate loading induction of FGF21 is associated with the induction of the canonical integrated stress response (ATF3/4, NF-kB), and oxidative metabolism (PPARγ). Together, these data support carbohydrate loading drinks prior to surgery and reveal an essential role of protein dilution via FGF21.
Collapse
Affiliation(s)
- Thomas Agius
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raffaella Emsley
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Arnaud Lyon
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Michael R MacArthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kevin Kiesworo
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Anna Faivre
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Louis Stavart
- Transplantation Center, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martine Lambelet
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - David Legouis
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Déla Golshayan
- Transplantation Center, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Francois Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Heidi Yeh
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sarah J Mitchell
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Florent Allagnat
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Hine C, Patel AK, Ponti AK. Diet-Modifiable Redox Alterations in Ageing and Cancer. Subcell Biochem 2024; 107:129-172. [PMID: 39693023 PMCID: PMC11753504 DOI: 10.1007/978-3-031-66768-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With ageing comes some of life's best and worst moments. Those lucky enough to live out into the seventh, eighth, and nineth decades and perhaps beyond have more opportunities to experience the wonders and joys of the world. As the world's population shifts towards more and more of these individuals, this is something to be celebrated. However, it is not without negative consequences. Advanced age also ushers in health decline and the burden of non-communicable diseases such as cancer, heart disease, stroke, and organ function decay. Thus, alleviating or at least dampening the severity of ageing as a whole, as well as these individual age-related disorders will enable the improvement in lifespan and healthspan. In the following chapter, we delve into hypothesised causes of ageing and experimental interventions that can be taken to slow their progression. We also highlight cellular and subcellular mechanisms of ageing with a focus on protein thiol oxidation and posttranslational modifications that impact cellular homeostasis and the advent and progression of ageing-related cancers. By having a better understanding of the mechanisms of ageing, we can hopefully develop effective, safe, and efficient therapeutic modalities that can be used prophylactically and/or concurrent to the onset of ageing.
Collapse
Affiliation(s)
- Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| | - Anand Kumar Patel
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Cardiovascular Genetics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - András K Ponti
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| |
Collapse
|
35
|
Fernando R, Shindyapina AV, Ost M, Santesmasses D, Hu Y, Tyshkovskiy A, Yim SH, Weiss J, Gladyshev VN, Grune T, Castro JP. Downregulation of mitochondrial metabolism is a driver for fast skeletal muscle loss during mouse aging. Commun Biol 2023; 6:1240. [PMID: 38066057 PMCID: PMC10709625 DOI: 10.1038/s42003-023-05595-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Skeletal muscle aging is characterized by the loss of muscle mass, strength and function, mainly attributed to the atrophy of glycolytic fibers. Underlying mechanisms driving the skeletal muscle functional impairment are yet to be elucidated. To unbiasedly uncover its molecular mechanisms, we recurred to gene expression and metabolite profiling in a glycolytic muscle, Extensor digitorum longus (EDL), from young and aged C57BL/6JRj mice. Employing multi-omics approaches we found that the main age-related changes are connected to mitochondria, exhibiting a downregulation in mitochondrial processes. Consistent is the altered mitochondrial morphology. We further compared our mouse EDL aging signature with human data from the GTEx database, reinforcing the idea that our model may recapitulate muscle loss in humans. We are able to show that age-related mitochondrial downregulation is likely to be detrimental, as gene expression signatures from commonly used lifespan extending interventions displayed the opposite direction compared to our EDL aging signature.
Collapse
Affiliation(s)
- Raquel Fernando
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Didac Santesmasses
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yan Hu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119234, Russia
| | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79401, USA
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764, Neuherberg, Germany
- German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany.
- German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Düsseldorf, Germany.
- German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany.
- University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| |
Collapse
|
36
|
Aguado J, Amarilla AA, Taherian Fard A, Albornoz EA, Tyshkovskiy A, Schwabenland M, Chaggar HK, Modhiran N, Gómez-Inclán C, Javed I, Baradar AA, Liang B, Peng L, Dharmaratne M, Pietrogrande G, Padmanabhan P, Freney ME, Parry R, Sng JDJ, Isaacs A, Khromykh AA, Valenzuela Nieto G, Rojas-Fernandez A, Davis TP, Prinz M, Bengsch B, Gladyshev VN, Woodruff TM, Mar JC, Watterson D, Wolvetang EJ. Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology. NATURE AGING 2023; 3:1561-1575. [PMID: 37957361 PMCID: PMC10724067 DOI: 10.1038/s43587-023-00519-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
Aging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks. In postmortem brains of patients with severe COVID-19 we observed increased senescent cell accumulation compared with age-matched controls. Exposure of human brain organoids to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced cellular senescence, and transcriptomic analysis revealed a unique SARS-CoV-2 inflammatory signature. Senolytic treatment of infected brain organoids blocked viral replication and prevented senescence in distinct neuronal populations. In human-ACE2-overexpressing mice, senolytics improved COVID-19 clinical outcomes, promoted dopaminergic neuron survival and alleviated viral and proinflammatory gene expression. Collectively our results demonstrate an important role for cellular senescence in driving brain aging and SARS-CoV-2-induced neuropathology, and a therapeutic benefit of senolytic treatments.
Collapse
Affiliation(s)
- Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia.
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Eduardo A Albornoz
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Marius Schwabenland
- Institute of Neuropathology and Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Harman K Chaggar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Naphak Modhiran
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Cecilia Gómez-Inclán
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
- Centre for Pharmaceutical Innovation, School of Pharmacy and Medical Sciences, UniSA Clinical and Health Sciences, The University of South Australia, Adelaide, South Australia, Australia
| | - Alireza A Baradar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Lianli Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Malindrie Dharmaratne
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Morgan E Freney
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Guillermo Valenzuela Nieto
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Rojas-Fernandez
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Berking Biotechnology, Valdivia, Chile
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Marco Prinz
- Institute of Neuropathology and Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
37
|
Mitchell W, Goeminne LJ, Tyshkovskiy A, Zhang S, Chen JY, Paulo JA, Pierce KA, Choy AH, Clish CB, Gygi SP, Gladyshev VN. Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.546730. [PMID: 37425825 PMCID: PMC10327104 DOI: 10.1101/2023.06.30.546730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Partial reprogramming by cyclic short-term expression of Yamanaka factors holds promise for shifting cells to younger states and consequently delaying the onset of many diseases of aging. However, the delivery of transgenes and potential risk of teratoma formation present challenges for in vivo applications. Recent advances include the use of cocktails of compounds to reprogram somatic cells, but the characteristics and mechanisms of partial cellular reprogramming by chemicals remain unclear. Here, we report a multi-omics characterization of partial chemical reprogramming in fibroblasts from young and aged mice. We measured the effects of partial chemical reprogramming on the epigenome, transcriptome, proteome, phosphoproteome, and metabolome. At the transcriptome, proteome, and phosphoproteome levels, we saw widescale changes induced by this treatment, with the most notable signature being an upregulation of mitochondrial oxidative phosphorylation. Furthermore, at the metabolome level, we observed a reduction in the accumulation of aging-related metabolites. Using both transcriptomic and epigenetic clock-based analyses, we show that partial chemical reprogramming reduces the biological age of mouse fibroblasts. We demonstrate that these changes have functional impacts, as evidenced by changes in cellular respiration and mitochondrial membrane potential. Taken together, these results illuminate the potential for chemical reprogramming reagents to rejuvenate aged biological systems and warrant further investigation into adapting these approaches for in vivo age reversal.
Collapse
Affiliation(s)
- Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Ludger J.E. Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Sirui Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Julie Y. Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 United States
| | - Kerry A. Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Angelina H. Choy
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 United States
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| |
Collapse
|
38
|
Baird L, Taguchi K, Zhang A, Takahashi Y, Suzuki T, Kensler TW, Yamamoto M. A NRF2-induced secretory phenotype activates immune surveillance to remove irreparably damaged cells. Redox Biol 2023; 66:102845. [PMID: 37597423 PMCID: PMC10458321 DOI: 10.1016/j.redox.2023.102845] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
While it is well established that the KEAP1-NRF2 pathway regulates the main inducible cellular response to oxidative stress, this cytoprotective function of NRF2 could become deleterious to the host if it confers survival onto irreparably damaged cells. In this regard, we have found that in diseased states, NRF2 promotes the transcriptional activation of a specific subset of the senescence-associated secretory phenotype (SASP) gene program, which we have named the NRF2-induced secretory phenotype (NISP). In two models of hepatic disease using Pten::Keap1 and Keap1::Atg7 double knockout mice, we found that the NISP functions in the liver to recruit CCR2 expressing monocytes, which function as immune system effector cells to directly remove the damaged cells. Through activation of this immune surveillance pathway, in non-transformed cells, NRF2 functions as a tumour suppressor to mitigate the long-term survival of damaged cells which otherwise would be detrimental for host survival. This pathway represents the final stage of the oxidative stress response, as it allows cells to be safely removed if the macromolecular damage caused by the original stressor is so extensive that it is beyond the repair capacity of the cell.
Collapse
Affiliation(s)
- Liam Baird
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, 980-8575, Japan.
| | - Keiko Taguchi
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Anqi Zhang
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Yushi Takahashi
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Takafumi Suzuki
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, United States
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
39
|
Elmansi AM, Miller RA. Coordinated transcriptional upregulation of oxidative metabolism proteins in long-lived endocrine mutant mice. GeroScience 2023; 45:2967-2981. [PMID: 37273159 PMCID: PMC10643730 DOI: 10.1007/s11357-023-00849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023] Open
Abstract
Caloric restriction (CR), which extends lifespan in rodents, leads to increased hepatic fatty acid β-oxidation and oxidative phosphorylation (OXPHOS), with parallel changes in proteins and their mRNAs. Genetic mutants that extend lifespan, including growth hormone receptor knockout (GHRKO) and Snell dwarf (SD) mice, have lower respiratory quotient, suggesting increased reliance on fatty acid oxidation, but the molecular mechanism(s) of this metabolic shift have not yet been worked out. Here we show that both GHRKO and SD mice have significantly higher mRNA and protein levels of enzymes involved in mitochondrial and peroxisomal fatty acid β-oxidation. In addition, multiple subunits of OXPHOS complexes I-IV are upregulated in GHRKO and SD livers, and Complex V subunit ATP5a is upregulated in liver of GHRKO mice. Expression of these genes is regulated by a group of nuclear receptors and transcription factors including peroxisome proliferator-activated receptors (PPARs) and estrogen-related receptors (ERRs). We found that levels of these nuclear receptors and their co-activator PGC-1α were unchanged or downregulated in liver of GHRKO and SD mice. In contrast, NCOR1, a co-repressor for the same receptors, was significantly downregulated in the two long-lived mouse models, suggesting a plausible mechanism for the changes in FAO and OXPHOS proteins. Hepatic levels of HDAC3, a co-factor for NCOR1 transcriptional repression, were also downregulated. The role of NCOR1 is well established in the contexts of cancer and metabolic disease, but may provide new mechanistic insights into metabolic control in long-lived mouse models.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Zhang Z, Tian X, Lu JY, Boit K, Ablaeva J, Zakusilo FT, Emmrich S, Firsanov D, Rydkina E, Biashad SA, Lu Q, Tyshkovskiy A, Gladyshev VN, Horvath S, Seluanov A, Gorbunova V. Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice. Nature 2023; 621:196-205. [PMID: 37612507 PMCID: PMC10666664 DOI: 10.1038/s41586-023-06463-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Abundant high-molecular-mass hyaluronic acid (HMM-HA) contributes to cancer resistance and possibly to the longevity of the longest-lived rodent-the naked mole-rat1,2. To study whether the benefits of HMM-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHas2). nmrHas2 mice showed an increase in hyaluronan levels in several tissues, and a lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHas2 mice shifted towards that of longer-lived species. The most notable change observed in nmrHas2 mice was attenuated inflammation across multiple tissues. HMM-HA reduced inflammation through several pathways, including a direct immunoregulatory effect on immune cells, protection from oxidative stress and improved gut barrier function during ageing. These beneficial effects were conferred by HMM-HA and were not specific to the nmrHas2 gene. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exported to other species, and open new paths for using HMM-HA to improve lifespan and healthspan.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Xiao Tian
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Kathryn Boit
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Denis Firsanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Elena Rydkina
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Quan Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
41
|
Astre G, Atlan T, Goshtchevsky U, Oron-Gottesman A, Smirnov M, Shapira K, Velan A, Deelen J, Levy T, Levanon EY, Harel I. Genetic perturbation of AMP biosynthesis extends lifespan and restores metabolic health in a naturally short-lived vertebrate. Dev Cell 2023; 58:1350-1364.e10. [PMID: 37321215 DOI: 10.1016/j.devcel.2023.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity benefits. Our findings suggest that perturbing AMP biosynthesis may modulate vertebrate lifespan and propose APRT as a promising target for promoting metabolic health.
Collapse
Affiliation(s)
- Gwendoline Astre
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Tehila Atlan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 10803, Israel
| | - Kobi Shapira
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ariel Velan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tomer Levy
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Itamar Harel
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
42
|
Zhang B, Lee DE, Trapp A, Tyshkovskiy A, Lu AT, Bareja A, Kerepesi C, McKay LK, Shindyapina AV, Dmitriev SE, Baht GS, Horvath S, Gladyshev VN, White JP. Multi-omic rejuvenation and life span extension on exposure to youthful circulation. NATURE AGING 2023; 3:948-964. [PMID: 37500973 PMCID: PMC11095548 DOI: 10.1038/s43587-023-00451-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/06/2023] [Indexed: 07/29/2023]
Abstract
Heterochronic parabiosis (HPB) is known for its functional rejuvenation effects across several mouse tissues. However, its impact on biological age and long-term health is unknown. Here we performed extended (3-month) HPB, followed by a 2-month detachment period of anastomosed pairs. Old detached mice exhibited improved physiological parameters and lived longer than control isochronic mice. HPB drastically reduced the epigenetic age of blood and liver based on several clock models using two independent platforms. Remarkably, this rejuvenation effect persisted even after 2 months of detachment. Transcriptomic and epigenomic profiles of anastomosed mice showed an intermediate phenotype between old and young, suggesting a global multi-omic rejuvenation effect. In addition, old HPB mice showed gene expression changes opposite to aging but akin to several life span-extending interventions. Altogether, we reveal that long-term HPB results in lasting epigenetic and transcriptome remodeling, culminating in the extension of life span and health span.
Collapse
Affiliation(s)
- Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Lee
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Alexandre Trapp
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Retro Biosciences, Redwood City, CA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Akshay Bareja
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Csaba Kerepesi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Eötvös Loránd Research Network, Budapest, Hungary
| | - Lauren K McKay
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Retro Biosciences, Redwood City, CA, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - James P White
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
43
|
Watanabe K, Wilmanski T, Baloni P, Robinson M, Garcia GG, Hoopmann MR, Midha MK, Baxter DH, Maes M, Morrone SR, Crebs KM, Kapil C, Kusebauch U, Wiedrick J, Lapidus J, Pflieger L, Lausted C, Roach JC, Glusman G, Cummings SR, Schork NJ, Price ND, Hood L, Miller RA, Moritz RL, Rappaport N. Lifespan-extending interventions induce consistent patterns of fatty acid oxidation in mouse livers. Commun Biol 2023; 6:768. [PMID: 37481675 PMCID: PMC10363145 DOI: 10.1038/s42003-023-05128-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/10/2023] [Indexed: 07/24/2023] Open
Abstract
Aging manifests as progressive deteriorations in homeostasis, requiring systems-level perspectives to investigate the gradual molecular dysregulation of underlying biological processes. Here, we report systemic changes in the molecular regulation of biological processes under multiple lifespan-extending interventions. Differential Rank Conservation (DIRAC) analyses of mouse liver proteomics and transcriptomics data show that mechanistically distinct lifespan-extending interventions (acarbose, 17α-estradiol, rapamycin, and calorie restriction) generally tighten the regulation of biological modules. These tightening patterns are similar across the interventions, particularly in processes such as fatty acid oxidation, immune response, and stress response. Differences in DIRAC patterns between proteins and transcripts highlight specific modules which may be tightened via augmented cap-independent translation. Moreover, the systemic shifts in fatty acid metabolism are supported through integrated analysis of liver transcriptomics data with a mouse genome-scale metabolic model. Our findings highlight the power of systems-level approaches for identifying and characterizing the biological processes involved in aging and longevity.
Collapse
Affiliation(s)
| | | | - Priyanka Baloni
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | | | | | - Michal Maes
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Charu Kapil
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Jack Wiedrick
- Oregon Health and Science University, Portland, OR, USA
| | - Jodi Lapidus
- Oregon Health and Science University, Portland, OR, USA
| | - Lance Pflieger
- Institute for Systems Biology, Seattle, WA, USA
- Phenome Health, Seattle, WA, USA
| | | | | | | | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Nicholas J Schork
- Department of Quantitative Medicine, The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
- Department of Population Sciences and Molecular and Cell Biology, The City of Hope National Medical Center, Duarte, CA, USA
| | - Nathan D Price
- Institute for Systems Biology, Seattle, WA, USA
- Thorne HealthTech, New York, NY, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, USA.
- Phenome Health, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | | | | |
Collapse
|
44
|
Vignane T, Filipovic MR. Emerging Chemical Biology of Protein Persulfidation. Antioxid Redox Signal 2023; 39:19-39. [PMID: 37288744 PMCID: PMC10433728 DOI: 10.1089/ars.2023.0352] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Significance: Protein persulfidation (the formation of RSSH), an evolutionarily conserved oxidative posttranslational modification in which thiol groups in cysteine residues are converted into persulfides, has emerged as one of the main mechanisms through which hydrogen sulfide (H2S) conveys its signaling. Recent Advances: New methodological advances in persulfide labeling started unraveling the chemical biology of this modification and its role in (patho)physiology. Some of the key metabolic enzymes are regulated by persulfidation. RSSH levels are important for the cellular defense against oxidative injury, and they decrease with aging, leaving proteins vulnerable to oxidative damage. Persulfidation is dysregulated in many diseases. Critical Issues: A relatively new field of signaling by protein persulfidation still has many unanswered questions: the mechanism(s) of persulfide formation and transpersulfidation and the identification of "protein persulfidases," the improvement of methods to monitor RSSH changes and identify protein targets, and understanding the mechanisms through which this modification controls important (patho)physiological functions. Future Directions: Deep mechanistic studies using more selective and sensitive RSSH labeling techniques will provide high-resolution structural, functional, quantitative, and spatiotemporal information on RSSH dynamics and help with better understanding how H2S-derived protein persulfidation affects protein structure and function in health and disease. This knowledge could pave the way for targeted drug design for a wide variety of pathologies. Antioxid. Redox Signal. 39, 19-39.
Collapse
Affiliation(s)
- Thibaut Vignane
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | | |
Collapse
|
45
|
Lee AH, Sugiura Y, Youm YH, Dlugos T, Maeda R, Coman D, Spadaro O, Sidorov S, Shchukina I, Andhey S, Smith SR, Ravussin E, Hyder F, Artyomov MN, Dixit VD. [WITHDRAWN] Activation of transsulfuration pathway to maintain cysteine is a thermogenic checkpoint for the conservation of energy. RESEARCH SQUARE 2023:rs.3.rs-3069713. [PMID: 37461682 PMCID: PMC10350108 DOI: 10.21203/rs.3.rs-3069713/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The authors have requested that this preprint be removed from Research Square.
Collapse
Affiliation(s)
- Aileen H. Lee
- Department of Pathology
- Department of Comparative Medicine
- Department of Immunobiology, Yale School of Medicine, New
Haven, CT 06520, USA
| | | | - Yun-Hee Youm
- Department of Pathology
- Department of Comparative Medicine
- Department of Immunobiology, Yale School of Medicine, New
Haven, CT 06520, USA
| | - Tamara Dlugos
- Department of Pathology
- Department of Comparative Medicine
- Department of Immunobiology, Yale School of Medicine, New
Haven, CT 06520, USA
| | | | - Daniel Coman
- Department of Radiology and Biomedical Imaging
- Department of Biomedical Engineering, School of Engineering
and Applied Science, Yale University
| | - Olga Spadaro
- Department of Pathology
- Department of Comparative Medicine
- Department of Immunobiology, Yale School of Medicine, New
Haven, CT 06520, USA
| | - Sviatoslav Sidorov
- Department of Pathology
- Department of Comparative Medicine
- Department of Immunobiology, Yale School of Medicine, New
Haven, CT 06520, USA
| | - Irina Shchukina
- Department of Pathology and Immunology Washington
University School of Medicine, St. Louis, MO 63110, USA
| | - Sairam Andhey
- Department of Pathology and Immunology Washington
University School of Medicine, St. Louis, MO 63110, USA
| | - Steven R. Smith
- Translational Research Institute for Metabolism and
Diabetes, AdventHealth, Orlando, FL, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA,
USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging
- Department of Biomedical Engineering, School of Engineering
and Applied Science, Yale University
| | - Maxim N. Artyomov
- Department of Pathology and Immunology Washington
University School of Medicine, St. Louis, MO 63110, USA
| | - Vishwa Deep Dixit
- Department of Pathology
- Department of Comparative Medicine
- Department of Immunobiology, Yale School of Medicine, New
Haven, CT 06520, USA
- Yale Center for Research on Aging, Yale School of
Medicine, New Haven, CT 06520, USA
| |
Collapse
|
46
|
Monzó C, Gkioni L, Beyer A, Valenzano DR, Grönke S, Partridge L. Dietary restriction mitigates the age-associated decline in mouse B cell receptor repertoire diversity. Cell Rep 2023; 42:112722. [PMID: 37384530 PMCID: PMC10391628 DOI: 10.1016/j.celrep.2023.112722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Aging impairs the capacity to respond to novel antigens, reducing immune protection against pathogens and vaccine efficacy. Dietary restriction (DR) extends life- and health span in diverse animals. However, little is known about the capacity of DR to combat the decline in immune function. Here, we study the changes in B cell receptor (BCR) repertoire during aging in DR and control mice. By sequencing the variable region of the BCR heavy chain in the spleen, we show that DR preserves diversity and attenuates the increase in clonal expansions throughout aging. Remarkably, mice starting DR in mid-life have repertoire diversity and clonal expansion rates indistinguishable from chronic DR mice. In contrast, in the intestine, these traits are unaffected by either age or DR. Reduced within-individual B cell repertoire diversity and increased clonal expansions are correlated with higher morbidity, suggesting a potential contribution of B cell repertoire dynamics to health during aging.
Collapse
Affiliation(s)
- Carolina Monzó
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Age-Associated Diseases (CECAD), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Lisonia Gkioni
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany
| | - Andreas Beyer
- Cologne Excellence Cluster on Cellular Stress Responses in Age-Associated Diseases (CECAD), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Dario Riccardo Valenzano
- Microbiome-Host Interactions in Ageing Group, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany; Evolutionary Biology/Microbiome-Host Interactions in Aging Group: Fritz Lipmann Institute - Leibniz Institute on Aging, 07745 Jena, Thuringia, Germany.
| | - Sebastian Grönke
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany.
| | - Linda Partridge
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany; Genetics, Evolution & Environment Group, Institute of Healthy Ageing, University College London, London WC1E 6BT, UK.
| |
Collapse
|
47
|
Tyshkovskiy A, Ma S, Shindyapina AV, Tikhonov S, Lee SG, Bozaykut P, Castro JP, Seluanov A, Schork NJ, Gorbunova V, Dmitriev SE, Miller RA, Gladyshev VN. Distinct longevity mechanisms across and within species and their association with aging. Cell 2023; 186:2929-2949.e20. [PMID: 37269831 PMCID: PMC11192172 DOI: 10.1016/j.cell.2023.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2022] [Accepted: 05/02/2023] [Indexed: 06/05/2023]
Abstract
Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.
Collapse
Affiliation(s)
- Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stanislav Tikhonov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Perinur Bozaykut
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - José P Castro
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Nicholas J Schork
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
48
|
Fan S, Yan Y, Xia Y, Zhou Z, Luo L, Zhu M, Han Y, Yao D, Zhang L, Fang M, Peng L, Yu J, Liu Y, Gao X, Guan H, Li H, Wang C, Wu X, Zhu H, Cao Y, Huang C. Pregnane X receptor agonist nomilin extends lifespan and healthspan in preclinical models through detoxification functions. Nat Commun 2023; 14:3368. [PMID: 37291126 PMCID: PMC10250385 DOI: 10.1038/s41467-023-39118-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Citrus fruit has long been considered a healthy food, but its role and detailed mechanism in lifespan extension are not clear. Here, by using the nematode C. elegans, we identified that nomilin, a bitter-taste limoloid that is enriched in citrus, significantly extended the animals' lifespan, healthspan, and toxin resistance. Further analyses indicate that this ageing inhibiting activity depended on the insulin-like pathway DAF-2/DAF-16 and nuclear hormone receptors NHR-8/DAF-12. Moreover, the human pregnane X receptor (hPXR) was identified as the mammalian counterpart of NHR-8/DAF-12 and X-ray crystallography showed that nomilin directly binds with hPXR. The hPXR mutations that prevented nomilin binding blocked the activity of nomilin both in mammalian cells and in C. elegans. Finally, dietary nomilin supplementation improved healthspan and lifespan in D-galactose- and doxorubicin-induced senescent mice as well as in male senescence accelerated mice prone 8 (SAMP8) mice, and induced a longevity gene signature similar to that of most longevity interventions in the liver of bile-duct-ligation male mice. Taken together, we identified that nomilin may extend lifespan and healthspan in animals via the activation of PXR mediated detoxification functions.
Collapse
Affiliation(s)
- Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Xia
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Zhenyu Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lina Peng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
49
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
50
|
Poganik JR, Zhang B, Baht GS, Tyshkovskiy A, Deik A, Kerepesi C, Yim SH, Lu AT, Haghani A, Gong T, Hedman AM, Andolf E, Pershagen G, Almqvist C, Clish CB, Horvath S, White JP, Gladyshev VN. Biological age is increased by stress and restored upon recovery. Cell Metab 2023; 35:807-820.e5. [PMID: 37086720 PMCID: PMC11055493 DOI: 10.1016/j.cmet.2023.03.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/22/2022] [Accepted: 03/20/2023] [Indexed: 04/24/2023]
Abstract
Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. Here, we report that biological age is fluid and exhibits rapid changes in both directions. At epigenetic, transcriptomic, and metabolomic levels, we find that the biological age of young mice is increased by heterochronic parabiosis and restored following surgical detachment. We also identify transient changes in biological age during major surgery, pregnancy, and severe COVID-19 in humans and/or mice. Together, these data show that biological age undergoes a rapid increase in response to diverse forms of stress, which is reversed following recovery from stress. Our study uncovers a new layer of aging dynamics that should be considered in future studies. The elevation of biological age by stress may be a quantifiable and actionable target for future interventions.
Collapse
Affiliation(s)
- Jesse R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gurpreet S Baht
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27701, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 01241, USA
| | - Csaba Kerepesi
- Institute for Computer Science and Control (SZTAKI), Eötvös Loránd Research Network, Budapest, 1111, Hungary
| | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA, USA
| | - Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anna M Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ellika Andolf
- Department of Clinical Sciences, Division of Obstetrics and Gynaecology, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 01241, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA, USA; Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James P White
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 01241, USA.
| |
Collapse
|