1
|
Schmidt M, Binder H, Schneider MR. The metabolic underpinnings of sebaceous lipogenesis. Commun Biol 2025; 8:670. [PMID: 40289206 PMCID: PMC12034822 DOI: 10.1038/s42003-025-08105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Sebaceous glands synthesize and secrete sebum, a mélange of lipids and other cellular products that safeguards the mammalian integument. Differentiating sebocytes delaminate from the basal membrane and dislodge towards the gland's middle, where they eventually undergo a poorly understood death mode in which the whole cell becomes a secretion product (holocrine secretion). Supported by recent transcriptomics data, this review examines the idea that peripheral sebocytes have a remarkable ability to draw nutrients from the blood and become committed to unrestrainedly invest all available resources into synthetic processes for accomplishing sebum synthesis, thereby exploiting core metabolic fluxes as glycogen turnover, glutamine-directed anaplerosis, the pentose phosphate pathway and de novo lipogenesis. Finally, we propose that metabolic-driven processes are an important mechanistic component of holocrine secretion. A deeper understanding of these metabolic adaptations could indicate novel strategies for modulating sebum synthesis, a key pathogenic factor in acne and other skin diseases.
Collapse
Affiliation(s)
- Maria Schmidt
- Interdisciplinary Institute for Bioinformatics (IZBI), University of Leipzig, Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Institute for Bioinformatics (IZBI), University of Leipzig, Leipzig, Germany
- Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
| | - Marlon R Schneider
- Institute of Veterinary Physiology, Veterinary Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Rahim M, Bednarski TK, Hasenour CM, Banerjee DR, Trenary I, Young JD. Simultaneous in vivo multi-organ fluxomics reveals divergent metabolic adaptations in liver, heart, and skeletal muscle during obesity. Cell Rep 2025; 44:115591. [PMID: 40244853 DOI: 10.1016/j.celrep.2025.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
We present an isotope-based metabolic flux analysis (MFA) approach to simultaneously quantify metabolic fluxes in the liver, heart, and skeletal muscle of individual mice. The platform was scaled to examine metabolic flux adaptations in age-matched cohorts of mice exhibiting varying levels of chronic obesity. We found that severe obesity increases hepatic gluconeogenesis and citric acid cycle flux, accompanied by elevated glucose oxidation in the heart that compensates for impaired fatty acid oxidation. In contrast, skeletal muscle fluxes exhibit an overall reduction in substrate oxidation. These findings demonstrate the dichotomy in fuel utilization between cardiac and skeletal muscle during worsening metabolic disease and demonstrate the divergent effects of obesity on metabolic fluxes in different organs. This multi-tissue MFA technology can be extended to address important questions about in vivo regulation of metabolism and its dysregulation in disease, which cannot be fully answered through studies of single organs or isolated cells/tissues.
Collapse
Affiliation(s)
- Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Tomasz K Bednarski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Clinton M Hasenour
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Deveena R Banerjee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
He B, Copps KD, Stöhr O, Liu B, Hu S, Joshi S, Haigis MC, White MF, Zhu H, Tao R. Spatial regulation of glucose and lipid metabolism by hepatic insulin signaling. Cell Metab 2025:S1550-4131(25)00207-4. [PMID: 40245868 DOI: 10.1016/j.cmet.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/18/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025]
Abstract
Hepatic insulin sensitivity is critical for systemic glucose and lipid homeostasis. The liver is spatially organized into zones in which hepatocytes express distinct metabolic enzymes; however, the functional significance of this zonation to metabolic dysregulation caused by insulin resistance is undetermined. Here, we used CreER mice to selectively disrupt insulin signaling in periportal (PP) and pericentral (PC) hepatocytes. PP-insulin resistance has been suggested to drive combined hyperglycemia and excess lipogenesis in individuals with type 2 diabetes. However, PP-insulin resistance in mice impaired lipogenesis and suppressed high-fat diet (HFD)-induced hepatosteatosis, despite elevated gluconeogenesis and insulin. In contrast, PC-insulin resistance reduced HFD-induced PC steatosis while preserving normal glucose homeostasis, in part by shifting glycolytic metabolism from the liver to the muscle. These results demonstrate distinct roles of insulin in PP versus PC hepatocytes and suggest that PC-insulin resistance might be therapeutically useful to combat hepatosteatosis without compromising glucose homeostasis.
Collapse
Affiliation(s)
- Baiyu He
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kyle D Copps
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Oliver Stöhr
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Beikl Liu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Songhua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Hao Zhu
- Divisions of Hematology-Oncology, Children's Research Institute, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Yuan B, Doxsey W, Tok Ö, Kwon YY, Liang Y, Inouye KE, Hotamışlıgil GS, Hui S. An organism-level quantitative flux model of energy metabolism in mice. Cell Metab 2025; 37:1012-1023.e6. [PMID: 39983714 PMCID: PMC11964847 DOI: 10.1016/j.cmet.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/21/2024] [Accepted: 01/09/2025] [Indexed: 02/23/2025]
Abstract
Mammalian tissues feed on nutrients in the blood circulation. At the organism level, mammalian energy metabolism is comprised of the oxidation, storage, interconversion, and release of circulating nutrients. Here, by integrating isotope tracer infusion, mass spectrometry, and isotope gas analyzer measurement, we developed a framework to systematically quantify fluxes through these metabolic processes for 10 major circulating energy nutrients in mice, resulting in an organism-level quantitative flux model of energy metabolism. This model revealed in wild-type mice that circulating nutrients have metabolic cycling fluxes dominant to their oxidation fluxes, with distinct partitions between cycling and oxidation for individual circulating nutrients. Applications of this framework in obese mouse models showed extensive elevation of metabolic cycling fluxes in ob/ob mice but not in diet-induced obese mice on a per-animal or per-lean mass basis. Our framework is a valuable tool to reveal new features of energy metabolism in physiological and disease conditions.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Will Doxsey
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Özlem Tok
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Young-Yon Kwon
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yanshan Liang
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Karen E Inouye
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gökhan S Hotamışlıgil
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
5
|
Lee WD, Weilandt DR, Liang L, MacArthur MR, Jaiswal N, Ong O, Mann CG, Chu Q, Hunter CJ, Ryseck RP, Lu W, Oschmann AM, Cowan AJ, TeSlaa TA, Bartman CR, Jang C, Baur JA, Titchenell PM, Rabinowitz JD. Lactate homeostasis is maintained through regulation of glycolysis and lipolysis. Cell Metab 2025; 37:758-771.e8. [PMID: 39889702 PMCID: PMC11926601 DOI: 10.1016/j.cmet.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/19/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
Lactate is among the highest flux circulating metabolites. It is made by glycolysis and cleared by both tricarboxylic acid (TCA) cycle oxidation and gluconeogenesis. Severe lactate elevations are life-threatening, and modest elevations predict future diabetes. How lactate homeostasis is maintained, however, remains poorly understood. Here, we identify, in mice, homeostatic circuits regulating lactate production and consumption. Insulin induces lactate production by upregulating glycolysis. We find that hyperlactatemia inhibits insulin-induced glycolysis, thereby suppressing excess lactate production. Unexpectedly, insulin also promotes lactate TCA cycle oxidation. The mechanism involves lowering circulating fatty acids, which compete with lactate for mitochondrial oxidation. Similarly, lactate can promote its own consumption by lowering circulating fatty acids via the adipocyte-expressed G-protein-coupled receptor hydroxycarboxylic acid receptor 1 (HCAR1). Quantitative modeling suggests that these mechanisms suffice to produce lactate homeostasis, with robustness to noise and perturbation of individual regulatory mechanisms. Thus, through regulation of glycolysis and lipolysis, lactate homeostasis is maintained.
Collapse
Affiliation(s)
- Won Dong Lee
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Daniel R Weilandt
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Lingfan Liang
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Michael R MacArthur
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Natasha Jaiswal
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Olivia Ong
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Charlotte G Mann
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Qingwei Chu
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Craig J Hunter
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Rolf-Peter Ryseck
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Anna M Oschmann
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Alexis J Cowan
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Tara A TeSlaa
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caroline R Bartman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
6
|
Ni J, Huang S, Yang W, Chen Q, Lin Z. Electrochemiluminescence Detecting and Imaging of Yeast Metabolism Indicated by Endogenetic Co-reactant. Anal Chem 2025; 97:921-927. [PMID: 39700391 DOI: 10.1021/acs.analchem.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Glycolysis, a pivotal step in yeast metabolism, plays an indispensable role as a carbohydrate utilization process crucial for cellular survival. Developing advanced technologies to elucidate this fundamental physiological process holds significant scientific implications. Electrochemiluminescence (ECL) imaging exhibits the advantage of negligible background interference and facilitates straightforward visualization, thereby conferring significant value in biomolecular observation. In this study, we present an ECL imaging method for investigating yeast metabolism by utilizing the endogenetic NADH as an efficient coreactant for ECL generation. The yeast glycolysis process drives the conversion of NAD+ to NADH, resulting in enhanced ECL response as well as the increased brightness of ECL images that can be used for quantification of yeast activity. There was a linear correlation between the reciprocal of both the gray value of ECL image and yeast concentration within the range of 6.25 × 106 - 6.25 × 108 CFU/mL. Due to the highly efficient coreactant behavior of NADH, our method demonstrated excellent selectivity with minimal interference. Furthermore, we employed this approach to investigate some toxic inhibitors on yeast metabolism, yielding reliable results. This ECL imaging method not only avoids the use of additional coreactants but also provides a sensitive and intuitive approach for monitoring yeast metabolism, demonstrating great potential in revealing various complex biological processes.
Collapse
Affiliation(s)
- Jiancong Ni
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shengxiu Huang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Weiqiang Yang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Qiaoling Chen
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
7
|
Axsom J, TeSlaa T, Lee WD, Chu Q, Cowan A, Bornstein MR, Neinast MD, Bartman CR, Blair MC, Li K, Thorsheim C, Rabinowitz JD, Arany Z. Quantification of nutrient fluxes during acute exercise in mice. Cell Metab 2024; 36:2560-2579.e5. [PMID: 39413791 PMCID: PMC11620932 DOI: 10.1016/j.cmet.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/03/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Despite the known metabolic benefits of exercise, an integrated metabolic understanding of exercise is lacking. Here, we use in vivo steady-state isotope-labeled infusions to quantify fuel flux and oxidation during exercise in fasted, fed, and exhausted female mice, revealing several novel findings. Exercise strongly promoted glucose fluxes from liver glycogen, lactate, and glycerol, distinct from humans. Several organs spared glucose, a process that broke down in exhausted mice despite concomitant hypoglycemia. Proteolysis increased markedly, also divergent from humans. Fatty acid oxidation dominated during fasted exercise. Ketone production and oxidation rose rapidly, seemingly driven by a hepatic bottleneck caused by gluconeogenesis-induced cataplerotic stress. Altered fuel consumption was observed in organs not directly involved in muscle contraction, including the pancreas and brown fat. Several futile cycles surprisingly persisted during exercise, despite their energy cost. In sum, we provide a comprehensive, integrated, holistic, and quantitative accounting of metabolism during exercise in an intact organism.
Collapse
Affiliation(s)
- Jessie Axsom
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tara TeSlaa
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Won Dong Lee
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Qingwei Chu
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexis Cowan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Marc R Bornstein
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Neinast
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Caroline R Bartman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Megan C Blair
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina Li
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chelsea Thorsheim
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Zoltan Arany
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Zheng JY, Ji XY, Zhao AQ, Sun FY, Liu LF, Xin GZ. Mass Spectrometry Probe Combined with Machine Learning to Capture the Relationship between Metabolites and Mitochondrial Complex Activity at the Whole-Cell Level. Anal Chem 2024; 96:18195-18203. [PMID: 39484990 DOI: 10.1021/acs.analchem.4c04376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondrial complex activity controls a multitude of physiological processes by regulating the cellular metabolism. Current methods for evaluating mitochondrial complex activity mainly focus on single metabolic reactions within mitochondria. These methods often require fresh samples in large quantities for mitochondria purification or intact mitochondrial membranes for real-time monitoring. Confronting these limitations, we shifted the analytical perspective toward interactive metabolic networks at the whole-cell level to reflect mitochondrial complex activity. To this end, we compiled a panel of mitochondrial respiratory chain-mapped metabolites (MRCMs), whose perturbations theoretically provide an overall reflection on mitochondrial complex activity. By introducing N-dimethyl-p-phenylenediamine and N-methyl-p-phenylenediamine as a pair of mass spectrometry probes, an ultraperformance liquid chromatography-tandem mass spectrometry method with high sensitivity (LLOQ as low as 0.2 fmol) was developed to obtain accurate quantitative data of MRCMs. Machine learning was then combined to capture the relationship between MRCMs and mitochondrial complex activity. Using Complex I as a proof-of-concept, we identified NADH, alanine, and phosphoenolpyruvate as metabolites associated with Complex I activity based on the whole-cell level. The effectiveness of using their concentrations to reflect Complex I activity was further validated in external data sets. Hence, by capturing the relationship between metabolites and mitochondrial complex activity at the whole-cell level, this study explores a novel analytical paradigm for the interrogation of mitochondrial complex activity, offering a favorable complement to existing methods particularly when sample quantities, type, and treatment timeliness pose challenges. More importantly, it shifts the focus from individual metabolic reactions within mitochondria to a more comprehensive view of an interactive metabolic network, which should serve as a promising direction for future research into the functional architecture between mitochondrial complexes and metabolites.
Collapse
Affiliation(s)
- Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Yuan Ji
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - An-Qi Zhao
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Fang-Yuan Sun
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
9
|
Serafimov K, Lämmerhofer M. Comprehensive Coverage of Glycolysis and Pentose Phosphate Metabolic Pathways by Isomer-Selective Accurate Targeted Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry Assay. Anal Chem 2024; 96:17271-17279. [PMID: 39425639 DOI: 10.1021/acs.analchem.4c03490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The accurate liquid chromatography-tandem mass spectrometry analysis of phosphorylated isomers from glycolysis and pentose phosphate pathways is a challenging analytical problem in metabolomics due to extraction problems from the biological matrix, adherence to stainless steel surfaces leading to tailing in LC, and incomplete separation of hexose and pentose phosphate isomers. In this study, we present a targeted HILIC-ESI-MS/MS method based on a BEH amide fully porous 1.7 μm particle column with an inert surface coating of column hardware and multiple reaction monitoring (MRM) acquisition fully covering the glycolysis and pentose phosphate pathway metabolites. To minimize contact of the phosphorylated analytes with stainless steel surfaces, a μ-ESI-MS probe with a hybrid electrode made of PEEKsil was employed. Optimized HILIC gradient elution conditions with 100 mM ammonium formate (pH 11) provided the separation of hexose monophosphate and pentose phosphate isomers. To ensure good retention time repeatability in HILIC, perfluoroalkoxy alkane bottles were used for the mobile phase (with sd over 60 runs between 0.01 and 0.02 min). For the quantitative assay, the U-13C-labeled cell extract was spiked prior to extraction by metal oxide-based affinity chromatography (MOAC) with TiO2 beads. The concentrations of the 24 targets were quantified in HeLa and human embryonic kidney (HEK293) cells. Erastin-induced ferroptosis in HEK293 cells was accompanied by enhanced levels of fructose-1,6-bis-phosphate, 2- and 3-phosphoglycerate, and 2,3-bis-phosphoglycerate.
Collapse
Affiliation(s)
- Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Nxumalo MB, Ntanzi N, Kumalo HM, Khan RB. Mitigating Hyperglycaemic Oxidative Stress in HepG2 Cells: The Role of Carica papaya Leaf and Root Extracts in Promoting Glucose Uptake and Antioxidant Defence. Nutrients 2024; 16:3496. [PMID: 39458491 PMCID: PMC11510471 DOI: 10.3390/nu16203496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Diabetes often goes undiagnosed, with 60% of people in Africa unaware of their condition. Type 2 diabetes mellitus (T2DM) is associated with insulin resistance and is treated with metformin, despite the undesirable side effects. Medicinal plants with therapeutic potential, such as Carica papaya, have shown promising anti-diabetic properties. This study explored the role of C. papaya leaf and root extracts compared to metformin in reducing hyperglycaemia-induced oxidative stress and their impact on liver function using HepG2 as a reference. Methods: The cytotoxicity was assessed through the MTT assay. At the same time, glucose uptake and metabolism (ATP and ∆Ψm) in HepG2 cells treated with C. papaya aqueous leaf and root extract were evaluated using a luminometry assay. Additionally, antioxidant properties (SOD2, GPx1, GSH, and Nrf2) were measured using qPCR and Western blot following the detection of MDA, NO, and iNOS, indicators of free radicals. Results: The MTT assay showed that C. papaya extracts did not exhibit toxicity in HepG2 cells and enhanced glucose uptake compared to the hyperglycaemic control (HGC) and metformin. The glucose levels in C. papaya-treated cells increased ATP production (p < 0.05), while the ∆Ψm was significantly increased in HGR1000-treated cells (p < 0.05). Furthermore, C. papaya leaf extract upregulated GPx1 (p < 0.05), GSH, and Nrf2 gene (p < 0.05), while SOD2 and Nrf2 proteins were reduced (p > 0.05), ultimately lowering ROS (p > 0.05). Contrarily, the root extract stimulated SOD2 (p > 0.05), GPx1 (p < 0.05), and GSH levels (p < 0.05), reducing Nrf2 gene and protein expression (p < 0.05) and resulting in high MDA levels (p < 0.05). Additionally, the extracts elevated NO levels and iNOS expression (p < 0.05), suggesting potential RNS activation. Conclusion: Taken together, the leaf extract stimulated glucose metabolism and triggered ROS production, producing a strong antioxidant response that was more effective than the root extract and metformin. However, the root extract, particularly at high concentrations, was less effective at neutralising free radicals as it did not stimulate Nrf2 production, but it did maintain elevated levels of SOD2, GSH, and GPx1 antioxidants.
Collapse
Affiliation(s)
- Mthokozisi Bongani Nxumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (N.N.); (H.M.K.); (R.B.K.)
| | | | | | | |
Collapse
|
11
|
Li M, Wang Y, Wei X, Cai WF, Wu J, Zhu M, Wang Y, Liu YH, Xiong J, Qu Q, Chen Y, Tian X, Yao L, Xie R, Li X, Chen S, Huang X, Zhang C, Xie C, Wu Y, Xu Z, Zhang B, Jiang B, Wang ZC, Li Q, Li G, Lin SY, Yu L, Piao HL, Deng X, Han J, Zhang CS, Lin SC. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res 2024; 34:683-706. [PMID: 38898113 PMCID: PMC11442470 DOI: 10.1038/s41422-024-00985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yongliang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Luming Yao
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siwei Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bin Jiang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinxi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
12
|
Britt EC, Qing X, Votava JA, Lika J, Wagner AS, Shen S, Arp NL, Khan H, Schieke SM, Fletcher CD, Huttenlocher A, Fan J. Activation induces shift in nutrient utilization that differentially impacts cell functions in human neutrophils. Proc Natl Acad Sci U S A 2024; 121:e2321212121. [PMID: 39284072 PMCID: PMC11441510 DOI: 10.1073/pnas.2321212121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/29/2024] [Indexed: 09/25/2024] Open
Abstract
Neutrophils utilize a variety of metabolic sources to support their crucial functions as the first responders in innate immunity. Here, through in vivo and ex vivo isotopic tracing, we examined the contributions of different nutrients to neutrophil metabolism under specific conditions. Human peripheral blood neutrophils, in contrast to a neutrophil-like cell line, rely on glycogen storage as a major metabolic source under resting state but rapidly switch to primarily using extracellular glucose upon activation with various stimuli. This shift is driven by a substantial increase in glucose uptake, enabled by rapidly increased GLUT1 on cell membrane, that dominates the simultaneous increase in gross glycogen cycling capacity. Shifts in nutrient utilization impact neutrophil functions in a function-specific manner: oxidative burst depends on glucose utilization, whereas NETosis and phagocytosis can be flexibly supported by either glucose or glycogen, and neutrophil migration and fungal control are enhanced by the shift from glycogen utilization to glucose utilization. This work provides a quantitative and dynamic understanding of fundamental features in neutrophil metabolism and elucidates how metabolic remodeling shapes neutrophil functions, which has broad health relevance.
Collapse
Affiliation(s)
- Emily C. Britt
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
| | - Xin Qing
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
| | | | - Jorgo Lika
- Morgridge Institute for Research, Madison, WI53715
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
| | - Andrew S. Wagner
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Simone Shen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Nicholas L. Arp
- Morgridge Institute for Research, Madison, WI53715
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
| | - Hamidullah Khan
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI53715
- Department of Dermatology, Georgetown University Medical Center Washington DC VA Medical Center, Washington, DC20036
| | - Stefan M. Schieke
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI53715
- Department of Dermatology, Georgetown University Medical Center Washington DC VA Medical Center, Washington, DC20036
| | | | - Anna Huttenlocher
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Carbone Cancer Center, Madison, WI53792
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI53792
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Carbone Cancer Center, Madison, WI53792
| |
Collapse
|
13
|
Sendino Garví E, van Slobbe GJJ, Zaal EA, de Baaij JHF, Hoenderop JG, Masereeuw R, Janssen MJ, van Genderen AM. KCNJ16-depleted kidney organoids recapitulate tubulopathy and lipid recovery upon statins treatment. Stem Cell Res Ther 2024; 15:268. [PMID: 39183338 PMCID: PMC11346019 DOI: 10.1186/s13287-024-03881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The KCNJ16 gene has been associated with a novel kidney tubulopathy phenotype, viz. disturbed acid-base homeostasis, hypokalemia and altered renal salt transport. KCNJ16 encodes for Kir5.1, which together with Kir4.1 constitutes a potassium channel located at kidney tubular cell basolateral membranes. Preclinical studies provided mechanistic links between Kir5.1 and tubulopathy, however, the disease pathology remains poorly understood. Here, we aimed at generating and characterizing a novel advanced in vitro human kidney model that recapitulates the disease phenotype to investigate further the pathophysiological mechanisms underlying the tubulopathy and potential therapeutic interventions. METHODS We used CRISPR/Cas9 to generate KCNJ16 mutant (KCNJ16+/- and KCNJ16-/-) cell lines from healthy human induced pluripotent stem cells (iPSC) KCNJ16 control (KCNJ16WT). The iPSCs were differentiated following an optimized protocol into kidney organoids in an air-liquid interface. RESULTS KCNJ16-depleted kidney organoids showed transcriptomic and potential functional impairment of key voltage-dependent electrolyte and water-balance transporters. We observed cysts formation, lipid droplet accumulation and fibrosis upon Kir5.1 function loss. Furthermore, a large scale, glutamine tracer flux metabolomics analysis demonstrated that KCNJ16-/- organoids display TCA cycle and lipid metabolism impairments. Drug screening revealed that treatment with statins, particularly the combination of simvastatin and C75, prevented lipid droplet accumulation and collagen-I deposition in KCNJ16-/- kidney organoids. CONCLUSIONS Mature kidney organoids represent a relevant in vitro model for investigating the function of Kir5.1. We discovered novel molecular targets for this genetic tubulopathy and identified statins as a potential therapeutic strategy for KCNJ16 defects in the kidney.
Collapse
Affiliation(s)
- E Sendino Garví
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - G J J van Slobbe
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - E A Zaal
- Division of Cell Biology, Metabolism and Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - J G Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - R Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - M J Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - A M van Genderen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Yang B, Li C, Ren Y, Wang W, Zhang X, Han X. Construction of the Glycolysis Metabolic Pathway Inside an Artificial Cell for the Synthesis of Amino Acid and Its Reversible Deformation. J Am Chem Soc 2024; 146:21847-21858. [PMID: 39042264 DOI: 10.1021/jacs.4c06227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The bottom-up construction of artificial cells is beneficial for understanding cell working mechanisms. The glycolysis metabolism mimicry inside artificial cells is challenging. Herein, the glycolytic pathway (Entner-Doudoroff pathway in archaea) is reconstituted inside artificial cells. The glycolytic pathway comprising glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxygluconate aldolase (KDGA) converts glucose molecules to pyruvate molecules. Inside artificial cells, pyruvate molecules are further converted into alanine with the help of alanine dehydrogenase (AlaDH) to build a metabolic pathway for synthesizing amino acid. On the other hand, the pyruvate molecules from glycolysis stimulate the living mitochondria to produce ATP inside artificial cells, which further trigger actin monomers to polymerize to form actin filaments. With the addition of methylcellulose inside the artificial cell, the actin filaments form adjacent to the inner lipid bilayer, deforming the artificial cell from a spherical shape to a spindle shape. The spindle-shaped artificial cell reverses to a spherical shape by depolymerizing the actin filament upon laser irradiation. The glycolytic pathway and its further extension to produce amino acids (or ATP) inside artificial cells pave the path to build functional artificial cells with more complicated metabolic pathways.
Collapse
Affiliation(s)
- Boyu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Weichen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| |
Collapse
|
15
|
Yuan B, Doxsey W, Tok Ö, Kwon YY, Inouye KE, Hotamışlıgil GS, Hui S. An Organism-Level Quantitative Flux Model of Energy Metabolism in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579776. [PMID: 38405872 PMCID: PMC10888810 DOI: 10.1101/2024.02.11.579776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mammalian tissues feed on nutrients in the blood circulation. At the organism-level, mammalian energy metabolism comprises of oxidation, storage, interconverting, and releasing of circulating nutrients. Though much is known about the individual processes and nutrients, a holistic and quantitative model describing these processes for all major circulating nutrients is lacking. Here, by integrating isotope tracer infusion, mass spectrometry, and isotope gas analyzer measurement, we developed a framework to systematically quantify fluxes through these metabolic processes for 10 major circulating energy nutrients in mice, resulting in an organism-level quantitative flux model of energy metabolism. This model revealed in wildtype mice that circulating nutrients have more dominant metabolic cycling fluxes than their oxidation fluxes, with distinct partition between cycling and oxidation flux for individual circulating nutrients. Applications of this framework in obese mouse models showed on a per animal basis extensive elevation of metabolic cycling fluxes in ob/ob mice, but not in diet-induced obese mice. Thus, our framework describes quantitatively the functioning of energy metabolism at the organism-level, valuable for revealing new features of energy metabolism in physiological and disease conditions. Highlights A flux model of energy metabolism integrating 13 C labeling of metabolites and CO 2 Circulating nutrients have characteristic partition between oxidation and storageCirculating nutrients' total cycling flux outweighs their total oxidation fluxCycling fluxes are extensively elevated in ob/ob but not in diet-induced obese mice.
Collapse
|
16
|
Yang X, Qiu K, Jiang Y, Huang Y, Zhang Y, Liao Y. Metabolic Crosstalk between Liver and Brain: From Diseases to Mechanisms. Int J Mol Sci 2024; 25:7621. [PMID: 39062868 PMCID: PMC11277155 DOI: 10.3390/ijms25147621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple organs and tissues coordinate to respond to dietary and environmental challenges. It is interorgan crosstalk that contributes to systemic metabolic homeostasis. The liver and brain, as key metabolic organs, have their unique dialogue to transmit metabolic messages. The interconnected pathogenesis of liver and brain is implicated in numerous metabolic and neurodegenerative disorders. Recent insights have positioned the liver not only as a central metabolic hub but also as an endocrine organ, capable of secreting hepatokines that transmit metabolic signals throughout the body via the bloodstream. Metabolites from the liver or gut microbiota also facilitate a complex dialogue between liver and brain. In parallel to humoral factors, the neural pathways, particularly the hypothalamic nuclei and autonomic nervous system, are pivotal in modulating the bilateral metabolic interplay between the cerebral and hepatic compartments. The term "liver-brain axis" vividly portrays this interaction. At the end of this review, we summarize cutting-edge technical advancements that have enabled the observation and manipulation of these signals, including genetic engineering, molecular tracing, and delivery technologies. These innovations are paving the way for a deeper understanding of the liver-brain axis and its role in metabolic homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
House RRJ, Soper-Hopper MT, Vincent MP, Ellis AE, Capan CD, Madaj ZB, Wolfrum E, Isaguirre CN, Castello CD, Johnson AB, Escobar Galvis ML, Williams KS, Lee H, Sheldon RD. A diverse proteome is present and enzymatically active in metabolite extracts. Nat Commun 2024; 15:5796. [PMID: 38987243 PMCID: PMC11237058 DOI: 10.1038/s41467-024-50128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Metabolite extraction is the critical first-step in metabolomics experiments, where it is generally regarded to inactivate and remove proteins. Here, arising from efforts to improve extraction conditions for polar metabolomics, we discover a proteomic landscape of over 1000 proteins within metabolite extracts. This is a ubiquitous feature across several common extraction and sample types. By combining post-resuspension stable isotope addition and enzyme inhibitors, we demonstrate in-extract metabolite interconversions due to residual transaminase activity. We extend these findings with untargeted metabolomics where we observe extensive protein-mediated metabolite changes, including in-extract formation of glutamate dipeptide and depletion of total glutathione. Finally, we present a simple extraction workflow that integrates 3 kDa filtration for protein removal as a superior method for polar metabolomics. In this work, we uncover a previously unrecognized, protein-mediated source of observer effects in metabolomics experiments with broad-reaching implications across all research fields using metabolomics and molecular metabolism.
Collapse
Affiliation(s)
- Rachel Rae J House
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | | | | | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Colt D Capan
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | | | | | - Amy B Johnson
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Martha L Escobar Galvis
- Office of the Cores, Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelsey S Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Hyoungjoo Lee
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
18
|
Wang Y, Dang CV. The Warburg Effect Revisited through Blood and Electron Flow. Cancer Res 2024; 84:2046-2048. [PMID: 39082678 PMCID: PMC11969341 DOI: 10.1158/0008-5472.can-24-0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 05/01/2024] [Indexed: 01/23/2025]
Abstract
The Warburg effect describes the propensity of many cancers to consume glucose avidly and convert it to lactate in the presence of oxygen. The benefit of the Warburg effect on cancer cells remains enigmatic, particularly because extracellular disposal of incompletely oxidized lactate is wasteful. However, lactate is not discarded from the body, but rather recycled as pyruvate for metabolism through the tricarboxylic acid cycle in oxidative tissues and cells. Hence, tissue and interorgan metabolism play important roles in tumor metabolism. The production of tumor lactate to be recycled elsewhere parallels the Cori cycle, in which lactate produced by muscle activity is shuttled to the liver, where it is converted to pyruvate and subsequently stored as glucose moieties in glycogen. This perspective will consider this organismal contextwhile discussing how glucose is used in tumors. We highlight several key articles published decades ago in Cancer Research that are foundational to our current understanding of cancer biology and metabolism.
Collapse
Affiliation(s)
- Yahui Wang
- Ludwig Institute for Cancer Research, New York, New York
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, New York
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
19
|
Litwin C, Koronowski KB. Liver as a nexus of daily metabolic cross talk. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 393:95-139. [PMID: 40390465 DOI: 10.1016/bs.ircmb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Over the course of a day, the circadian clock promotes a homeostatic balance between energy intake and energy expenditure by aligning metabolism with nutrient availability. In mammals, this process is driven by central clocks in the brain that control feeding behavior, the peripheral nervous system, and humoral outputs, as well as by peripheral clocks in non-brain tissues that regulate gene expression locally. Circadian organization of metabolism is critical, as circadian disruption is associated with increased risk of metabolic disease. Emerging evidence shows that circadian metabolism hinges upon inter-organ cross talk involving the liver, a metabolic hub that integrates many facets of systemic energy homeostasis. Here, we review spatiotemporal interactions, mainly metabolite exchange, signaling factors, and hormonal control, between the liver and skeletal muscle, pancreas, gut, microbiome, and adipose tissue. Modern society presents the challenge of circadian disturbances from rotating shift work to social jet lag and 24/7 food availability. Thus, it is important to better understand the mechanisms by which the clock system controls metabolic homeostasis and work toward targeted therapies.
Collapse
Affiliation(s)
- Christopher Litwin
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Kevin B Koronowski
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States.
| |
Collapse
|
20
|
Niepmann M. Importance of Michaelis Constants for Cancer Cell Redox Balance and Lactate Secretion-Revisiting the Warburg Effect. Cancers (Basel) 2024; 16:2290. [PMID: 39001354 PMCID: PMC11240417 DOI: 10.3390/cancers16132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon-the "Warburg Effect"-is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased production of cytosolic NADH. However, since the corresponding gene expression changes are not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic electrons need to take the "emergency exit" from the cell by lactate secretion to maintain the cytosolic redox balance.
Collapse
Affiliation(s)
- Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
21
|
Vieira-Lara MA, Bakker BM. The paradox of fatty-acid β-oxidation in muscle insulin resistance: Metabolic control and muscle heterogeneity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167172. [PMID: 38631409 DOI: 10.1016/j.bbadis.2024.167172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
The skeletal muscle is a metabolically heterogeneous tissue that plays a key role in maintaining whole-body glucose homeostasis. It is well known that muscle insulin resistance (IR) precedes the development of type 2 diabetes. There is a consensus that the accumulation of specific lipid species in the tissue can drive IR. However, the role of the mitochondrial fatty-acid β-oxidation in IR and, consequently, in the control of glucose uptake remains paradoxical: interventions that either inhibit or activate fatty-acid β-oxidation have been shown to prevent IR. We here discuss the current theories and evidence for the interplay between β-oxidation and glucose uptake in IR. To address the underlying intricacies, we (1) dive into the control of glucose uptake fluxes into muscle tissues using the framework of Metabolic Control Analysis, and (2) disentangle concepts of flux and catalytic capacities taking into account skeletal muscle heterogeneity. Finally, we speculate about hitherto unexplored mechanisms that could bring contrasting evidence together. Elucidating how β-oxidation is connected to muscle IR and the underlying role of muscle heterogeneity enhances disease understanding and paves the way for new treatments for type 2 diabetes.
Collapse
Affiliation(s)
- Marcel A Vieira-Lara
- Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Barbara M Bakker
- Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
22
|
York EM, Miller A, Stopka SA, Martínez-François JR, Hossain MA, Baquer G, Regan MS, Agar NYR, Yellen G. The dentate gyrus differentially metabolizes glucose and alternative fuels during rest and stimulation. J Neurochem 2024; 168:533-554. [PMID: 37929637 PMCID: PMC11070451 DOI: 10.1111/jnc.16004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
The metabolic demands of neuronal activity are both temporally and spatially dynamic, and neurons are particularly sensitive to disruptions in fuel and oxygen supply. Glucose is considered an obligate fuel for supporting brain metabolism. Although alternative fuels are often available, the extent of their contribution to central carbon metabolism remains debated. Differential fuel metabolism likely depends on cell type, location, and activity state, complicating its study. While biosensors provide excellent spatial and temporal information, they are limited to observations of only a few metabolites. On the other hand, mass spectrometry is rich in chemical information, but traditionally relies on cell culture or homogenized tissue samples. Here, we use mass spectrometry imaging (MALDI-MSI) to focus on the fuel metabolism of the dentate granule cell (DGC) layer in murine hippocampal slices. Using stable isotopes, we explore labeling dynamics at baseline, as well as in response to brief stimulation or fuel competition. We find that at rest, glucose is the predominant fuel metabolized through glycolysis, with little to no measurable contribution from glycerol or fructose. However, lactate/pyruvate, β-hydroxybutyrate (βHB), octanoate, and glutamine can contribute to TCA metabolism to varying degrees. In response to brief depolarization with 50 mM KCl, glucose metabolism was preferentially increased relative to the metabolism of alternative fuels. With an increased supply of alternative fuels, both lactate/pyruvate and βHB can outcompete glucose for TCA cycle entry. While lactate/pyruvate modestly reduced glucose contribution to glycolysis, βHB caused little change in glycolysis. This approach achieves broad metabolite coverage from a spatially defined region of physiological tissue, in which metabolic states are rapidly preserved following experimental manipulation. Using this powerful methodology, we investigated metabolism within the dentate gyrus not only at rest, but also in response to the energetic demand of activation, and in states of fuel competition.
Collapse
Affiliation(s)
- Elisa M. York
- Department of Neurobiology, Harvard Medical School,
Boston, MA 02115 USA
| | - Anne Miller
- Department of Neurobiology, Harvard Medical School,
Boston, MA 02115 USA
| | - Sylwia A. Stopka
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | | | - Md Amin Hossain
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Gerard Baquer
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Michael S. Regan
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Nathalie Y. R. Agar
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School,
Boston, MA 02115 USA
| |
Collapse
|
23
|
Zhen Z, Ren J, Zhu J. The redox requirement and regulation during cell proliferation. Trends Endocrinol Metab 2024; 35:385-399. [PMID: 38262821 DOI: 10.1016/j.tem.2023.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
The intracellular metabolic network comprises a variety of reduction-oxidation (redox) reactions that occur in a temporally and spatially distinct manner. In order to coordinate these redox processes, mammalian cells utilize a collection of electron-carrying molecules common to many redox reactions, including NAD, NADP, coenzyme Q (CoQ), and glutathione (GSH). This review considers the metabolic basis of redox regulation in the context of cell proliferation by analyzing how cells acquire and utilize electron carriers to maintain directional carbon flux, sustain reductive biosynthesis, and support antioxidant defense. Elucidating the redox requirement during cell proliferation can advance the understanding of human diseases such as cancer, and reveal effective therapeutic opportunities in the clinic.
Collapse
Affiliation(s)
- Zhuoran Zhen
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiankun Ren
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
24
|
Lu B, Zhao Q, Cai Z, Qian S, Mao J, Zhang L, Mao X, Sun X, Cui W, Zhang Y. Regulation of Glucose Metabolism for Cell Energy Supply In Situ via High-Energy Intermediate Fructose Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309060. [PMID: 38063818 DOI: 10.1002/smll.202309060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Indexed: 05/12/2024]
Abstract
The cellular functions, such as tissue-rebuilding ability, can be directly affected by the metabolism of cells. Moreover, the glucose metabolism is one of the most important processes of the metabolism. However, glucose cannot be efficiently converted into energy in cells under ischemia hypoxia conditions. In this study, a high-energy intermediate fructose hydrogel (HIFH) is developed by the dynamic coordination between sulfhydryl-functionalized bovine serum albumin (BSA-SH), the high-energy intermediate in glucose metabolism (fructose-1,6-bisphosphate, FBP), and copper ion (Cu2+). This hydrogel system is injectable, self-healing, and biocompatible, which can intracellularly convert energy with high efficacy by regulating the glucose metabolism in situ. Additionally, the HIFH can greatly boost cell antioxidant capacity and increase adenosine triphosphate (ATP) in the ischemia anoxic milieu by roughly 1.3 times, improving cell survival, proliferation and physiological functions in vitro. Furthermore, the ischemic skin tissue model is established in rats. The HIFH can speed up the healing of damaged tissue by promoting angiogenesis, lowering reactive oxygen species (ROS), and eventually expanding the healing area of the damaged tissue by roughly 1.4 times in vivo. Therefore, the HIFH can provide an impressive perspective on efficient in situ cell energy supply of damaged tissue.
Collapse
Affiliation(s)
- Bolun Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Shutong Qian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Liucheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
25
|
Li C, Hao B, Yang H, Wang K, Fan L, Xiao W. Protein aggregation and biomolecular condensation in hypoxic environments (Review). Int J Mol Med 2024; 53:33. [PMID: 38362920 PMCID: PMC10903932 DOI: 10.3892/ijmm.2024.5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Due to molecular forces, biomacromolecules assemble into liquid condensates or solid aggregates, and their corresponding formation and dissolution processes are controlled. Protein homeostasis is disrupted by increasing age or environmental stress, leading to irreversible protein aggregation. Hypoxic pressure is an important factor in this process, and uncontrolled protein aggregation has been widely observed in hypoxia‑related conditions such as neurodegenerative disease, cardiovascular disease, hypoxic brain injury and cancer. Biomolecular condensates are also high‑order complexes assembled from macromolecules. Although they exist in different phase from protein aggregates, they are in dynamic balance under certain conditions, and their activation or assembly are considered as important regulatory processes in cell survival with hypoxic pressure. Therefore, a better understanding of the relationship between hypoxic stress, protein aggregation and biomolecular condensation will bring marked benefits in the clinical treatment of various diseases. The aim of the present review was to summarize the underlying mechanisms of aggregate assembly and dissolution induced by hypoxic conditions, and address recent breakthroughs in understanding the role of aggregates in hypoxic‑related diseases, given the hypotheses that hypoxia induces macromolecular assemblage changes from a liquid to a solid phase, and that adenosine triphosphate depletion and ATP‑driven inactivation of multiple protein chaperones play important roles among the process. Moreover, it is anticipated that an improved understanding of the adaptation in hypoxic environments could extend the overall survival of patients and provide new strategies for hypoxic‑related diseases.
Collapse
Affiliation(s)
- Chaoqun Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, P.R. China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bingjie Hao
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Haiguang Yang
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Kai Wang
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Lihong Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, P.R. China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Weihua Xiao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
26
|
Ding J, Gu B, Meng J, Hu M, Wang W, Liu J. Response of serum biochemical profile, antioxidant enzymes, and gut microbiota to dietary Hong-bailanshen supplementation in horses. Front Microbiol 2024; 15:1327210. [PMID: 38444806 PMCID: PMC10912594 DOI: 10.3389/fmicb.2024.1327210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Background Traditional Chinese medicine (TCM) is widely used in humans and animals, which is very important for health. TCM affects the body 's immunity and changes in intestinal flora. This study was conducted to investigate the effects of dietary Hong-bailanshen (HBLS) supplementation in horses on serum biochemical profile, antioxidant enzymes and gut microbiota. Methods In this study, five horses were selected. On day 0, 14, 28, blood samples and feces were collected on days 0, 14, and 28 to analyse gut microbiota, serum biochemical and redox indexes. Results The results showed that the addition of HBLS to horse diets significantly decreased the level of alanine aminotransferase, alkaline phosphatase, creatine kinase and malondialdehyde (p < 0.05, p < 0.01) and significantly increased the activity of total antioxidant capacity, superoxide dismutase and catalase (p < 0.05, p < 0.01). Compared with day 14, the levels of alanine aminotransferase, alkaline phosphatase and creatine kinase were significantly decreased; however, the level of catalase was significantly increased in the horses continuously fed with HBLS for 28 days (p < 0.05, p < 0.01). Alpha diversity analysis was performed that chao1 (p < 0.05), observed_specicies, faith'pd and goods_coverage upregulated in the horses fed HBLS. A total of 24 differential genera were detected adding HBLS to diet increased the abundance of Bacillus, Lactobacillaceae, Leuconostocaceae, Christensenellaceae, Peptostreptococcaceae, Faecalibacterium, Erysipelotrichaceae, Pyramidobacter, Sphaerochaeta, WCHB1-25, Bacteria, Oscillospira, and Acetobacteraceae, while reduced Aerococcus, EtOH8, Syntrophomonas, Caulobacter, Bradyrhizobiaceae, W22, Succinivibrionaceae, and Desulfovibrio (p < 0.05, p < 0.01). Conclusion Adding HBLS to the diet could be a potentially effective strategy to improve horses' health.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Rabbani N, Thornalley PJ. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications. Front Endocrinol (Lausanne) 2024; 14:1268308. [PMID: 38292764 PMCID: PMC10824962 DOI: 10.3389/fendo.2023.1268308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Hyperglycemia is a risk factor for the development of insulin resistance, beta-cell glucotoxicity, and vascular complications of diabetes. We propose the hypothesis, hexokinase-linked glycolytic overload and unscheduled glycolysis, in explanation. Hexokinases (HKs) catalyze the first step of glucose metabolism. Increased flux of glucose metabolism through glycolysis gated by HKs, when occurring without concomitant increased activity of glycolytic enzymes-unscheduled glycolysis-produces increased levels of glycolytic intermediates with overspill into effector pathways of cell dysfunction and pathogenesis. HK1 is saturated with glucose in euglycemia and, where it is the major HK, provides for basal glycolytic flux without glycolytic overload. HK2 has similar saturation characteristics, except that, in persistent hyperglycemia, it is stabilized to proteolysis by high intracellular glucose concentration, increasing HK activity and initiating glycolytic overload and unscheduled glycolysis. This drives the development of vascular complications of diabetes. Similar HK2-linked unscheduled glycolysis in skeletal muscle and adipose tissue in impaired fasting glucose drives the development of peripheral insulin resistance. Glucokinase (GCK or HK4)-linked glycolytic overload and unscheduled glycolysis occurs in persistent hyperglycemia in hepatocytes and beta-cells, contributing to hepatic insulin resistance and beta-cell glucotoxicity, leading to the development of type 2 diabetes. Downstream effector pathways of HK-linked unscheduled glycolysis are mitochondrial dysfunction and increased reactive oxygen species (ROS) formation; activation of hexosamine, protein kinase c, and dicarbonyl stress pathways; and increased Mlx/Mondo A signaling. Mitochondrial dysfunction and increased ROS was proposed as the initiator of metabolic dysfunction in hyperglycemia, but it is rather one of the multiple downstream effector pathways. Correction of HK2 dysregulation is proposed as a novel therapeutic target. Pharmacotherapy addressing it corrected insulin resistance in overweight and obese subjects in clinical trial. Overall, the damaging effects of hyperglycemia are a consequence of HK-gated increased flux of glucose metabolism without increased glycolytic enzyme activities to accommodate it.
Collapse
Affiliation(s)
| | - Paul J. Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
28
|
Xue X, Liu Z, Liang Y, Kwon YY, Liu R, Martin D, Hui S. Glutathione peroxidase 4 suppresses manganese-dependent oxidative stress to reduce colorectal tumorigenesis. RESEARCH SQUARE 2024:rs.3.rs-3837925. [PMID: 38260380 PMCID: PMC10802749 DOI: 10.21203/rs.3.rs-3837925/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The role of glutathione peroxidase 4 (GPX4) in ferroptosis and various cancers is well-established; however, its specific contribution to colorectal cancer has been unclear. Surprisingly, in a genetic mouse model of colon tumors, the deletion of GPX4 specifically in colon epithelial cells increased tumor burden but decreased oxidized glutathione. Notably, this specific GPX4 deletion did not enhance susceptibility to dextran sodium sulfate (DSS)-induced colitis in mice with varied iron diets but showed vulnerability in mice with a vitamin E-deficient diet. Additionally, a high manganese diet heightened susceptibility, while a low manganese diet reduced DSS-induced colitis in colon epithelial-specific GPX4-deficient mice. Strikingly, the low manganese diet also significantly reduced colorectal cancer formation in both colon epithelial-specific GPX4-deficient and wildtype mice. Mechanistically, antioxidant proteins, especially manganese-dependent superoxide dismutase (MnSOD or SOD2), correlated with disease severity. Treatment with tempol, a superoxide dismutase mimetic radical scavenger, suppressed GPX4 deficiency-induced colorectal tumors. In conclusion, the study elucidates the critical role of GPX4 in inhibiting colorectal cancer progression by regulating oxidative stress in a manganese-dependent manner. The findings underscore the intricate interactions between GPX4, dietary factors, and their collective influence on colorectal cancer development, providing potential insights for personalized therapeutic strategies.
Collapse
|
29
|
Perez-Ramirez CA, Nakano H, Law RC, Matulionis N, Thompson J, Pfeiffer A, Park JO, Nakano A, Christofk HR. Atlas of fetal metabolism during mid-to-late gestation and diabetic pregnancy. Cell 2024; 187:204-215.e14. [PMID: 38070508 PMCID: PMC10843853 DOI: 10.1016/j.cell.2023.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 01/07/2024]
Abstract
Mounting evidence suggests metabolism instructs stem cell fate decisions. However, how fetal metabolism changes during development and how altered maternal metabolism shapes fetal metabolism remain unexplored. We present a descriptive atlas of in vivo fetal murine metabolism during mid-to-late gestation in normal and diabetic pregnancy. Using 13C-glucose and liquid chromatography-mass spectrometry (LC-MS), we profiled the metabolism of fetal brains, hearts, livers, and placentas harvested from pregnant dams between embryonic days (E)10.5 and 18.5. Our analysis revealed metabolic features specific to a hyperglycemic environment and signatures that may denote developmental transitions during euglycemic development. We observed sorbitol accumulation in fetal tissues and altered neurotransmitter levels in fetal brains isolated from hyperglycemic dams. Tracing 13C-glucose revealed disparate fetal nutrient sourcing depending on maternal glycemic states. Regardless of glycemic state, histidine-derived metabolites accumulated in late-stage fetal tissues. Our rich dataset presents a comprehensive overview of in vivo fetal tissue metabolism and alterations due to maternal hyperglycemia.
Collapse
Affiliation(s)
- Cesar A Perez-Ramirez
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| | - Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Richard C Law
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Nedas Matulionis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jennifer Thompson
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Andrew Pfeiffer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Bartman CR, Faubert B, Rabinowitz JD, DeBerardinis RJ. Metabolic pathway analysis using stable isotopes in patients with cancer. Nat Rev Cancer 2023; 23:863-878. [PMID: 37907620 PMCID: PMC11161207 DOI: 10.1038/s41568-023-00632-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 11/02/2023]
Abstract
Metabolic reprogramming is central to malignant transformation and cancer cell growth. How tumours use nutrients and the relative rates of reprogrammed pathways are areas of intense investigation. Tumour metabolism is determined by a complex and incompletely defined combination of factors intrinsic and extrinsic to cancer cells. This complexity increases the value of assessing cancer metabolism in disease-relevant microenvironments, including in patients with cancer. Stable-isotope tracing is an informative, versatile method for probing tumour metabolism in vivo. It has been used extensively in preclinical models of cancer and, with increasing frequency, in patients with cancer. In this Review, we describe approaches for using in vivo isotope tracing to define fuel preferences and pathway engagement in tumours, along with some of the principles that have emerged from this work. Stable-isotope infusions reported so far have revealed that in humans, tumours use a diverse set of nutrients to supply central metabolic pathways, including the tricarboxylic acid cycle and amino acid synthesis. Emerging data suggest that some activities detected by stable-isotope tracing correlate with poor clinical outcomes and may drive cancer progression. We also discuss current challenges in isotope tracing, including comparisons of in vivo and in vitro models, and opportunities for future discovery in tumour metabolism.
Collapse
Affiliation(s)
- Caroline R Bartman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Brandon Faubert
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Ralph J DeBerardinis
- Howard Hughes Medical Institute and Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Haley JA, Jang C, Guertin DA. A new era of understanding in vivo metabolic flux in thermogenic adipocytes. Curr Opin Genet Dev 2023; 83:102112. [PMID: 37703635 PMCID: PMC10840980 DOI: 10.1016/j.gde.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023]
Abstract
Nonshivering thermogenesis by brown adipose tissue (BAT) is an adaptive mechanism for maintaining body temperature in cold environments. BAT is critical in rodents and human infants and has substantial influence on adult human metabolism. Stimulating BAT therapeutically is also being investigated as a strategy against metabolic diseases because of its ability to function as a catabolic sink. Thus, understanding how brown adipocytes and the related brite/beige adipocytes use nutrients to fuel their demanding metabolism has both basic and translational implications. Recent advances in mass spectrometry and isotope tracing are improving the ability to study metabolic flux in vivo. Here, we review how such strategies are advancing our understanding of adipocyte thermogenesis and conclude with key future questions.
Collapse
Affiliation(s)
- John A Haley
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - David A Guertin
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
32
|
Bekebrede AF, de Boer VCJ, Gerrits WJJ, Keijer J. Functional and molecular profiling of fasted piglets reveals decreased energy metabolic function and cell proliferation in the small intestine. Am J Physiol Gastrointest Liver Physiol 2023; 325:G539-G555. [PMID: 37847725 PMCID: PMC10894671 DOI: 10.1152/ajpgi.00240.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The small intestine requires energy to exert its important role in nutrient uptake and barrier function. Pigs are an important source of food and a model for humans. Young piglets and infants can suffer from periods of insufficient food intake. Whether this functionally affects the small intestinal epithelial cell (IEC) metabolic capacity and how this may be associated with an increased vulnerability to intestinal disease is unknown. We therefore performed a 48-h fasting intervention in young piglets. After feeding a standard weaning diet for 2 wk, 6-wk-old piglets (n = 16/group) were fasted for 48 h, and midjejunal IECs were collected upon euthanasia. Functional metabolism of isolated IECs was analyzed with the Seahorse XF analyzer and gene expression was assessed using RNA-sequencing. Fasting decreased the mitochondrial and glycolytic function of the IECs by 50% and 45%, respectively (P < 0.0001), signifying that overall metabolic function was decreased. The RNA-sequencing results corroborated our functional metabolic measurements, showing that particularly pathways related to mitochondrial energy production were decreased. Besides oxidative metabolic pathways, decreased cell-cycle progression pathways were most regulated in the fasted piglets, which were confirmed by 43% reduction of Ki67-stained cells (P < 0.05). Finally, the expression of barrier function genes was reduced upon fasting. In conclusion, we found that the decreased IEC energy metabolic function in response to fasting is supported by a decreased gene expression of mitochondrial pathways and is likely linked to the observed decreased intestinal cell proliferation and barrier function, providing insight into the vulnerability of piglets, and infants, to decreased food intake.NEW & NOTEWORTHY Fasting is identified as one of the underlying causes potentiating diarrhea development, both in piglets and humans. With this study, we demonstrate that fasting decreases the metabolism of intestinal epithelial cells, on a functional and transcriptional level. Transcriptional and histological data also show decreased intestinal cell proliferation. As such, fasting-induced intestinal energy shortage could contribute to intestinal dysfunction upon fasting.
Collapse
Affiliation(s)
- Anna F Bekebrede
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Walter J J Gerrits
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
33
|
Prakhya KS, Vekaria H, Coenen DM, Omali L, Lykins J, Joshi S, Alfar HR, Wang QJ, Sullivan P, Whiteheart SW. Platelet glycogenolysis is important for energy production and function. Platelets 2023; 34:2222184. [PMID: 37292023 PMCID: PMC10658951 DOI: 10.1080/09537104.2023.2222184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Although the presence of glycogen in platelets was established in the 1960s, its importance to specific functions (i.e., activation, secretion, aggregation, and clot contraction) remains unclear. Patients with glycogen storage disease often present with increased bleeding and glycogen phosphorylase (GP) inhibitors, when used as treatments for diabetes, induce bleeding in preclinical studies suggesting some role for this form of glucose in hemostasis. In the present work, we examined how glycogen mobilization affects platelet function using GP inhibitors (CP316819 and CP91149) and a battery of ex vivo assays. Blocking GP activity increased glycogen levels in resting and thrombin-activated platelets and inhibited platelet secretion and clot contraction, with minimal effects on aggregation. Seahorse energy flux analysis and metabolite supplementation experiments suggested that glycogen is an important metabolic fuel whose role is affected by platelet activation and the availability of external glucose and other metabolic fuels. Our data shed light on the bleeding diathesis in glycogen storage disease patients and offer insights into the potential effects of hyperglycemia on platelets.
Collapse
Affiliation(s)
| | - Hemendra Vekaria
- Department of Neuroscience; College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Daniёlle M. Coenen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Linda Omali
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Joshua Lykins
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Hammodah R. Alfar
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences; College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Patrick Sullivan
- Department of Neuroscience; College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
34
|
Yılmaz A, Bahtiyar N, Doğan Mollaoğlu A, Zengin K, Taskin HE, Karimova A, Baykara O, Ulutin T, Onaran I. Mitochondrial Common Deletion Level in Adipose Tissue Is Not Associated with Obesity but Is Associated with a Structural Change in Triglycerides as Revealed by FTIR Spectroscopy. Med Princ Pract 2023; 33:74-82. [PMID: 38016428 PMCID: PMC10896617 DOI: 10.1159/000535443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE Several studies have shown that mitochondrial metabolism may be disrupted if the rate of the specific 4,977 bp deletion of mitochondrial DNA (mtDNA) reaches a threshold. This study aimed to investigate the possible associations between the mtDNA4977 deletion load and obesity-related metabolic abnormalities in the adipose tissue. METHODS The study included thirty obese individuals, who underwent bariatric surgery, and twelve control subjects. mtDNA4977 deletion, adenine nucleotides, and lactate levels, which show the bioenergetic status were evaluated in visceral adipose tissues. Fourier transform infrared (FTIR) spectroscopy was used to investigate the structural variations and composition of adipose tissues in the context of deletion load. RESULTS There were no differences between the two groups in terms of mtDNA4977 deletion, adenine nucleotides, and lactate levels. The FTIR spectra indicated a few obesity-related alterations in adipose tissues that were not related to the mtDNA deletion load. Also, statistical analysis showed a correlation between the deletion load and a band shift of 1,744 cm-1, which assigns C = O stretching of the carbonyl group of the ester group in triglycerides and other esterified fatty acids, although it is not associated with obesity. CONCLUSIONS Our data suggest that the mtDNA4977 deletion in visceral adipose tissues of obese individuals do not have a significant impact on the bioenergetic status. However, the increased accumulation of deletion may be associated with a specific change in the ester bond, indicating structural differences in the lipids. These findings shed light on our understanding of the tissue-specific distribution of mtDNA deletions and obesity-related adipose tissue pathogeneses.
Collapse
Affiliation(s)
- Ayda Yılmaz
- Department of Anesthesia, Vocational School of Health Services, Demiroglu Bilim University, Istanbul, Turkey
| | - Nurten Bahtiyar
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayça Doğan Mollaoğlu
- Department of Physiology, Faculty of Medicine, Altinbaş University, Istanbul, Turkey
| | - Kagan Zengin
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Halit Eren Taskin
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayla Karimova
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Onur Baykara
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ilhan Onaran
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
35
|
Li C, Cheng K, Zhao Q, Jin L, Wang X, Liufu T, Zhao X, Li X, Wang X, Lyu J, Huang D, Li P, Chen XW, Wang Z, Hu X, Quan L, Chen Z. Diazo-carboxyl Click Derivatization Enables Sensitive Analysis of Carboxylic Acid Metabolites in Biosamples. Anal Chem 2023; 95:16976-16986. [PMID: 37943785 DOI: 10.1021/acs.analchem.3c03277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Carboxylic acids are central metabolites in bioenergetics, signal transduction, and post-translation protein regulation. However, the quantitative analysis of carboxylic acids as an indispensable part of metabolomics is prohibitively challenging, particularly in trace amounts of biosamples. Here we report a diazo-carboxyl/hydroxylamine-ketone double click derivatization method for the sensitive analysis of hydrophilic, low-molecular-weight carboxylic acids. In general, our method renders a 5- to 2000-fold higher response in mass spectrometry along with improved chromatographic separation. With this method, we presented the near-single-cell analysis of carboxylic acid metabolites in 10 mouse egg cells before and after fertilization. Malate, fumarate, and β-hydroxybutyrate were found to decrease after fertilization. We also monitored the isotope labeling kinetics of carboxylic acids inside adherent cells cultured in 96-well plates during drug treatment. Finally, we applied this method to plasma or serum samples (5 μL) collected from mice and humans under pathological and physiological conditions. The double click derivatization method paves a way toward single-cell metabolomics and bedside diagnostics.
Collapse
Affiliation(s)
- Cong Li
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Kunlun Cheng
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Qijin Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Jin
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xuelian Wang
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Xutong Zhao
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Xiaochuan Li
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiao Wang
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Jia Lyu
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Dong Huang
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Wei Chen
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing 100034, China
| | - Xinli Hu
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Li Quan
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Beijing 100871, China
| |
Collapse
|
36
|
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, Zhang N, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol 2023; 118:48. [PMID: 37938421 PMCID: PMC10632287 DOI: 10.1007/s00395-023-01018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Nanxiang Ouyang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
37
|
Smith JG, Molendijk J, Blazev R, Chen WH, Zhang Q, Litwin C, Zinna VM, Welz PS, Benitah SA, Greco CM, Sassone-Corsi P, Muñoz-Cánoves P, Parker BL, Koronowski KB. Impact of Bmal1 Rescue and Time-Restricted Feeding on Liver and Muscle Proteomes During the Active Phase in Mice. Mol Cell Proteomics 2023; 22:100655. [PMID: 37793502 PMCID: PMC10651687 DOI: 10.1016/j.mcpro.2023.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.
Collapse
Affiliation(s)
- Jacob G Smith
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Jeffrey Molendijk
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wan Hsi Chen
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, Texas, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, Texas, USA
| | - Qing Zhang
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Christopher Litwin
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Hospital del Mar Research Institute Barcelona, Cancer Research Program, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, California, USA
| | - Pura Muñoz-Cánoves
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Inc, San Diego Institute of Science, San Diego, California, USA
| | - Benjamin L Parker
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Kevin B Koronowski
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, Texas, USA; Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
38
|
Britt EC, Qing X, Votava JA, Lika J, Wagner A, Shen S, Arp NL, Khan H, Schieke SM, Fletcher CD, Huttenlocher A, Fan J. Activation induces shift in nutrient utilization that differentially impacts cell functions in human neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559385. [PMID: 37808750 PMCID: PMC10557599 DOI: 10.1101/2023.09.25.559385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Neutrophils - the first responders in innate immunity - perform a variety of effector functions associated with specific metabolic demand. To maintain fitness and support functions, neutrophils have been found to utilize extracellular glucose, intracellular glycogen, and other alternative substrates. However, the quantitative contribution of these nutrients under specific conditions and the relative dependence of various cell functions on specific nutrients remain unclear. Here, using ex vivo and in vivo isotopic tracing, we reveal that under resting condition, human peripheral blood neutrophils, in contrast to in vitro cultured human neutrophil-like cell lines, rely on glycogen as a major direct source of glycolysis and pentose phosphate pathway. Upon activation with a diversity of stimuli, neutrophils undergo a significant and often rapid nutrient preference shift, with glucose becoming the dominant metabolic source thanks to a multi-fold increase in glucose uptake mechanistically mediated by the phosphorylation and translocation of GLUT1. At the same time, cycling between gross glycogenesis and glycogenolysis is also substantially increased, while the net flux favors sustained or increased glycogen storage. The shift in nutrient utilization impacts neutrophil functions in a function-specific manner. The activation of oxidative burst specifically depends on the utilization of extracellular glucose rather than glycogen. In contrast, the release of neutrophil traps can be flexibly supported by either glucose or glycogen. Neutrophil migration and fungal control is promoted by the shift away from glycogen utilization. Together, these results quantitatively characterize fundamental features of neutrophil metabolism and elucidate how metabolic remodeling shapes neutrophil functions upon activation.
Collapse
Affiliation(s)
- Emily C. Britt
- Morgridge Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Xin Qing
- Morgridge Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | | | - Jorgo Lika
- Morgridge Institute for Research, Madison, WI, USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Andrew Wagner
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Simone Shen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas L. Arp
- Morgridge Institute for Research, Madison, WI, USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Hamidullah Khan
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA. Department of Dermatology, Georgetown University Medical Center and Washington DC VA Medical Center, Washington, D.C., USA
| | - Stefan M. Schieke
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA. Department of Dermatology, Georgetown University Medical Center and Washington DC VA Medical Center, Washington, D.C., USA
| | | | - Anna Huttenlocher
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
39
|
Tu WB, Christofk HR, Plath K. Nutrient regulation of development and cell fate decisions. Development 2023; 150:dev199961. [PMID: 37260407 PMCID: PMC10281554 DOI: 10.1242/dev.199961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Diet contributes to health at all stages of life, from embryonic development to old age. Nutrients, including vitamins, amino acids, lipids and sugars, have instructive roles in directing cell fate and function, maintaining stem cell populations, tissue homeostasis and alleviating the consequences of aging. This Review highlights recent findings that illuminate how common diets and specific nutrients impact cell fate decisions in healthy and disease contexts. We also draw attention to new models, technologies and resources that help to address outstanding questions in this emerging field and may lead to dietary approaches that promote healthy development and improve disease treatments.
Collapse
Affiliation(s)
- William B. Tu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Lu W, Park NR, TeSlaa T, Jankowski CS, Samarah L, McReynolds M, Xing X, Schembri J, Woolf MT, Rabinowitz JD, Davidson SM. Acidic Methanol Treatment Facilitates Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Imaging of Energy Metabolism. Anal Chem 2023; 95:14879-14888. [PMID: 37756255 PMCID: PMC10568533 DOI: 10.1021/acs.analchem.3c01875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023]
Abstract
Detection of small molecule metabolites (SMM), particularly those involved in energy metabolism using MALDI-mass spectrometry imaging (MSI), is challenging due to factors including ion suppression from other analytes present (e.g., proteins and lipids). One potential solution to enhance SMM detection is to remove analytes that cause ion suppression from tissue sections before matrix deposition through solvent washes. Here, we systematically investigated solvent treatment conditions to improve SMM signal and preserve metabolite localization. Washing with acidic methanol significantly enhances the detection of phosphate-containing metabolites involved in energy metabolism. The improved detection is due to removing lipids and highly polar metabolites that cause ion suppression and denaturing proteins that release bound phosphate-containing metabolites. Stable isotope infusions of [13C6]nicotinamide coupled to MALDI-MSI ("Iso-imaging") in the kidney reveal patterns that indicate blood vessels, medulla, outer stripe, and cortex. We also observed different ATP:ADP raw signals across mouse kidney regions, consistent with regional differences in glucose metabolism favoring either gluconeogenesis or glycolysis. In mouse muscle, Iso-imaging using [13C6]glucose shows high glycolytic flux from infused circulating glucose in type 1 and 2a fibers (soleus) and relatively lower glycolytic flux in type 2b fiber type (gastrocnemius). Thus, improved detection of phosphate-containing metabolites due to acidic methanol treatment combined with isotope tracing provides an improved way to probe energy metabolism with spatial resolution in vivo.
Collapse
Affiliation(s)
- Wenyun Lu
- Lewis
Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Noel R. Park
- Lewis
Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
| | - Tara TeSlaa
- Department
of Molecular and Medical Pharmacology, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Connor S.R. Jankowski
- Lewis
Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
| | - Laith Samarah
- Lewis
Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
| | - Melanie McReynolds
- Department
of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xi Xing
- Lewis
Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jessica Schembri
- Lewis
Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
| | - Morgan T. Woolf
- Department
of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joshua D. Rabinowitz
- Lewis
Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Rutgers
Cancer Institute of New Jersey (CINJ), Rutgers
University, New Brunswick, New Jersey 08901, United States
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Ludwig
Institute for Cancer Research, Princeton
University, Princeton, New Jersey 08544, United States
| | - Shawn M. Davidson
- Lewis
Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Rutgers
Cancer Institute of New Jersey (CINJ), Rutgers
University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
41
|
Hill DP, Drabkin HJ, Smith CL, Van Auken KM, D’Eustachio P. Biochemical pathways represented by Gene Ontology-Causal Activity Models identify distinct phenotypes resulting from mutations in pathways. Genetics 2023; 225:iyad152. [PMID: 37579192 PMCID: PMC10550311 DOI: 10.1093/genetics/iyad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
Gene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs). A computational process has been developed to convert Reactome pathways to GO-CAMs. Laboratory mice are widely used models of normal and pathological human processes. We have converted human Reactome GO-CAMs to orthologous mouse GO-CAMs, as a resource to transfer pathway knowledge between humans and model organisms. These mouse GO-CAMs allowed us to define sets of genes that function in a causally connected way. To demonstrate that individual variant genes from connected pathways result in similar but distinguishable phenotypes, we used the genes in our pathway models to cross-query mouse phenotype annotations in the Mouse Genome Database (MGD). Using GO-CAM representations of 2 related but distinct pathways, gluconeogenesis and glycolysis, we show that individual causal paths in gene networks give rise to discrete phenotypic outcomes resulting from perturbations of glycolytic and gluconeogenic genes. The accurate and detailed descriptions of gene interactions recovered in this analysis of well-studied processes suggest that this strategy can be applied to less well-understood processes in less well-studied model systems to predict phenotypic outcomes of novel gene variants and to identify potential gene targets in altered processes.
Collapse
Affiliation(s)
- David P Hill
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - Kimberly M Van Auken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
42
|
TeSlaa T, Ralser M, Fan J, Rabinowitz JD. The pentose phosphate pathway in health and disease. Nat Metab 2023; 5:1275-1289. [PMID: 37612403 PMCID: PMC11251397 DOI: 10.1038/s42255-023-00863-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/12/2023] [Indexed: 08/25/2023]
Abstract
The pentose phosphate pathway (PPP) is a glucose-oxidizing pathway that runs in parallel to upper glycolysis to produce ribose 5-phosphate and nicotinamide adenine dinucleotide phosphate (NADPH). Ribose 5-phosphate is used for nucleotide synthesis, while NADPH is involved in redox homoeostasis as well as in promoting biosynthetic processes, such as the synthesis of tetrahydrofolate, deoxyribonucleotides, proline, fatty acids and cholesterol. Through NADPH, the PPP plays a critical role in suppressing oxidative stress, including in certain cancers, in which PPP inhibition may be therapeutically useful. Conversely, PPP-derived NADPH also supports purposeful cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for signalling and pathogen killing. Genetic deficiencies in the PPP occur relatively commonly in the committed pathway enzyme glucose-6-phosphate dehydrogenase (G6PD). G6PD deficiency typically manifests as haemolytic anaemia due to red cell oxidative damage but, in severe cases, also results in infections due to lack of leucocyte oxidative burst, highlighting the dual redox roles of the pathway in free radical production and detoxification. This Review discusses the PPP in mammals, covering its roles in biochemistry, physiology and disease.
Collapse
Affiliation(s)
- Tara TeSlaa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jing Fan
- Morgride Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua D Rabinowitz
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
43
|
Hill DP, Drabkin HJ, Smith CL, Van Auken KM, D’Eustachio P. Biochemical Pathways Represented by Gene Ontology Causal Activity Models Identify Distinct Phenotypes Resulting from Mutations in Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541760. [PMID: 37293039 PMCID: PMC10245817 DOI: 10.1101/2023.05.22.541760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase, and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs). A computational process has been developed to convert Reactome pathways to GO-CAMs. Laboratory mice are widely used models of normal and pathological human processes. We have converted human Reactome GO-CAMs to orthologous mouse GO-CAMs, as a resource to transfer pathway knowledge between humans and model organisms. These mouse GO-CAMs allowed us to define sets of genes that function in a connected and well-defined way. To test whether individual genes from well-defined pathways result in similar and distinguishable phenotypes, we used the genes in our pathway models to cross-query mouse phenotype annotations in the Mouse Genome Database (MGD). Using GO-CAM representations of two related but distinct pathways, gluconeogenesis and glycolysis, we can identify causal paths in gene networks that give rise to discrete phenotypic outcomes for perturbations of glycolysis and gluconeogenesis. The accurate and detailed descriptions of gene interactions recovered in this analysis of well-studied processes suggest that this strategy can be applied to less well-understood processes in less well-studied model systems to predict phenotypic outcomes of novel gene variants and to identify potential gene targets in altered processes.
Collapse
Affiliation(s)
| | | | | | - Kimberly M Van Auken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York NY 10016 USA
| |
Collapse
|
44
|
Smith JG, Koronowski KB, Mortimer T, Sato T, Greco CM, Petrus P, Verlande A, Chen S, Samad M, Deyneka E, Mathur L, Blazev R, Molendijk J, Kumar A, Deryagin O, Vaca-Dempere M, Sica V, Liu P, Orlando V, Parker BL, Baldi P, Welz PS, Jang C, Masri S, Benitah SA, Muñoz-Cánoves P, Sassone-Corsi P. Liver and muscle circadian clocks cooperate to support glucose tolerance in mice. Cell Rep 2023; 42:112588. [PMID: 37267101 PMCID: PMC10592114 DOI: 10.1016/j.celrep.2023.112588] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Physiology is regulated by interconnected cell and tissue circadian clocks. Disruption of the rhythms generated by the concerted activity of these clocks is associated with metabolic disease. Here we tested the interactions between clocks in two critical components of organismal metabolism, liver and skeletal muscle, by rescuing clock function either in each organ separately or in both organs simultaneously in otherwise clock-less mice. Experiments showed that individual clocks are partially sufficient for tissue glucose metabolism, yet the connections between both tissue clocks coupled to daily feeding rhythms support systemic glucose tolerance. This synergy relies in part on local transcriptional control of the glucose machinery, feeding-responsive signals such as insulin, and metabolic cycles that connect the muscle and liver. We posit that spatiotemporal mechanisms of muscle and liver play an essential role in the maintenance of systemic glucose homeostasis and that disrupting this diurnal coordination can contribute to metabolic disease.
Collapse
Affiliation(s)
- Jacob G Smith
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain.
| | - Kevin B Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| | - Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Tomoki Sato
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Carolina M Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Amandine Verlande
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Ekaterina Deyneka
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Lavina Mathur
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Ronnie Blazev
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jeffrey Molendijk
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Arun Kumar
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Oleg Deryagin
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Mireia Vaca-Dempere
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Valentina Sica
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Peng Liu
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Valerio Orlando
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Benjamin L Parker
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Program in Cancer Research, Hospital del Mar Medical Research Institute (IMIM), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Cholsoon Jang
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain; Altos Labs, Inc., San Diego Institute of Science, San Diego, CA 92121, USA.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
45
|
Lee WD, Liang L, AbuSalim J, Jankowski CS, Samarah LZ, Neinast MD, Rabinowitz JD. Impact of acute stress on murine metabolomics and metabolic flux. Proc Natl Acad Sci U S A 2023; 120:e2301215120. [PMID: 37186827 PMCID: PMC10214130 DOI: 10.1073/pnas.2301215120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Plasma metabolite concentrations and labeling enrichments are common measures of organismal metabolism. In mice, blood is often collected by tail snip sampling. Here, we systematically examined the effect of such sampling, relative to gold-standard sampling from an in-dwelling arterial catheter, on plasma metabolomics and stable isotope tracing. We find marked differences between the arterial and tail circulating metabolome, which arise from two major factors: handling stress and sampling site, whose effects were deconvoluted by taking a second arterial sample immediately after tail snip. Pyruvate and lactate were the most stress-sensitive plasma metabolites, rising ~14 and ~5-fold. Both acute handling stress and adrenergic agonists induce extensive, immediate production of lactate, and modest production of many other circulating metabolites, and we provide a reference set of mouse circulatory turnover fluxes with noninvasive arterial sampling to avoid such artifacts. Even in the absence of stress, lactate remains the highest flux circulating metabolite on a molar basis, and most glucose flux into the TCA cycle in fasted mice flows through circulating lactate. Thus, lactate is both a central player in unstressed mammalian metabolism and strongly produced in response to acute stress.
Collapse
Affiliation(s)
- Won Dong Lee
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ08544
| | - Lingfan Liang
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ08544
| | - Jenna AbuSalim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Connor S.R. Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Laith Z. Samarah
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ08544
| | - Michael D. Neinast
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ08544
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| |
Collapse
|
46
|
Schwaiger-Haber M, Stancliffe E, Anbukumar DS, Sells B, Yi J, Cho K, Adkins-Travis K, Chheda MG, Shriver LP, Patti GJ. Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem. Nat Commun 2023; 14:2876. [PMID: 37208361 PMCID: PMC10199024 DOI: 10.1038/s41467-023-38403-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
Tumors are comprised of a multitude of cell types spanning different microenvironments. Mass spectrometry imaging (MSI) has the potential to identify metabolic patterns within the tumor ecosystem and surrounding tissues, but conventional workflows have not yet fully integrated the breadth of experimental techniques in metabolomics. Here, we combine MSI, stable isotope labeling, and a spatial variant of Isotopologue Spectral Analysis to map distributions of metabolite abundances, nutrient contributions, and metabolic turnover fluxes across the brains of mice harboring GL261 glioma, a widely used model for glioblastoma. When integrated with MSI, the combination of ion mobility, desorption electrospray ionization, and matrix assisted laser desorption ionization reveals alterations in multiple anabolic pathways. De novo fatty acid synthesis flux is increased by approximately 3-fold in glioma relative to surrounding healthy tissue. Fatty acid elongation flux is elevated even higher at 8-fold relative to surrounding healthy tissue and highlights the importance of elongase activity in glioma.
Collapse
Affiliation(s)
- Michaela Schwaiger-Haber
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ethan Stancliffe
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dhanalakshmi S Anbukumar
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Blake Sells
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jia Yi
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Kayla Adkins-Travis
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
47
|
Chen Q, Li H, Tian H, Lam SM, Liao Y, Zhang Z, Dong M, Chen S, Yao Y, Meng J, Zhang Y, Zheng L, Meng ZX, Han W, Shui G, Zhu D, Fu S. Global determination of reaction rates and lipid turnover kinetics in Mus musculus. Cell Metab 2023; 35:711-721.e4. [PMID: 37019081 DOI: 10.1016/j.cmet.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/01/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
Metabolism is fundamental to life, but measuring metabolic reaction rates remains challenging. Here, we applied C13 fluxomics to monitor the metabolism of dietary glucose carbon in 12 tissues, 9 brain compartments, and over 1,000 metabolite isotopologues over a 4-day period. The rates of 85 reactions surrounding central carbon metabolism are determined with elementary metabolite unit (EMU) modeling. Lactate oxidation, not glycolysis, occurs at a comparable pace with the tricarboxylic acid cycle (TCA), supporting lactate as the primary fuel. We expand the EMU framework to track and quantify metabolite flows across tissues. Specifically, multi-organ EMU simulation of uridine metabolism shows that tissue-blood exchange, not synthesis, controls nucleotide homeostasis. In contrast, isotopologue fingerprinting and kinetic analyses reveal the brown adipose tissue (BAT) having the highest palmitate synthesis activity but no apparent contribution to circulation, suggesting a tissue-autonomous synthesis-to-burn mechanism. Together, this study demonstrates the utility of dietary fluxomics for kinetic mapping in vivo and provides a rich resource for elucidating inter-organ metabolic cross talk.
Collapse
Affiliation(s)
- Qishan Chen
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
| | - Hu Li
- Bioland Laboratory, Guangzhou, Guangdong 510320, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Yilie Liao
- Bioland Laboratory, Guangzhou, Guangdong 510320, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Ziyin Zhang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Manyuan Dong
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Shaoru Chen
- Bioland Laboratory, Guangzhou, Guangdong 510320, China
| | - Yuxiao Yao
- Bioland Laboratory, Guangzhou, Guangdong 510320, China
| | - Jiemiao Meng
- Bioland Laboratory, Guangzhou, Guangdong 510320, China
| | - Yong Zhang
- Bioland Laboratory, Guangzhou, Guangdong 510320, China; The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Weiping Han
- Bioland Laboratory, Guangzhou, Guangdong 510320, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahai Zhu
- Bioland Laboratory, Guangzhou, Guangdong 510320, China; The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Suneng Fu
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China.
| |
Collapse
|
48
|
Granath-Panelo M, Krook A, Rutter J, Kajimura S. On the cutting edge: perspectives in bioenergetics. Nat Rev Endocrinol 2023; 19:250-251. [PMID: 36869239 PMCID: PMC10155607 DOI: 10.1038/s41574-023-00820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Melia Granath-Panelo
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Anna Krook
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Shingo Kajimura
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
49
|
Wang X, Luo C, Xu L, Wang Y, Guo LJ, Jiao Y, Deng H, Liu X. Development of Pseudo-targeted Profiling of Isotopic Metabolomics using Combined Platform of High Resolution Mass Spectrometry and Triple Quadrupole Mass Spectrometry with Application of 13C6-Glucose Tracing in HepG2 Cells. J Chromatogr A 2023; 1696:463923. [PMID: 37023637 DOI: 10.1016/j.chroma.2023.463923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
Isotope tracing assisted metabolic analysis is becoming a unique tool to understand metabolic regulation in cell biology and biomedical research. Targeted mass spectrometry analysis based on selected reaction monitoring (SRM) has been widely applied in isotope tracing experiment with the advantages of high sensitivity and broad linearity. However, its application for new pathway discovery is largely restrained by molecular coverage. To overcome this limitation, we describe a strategy called pseudo-targeted profiling of isotopic metabolomics (PtPIM) to expand the analysis of isotope labeled metabolites beyond the limit of known pathways and chemical standards. Pseudo-targeted metabolomics was first established with ion transitions and retention times transformed from high resolution (orbitrap) mass spectrometry. Isotope labeled MRM transitions were then generated according to chemical formulas of fragments, which were derived from accurate ion masses acquired by HRMS. An in-house software "PseudoIsoMRM" was developed to simulate isotope labeled ion transitions in batch mode and correct the interference of natural isotopologues. This PtPIM strategy was successfully applied to study 13C6-glucose traced HepG2 cells. As 313 molecules determined as analysis targets, a total of 4104 ion transitions were simulated to monitor 13C labeled metabolites in positive-negative switching mode of QQQ mass spectrometer with minimum dwell time of 0.3 ms achieved. A total of 68 metabolites covering glycolysis, TCA cycle, nucleotide biosynthesis, one-carbon metabolism and related derivatives were found to be labeled (> 2%) in HepG2 cells. Active pentose phosphate pathway was observed with diverse labeling status of glycolysis intermediates. Meanwhile, our PtPIM strategy revealed that rotenone severely suppressed mitochondrial function e.g. oxidative phosphorylation and fatty acid beta-oxidation. In this case, anaerobic respiration became the major source of energy metabolism by producing abundant lactate. Conclusively, the simulation based PtPIM method demonstrates a strategy to broaden metabolite coverage in isotope tracing analysis independent of standard chemicals.
Collapse
Affiliation(s)
- Xueying Wang
- National Protein Science Facility (Beijing), Tsinghua University, China; School of Life Sciences, Tsinghua University, China
| | | | - Lina Xu
- National Protein Science Facility (Beijing), Tsinghua University, China; School of Life Sciences, Tsinghua University, China
| | - Yusong Wang
- National Protein Science Facility (Beijing), Tsinghua University, China; School of Life Sciences, Tsinghua University, China
| | - Lv Jun Guo
- National Protein Science Facility (Beijing), Tsinghua University, China; School of Life Sciences, Tsinghua University, China
| | - Yupei Jiao
- National Protein Science Facility (Beijing), Tsinghua University, China; School of Life Sciences, Tsinghua University, China
| | - Haiteng Deng
- National Protein Science Facility (Beijing), Tsinghua University, China; School of Life Sciences, Tsinghua University, China
| | - Xiaohui Liu
- National Protein Science Facility (Beijing), Tsinghua University, China; School of Life Sciences, Tsinghua University, China.
| |
Collapse
|
50
|
Yook JS, Taxin ZH, Yuan B, Oikawa S, Auger C, Mutlu B, Puigserver P, Hui S, Kajimura S. The SLC25A47 locus controls gluconeogenesis and energy expenditure. Proc Natl Acad Sci U S A 2023; 120:e2216810120. [PMID: 36812201 PMCID: PMC9992842 DOI: 10.1073/pnas.2216810120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria provide essential metabolites and adenosine triphosphate (ATP) for the regulation of energy homeostasis. For instance, liver mitochondria are a vital source of gluconeogenic precursors under a fasted state. However, the regulatory mechanisms at the level of mitochondrial membrane transport are not fully understood. Here, we report that a liver-specific mitochondrial inner-membrane carrier SLC25A47 is required for hepatic gluconeogenesis and energy homeostasis. Genome-wide association studies found significant associations between SLC25A47 and fasting glucose, HbA1c, and cholesterol levels in humans. In mice, we demonstrated that liver-specific depletion of SLC25A47 impaired hepatic gluconeogenesis selectively from lactate, while significantly enhancing whole-body energy expenditure and the hepatic expression of FGF21. These metabolic changes were not a consequence of general liver dysfunction because acute SLC25A47 depletion in adult mice was sufficient to enhance hepatic FGF21 production, pyruvate tolerance, and insulin tolerance independent of liver damage and mitochondrial dysfunction. Mechanistically, SLC25A47 depletion leads to impaired hepatic pyruvate flux and malate accumulation in the mitochondria, thereby restricting hepatic gluconeogenesis. Together, the present study identified a crucial node in the liver mitochondria that regulates fasting-induced gluconeogenesis and energy homeostasis.
Collapse
Affiliation(s)
- Jin-Seon Yook
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Zachary H. Taxin
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Bo Yuan
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Satoshi Oikawa
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Beste Mutlu
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|