1
|
Pyrczak-Felczykowska A, Kaczorowska AK, Giełdoń A, Braczko A, Smoleński RT, Antosiewicz J, Reekie TA, Herman-Antosiewicz A. Natural product as a lead for impairing mitochondrial respiration in cancer cells. J Enzyme Inhib Med Chem 2025; 40:2465575. [PMID: 40013402 PMCID: PMC11869345 DOI: 10.1080/14756366.2025.2465575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 02/28/2025] Open
Abstract
The impact of the isoxazole derivative of usnic acid, ISOXUS (formerly known as 2b) on cancer and non-cancerous cell metabolism was investigated. ISOXUS significantly reduced the utilisation of most metabolic substrates that produce NADH or FADH2, mitochondrial electron flow and oxygen consumption rate (OCR) in MCF-7 breast cancer cells in contrast to HB2 normal epithelial cells. Molecular docking revealed that ISOXUS inhibits mitochondrial respiratory chain complex II, which was confirmed experimentally. Disturbance of electron flow in MCF-7 cells resulted in increased reactive oxygen species (ROS) production. They appeared crucial for ISOXUS-induced cancer cell vacuolization and a drop in survival as an antioxidant, α-tocopherol, protected against these processes. These findings indicate that ISOXUS is a metabolic inhibitor that targets mitochondrial complex II in breast cancer cells resulting in diminished ATP production and increased ROS formation which translates into reduced cell viability.
Collapse
Affiliation(s)
| | - Anna-Karina Kaczorowska
- Faculty of Biology, Collection of Plasmids and Microorganisms, University of Gdańsk, Gdańsk, Poland
| | - Artur Giełdoń
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Jędrzej Antosiewicz
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tristan A. Reekie
- School of Science, University of New South Wales Canberra, Canberra, Australia
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Baroni C, Bozdag M, Renzi G, De Luca V, Capasso C, Bazzicalupi C, Selleri S, Ferraroni M, Carta F, Supuran CT. X-ray crystallographic and kinetic studies of biguanide containing aryl sulfonamides as carbonic anhydrase inhibitors. RSC Med Chem 2025; 16:1633-1640. [PMID: 39935522 PMCID: PMC11809658 DOI: 10.1039/d4md01018c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Here, we report a small series of dual-targeting compounds that combine the prototypical carbonic anhydrase (CA) zinc-binding sulfonamide moiety with the biguanide group of metformin, an emerging anticancer drug. The compounds reported similar in vitro inhibition profiles on a panel of physiologically relevant human (h)CAs, with marked selectivity for the cancer related IX and XII isoforms. The binding modes of representative inhibitors 5b and 5c within the active site of the hCA isoforms II and XII-mimic were assessed by X-ray crystallography, thus allowing us to clarify molecular features that may be useful for the design of more specific and potent inhibitors. For instance, we identified a mutation in the hCA XII-mimic which was found responsible for the selectivity of the ligands toward the tumor associated isoform. Interestingly, in the hCA II/5c complex, a second inhibitor molecule was bound to the catalytic cleft, probably affecting the inhibition properties of the canonical zinc-bound inhibitor.
Collapse
Affiliation(s)
- Chiara Baroni
- Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Murat Bozdag
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Gioele Renzi
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Viviana De Luca
- Department of Biology, Institute of Bioscience and Bioresources (IBBR)-CNR Via P. Castellino 111 80131 Napoli NA Italy
| | - Clemente Capasso
- Department of Biology, Institute of Bioscience and Bioresources (IBBR)-CNR Via P. Castellino 111 80131 Napoli NA Italy
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Silvia Selleri
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Fabrizio Carta
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| |
Collapse
|
3
|
Sharma A, Anand A, Ravins M, Zhang X, Horstmann N, Shelburne SA, McIver KS, Hanski E. Group A Streptococcal asparagine metabolism regulates bacterial virulence. EMBO Rep 2025:10.1038/s44319-025-00447-z. [PMID: 40229432 DOI: 10.1038/s44319-025-00447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
Group A Streptococcus (GAS) causes various human diseases linked to virulome expression predominantly regulated by the two-component system (TCS), CovR/S. Here, we demonstrate that asparagine (Asn) presence in a minimal chemically defined medium increases virulence gene expression in a CovR-dependent fashion. It also decreases the transcription of asparagine synthetase (AsnA), the ABC transporter responsible for Asn uptake (GlnPQ), and that of the hemolysin toxins responsible for scavenging Asn from the host. Metabolomics data show that Asn availability increases intracellular ADP/ATP ratio, which enhances phosphatase activity in structurally related CovS sensors and is probably responsible for the Asn-mediated decrease in CovR phosphorylation. Mutants deficient in AsnA, GlnPQ, asparaginase, (AsnB) activities are attenuated in a mouse model of human GAS invasive soft tissue infection. The similarity between the mechanisms of Asn-mediated regulation of GAS virulence and tumor growth suggests that, as in cancer, components maintaining Asn homeostasis could be targeted for anti-GAS treatments.
Collapse
Affiliation(s)
- Abhinay Sharma
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Xiaolan Zhang
- Department of Physiology, College of Basic Medical Science, Harbin Medical University, Harbin, China
| | - Nicola Horstmann
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel A Shelburne
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel.
| |
Collapse
|
4
|
Wang C, Ye Y, Zhao M, Chen Q, Liu B, Ren W. Asparagine transporter supports macrophage inflammation via histone phosphorylation. SCIENCE ADVANCES 2025; 11:eads3506. [PMID: 40203093 PMCID: PMC11980831 DOI: 10.1126/sciadv.ads3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Solute carrier (SLC) family is essential for immune responses; nevertheless, whether and how SLCs regulate macrophage inflammation remains unclear. Here, we demonstrate that K636 acetylation mediates high abundance of SLC6A14 in inflammatory macrophages. Notably, the pharmacological inhibition or genetic modulation of SLC6A14 reduces macrophage interleukin-1β (IL-1β) secretion dependently of lower asparagine uptake and subsequently enhanced nuclear LKB1. Mechanistically, nuclear LKB1 lessens MAPK pathway-mediated NLRP3 inflammasome activation by increased histone 3 S10/28 phosphorylation-dependent cyclin O transcription. Moreover, myeloid Slc6a14 deficiency alleviates pulmonary inflammation via suppressing inflammatory macrophage responses. Overall, these results uncover a network by which SLC6A14-mediated asparagine uptake orchestrates macrophage inflammation through histone phosphorylation, providing a crucial target for modulation of inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Muyang Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bingnan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Deng R, Fu L, Liang H, Ai X, Liu F, Li N, Wu L, Li S, Yang X, Lin Y, Huang Y, Yun J. Inhibition of mitochondrial complex I induces mitochondrial ferroptosis by regulating CoQH2 levels in cancer. Cell Death Dis 2025; 16:254. [PMID: 40185704 PMCID: PMC11971431 DOI: 10.1038/s41419-025-07510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/16/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
Ferroptosis, a novel form of regulated cell death induced by the excessive accumulation of lipid peroxidation products, plays a pivotal role in the suppression of tumorigenesis. Two prominent mitochondrial ferroptosis defense systems are glutathione peroxidase 4 (GPX4) and dihydroorotate dehydrogenase (DHODH), both of which are localized within the mitochondria. However, the existence of supplementary cellular defense mechanisms against mitochondrial ferroptosis remains unclear. Our findings unequivocally demonstrate that inactivation of mitochondrial respiratory chain complex I (MCI) induces lipid peroxidation and consequently invokes ferroptosis across GPX4 low-expression cancer cells. However, in GPX4 high expression cancer cells, the MCI inhibitor did not induce ferroptosis, but increased cell sensitivity to ferroptosis induced by the GPX4 inhibitor. Overexpression of the MCI alternative protein yeast NADH-ubiquinone reductase (NDI1) not only quells ferroptosis induced by MCI inhibitors but also confers cellular protection against ferroptosis inducers. Mechanically, MCI inhibitors actuate an elevation in the NADH level while concomitantly diminishing the CoQH2 level. The manifestation of MCI inhibitor-induced ferroptosis can be reversed by supplementation with mitochondrial-specific analogues of CoQH2. Notably, MCI operates in parallel with mitochondrial-localized GPX4 and DHODH to inhibit mitochondrial ferroptosis, but independently of cytosolically localized GPX4 or ferroptosis suppressor protein 1(FSP1). The MCI inhibitor IACS-010759, is endowed with the ability to induce ferroptosis while concurrently impeding tumor proliferation in vivo. Our results identified a ferroptosis defense mechanism mediated by MCI within the mitochondria and suggested a therapeutic strategy for targeting ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Ru Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lingyi Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haoyu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xixiong Ai
- Reproductive Medicine Center, The Affiliated Shenzhen Maternity and Child Healthcare Hospital of the South Medical University, Shenzhen, Guangdong, China
| | - Fangyi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Nai Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liyan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yansong Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
6
|
Yu M, Su M, Tian Z, Pan L, Li Z, Huang E, Chen Y. Extracellular Vesicle-Packaged Linc-ZNF25-1 from Pancreatic Cancer Cell Promotes Pancreatic Stellate Cell Uptake of Asparagine to Advance Chemoresistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413439. [PMID: 40041969 DOI: 10.1002/advs.202413439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/21/2025] [Indexed: 04/26/2025]
Abstract
Extensive fibrous stroma plays an important role in gemcitabine (GEM) resistance. However, the mechanism by which pancreatic cancer cells interact with pancreatic stellate cells (PSCs) to promote GEM resistance remains unclear. This study investigates the role of metabolic crosstalk between these two cells in inducing GEM resistance. Extracellular vesicles (EVs) of parental and GEM-resistant pancreatic cancer cells are extracted and performed metabolic assays and long noncoding RNA (lncRNA) sequencing. Pancreatic cancer cell-derived EVs promote PSCs activation and extracellular matrix formation, and GEM-resistant pancreatic cancer cells produce more asparagine (Asn), favoring PSCs activation. Mechanistically, pancreatic cancer cell-derived EVs mediate linc-ZNF25-1 to promote Asn uptake via the IGF2BP3/c-Myc/SLC1A5 pathway in PSCs. In addition, mouse models elucidate the oncogenic function of linc-ZNF25-1 and the enhanced therapeutic effect of asparaginase (L-ASNase) in combination with GEM in pancreatic cancer. This study demonstrates that pancreatic cancer cell-derived EVs promote the uptake of Asn released from pancreatic cancer cells through the upregulation of SLC1A5 in PSCs, facilitating PSCs activation and pancreatic cancer resistance to GEM. L-ASNase in combination with GEM is a potential therapeutic strategy for targeting stromal cells to enhance the efficacy of chemotherapeutic agents against pancreatic cancer.
Collapse
Affiliation(s)
- Miao Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Mingxin Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Lele Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Zongmeng Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Enlai Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| |
Collapse
|
7
|
Luo T, Zhao L, Feng C, Yan J, Yuan Y, Chen H. Asparagine prevents intestinal stem cell aging via the autophagy-lysosomal pathway. Aging Cell 2025; 24:e14423. [PMID: 39587832 PMCID: PMC11984690 DOI: 10.1111/acel.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
The age-associated decline in intestinal stem cell (ISC) function is a key factor in intestinal aging in organisms, resulting in impaired intestinal function and increased susceptibility to age-related diseases. Consequently, it is imperative to develop effective therapeutic strategies to prevent ISC aging and functional decline. In this study, we utilized an aging Drosophila model screening of amino acids and found that asparagine (Asn), a nonessential amino acid in vivo, exhibits its profound anti-aging properties on ISCs. Asn inhibits the hyperproliferation of aging ISCs in Drosophila, maintains intestinal homeostasis, and extends the lifespan of aging flies. Complementarily, Asn promotes the growth and branching of elderly murine intestinal organoids, indicating its anti-aging capacity to enhance ISC function. Mechanistic analyses have revealed that Asn exerts its effects via the activation of the autophagic signaling pathway. In summary, this study has preliminarily explored the potential supportive role of Asn in ameliorating intestinal aging, providing a foundation for further research into therapeutic interventions targeting age-related intestinal dysfunction.
Collapse
Affiliation(s)
- Ting Luo
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Liusha Zhao
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chenxi Feng
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Jinhua Yan
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Yuan
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Haiyang Chen
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
8
|
Parkhitko AA, Cracan V. Xenotopic synthetic biology: Prospective tools for delaying aging and age-related diseases. SCIENCE ADVANCES 2025; 11:eadu1710. [PMID: 40153513 DOI: 10.1126/sciadv.adu1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Metabolic dysregulation represents one of the major driving forces in aging. Although multiple genetic and pharmacological manipulations are known to extend longevity in model organisms, aging is a complex trait, and targeting one's own genes may be insufficient to prevent age-dependent deterioration. An alternative strategy could be to use enzymes from other species to reverse age-associated metabolic changes. In this review, we discuss a set of enzymes from lower organisms that have been shown to affect various metabolic parameters linked to age-related processes. These enzymes include modulators of steady-state levels of amino acids (METase, ASNase, and ADI), NADPH/NADP+ and/or reduced form of coenzyme Q (CoQH2)/CoQ redox potentials (NDI1, AOX, LbNOX, TPNOX, EcSTH, RquA, LOXCAT, Grubraw, and ScURA), GSH (StGshF), mitochondrial membrane potential (mtON and mito-dR), or reactive oxygen species (DAAO and KillerRed-SOD1). We propose that leveraging non-mammalian enzymes represents an untapped resource that can be used to delay aging and age-related diseases.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Valentin Cracan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
9
|
Jin S, Wu J, Wang C, He Y, Tang Y, Huang L, Zhou H, Liu D, Wu Z, Feng Y, Chen H, He X, Yang G, Peng C, Qiu J, Li T, Yin Y, He L. Aspartate Metabolism-Driven Gut Microbiota Dynamics and RIP-Dependent Mitochondrial Function Counteract Oxidative Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404697. [PMID: 39874197 PMCID: PMC11923965 DOI: 10.1002/advs.202404697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/18/2024] [Indexed: 01/30/2025]
Abstract
Aspartate (Asp) metabolism-mediated antioxidant functions have important implications for neonatal growth and intestinal health; however, the antioxidant mechanisms through which Asp regulates the gut microbiota and influences RIP activation remain elusive. This study reports that chronic oxidative stress disrupts gut microbiota and metabolite balance and that such imbalance is intricately tied to the perturbation of Asp metabolism. Under normal conditions, in vivo and in vitro studies reveal that exogenous Asp improves intestinal health by regulating epithelial cell proliferation, nutrient uptake, and apoptosis. During oxidative stress, Asp reduces Megasphaera abundance while increasing Ruminococcaceae. This reversal effect depends on the enhanced production of the antioxidant eicosapentaenoic acid mediated through Asp metabolism and microbiota. Mechanistically, the application of exogenous Asp orchestrates the antioxidant responses in enterocytes via the modulation of the RIP3-MLKL and RIP1-Nrf2-NF-κB pathways to eliminate excessive reactive oxygen species and maintain mitochondrial functionality and cellular survival. These results demonstrate that Asp signaling alleviates oxidative stress by dynamically modulating the gut microbiota and RIP-dependent mitochondrial function, providing a potential therapeutic strategy for oxidative stress disease treatment.
Collapse
Affiliation(s)
- Shunshun Jin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Jian Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Chenyu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Yiwen He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Le Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Hui Zhou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ziping Wu
- Agricultural and Food Economics, Queen's University Belfast, Northern Ireland, BT95PX, UK
| | - Yanzhong Feng
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xinmiao He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Can Peng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infections Disease, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130025, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
- Yuelushan Laboratory, No. 246 Hongqi Road, Furong District, Changsha, 410128, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, China
| |
Collapse
|
10
|
Zeng H, Yu J, Wang H, Shen M, Zou X, Zhang Z, Liu L. Cancer ATF4-mediated CD58 endocytosis impairs anti-tumor immunity and immunotherapy. J Transl Med 2025; 23:225. [PMID: 40001116 PMCID: PMC11863482 DOI: 10.1186/s12967-025-06245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Co-stimulatory molecules are imperative for CD8+ T cells to eliminate target cell and maintain sustained cytotoxicity. Despite an advanced understanding of the co-stimulatory molecules deficiency that results in tumor escape, the tumor cell-intrinsic mechanisms that regulate co-stimulatory molecules remain enigmatic, and an in-depth dissection could facilitate the improvement of treatment options. To this end, in this study, we report that the deficiency of the critical costimulatory molecule CD58, mediated by the expression of ATF4 in tumor cells, impairs the formation of immunological synapses (IS) and leads to the deterioration of antitumor immune function of CD8+ T cells. Mechanistically, ATF4 transcriptionally upregulated dynamin 1 (DNM1) expression leading to DNM1-dependent endocytosis (DDE)-mediated degradation of CD58. Furthermore, administration of DDE inhibitor prochlorperazine or ATF4 knockdown effectively restored CD58 expression, boosting CD8+ T cell cytotoxicity and immunotherapy efficiency. Thus, our study reveals that ATF4 in tumor cells weakens CD58 expression to interfere with complete IS formation, and indicates potential approaches to improve the cytolytic function of CD8+ T cell in tumor immunotherapy.
Collapse
Affiliation(s)
- Hanyi Zeng
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangzhou, China
- Guangdong Institute of Hepatology, Guangzhou, China
| | - Jiaping Yu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangzhou, China
- Guangdong Institute of Hepatology, Guangzhou, China
| | - Haijian Wang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangzhou, China
- Guangdong Institute of Hepatology, Guangzhou, China
| | - Mengying Shen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangzhou, China
- Guangdong Institute of Hepatology, Guangzhou, China
| | - Xuejing Zou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangzhou, China
- Guangdong Institute of Hepatology, Guangzhou, China
| | - Ziyong Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangzhou, China
- Guangdong Institute of Hepatology, Guangzhou, China
| | - Li Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
- State Key Laboratory of Organ Failure Research, Guangzhou, China.
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangzhou, China.
- Guangdong Institute of Hepatology, Guangzhou, China.
| |
Collapse
|
11
|
Zhang W, Lei W, Bo T, Xu J, Wang W. Metabolomics' Change Under β-Cypermethrin Stress and Detoxification Role of CYP5011A1 in Tetrahymena thermophila. Metabolites 2025; 15:143. [PMID: 40137108 PMCID: PMC11944115 DOI: 10.3390/metabo15030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND β-cypermethrin (β-CYP) exhibits high toxicity to aquatic organisms and poses significant risks to aquatic ecosystems. Tetrahymena thermophila, a protozoa widely distributed in aquatic environments, can tolerate high concentrations of β-cypermethrin. However, the comprehensive detoxification mechanisms remain poorly understood in Tetrahymena. METHODS Untargeted metabolomics was used to explore the detoxification mechanisms of T. thermophila under β-CYP stress. RESULTS Trehalose, maltose, glycerol, and D-myo-inositol were upregulated under β-CYP exposure in Tetrahymena. Furthermore, the expression level of CYP5011A1 was upregulated under β-CYP treatment. CYP5011A1 knockout mutants resulted in a decreasing proliferation rate of T. thermophila under β-CYP stress. The valine-leucine and isoleucine biosynthesis and glycine-serine and threonine metabolism were significantly affected, with significantly changed amino acids including serine, isoleucine, and valine. CONCLUSIONS These findings confirmed that T. thermophila develops β-CYP tolerance by carbohydrate metabolism reprogramming and Cyp5011A1 improves cellular adaptations by influencing amino acid metabolisms. Understanding these mechanisms can inform practices aimed at reducing the adverse effects of agricultural chemicals on microbial and environmental health.
Collapse
Affiliation(s)
- Wenyong Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (W.Z.); (J.X.)
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Wenliang Lei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (W.Z.); (J.X.)
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
12
|
Hart ML, Davidsen K, Danquah S, Zheng E, Sokolov D, Sullivan LB. Succinate Dehydrogenase loss causes cascading metabolic effects that impair pyrimidine biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638948. [PMID: 40027747 PMCID: PMC11870577 DOI: 10.1101/2025.02.18.638948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Impaired availability of the amino acid aspartate can be a metabolic constraint of cell proliferation in diverse biological contexts. However, the kinetics of aspartate depletion, and its ramifications on downstream metabolism and cell proliferation, remain poorly understood. Here, we deploy the aspartate biosensor jAspSnFR3 with live cell imaging to resolve temporal relationships between aspartate and cell proliferation from genetic, pharmacological, and nutritional manipulations. In cells with impaired aspartate acquisition from mitochondrial complex I inhibition or constrained uptake in aspartate auxotrophs, we find that the proliferation defects lag changes in aspartate levels and only manifest once aspartate levels fall below a critical threshold, supporting the functional link between aspartate levels and cell proliferation in these contexts. In another context of aspartate synthesis inhibition, impairing succinate dehydrogenase (SDH), we find a more complex metabolic interaction, with initial aspartate depletion followed by a rebound of aspartate levels over time. We find that this aspartate rebound effect results from SDH inhibition disproportionately impairing pyrimidine synthesis by inhibiting aspartate transcarbamoylase (ATCase) through the dual effect of diminishing aspartate substrate availability while accumulating succinate, which functions as a competitive inhibitor of aspartate utilization. Finally, we uncover that the nucleotide imbalance from SDH inhibition causes replication stress and introduces a vulnerability to ATR kinase inhibition. Altogether, these findings identify a mechanistic role for succinate in modulating nucleotide synthesis and demonstrate how cascading metabolic interactions can unfold to impact cell function.
Collapse
Affiliation(s)
- Madeleine L. Hart
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kristian Davidsen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Serwah Danquah
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Eric Zheng
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - David Sokolov
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lucas B. Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
13
|
Cao X, Fang L, Jiang Y, Zeng T, Bai S, Li S, Liu Y, Zhong W, Lu C, Yang H. Nanoscale octopus guiding telomere entanglement: An innovative strategy for inducing apoptosis in cancer cells. Biomaterials 2025; 313:122777. [PMID: 39222545 DOI: 10.1016/j.biomaterials.2024.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Telomere length plays a crucial role in cellular aging and the risk of diseases. Unlike normal cells, cancer cells can extend their own survival by maintaining telomere stability through telomere maintenance mechanism. Therefore, regulating the lengths of telomeres have emerged as a promising approach for anti-cancer treatment. In this study, we introduce a nanoscale octopus-like structure designed to induce physical entangling of telomere, thereby efficiently triggering telomere dysfunction. The nanoscale octopus, composed of eight-armed PEG (8-arm-PEG), are functionalized with cell penetrating peptide (TAT) to facilitate nuclear entry and are covalently bound to N-Methyl Mesoporphyrin IX (NMM) to target G-quadruplexes (G4s) present in telomeres. The multi-armed configuration of the nanoscale octopus enables targeted binding to multiple G4s, physically disrupting and entangling numerous telomeres, thereby triggering telomere dysfunction. Both in vitro and in vivo experiments indicate that the nanoscale octopus significantly inhibits cancer cell proliferation, induces apoptosis through telomere entanglement, and ultimately suppresses tumor growth. This research offers a novel perspective for the development of innovative anti-cancer interventions and provides potential therapeutic options for targeting telomeres.
Collapse
Affiliation(s)
- Xiuping Cao
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Liyang Fang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yifan Jiang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Shiyan Bai
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Shiqing Li
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Wukun Zhong
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
14
|
Özcan E, Yu KB, Dinh L, Lum GR, Lau K, Hsu J, Arino M, Paramo J, Lopez-Romero A, Hsiao EY. Dietary fiber content in clinical ketogenic diets modifies the gut microbiome and seizure resistance in mice. Nat Commun 2025; 16:987. [PMID: 39856104 PMCID: PMC11759687 DOI: 10.1038/s41467-025-56091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The gut microbiome modulates the anti-seizure effects of the ketogenic diet, but how specific dietary formulations differentially modify the gut microbiome in ways that impact seizure outcome is poorly understood. We find that medical ketogenic infant formulas vary in macronutrient ratio, fat source, and fiber content and differentially promote resistance to 6-Hz seizures in mice. Dietary fiber, rather than fat ratio or source, drives substantial metagenomic shifts in a model human infant microbial community. Addition of fiber to a fiber-deficient ketogenic formula restores seizure resistance, and supplementing protective formulas with excess fiber potentiates seizure resistance. By screening 13 fiber sources and types, we identify metagenomic responses in the model community that correspond with increased seizure resistance. Supplementing with seizure-protective fibers enriches microbial genes related to queuosine biosynthesis and preQ0 biosynthesis and decreases genes related to sucrose degradation and TCA cycle, which are also seen in seizure-protected mice that are fed fiber-containing ketogenic formulas. This study reveals that different formulations of ketogenic diets, and dietary fiber content in particular, differentially impact seizure outcome in mice, likely by modifying the gut microbiome. Understanding interactions between diet, microbiome, and host susceptibility to seizures could inform novel microbiome-guided approaches to treat refractory epilepsy.
Collapse
Affiliation(s)
- Ezgi Özcan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA.
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - Kristie B Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Lyna Dinh
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Gregory R Lum
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Katie Lau
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Jessie Hsu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Mariana Arino
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Jorge Paramo
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Arlene Lopez-Romero
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Chen Y, Gao Q, Wang D, Zou X, Li X, Ji J, Liu B. An Overview of Research Advances in Oncology Regarding the Transcription Factor ATF4. Curr Drug Targets 2025; 26:59-72. [PMID: 39350552 DOI: 10.2174/0113894501328461240921062056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 02/19/2025]
Abstract
This review provides a comprehensive overview of the recent advancements in research on ATF4 (Activating Transcription Factor 4) within the field of oncology. As a crucial transcription factor, ATF4 has garnered increasing attention for its role in cancer research. The review begins with an exploration of the regulatory mechanisms of ATF4, including its transcriptional control, post-translational modifications, and interactions with other transcription factors. It then highlights key research findings on ATF4's involvement in various aspects of tumor biology, such as cell proliferation, differentiation, apoptosis and survival, invasion and metastasis, and the tumor microenvironment. Furthermore, the review discusses the potential of targeting ATF4 as a novel therapeutic strategy for cancer treatment. It also explores how ATF4's interactions with existing anticancer drugs could inform the development of more effective therapeutic agents. By elucidating the role of ATF4 in tumor biology and its potential clinical applications, this review aims to provide new insights and strategies for cancer treatment.
Collapse
Affiliation(s)
- Yulu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qi Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dan Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xun Zou
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiuming Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
16
|
Zhang W, Dong C, Li Z, Shi H, Xu Y, Zhu M. Serum targeted metabolomics uncovering specific amino acid signature for diagnosis of intrahepatic cholangiocarcinoma. J Pharm Biomed Anal 2025; 252:116457. [PMID: 39241676 DOI: 10.1016/j.jpba.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a hepatobiliary malignancy which accounts for approximately 5-10 % of primary liver cancers and has a high mortality rate. The diagnosis of iCCA remains significant challenges owing to the lack of specific and sensitive diagnostic tests available. Hence, improved methods are needed to detect iCCA with high accuracy. In this study, we evaluated the efficacy of serum amino acid profiling combined with machine learning modeling for the diagnosis of iCCA. A comprehensive analysis of 28 circulating amino acids was conducted in a total of 140 blood samples from patients with iCCA and normal individuals. We screened out 6 differentially expressed amino acids with the criteria of |Log2(Fold Change, FC)| > 0.585, P-value < 0.05, variable importance in projection (VIP) > 1.0 and area under the curve (AUC) > 0.8, in which amino acids L-Asparagine and Kynurenine showed an increasing tendency as the disease progressed. Five frequently used machine learning algorithms (Logistic Regression, Random Forest, Supporting Vector Machine, Neural Network and Naïve Bayes) for diagnosis of iCCA based on the 6 circulating amino acids were established and validated with high sensitivity and good overall accuracy. The resulting models were further improved by introducing a clinical indicator, gamma-glutamyl transferase (GGT). This study introduces a new approach for identifying potential serum biomarkers for the diagnosis of iCCA with high accuracy.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Chuntao Dong
- Nanjing High-Tech Precision Medicine Technology Co., Ltd, Nanjing 210061, China
| | - Zhaosheng Li
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Huina Shi
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yijun Xu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Mingchen Zhu
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| |
Collapse
|
17
|
Dyachenko EI, Bel’skaya LV. Transmembrane Amino Acid Transporters in Shaping the Metabolic Profile of Breast Cancer Cell Lines: The Focus on Molecular Biological Subtype. Curr Issues Mol Biol 2024; 47:4. [PMID: 39852119 PMCID: PMC11763447 DOI: 10.3390/cimb47010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Amino acid metabolism in breast cancer cells is unique for each molecular biological subtype of breast cancer. In this review, the features of breast cancer cell metabolism are considered in terms of changes in the amino acid composition due to the activity of transmembrane amino acid transporters. In addition to the main signaling pathway PI3K/Akt/mTOR, the activity of the oncogene c-Myc, HIF, p53, GATA2, NF-kB and MAT2A have a direct effect on the amino acid metabolism of cancer cells, their growth and proliferation, as well as the maintenance of homeostatic equilibrium. A distinctive feature of luminal subtypes of breast cancer from TNBC is the ability to perform gluconeogenesis. Breast cancers with a positive expression of the HER2 receptor, in contrast to TNBC and luminal A subtype, have a distinctive active synthesis and consumption of fatty acids. It is interesting to note that amino acid transporters exhibit their activity depending on the pH level inside the cell. In the most aggressive forms of breast cancer or with the gradual progression of the disease, pH will also change, which will directly affect the metabolism of amino acids. Using the cell lines presented in this review, we can trace the characteristic features inherent in each of the molecular biological subtypes of breast cancer and develop the most optimal therapeutic targets.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
18
|
Reczek CR, Chakrabarty RP, D'Alessandro KB, Sebo ZL, Grant RA, Gao P, Budinger GR, Chandel NS. Metformin targets mitochondrial complex I to lower blood glucose levels. SCIENCE ADVANCES 2024; 10:eads5466. [PMID: 39693440 DOI: 10.1126/sciadv.ads5466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024]
Abstract
Metformin is among the most prescribed antidiabetic drugs, but the primary molecular mechanism by which metformin lowers blood glucose levels is unknown. Previous studies have proposed numerous mechanisms by which acute metformin lowers blood glucose, including the inhibition of mitochondrial complex I of the electron transport chain (ETC). Here, we used transgenic mice that globally express the Saccharomyces cerevisiae internal alternative NADH dehydrogenase (NDI1) protein to determine whether the glucose-lowering effect of acute oral administration of metformin requires inhibition of mitochondrial complex I of the ETC in vivo. NDI1 is a yeast NADH dehydrogenase enzyme that complements the loss of mammalian mitochondrial complex I electron transport function and is insensitive to pharmacologic mitochondrial complex I inhibitors including metformin. We demonstrate that NDI1 expression attenuates metformin's ability to lower blood glucose levels under standard chow and high-fat diet conditions. Our results indicate that acute oral administration of metformin targets mitochondrial complex I to lower blood glucose.
Collapse
Affiliation(s)
- Colleen R Reczek
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ram P Chakrabarty
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karis B D'Alessandro
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zachary L Sebo
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A Grant
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peng Gao
- Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Budinger
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Chan Zuckerberg Biohub, Chicago, IL, USA
| |
Collapse
|
19
|
Dai J, Wang T, Qiu S, Qi X, Zeng J, Chen C, Wu S, Qiu D, Bai S. Environmental sex reversal in parrotfish does not cause differences in the structure of their gut microbial communities. BMC Microbiol 2024; 24:531. [PMID: 39701987 DOI: 10.1186/s12866-024-03698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Parrotfish are a common fish in coral reef areas, but little is known about their gut microbial communities. In addition, parrotfish are capable of sex reversal, usually some males are sexually reversed from females, and it is still not known whether this sex reversal leads to significant changes in gut microbial communities. In this study, we investigated the gut microbial communities of three species of parrotfish including Scarus forsteni (4 females and 4 sex-reversed males), Scarus ghobban (5 females and 5 sex-reversed males), and Hipposcarus longiceps (5 females and 5 sex-reversed males) by using high-throughput sequencing technology. The gut microbial communities of these three species were mainly composed of Pseudomonadota (class Gammaproteobacteria) and Bacillota, while at the family level, they mainly included Vibrionaceae, Burkholderiaceae, Enterobacteriaceae, Streptococcacea, and Erwiniaceae. Although at the genus level, there were a large number of unclassified lineages, the remaining gut microorganisms were mainly composed of Vibrio, Photobacterium, Enterococcus and Lactococcus. Furthermore, we did not find significant differences in gut microbial community structure between the female parrotfish and corresponding female reversed males within each species, even in terms of the structure of gut microbial functional information obtained from 16 S rRNA gene sequence predictions. However, the gut microbial communities of these three species of parrotfish differed significantly not only in their community structure but also in their microbial functional information structure, mainly in terms of aspartate and asparagine biosynthesis, histidine degradation, inositol degradation, heptose biosynthesis, chitin derivatives degradation, enterobactin biosynthesis, and thiazole biosynthesis. Our study provides essential gut microbial community data for understanding the physiology and sex reversal phenomenon in parrotfish.
Collapse
Affiliation(s)
- Jingcheng Dai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Teng Wang
- Scientific Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Shunda Qiu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaoxue Qi
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Juntao Zeng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changcui Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Siqi Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Shijie Bai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
20
|
Hong J, Liu W, Xiao X, Gajendran B, Ben-David Y. Targeting pivotal amino acids metabolism for treatment of leukemia. Heliyon 2024; 10:e40492. [PMID: 39654725 PMCID: PMC11626780 DOI: 10.1016/j.heliyon.2024.e40492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Metabolic reprogramming is a crucial characteristic of cancer, allowing cancer cells to acquire metabolic properties that support their survival, immune evasion, and uncontrolled proliferation. Consequently, targeting cancer metabolism has become an essential therapeutic strategy. Abnormal amino acid metabolism is not only a key aspect of metabolic reprogramming but also plays a significant role in chemotherapy resistance and immune evasion, particularly in leukemia. Changes in amino acid metabolism in tumor cells are typically driven by a combination of signaling pathways and transcription factors. Current approaches to targeting amino acid metabolism in leukemia include inhibiting amino acid transporters, blocking amino acid biosynthesis, and depleting specific amino acids to induce apoptosis in leukemic cells. Different types of leukemic cells rely on the exogenous supply of specific amino acids, such as asparagine, glutamine, arginine, and tryptophan. Therefore, disrupting the supply of these amino acids may represent a vulnerability in leukemia. This review focuses on the pivotal role of amino acids in leukemia metabolism, their impact on leukemic stem cells, and their therapeutic potential.
Collapse
Affiliation(s)
- Jiankun Hong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Babu Gajendran
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, 550014, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, PR China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| |
Collapse
|
21
|
Yazicioglu YF, Marin E, Andrew HF, Bentkowska K, Johnstone JC, Mitchell R, Wong ZY, Zec K, Fergusson J, Borsa M, Raza IGA, Attar M, Ali M, Kronsteiner B, Furlani IL, MacRae JI, Devine MJ, Coles M, Buckley CD, Dunachie SJ, Clarke AJ. Asparagine availability controls germinal center B cell homeostasis. Sci Immunol 2024; 9:eadl4613. [PMID: 39671468 PMCID: PMC7617476 DOI: 10.1126/sciimmunol.adl4613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/26/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
The rapid proliferation of germinal center (GC) B cells requires metabolic reprogramming to meet energy demands, yet these metabolic processes are poorly understood. By integrating metabolomic and transcriptomic profiling of GC B cells, we identified that asparagine (Asn) metabolism was highly up-regulated and essential for B cell function. Asparagine synthetase (ASNS) was up-regulated after B cell activation through the integrated stress response sensor GCN2. Conditional deletion of Asns in B cells impaired survival and proliferation in low Asn conditions. Removal of environmental Asn by asparaginase or dietary restriction compromised the GC reaction, impairing affinity maturation and the humoral response to influenza infection. Furthermore, metabolic adaptation to the absence of Asn required ASNS, and oxidative phosphorylation, mitochondrial homeostasis, and synthesis of nucleotides were particularly sensitive to Asn deprivation. These findings demonstrate that Asn metabolism acts as a key regulator of B cell function and GC homeostasis.
Collapse
Affiliation(s)
| | - Eros Marin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Hana F. Andrew
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London
| | - Karolina Bentkowska
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, UK
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London
| | | | - Robert Mitchell
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Zhi Yi Wong
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Kristina Zec
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Mariana Borsa
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Iwan G. A. Raza
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Nuffield Department of Medicine Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Barbara Kronsteiner
- Nuffield Department of Medicine Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - James I. MacRae
- Metabolomics STP, The Francis Crick Institute, LondonNW1 1AT, UK
| | - Michael J. Devine
- Mitochondrial Neurobiology Laboratory, The Francis Crick Institute, LondonNW1 1AT, UK; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, LondonWC1N 3BG, UK
| | - Mark Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Susanna J. Dunachie
- Nuffield Department of Medicine Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | |
Collapse
|
22
|
Aisu Y, Oshima N, Hyodo F, Elhelaly AE, Masuo A, Okada T, Hisamori S, Tsunoda S, Hida K, Morimoto T, Miyoshi H, Taketo MM, Matsuo M, Neckers LM, Sakai Y, Obama K. Dual inhibition of oxidative phosphorylation and glycolysis exerts a synergistic antitumor effect on colorectal and gastric cancer by creating energy depletion and preventing metabolic switch. PLoS One 2024; 19:e0309700. [PMID: 39666615 PMCID: PMC11637386 DOI: 10.1371/journal.pone.0309700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/18/2024] [Indexed: 12/14/2024] Open
Abstract
Pyruvate is situated at the intersection of oxidative phosphorylation (OXPHOS) and glycolysis, which are the primary energy-producing pathways in cells. Cancer therapies targeting these pathways have been previously documented, indicating that inhibiting one pathway may lead to functional compensation by the other, resulting in an insufficient antitumor effect. Thus, effective cancer treatment necessitates concurrent and comprehensive suppression of both. However, whether a metabolic switch between the metabolic pathways occurs in colorectal and gastric cancer cells and whether blocking it by inhibiting both pathways has an antitumor effect remain to be determined. In the present study, we used two small molecules, namely OXPHOS and glycolysis inhibitors, to target pyruvate metabolic pathways as a cancer treatment in these cancer cells. OXPHOS and glycolysis inhibition each augmented the other metabolic pathway in vitro and in vivo. OXPHOS inhibition alone enhanced glycolysis and showed antitumor effects on colorectal and gastric cancer cells in vitro and in vivo. Moreover, glycolysis inhibition in addition to OXPHOS inhibition blocked the metabolic switch from OXPHOS to glycolysis, causing an energy depletion and deterioration of the tumor microenvironment that synergistically enhanced the antitumor effect of OXPHOS inhibitors. In addition, using hyperpolarized 13C-magnetic resonance spectroscopic imaging (HP-MRSI), which enables real-time and in vivo monitoring of molecules containing 13C, we visualized how the inhibitors shifted the flux of pyruvate and how this dual inhibition in colorectal and gastric cancer mouse models altered the two pathways. Integrating dual inhibition of OXPHOS and glycolysis with HP-MRSI, this therapeutic model shows promise as a future "cancer theranostics" treatment option.
Collapse
Affiliation(s)
- Yuki Aisu
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobu Oshima
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University Hospital, Gifu, Japan
- Department of Radiology, Frontier Science for Imaging, Gifu University, Gifu, Japan
| | | | - Akihiko Masuo
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Okada
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeo Hisamori
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeru Tsunoda
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koya Hida
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Morimoto
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Miyoshi
- Colon Cancer Project, Kyoto University Hospital-iACT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto M. Taketo
- Colon Cancer Project, Kyoto University Hospital-iACT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Hospital, Gifu, Japan
| | - Leonard M. Neckers
- National Cancer Institute, Urologic Oncology Branch, Center for Cancer Research, NIH, Bethesda, Maryland, United States of America
| | - Yoshiharu Sakai
- Department of Gastrointestinal Surgery, Osaka Red Cross Hospital, Osaka, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
Locasale JW, Goncalves MD, Di Tano M, Burgos-Barragan G. Diet and Cancer Metabolism. Cold Spring Harb Perspect Med 2024; 14:a041549. [PMID: 38621831 PMCID: PMC11610756 DOI: 10.1101/cshperspect.a041549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Diet and exercise are modifiable lifestyle factors known to have a major influence on metabolism. Clinical practice addresses diseases of altered metabolism such as diabetes or hypertension by altering these factors. Despite enormous public interest, there are limited defined diet and exercise regimens for cancer patients. Nevertheless, the molecular basis of cancer has converged over the past 15 years on an essential role for altered metabolism in cancer. However, our understanding of the molecular mechanisms that underlie the impact of diet and exercise on cancer metabolism is in its very early stages. In this work, we propose conceptual frameworks for understanding the consequences of diet and exercise on cancer cell metabolism and tumor biology and also highlight recent developments. By advancing our mechanistic understanding, we also discuss actionable ways that such interventions could eventually reach the mainstay of both medical oncology and cancer control and prevention.
Collapse
Affiliation(s)
- Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, Norh Carolina 27710, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
| | - Maira Di Tano
- Division of Endocrinology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
| | - Guillermo Burgos-Barragan
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10056, USA
| |
Collapse
|
24
|
Kenny TC, Birsoy K. Mitochondria and Cancer. Cold Spring Harb Perspect Med 2024; 14:a041534. [PMID: 38692736 PMCID: PMC11610758 DOI: 10.1101/cshperspect.a041534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mitochondria are semiautonomous organelles with diverse metabolic and cellular functions including anabolism and energy production through oxidative phosphorylation. Following the pioneering observations of Otto Warburg nearly a century ago, an immense body of work has examined the role of mitochondria in cancer pathogenesis and progression. Here, we summarize the current state of the field, which has coalesced around the position that functional mitochondria are required for cancer cell proliferation. In this review, we discuss how mitochondria influence tumorigenesis by impacting anabolism, intracellular signaling, and the tumor microenvironment. Consistent with their critical functions in tumor formation, mitochondria have become an attractive target for cancer therapy. We provide a comprehensive update on the numerous therapeutic modalities targeting the mitochondria of cancer cells making their way through clinical trials.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
25
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
26
|
Soon JW, Manca MA, Laskowska A, Starkova J, Rohlenova K, Rohlena J. Aspartate in tumor microenvironment and beyond: Metabolic interactions and therapeutic perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167451. [PMID: 39111633 DOI: 10.1016/j.bbadis.2024.167451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Aspartate is a proteinogenic non-essential amino acid with several essential functions in proliferating cells. It is mostly produced in a cell autonomous manner from oxalacetate via glutamate oxalacetate transaminases 1 or 2 (GOT1 or GOT2), but in some cases it can also be salvaged from the microenvironment via transporters such as SLC1A3 or by macropinocytosis. In this review we provide an overview of biosynthetic pathways that produce aspartate endogenously during proliferation. We discuss conditions that favor aspartate uptake as well as possible sources of exogenous aspartate in the microenvironment of tumors and bone marrow, where most available data have been generated. We highlight metabolic fates of aspartate, its various functions, and possible approaches to target aspartate metabolism for cancer therapy.
Collapse
Affiliation(s)
- Julian Wong Soon
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Maria Antonietta Manca
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Agnieszka Laskowska
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Julia Starkova
- CLIP (Childhood Leukaemia Investigation Prague), Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Katerina Rohlenova
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| |
Collapse
|
27
|
Ma C, Lin Z, Yao J, Qin W, Wang X, Li Q, Ye Y, Liu X, Chen F, Hu J, Xu G, Tan G. Loss of USP10 promotes hepatocellular carcinoma proliferation by regulating the serine synthesis pathway through inhibition of LKB1 activity. Cancer Sci 2024; 115:3902-3914. [PMID: 39327097 PMCID: PMC11611778 DOI: 10.1111/cas.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysregulation is emerging as a critical factor in tumorigenesis, and reprogramming of serine metabolism has been identified as an essential factor in the progression of hepatocellular carcinoma (HCC). Studies have shown that LKB1 deficiency can activate mTOR to upregulate the serine synthesis pathway (SSP) and promote tumor progression. Our team discovered that ubiquitin-specific protease 10 (USP10) can inhibit HCC proliferation through mTOR, but its relationship with SSP needs further investigation. The metabolite assays revealed a significant increase in serine content in HCC tissues. Through the LKB1/mTOR/activating transcription factor 4 (ATF4) axis, loss of USP10 may increase serine biosynthesis and promote the proliferation of HCC in vitro and in vivo. Furthermore, it was found that USP10 could activate LKB1 through deubiquitination. Analyzing clinical HCC tissues revealed a positive correlation between USP10 and LKB1. Additionally, those with high expression of USP10 in HCC tissues showed a better degree of tumor differentiation and longer overall survival time. Moreover, we found increased expression of both serine and its synthase in liver tumor tissues of USP10 liver-specific KO mice. Loss of USP10 inhibits the activity of LKB1, contributing to the stimulation of the mTOR/ATF4 axis and SSP and then promoting the proliferation of HCC. This work presents a novel approach for serine-targeted treatment in HCC.
Collapse
Affiliation(s)
- Chi Ma
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic CancerDalian Medical UniversityDalianChina
| | - Zhikun Lin
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic CancerDalian Medical UniversityDalianChina
| | - Jiaqi Yao
- Department of AnesthesiologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- Liaoning Province Key Laboratory of MetabolomicsDalianChina
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- Liaoning Province Key Laboratory of MetabolomicsDalianChina
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- Liaoning Province Key Laboratory of MetabolomicsDalianChina
| | - Yaorui Ye
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- Liaoning Province Key Laboratory of MetabolomicsDalianChina
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- Liaoning Province Key Laboratory of MetabolomicsDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fating Chen
- Department of the First Clinical CollegeDalian Medical UniversityDalianChina
| | - Jinlong Hu
- Department of the First Clinical CollegeDalian Medical UniversityDalianChina
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- Liaoning Province Key Laboratory of MetabolomicsDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guang Tan
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic CancerDalian Medical UniversityDalianChina
| |
Collapse
|
28
|
Legge DN, Collard TJ, Stanko E, Hoskin AJ, Holt AK, Bull CJ, Kollareddy M, Bellamy J, Groves S, Ma EH, Hazelwood E, Qualtrough D, Amulic B, Malik K, Williams AC, Jones N, Vincent EE. Identifying targetable metabolic dependencies across colorectal cancer progression. Mol Metab 2024; 90:102037. [PMID: 39332495 PMCID: PMC11490841 DOI: 10.1016/j.molmet.2024.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Colorectal cancer (CRC) is a multi-stage process initiated through the formation of a benign adenoma, progressing to an invasive carcinoma and finally metastatic spread. Tumour cells must adapt their metabolism to support the energetic and biosynthetic demands associated with disease progression. As such, targeting cancer cell metabolism is a promising therapeutic avenue in CRC. However, to identify tractable nodes of metabolic vulnerability specific to CRC stage, we must understand how metabolism changes during CRC development. Here, we use a unique model system - comprising human early adenoma to late adenocarcinoma. We show that adenoma cells transition to elevated glycolysis at the early stages of tumour progression but maintain oxidative metabolism. Progressed adenocarcinoma cells rely more on glutamine-derived carbon to fuel the TCA cycle, whereas glycolysis and TCA cycle activity remain tightly coupled in early adenoma cells. Adenocarcinoma cells are more flexible with respect to fuel source, enabling them to proliferate in nutrient-poor environments. Despite this plasticity, we identify asparagine (ASN) synthesis as a node of metabolic vulnerability in late-stage adenocarcinoma cells. We show that loss of asparagine synthetase (ASNS) blocks their proliferation, whereas early adenoma cells are largely resistant to ASN deprivation. Mechanistically, we show that late-stage adenocarcinoma cells are dependent on ASNS to support mTORC1 signalling and maximal glycolytic and oxidative capacity. Resistance to ASNS loss in early adenoma cells is likely due to a feedback loop, absent in late-stage cells, allowing them to sense and regulate ASN levels and supplement ASN by autophagy. Together, our study defines metabolic changes during CRC development and highlights ASN synthesis as a targetable metabolic vulnerability in later stage disease.
Collapse
Affiliation(s)
- Danny N Legge
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Tracey J Collard
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Ewelina Stanko
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Ashley J Hoskin
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Amy K Holt
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Caroline J Bull
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK; Integrative Epidemiology Unit, School of Population Health Science, University of Bristol, UK
| | | | - Jake Bellamy
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Sarah Groves
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Eric H Ma
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, USA
| | - Emma Hazelwood
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK; Integrative Epidemiology Unit, School of Population Health Science, University of Bristol, UK
| | - David Qualtrough
- Faculty of Health and Life Sciences, University of the West of England, UK
| | - Borko Amulic
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Karim Malik
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Ann C Williams
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP, UK
| | - Emma E Vincent
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK; Integrative Epidemiology Unit, School of Population Health Science, University of Bristol, UK.
| |
Collapse
|
29
|
Malnassy G, Ziolkowski L, Macleod KF, Oakes SA. The Integrated Stress Response in Pancreatic Development, Tissue Homeostasis, and Cancer. Gastroenterology 2024; 167:1292-1306. [PMID: 38768690 PMCID: PMC11570703 DOI: 10.1053/j.gastro.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Present in all eukaryotic cells, the integrated stress response (ISR) is a highly coordinated signaling network that controls cellular behavior, metabolism, and survival in response to diverse stresses. The ISR is initiated when any 1 of 4 stress-sensing kinases (protein kinase R-like endoplasmic reticulum kinase [PERK], general control non-derepressible 2 [GCN2], double-stranded RNA-dependent protein kinase [PKR], heme-regulated eukaryotic translation initiation factor 2α kinase [HRI]) becomes activated to phosphorylate the protein translation initiation factor eukaryotic translation initiation factor 2α (eIF2α), shifting gene expression toward a comprehensive rewiring of cellular machinery to promote adaptation. Although the ISR has been shown to play an important role in the homeostasis of multiple tissues, evidence suggests that it is particularly crucial for the development and ongoing health of the pancreas. Among the most synthetically dynamic tissues in the body, the exocrine and endocrine pancreas relies heavily on the ISR to rapidly adjust cell function to meet the metabolic demands of the organism. The hardwiring of the ISR into normal pancreatic functions and adaptation to stress may explain why it is a commonly used pro-oncogenic and therapy-resistance mechanism in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors. Here, we review what is known about the key roles that the ISR plays in the development, homeostasis, and neoplasia of the pancreas.
Collapse
Affiliation(s)
- Greg Malnassy
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Leah Ziolkowski
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| | - Scott A Oakes
- Department of Pathology, University of Chicago, Chicago, Illinois; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
30
|
Copland A, Mackie GM, Scarfe L, Jinks E, Lecky DAJ, Gudgeon N, McQuade R, Ono M, Barthel M, Hardt WD, Ohno H, Hoevenaar WHM, Dimeloe S, Bending D, Maslowski KM. Salmonella cancer therapy metabolically disrupts tumours at the collateral cost of T cell immunity. EMBO Mol Med 2024; 16:3057-3088. [PMID: 39558103 PMCID: PMC11628626 DOI: 10.1038/s44321-024-00159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
Bacterial cancer therapy (BCT) is a promising therapeutic for solid tumours. Salmonella enterica Typhimurium (STm) is well-studied amongst bacterial vectors due to advantages in genetic modification and metabolic adaptation. A longstanding paradox is the redundancy of T cells for treatment efficacy; instead, STm BCT depends on innate phagocytes for tumour control. Here, we used distal T cell receptor (TCR) and IFNγ reporter mice (Nr4a3-Tocky-Ifnγ-YFP) and a colorectal cancer (CRC) model to interrogate T cell activity during BCT with attenuated STm. We found that colonic tumour infiltrating lymphocytes (TILs) exhibited a variety of activation defects, including IFN-γ production decoupled from TCR signalling, decreased polyfunctionality and reduced central memory (TCM) formation. Modelling of T-cell-tumour interactions with a tumour organoid platform revealed an intact TCR signalosome, but paralysed metabolic reprogramming due to inhibition of the master metabolic controller, c-Myc. Restoration of c-Myc by deletion of the bacterial asparaginase ansB reinvigorated T cell activation, but at the cost of decreased metabolic control of the tumour by STm. This work shows for the first time that T cells are metabolically defective during BCT, but also that this same phenomenon is inexorably tied to intrinsic tumour suppression by the bacterial vector.
Collapse
Affiliation(s)
- Alastair Copland
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Gillian M Mackie
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lisa Scarfe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elizabeth Jinks
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - David A J Lecky
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nancy Gudgeon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Riahne McQuade
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, 8093, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, 8093, Switzerland
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Institute for Integrative Medical Science, Yokohama, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Wilma H M Hoevenaar
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sarah Dimeloe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Bending
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kendle M Maslowski
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK.
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
31
|
Sharma P, Kim CY, Keys HR, Imada S, Joseph AB, Ferro L, Kunchok T, Anderson R, Yilmaz O, Weng JK, Jain A. Genetically encoded fluorescent reporter for polyamines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609500. [PMID: 39253442 PMCID: PMC11383275 DOI: 10.1101/2024.08.24.609500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Polyamines are abundant and evolutionarily conserved metabolites that are essential for life. Dietary polyamine supplementation extends life-span and health-span. Dysregulation of polyamine homeostasis is linked to Parkinson's disease and cancer, driving interest in therapeutically targeting this pathway. However, measuring cellular polyamine levels, which vary across cell types and states, remains challenging. We introduce a first-in-class genetically encoded polyamine reporter for real-time measurement of polyamine concentrations in single living cells. This reporter utilizes the polyamine-responsive ribosomal frameshift motif from the OAZ1 gene. We demonstrate broad applicability of this approach and reveal dynamic changes in polyamine levels in response to genetic and pharmacological perturbations. Using this reporter, we conducted a genome-wide CRISPR screen and uncovered an unexpected link between mitochondrial respiration and polyamine import, which are both risk factors for Parkinson's disease. By offering a new lens to examine polyamine biology, this reporter may advance our understanding of these ubiquitous metabolites and accelerate therapy development.
Collapse
Affiliation(s)
- Pushkal Sharma
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Colin Y Kim
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Heather R Keys
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Shinya Imada
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Alex B Joseph
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Luke Ferro
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Tenzin Kunchok
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Rachel Anderson
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omer Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jing-Ke Weng
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Department of Bioengineering and Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ankur Jain
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
32
|
Olawuni B, Bode BP. Asparagine as a signal for glutamine sufficiency via asparagine synthetase: a fresh evidence-based framework in physiology and oncology. Am J Physiol Cell Physiol 2024; 327:C1335-C1346. [PMID: 39344414 DOI: 10.1152/ajpcell.00316.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Among the 20 proteinogenic amino acids, glutamine (GLN) and asparagine (ASN) represent a unique cohort in containing a terminal amide in their side chain, and share a direct metabolic relationship, with glutamine generating asparagine through the ATP-dependent asparagine synthetase (ASNS) reaction. Circulating glutamine levels and metabolic flux through cells and tissues greatly exceed those for asparagine, and "glutamine addiction" in cancer has likewise received considerable attention. However, historic and recent evidence collectively suggest that in spite of its modest presence, asparagine plays an outsized regulatory role in cellular function. Here, we present a unifying evidence-based hypothesis that the amides constitute a regulatory signaling circuit, with glutamine as a driver and asparagine as a second messenger that allosterically regulates key biochemical and physiological functions, particularly cell growth and survival. Specifically, it is proposed that ASNS serves as a sensor of substrate sufficiency for S-phase entry and progression in proliferating cells. ASNS-generated asparagine serves as a subsequent second messenger that modulates the activity of key regulatory proteins and promotes survival in the face of cellular stress, and serves as a feed-forward driver of S-phase progression in cell growth. We propose that this signaling pathway be termed the amide signaling circuit (ASC) in homage to the SLC1A5-encoded ASCT2 that transports both glutamine and asparagine in a bidirectional manner, and has been implicated in the pathogenesis of a broad spectrum of human cancers. Support for the ASC model is provided by the recent discovery that glutamine is sensed in primary cilia via ASNS during metabolic stress.
Collapse
Affiliation(s)
- Babatunde Olawuni
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States
| | - Barrie P Bode
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States
- Division of Research and Innovation Partnerships, Northern Illinois University, DeKalb, Illinois, United States
| |
Collapse
|
33
|
Cömert C, Kjær-Sørensen K, Hansen J, Carlsen J, Just J, Meaney BF, Østergaard E, Luo Y, Oxvig C, Schmidt-Laursen L, Palmfeldt J, Fernandez-Guerra P, Bross P. HSP60 chaperone deficiency disrupts the mitochondrial matrix proteome and dysregulates cholesterol synthesis. Mol Metab 2024; 88:102009. [PMID: 39147275 PMCID: PMC11388177 DOI: 10.1016/j.molmet.2024.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
OBJECTIVE Mitochondrial proteostasis is critical for cellular function. The molecular chaperone HSP60 is essential for cell function and dysregulation of HSP60 expression has been implicated in cancer and diabetes. The few reported patients carrying HSP60 gene variants show neurodevelopmental delay and brain hypomyelination. Hsp60 interacts with more than 260 mitochondrial proteins but the mitochondrial proteins and functions affected by HSP60 deficiency are poorly characterized. METHODS We studied two model systems for HSP60 deficiency: (1) engineered HEK cells carrying an inducible dominant negative HSP60 mutant protein, (2) zebrafish HSP60 knockout larvae. Both systems were analyzed by RNASeq, proteomics, and targeted metabolomics, and several functional assays relevant for the respective model. In addition, skin fibroblasts from patients with disease-associated HSP60 variants were analyzed by proteomics. RESULTS We show that HSP60 deficiency leads to a differentially downregulated mitochondrial matrix proteome, transcriptional activation of stress responses, and dysregulated cholesterol biosynthesis. This leads to lipid accumulation in zebrafish knockout larvae. CONCLUSIONS Our data provide a compendium of the effects of HSP60 deficiency on the mitochondrial matrix proteome. We show that HSP60 is a master regulator and modulator of mitochondrial functions and metabolic pathways. HSP60 dysfunction also affects cellular metabolism and disrupts the integrated stress response. The effect on cholesterol synthesis explains the effect of HSP60 dysfunction on myelination observed in patients carrying genetic variants of HSP60.
Collapse
Affiliation(s)
- Cagla Cömert
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| | - Kasper Kjær-Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Jasper Carlsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Brandon F Meaney
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Odense, Denmark.
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
34
|
Zou Y, Guo S, Wen L, Lv D, Tu J, Liao Y, Chen W, Chen Z, Li H, Chen J, Shen J, Xie X. Targeting NAT10 inhibits osteosarcoma progression via ATF4/ASNS-mediated asparagine biosynthesis. Cell Rep Med 2024; 5:101728. [PMID: 39293390 PMCID: PMC11525028 DOI: 10.1016/j.xcrm.2024.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/17/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
Despite advances in treatment, the prognosis of patients with osteosarcoma remains unsatisfactory, and searching for potential targets is imperative. Here, we identify N4-acetylcytidine (ac4C) acetyltransferase 10 (NAT10) as a candidate therapeutic target in osteosarcoma through functional screening. NAT10 overexpression is correlated with a poor prognosis, and NAT10 knockout inhibits osteosarcoma progression. Mechanistically, NAT10 enhances mRNA stability of activating transcription factor 4 (ATF4) through ac4C modification. ATF4 induces the transcription of asparagine synthetase (ASNS), which catalyzes asparagine (Asn) biosynthesis, facilitating osteosarcoma progression. Utilizing virtual screening, we identify paliperidone and AG-401 as potential NAT10 inhibitors, and both inhibitors are found to bind to NAT10 proteins. Inhibiting NAT10 suppresses osteosarcoma progression in vivo. Combined treatment using paliperidone and AG-401 produces synergistic inhibition for osteosarcoma in patient-derived xenograft (PDX) models. Our findings demonstrate that NAT10 facilitates osteosarcoma progression through the ATF4/ASNS/Asn axis, and pharmacological inhibition of NAT10 may be a feasible therapeutic approach for osteosarcoma.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Siyao Guo
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lili Wen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Hongbo Li
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Peng X, He Z, Yuan D, Liu Z, Rong P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189164. [PMID: 39096976 DOI: 10.1016/j.bbcan.2024.189164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.
Collapse
Affiliation(s)
- Xiaopei Peng
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Dandan Yuan
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
36
|
Nisco A, Tolomeo M, Scalise M, Zanier K, Barile M. Exploring the impact of flavin homeostasis on cancer cell metabolism. Biochim Biophys Acta Rev Cancer 2024; 1879:189149. [PMID: 38971209 DOI: 10.1016/j.bbcan.2024.189149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Flavins and their associated proteins have recently emerged as compelling players in the landscape of cancer biology. Flavins, encompassing flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), serve as coenzymes in a multitude of cellular processes, such as metabolism, apoptosis, and cell proliferation. Their involvement in oxidative phosphorylation, redox homeostasis, and enzymatic reactions has long been recognized. However, recent research has unveiled an extended role for flavins in the context of cancer. In parallel, riboflavin transporters (RFVTs), FAD synthase (FADS), and riboflavin kinase (RFK) have gained prominence in cancer research. These proteins, responsible for riboflavin uptake, FAD biosynthesis, and FMN generation, are integral components of the cellular machinery that governs flavin homeostasis. Dysregulation in the expression/function of these proteins has been associated with various cancers, underscoring their potential as diagnostic markers, therapeutic targets, and key determinants of cancer cell behavior. This review embarks on a comprehensive exploration of the multifaceted role of flavins and of the flavoproteins involved in nucleus-mitochondria crosstalk in cancer. We journey through the influence of flavins on cancer cell energetics, the modulation of RFVTs in malignant transformation, the diagnostic and prognostic significance of FADS, and the implications of RFK in drug resistance and apoptosis. This review also underscores the potential of these molecules and processes as targets for novel diagnostic and therapeutic strategies, offering new avenues for the battle against this relentless disease.
Collapse
Affiliation(s)
- Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy; Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Katia Zanier
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy.
| |
Collapse
|
37
|
Jiang Z. SLC25A19 is required for NADH homeostasis and mitochondrial respiration. Free Radic Biol Med 2024; 222:317-330. [PMID: 38944213 DOI: 10.1016/j.freeradbiomed.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/12/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Mitochondrial transporters facilitate the translocation of metabolites between the cytoplasm and mitochondria and are critical for mitochondrial functional integrity. Although many mitochondrial transporters are associated with metabolic diseases, how they regulate mitochondrial function and their metabolic contributions at the cellular level are largely unknown. Here, we show that mitochondrial thiamine pyrophosphate (TPP) transporter SLC25A19 is required for mitochondrial respiration. SLC25A19 deficiency leads to reduced cell viability, increased integrated stress response (ISR), enhanced glycolysis and elevated cell sensitivity to 2-deoxyglucose (2-DG) treatment. Through a series of biochemical assays, we found that the depletion of mitochondrial NADH is the primary cause of the impaired mitochondrial respiration in SLC25A19 deficient cells. We also showed involvement of SLC25A19 in regulating the enzymatic activities of complexes I and III, the tricarboxylic acid (TCA) cycle, malate-aspartate shuttle and amino acid metabolism. Consistently, addition of idebenone, an analog of coenzyme Q10, restores mitochondrial respiration and cell viability in SLC25A19 deficient cells. Together, our findings provide new insight into the functions of SLC25A19 in mitochondrial and cellular physiology, and suggest that restoring mitochondrial respiration could be a novel strategy for treating SLC25A19-associated disorders.
Collapse
Affiliation(s)
- Zongsheng Jiang
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China.
| |
Collapse
|
38
|
Liu X, An J, Wang Q, Jin H. Characterization and validation of a prognostic model for the N6-methyladenosine-associated ferroptosis gene in colon adenocarcinoma. Transl Cancer Res 2024; 13:4389-4407. [PMID: 39262465 PMCID: PMC11384320 DOI: 10.21037/tcr-24-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/21/2024] [Indexed: 09/13/2024]
Abstract
Background According to statistics, colon adenocarcinoma (COAD) ranks third in global incidence and second in mortality. The role of N6-methyladenosine (m6A) modification-dependent ferroptosis in tumor development and progression is gaining attention. Therefore, it is meaningful to explore the biological functions mediated by m6A ferroptosis related genes (m6A-Ferr-RGs) in the prognosis and treatment of COAD. This study aimed to explore the regulatory mechanisms and prognostic features of m6A-Ferr-RGs in COAD based on the COAD transcriptome dataset. Methods The expression data of Ferr-RGs and the correlated analysis with prognosis related m6A regulators were conducted to obtain candidate m6A-Ferr-RGs. Then, the differentially expressed genes (DEGs) between COAD and normal samples were intersected with candidate m6A-Ferr-RGs to obtain differentially expressed m6A Ferr-RGs (DE-m6A-Ferr-RGs) in COAD. Cox regression analyses were performed to establish risk model and validated in the GSE17538 and GSE41258 datasets. The nomogram was constructed and verified by calibration curves. Moreover, tumor immune dysfunction and exclusion (TIDE) was used to assess immunotherapy response in two risk groups. Finally, the expression of m6A-Ferr-related prognostic genes was validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results In total, 6 model genes (HSD17B11, VEGFA, CXCL2, ASNS, FABP4, and GPX2) were obtained to construct the risk model. The nomogram was established based on the independent prognostic factors for predicting survival of COAD. TIDE assessed that the high-risk group suffered from greater immune resistance. Ultimately, the experimental results confirmed that the expression trends of all model genes were consistent among data from public database. Conclusions In this study, m6A-Ferr-related prognostic model for COAD was constructed using transcriptome data and clinical data of COAD in public database, which may have potential immunotherapy and chemotherapy guidance implications.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaxuan An
- Department of General Practice, The Affiliated Hospital of Yan'an University, Yan'an, China
| | - Qi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyong Jin
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Klingbeil KD, Wilde BR, Graham DS, Lofftus S, McCaw T, Matulionis N, Dry SM, Crompton JG, Eilber FC, Graeber TG, Shackelford DB, Christofk HR, Kadera BE. Targeting Asparagine Metabolism in Well-Differentiated/Dedifferentiated Liposarcoma. Cancers (Basel) 2024; 16:3031. [PMID: 39272889 PMCID: PMC11394161 DOI: 10.3390/cancers16173031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND mTORC1 activity is dependent on the presence of micronutrients, including Asparagine (Asn), to promote anabolic cell signaling in many cancers. We hypothesized that targeting Asn metabolism would inhibit tumor growth by reducing mTORC1 activity in well-differentiated (WD)/dedifferentiated (DD) liposarcoma (LPS). METHODS Human tumor metabolomic analysis was utilized to compare abundance of Asn in WD vs. DD LPS. Gene set enrichment analysis (GSEA) compared relative expression among metabolic pathways upregulated in DD vs. WD LPS. Proliferation assays were performed for LPS cell lines and organoid models by using the combination treatment of electron transport chain (ETC) inhibitors with Asn-free media. 13C-Glucose-labeling metabolomics evaluated the effects of combination treatment on nucleotide synthesis. Murine xenograft models were used to assess the effects of ETC inhibition combined with PEGylated L-Asparaginase (PEG-Asnase) on tumor growth and mTORC1 signaling. RESULTS Asn was enriched in DD LPS compared to WD LPS. GSEA indicated that mTORC1 signaling was upregulated in DD LPS. Within available LPS cell lines and organoid models, the combination of ETC inhibition with Asn-free media resulted in reduced cell proliferation. Combination treatment inhibited nucleotide synthesis and promoted cell cycle arrest. In vivo, the combination of ETC inhibition with PEG-Asnase restricted tumor growth. CONCLUSIONS Asn enrichment and mTORC1 upregulation are important factors contributing to WD/DD LPS tumor progression. Effective targeting strategies require limiting access to extracellular Asn and inhibition of de novo synthesis mechanisms. The combination of PEG-Asnase with ETC inhibition is an effective therapy to restrict tumor growth in WD/DD LPS.
Collapse
Affiliation(s)
- Kyle D. Klingbeil
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Blake R. Wilde
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Danielle S. Graham
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Serena Lofftus
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tyler McCaw
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nedas Matulionis
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah M. Dry
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joseph G. Crompton
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Fritz C. Eilber
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas G. Graeber
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - David B. Shackelford
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Pulmonology and Critical Care, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brian E. Kadera
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Pessino G, Lonati L, Scotti C, Calandra S, Cazzalini O, Iaria O, Previtali A, Baiocco G, Perucca P, Tricarico A, Vetro M, Stivala LA, Ganini C, Cancelliere M, Zucchetti M, Guardamagna I, Maggi M. Differential effect of asparagine and glutamine removal on three adenocarcinoma cell lines. Heliyon 2024; 10:e35789. [PMID: 39170541 PMCID: PMC11337022 DOI: 10.1016/j.heliyon.2024.e35789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Asparagine and glutamine depletion operated by the drug Asparaginase (ASNase) has revolutionized therapy in pediatric patients affected by Acute Lymphoblastic Leukemia (ALL), bringing remissions to a remarkable 90 % of cases. However, the knowledge of the proproliferative role of asparagine in adult and solid tumors is still limited. We have here analyzed the effect of ASNase on three adenocarcinoma cell lines (A549, lung adenocarcinoma, MCF-7, breast cancer, and 786-O, kidney cancer). In contrast to MCF-7 cells, 786-O and A549 cells proved to be a relevant target for cell cycle perturbation by asparagine and glutamine shortage. Indeed, when the cell-cycle was analyzed by flow cytometry, A549 showed a canonical response to asparaginase, 786-O cells, instead, showed a reduction of the percentage of cells in the G1 phase and an increase of those in the S-phase. Despite an increased number of PCNA and RPA70 positive nuclear foci, BrdU and EdU incorporation was absent or strongly delayed in treated 786-O cells, thus indicating a readiness of replication forks unmatched by DNA synthesis. In 786-O asparagine synthetase was reduced following treatment and glutamine synthetase was totally absent. Interestingly, DNA synthesis could be recovered by adding Gln to the medium. MCF-7 cells showed no significant changes in the cell cycle phases, in DNA-bound PCNA and in total PCNA, but a significant increase in ASNS and GS mRNA and protein expression. The collected data suggest that the effect observed on 786-O cells following ASNase treatment could rely on mechanisms which differ from those well-known and described for leukemic blasts, consisting of a complete block in the G1/S transition in proliferating cells and on an increase on non-proliferative (G0) blasts.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Silvia Calandra
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Rheumatology Unit, Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Ornella Cazzalini
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Ombretta Iaria
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Previtali
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Paola Perucca
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Anna Tricarico
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Martina Vetro
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Lucia Anna Stivala
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Carlo Ganini
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
- Interdisciplinary Department of Medicine, A. Moro University of Bari, Bari, Italy
| | - Marta Cancelliere
- Laboratory of Cancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan, Italy
| | - Massimo Zucchetti
- Laboratory of Cancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan, Italy
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
41
|
Schrier I, Slotki-Itzchakov O, Elkis Y, Most-Menachem N, Adato O, Fitoussi-Allouche D, Shpungin S, Unger R, Nir U. Fer governs mTORC1 regulating pathways and sustains viability of pancreatic ductal adenocarcinoma cells. Front Oncol 2024; 14:1427029. [PMID: 39206154 PMCID: PMC11349523 DOI: 10.3389/fonc.2024.1427029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a high percentage of morbidity. The deciphering and identification of novel targets and tools for intervening with its adverse progression are therefore of immense importance. To address this goal we adopted a specific inhibitor of the intracellular tyrosine kinase Fer, whose expression level is upregulated in PDAC tumors, and is associated with poor prognosis of patients. Subjecting PDAC cells to the E260-Fer inhibitor, unraveled its simultaneous effects on the mitochondria, and on a non-mitochondrial ERK1/2 regulatory cascade. E260 caused severe mitochondrial deformation, resulting in cellular- aspartate and ATP depletion, and followed by the activation of the metabolic sensor AMPK. This led to the phosphorylation and deactivation of the bona fide AMPK substrate, RAPTOR, which serves as a positive regulator of the mTORC1 metabolic hub. Accordingly, this resulted in the inhibition of the mTORC1 activity. In parallel, E260 downregulated the activation state of the ERK1/2 kinases, and their ability to neutralize the mTORC1 suppressor TSC2, thereby accentuating the inhibition of mTORC1. Importantly, both activation of AMPK and downregulation of ERK1/2 and mTORC1 were also achieved upon the knockdown of Fer, corroborating the regulatory role of Fer in these processes. Concomitantly, in PDAC tumors and not in healthy pancreatic tissues, the expression levels of Fer demonstrate moderate but statistically significant positive correlation with the expression levels of mTOR and its downstream effector LARP1. Finally, targeting the Fer driven activation of mTORC1, culminated in necrotic death of the treated PDAC cells, envisaging a new intervention tool for the challenging PDAC disease.
Collapse
Affiliation(s)
- Ilan Schrier
- Department of Surgery, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orel Slotki-Itzchakov
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yoav Elkis
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nofar Most-Menachem
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Orit Adato
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
42
|
Stoolman JS, Grant RA, Poor TA, Weinberg SE, D'Alessandro KB, Tan J, Hu JYS, Zerrer ME, Wood WA, Harding MC, Soni S, Ridge KM, Schumacker PT, Budinger GRS, Chandel NS. Mitochondrial respiration in microglia is essential for response to demyelinating injury but not proliferation. Nat Metab 2024; 6:1492-1504. [PMID: 39048801 DOI: 10.1038/s42255-024-01080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Microglia are necessary for central nervous system (CNS) function during development and play roles in ageing, Alzheimer's disease and the response to demyelinating injury1-5. The mitochondrial respiratory chain (RC) is necessary for conventional T cell proliferation6 and macrophage-dependent immune responses7-10. However, whether mitochondrial RC is essential for microglia proliferation or function is not known. We conditionally deleted the mitochondrial complex III subunit Uqcrfs1 (Rieske iron-sulfur polypeptide 1) in the microglia of adult mice to assess the requirement of microglial RC for survival, proliferation and adult CNS function in vivo. Notably, mitochondrial RC function was not required for survival or proliferation of microglia in vivo. RNA sequencing analysis showed that loss of RC function in microglia caused changes in gene expression distinct from aged or disease-associated microglia. Microglia-specific loss of mitochondrial RC function is not sufficient to induce cognitive decline. Amyloid-β plaque coverage decreased and microglial interaction with amyloid-β plaques increased in the hippocampus of 5xFAD mice with mitochondrial RC-deficient microglia. Microglia-specific loss of mitochondrial RC function did impair remyelination following an acute, reversible demyelinating event. Thus, mitochondrial respiration in microglia is dispensable for proliferation but is essential to maintain a proper response to CNS demyelinating injury.
Collapse
Affiliation(s)
- Joshua S Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Rogan A Grant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A Poor
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel E Weinberg
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karis B D'Alessandro
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jerica Tan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Yuan-Shih Hu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Megan E Zerrer
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Walter A Wood
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madeline C Harding
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sahil Soni
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karen M Ridge
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul T Schumacker
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
43
|
Wang X, Gong W, Xiong X, Jia X, Xu J. Asparagine: A key metabolic junction in targeted tumor therapy. Pharmacol Res 2024; 206:107292. [PMID: 39002867 DOI: 10.1016/j.phrs.2024.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Nutrient bioavailability in the tumor microenvironment plays a pivotal role in tumor proliferation and metastasis. Among these nutrients, glutamine is a key substance that promotes tumor growth and proliferation, and its downstream metabolite asparagine is also crucial in tumors. Studies have shown that when glutamine is exhausted, tumor cells can rely on asparagine to sustain their growth. Given the reliance of tumor cell proliferation on asparagine, restricting its bioavailability has emerged as promising strategy in cancer treatment. For instance, the use of asparaginase, an enzyme that depletes asparagine, has been one of the key chemotherapies for acute lymphoblastic leukemia (ALL). However, tumor cells can adapt to asparagine restriction, leading to reduced chemotherapy efficacy, and the mechanisms by which different genetically altered tumors are sensitized or adapted to asparagine restriction vary. We review the sources of asparagine and explore how limiting its bioavailability impacts the progression of specific genetically altered tumors. It is hoped that by targeting the signaling pathways involved in tumor adaptation to asparagine restriction and certain factors within these pathways, the issue of drug resistance can be addressed. Importantly, these strategies offer precise therapeutic approaches for genetically altered cancers.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Weijian Gong
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xueyou Xiong
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China; Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing 210004, China.
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China; Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing 210004, China.
| |
Collapse
|
44
|
Liu X, Ren B, Ren J, Gu M, You L, Zhao Y. The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal 2024; 22:380. [PMID: 39069612 DOI: 10.1186/s12964-024-01760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
Amino acid metabolism plays a pivotal role in tumor microenvironment, influencing various aspects of cancer progression. The metabolic reprogramming of amino acids in tumor cells is intricately linked to protein synthesis, nucleotide synthesis, modulation of signaling pathways, regulation of tumor cell metabolism, maintenance of oxidative stress homeostasis, and epigenetic modifications. Furthermore, the dysregulation of amino acid metabolism also impacts tumor microenvironment and tumor immunity. Amino acids can act as signaling molecules that modulate immune cell function and immune tolerance within the tumor microenvironment, reshaping the anti-tumor immune response and promoting immune evasion by cancer cells. Moreover, amino acid metabolism can influence the behavior of stromal cells, such as cancer-associated fibroblasts, regulate ECM remodeling and promote angiogenesis, thereby facilitating tumor growth and metastasis. Understanding the intricate interplay between amino acid metabolism and the tumor microenvironment is of crucial significance. Expanding our knowledge of the multifaceted roles of amino acid metabolism in tumor microenvironment holds significant promise for the development of more effective cancer therapies aimed at disrupting the metabolic dependencies of cancer cells and modulating the tumor microenvironment to enhance anti-tumor immune responses and inhibit tumor progression.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| |
Collapse
|
45
|
Yang L, Shao Y, Gao T, Bajinka O, Yuan X. Current advances in cancer energy metabolism under dietary restriction: a mini review. Med Oncol 2024; 41:209. [PMID: 39060824 DOI: 10.1007/s12032-024-02452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
The manipulation of the energy or source of food for cancer cells has attracted significant attention in oncology research. Metabolic reprogramming of the immune system allows for a deeper understanding of cancer cell mechanisms, thereby impeding their progression. A more targeted approach is the restriction of cancer cells through dietary restriction (CR), which deprives cancer cells of the preferred energy sources within the tumor microenvironment, thereby enhancing immune cell efficacy. Although there is a plethora of CR strategies that can be employed to impede cancer progression, there is currently no comprehensive review that delineates the specific dietary restrictions that target the diverse metabolic pathways of cancer cells. This mini-review introduces amino acids as anti-cancer agents and discusses the role of dietary interventions in cancer prevention and treatment. It highlights the potential of a ketogenic diet as a therapeutic approach for cancer, elucidating its distinct mechanisms of action in tumor progression. Additionally, the potential of plant-based diets as anti-cancer agents and the role of polyphenols and vitamins in anti-cancer therapy were also discussed, along with some prospective interventions for CR as anti-tumor progression.
Collapse
Affiliation(s)
- Liuxin Yang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, No. 24 Heping Street, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Yudian Shao
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, No. 24 Heping Street, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Tingting Gao
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 Xidazhi Street, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Ousman Bajinka
- School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Xingxing Yuan
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, No. 24 Heping Street, Harbin, 150040, Heilongjiang Province, People's Republic of China.
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 Xidazhi Street, Harbin, 150006, Heilongjiang, People's Republic of China.
| |
Collapse
|
46
|
Chen M, Zhang C, Jiang L, Huang Y. Construction of prognostic markers for pancreatic adenocarcinoma based on mitochondrial fusion-related genes. Medicine (Baltimore) 2024; 103:e38843. [PMID: 38996145 PMCID: PMC11245210 DOI: 10.1097/md.0000000000038843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Early detection of pancreatic adenocarcinoma (PAAD) remains a pressing clinical problem. Information on the clinical prognostic value of mitochondrial fusion-related genes in PAAD remains limited. In this study, we investigated mitochondrial fusion-related genes of PAAD to establish an optimal signature plate for the early diagnosis and prognosis of PAAD. The cancer genome atlas database was used to integrate the Fragments Per Kilobase Million data and related clinical data for patients with PAAD. Least absolute shrinkage and selection operator regression, cox regression, operating characteristic curves, and cBioPortal database was used to evaluate model performance, assess the prognostic ability and sensitivity. The levels of immune infiltration were compared by CIBERSORT, QUANTISEQ, and EPIC. Chemotherapy sensitivity between the different risk groups was compared by the Genomics of Drug Sensitivity in Cancer database and the "pRRophetic" R package. At last, a total of 4 genes were enrolled in multivariate Cox regression analysis. The risk-predictive signature was constructed as: (0.5438 × BAK1) + (-1.0259 × MIGA2) + (1.1140 × PARL) + (-0.4300 × PLD6). The area under curve of these 4 genes was 0.89. Cox regression analyses indicates the signature was an independent prognostic indicator (P < .001, hazard ratio [HR] = 1.870, 95% CI = 1.568-2.232). Different levels of immune cell infiltration in the 2 risk groups were observed using the 3 algorithms, with tumor mutation load (P = .0063), tumor microenvironment score (P = .01), and Tumor Immune Dysfunction and Exclusion score (P = .0012). The chemotherapeutic sensitivity analysis also revealed that the half-maximal inhibitory concentration of 5-fluorouracil (P = .0127), cisplatin (P = .0099), docetaxel (P < .0001), gemcitabine (P = .0047), and pacilataxel (P < .0001) were lower in the high-risk groups, indicating that the high-risk group patients had a greater sensitivity to chemotherapy. In conclude, we established a gene signature plate comprised of 4 mitochondrial fusion related genes to facilitate early diagnosis and prognostic prediction of PAAD.
Collapse
Affiliation(s)
- Maolin Chen
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chengbin Zhang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Longyang Jiang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
47
|
House RRJ, Soper-Hopper MT, Vincent MP, Ellis AE, Capan CD, Madaj ZB, Wolfrum E, Isaguirre CN, Castello CD, Johnson AB, Escobar Galvis ML, Williams KS, Lee H, Sheldon RD. A diverse proteome is present and enzymatically active in metabolite extracts. Nat Commun 2024; 15:5796. [PMID: 38987243 PMCID: PMC11237058 DOI: 10.1038/s41467-024-50128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Metabolite extraction is the critical first-step in metabolomics experiments, where it is generally regarded to inactivate and remove proteins. Here, arising from efforts to improve extraction conditions for polar metabolomics, we discover a proteomic landscape of over 1000 proteins within metabolite extracts. This is a ubiquitous feature across several common extraction and sample types. By combining post-resuspension stable isotope addition and enzyme inhibitors, we demonstrate in-extract metabolite interconversions due to residual transaminase activity. We extend these findings with untargeted metabolomics where we observe extensive protein-mediated metabolite changes, including in-extract formation of glutamate dipeptide and depletion of total glutathione. Finally, we present a simple extraction workflow that integrates 3 kDa filtration for protein removal as a superior method for polar metabolomics. In this work, we uncover a previously unrecognized, protein-mediated source of observer effects in metabolomics experiments with broad-reaching implications across all research fields using metabolomics and molecular metabolism.
Collapse
Affiliation(s)
- Rachel Rae J House
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | | | | | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Colt D Capan
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | | | | | - Amy B Johnson
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Martha L Escobar Galvis
- Office of the Cores, Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelsey S Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Hyoungjoo Lee
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
48
|
Wu Z, Bezwada D, Cai F, Harris RC, Ko B, Sondhi V, Pan C, Vu HS, Nguyen PT, Faubert B, Cai L, Chen H, Martin-Sandoval M, Do D, Gu W, Zhang Y, Zhang Y, Brooks B, Kelekar S, Zacharias LG, Oaxaca KC, Patricio JS, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. Cell Metab 2024; 36:1504-1520.e9. [PMID: 38876105 PMCID: PMC11240302 DOI: 10.1016/j.cmet.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.
Collapse
Affiliation(s)
- Zheng Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert C Harris
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Varun Sondhi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunxiao Pan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phong T Nguyen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Faubert
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongli Chen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Zhang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bailey Brooks
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - K Celeste Oaxaca
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joao S Patricio
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Javier Garcia-Bermudez
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
49
|
Lin J, Hou L, Zhao X, Zhong J, Lv Y, Jiang X, Ye B, Qiao Y. Switch of ELF3 and ATF4 transcriptional axis programs the amino acid insufficiency-linked epithelial-to-mesenchymal transition. Mol Ther 2024; 32:1956-1969. [PMID: 38627967 PMCID: PMC11184330 DOI: 10.1016/j.ymthe.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) that endows cancer cells with increased invasive and migratory capacity enables cancer dissemination and metastasis. This process is tightly associated with metabolic reprogramming acquired for rewiring cell status and signaling pathways for survival in dietary insufficiency conditions. However, it remains largely unclear how transcription factor (TF)-mediated transcriptional programs are modulated during the EMT process. Here, we reveal that depletion of a key epithelial TF, ELF3 (E74-like factor-3), triggers a transforming growth factor β (TGF-β) signaling activation-like mesenchymal transcriptomic profile and metastatic features linked to the aminoacyl-tRNA biogenesis pathway. Moreover, the transcriptome alterations elicited by ELF3 depletion perfectly resemble an ATF4-dependent weak response to amino acid starvation. Intriguingly, we observe an exclusive enrichment of ELF3 and ATF4 in epithelial and TGF-β-induced or ELF3-depletion-elicited mesenchymal enhancers, respectively, with rare co-binding on altered enhancers. We also find that the upregulation of aminoacyl-tRNA synthetases and some mesenchymal genes upon amino acid deprivation is diminished in ATF4-depleted cells. In sum, the loss of ELF3 binding on epithelial enhancers and the gain of ATF4 binding on the enhancers of mesenchymal factors and amino acid deprivation responsive genes facilitate the loss of epithelial cell features and the gain of TGF-β-signaling-associated mesenchymal signatures, which further promote lung cancer cell metastasis.
Collapse
Affiliation(s)
- Jianxiang Lin
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Linjun Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Zhao
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jingli Zhong
- College of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yilv Lv
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| | - Bo Ye
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yunbo Qiao
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China.
| |
Collapse
|
50
|
Clerici S, Podrini C, Stefanoni D, Distefano G, Cassina L, Steidl ME, Tronci L, Canu T, Chiaravalli M, Spies D, Bell TA, Costa AS, Esposito A, D'Alessandro A, Frezza C, Bachi A, Boletta A. Inhibition of asparagine synthetase effectively retards polycystic kidney disease progression. EMBO Mol Med 2024; 16:1379-1403. [PMID: 38684863 PMCID: PMC11178866 DOI: 10.1038/s44321-024-00071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Polycystic kidney disease (PKD) is a genetic disorder characterized by bilateral cyst formation. We showed that PKD cells and kidneys display metabolic alterations, including the Warburg effect and glutaminolysis, sustained in vitro by the enzyme asparagine synthetase (ASNS). Here, we used antisense oligonucleotides (ASO) against Asns in orthologous and slowly progressive PKD murine models and show that treatment leads to a drastic reduction of total kidney volume (measured by MRI) and a prominent rescue of renal function in the mouse. Mechanistically, the upregulation of an ATF4-ASNS axis in PKD is driven by the amino acid response (AAR) branch of the integrated stress response (ISR). Metabolic profiling of PKD or control kidneys treated with Asns-ASO or Scr-ASO revealed major changes in the mutants, several of which are rescued by Asns silencing in vivo. Indeed, ASNS drives glutamine-dependent de novo pyrimidine synthesis and proliferation in cystic epithelia. Notably, while several metabolic pathways were completely corrected by Asns-ASO, glycolysis was only partially restored. Accordingly, combining the glycolytic inhibitor 2DG with Asns-ASO further improved efficacy. Our studies identify a new therapeutic target and novel metabolic vulnerabilities in PKD.
Collapse
Affiliation(s)
- Sara Clerici
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Christine Podrini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- The BioArte Ltd, Laboratories at Malta Life Science Park (LS2.1.10, LS2.1.12-LS2.1.15), Triq San Giljan, San Gwann, SGN, 3000, Malta
| | - Davide Stefanoni
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Gianfranco Distefano
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Cassina
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Elena Steidl
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Tronci
- Cogentech SRL Benefit Corporation, 20139, Milan, Italy
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Tamara Canu
- Center for Experimental Imaging (CIS), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Chiaravalli
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Daniel Spies
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Center for Omics Sciences (COSR), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | | | - Ana Sh Costa
- MRC, Cancer Unit Cambridge, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- Matterworks, Inc, 444 Somerville Avenue, Somerville, MA, 02143, USA
| | - Antonio Esposito
- Center for Experimental Imaging (CIS), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Christian Frezza
- Faculty of Medicine and University Hospital Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Str. 26-50931, Cologne, Germany
| | - Angela Bachi
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|