1
|
Emery I, Rosen C. Adult Long Coronavirus Disease 2019: Definition, Prevalence Pathophysiology, and Clinical Manifestations. Infect Dis Clin North Am 2025; 39:345-360. [PMID: 40068974 DOI: 10.1016/j.idc.2025.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Long coronavirus disease 2019 (COVID-19) is a multisystem disorder with variable manifestations and duration. One in 10 people with a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will develop some manifestation of long COVID-19. Currently, there is no one single etiologic factor for the symptoms and signs of long COVID-19 beyond exposure to the SARS-CoV-2 virus. There are multiple theories about the pathophysiology ranging from viral persistence, reactivation, autoimmunity, and immune depletion. Certain risk factors have been identified including female sex, severe acute/hospitalized COVID-19, previous infections with SARS-CoV-2, and absence of vaccinations.
Collapse
Affiliation(s)
- Ivette Emery
- Center for Clinical and Translational Science, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Clifford Rosen
- MaineHealth Institute for Research, Scarborough, ME, USA.
| |
Collapse
|
2
|
Sinton MC, Kajimura S. From fat storage to immune hubs: the emerging role of adipocytes in coordinating the immune response to infection. FEBS J 2025; 292:1868-1883. [PMID: 39428707 PMCID: PMC12001177 DOI: 10.1111/febs.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Adipose tissue is a rich source of diverse cell populations, including immune cells, adipocytes and stromal cells. Interactions between these different cell types are now appreciated to be critical for maintaining tissue structure and function, by governing processes such as adipogenesis, lipolysis and differentiation of white to beige adipocytes. Interactions between these cells also drive inflammation in obesity, leading to an expansion of adipose tissue immune cells, and the secretion of proinflammatory cytokines from immune cells and from adipocytes themselves. However, in evolutionary terms, obesity is a recent phenomenon, raising the question of why adipocytes evolved to express factors that influence the immune response. Studies of various pathogens indicate that adipocytes are highly responsive to infection, altering their metabolic profiles in a way that can be used to release nutrients and fuel the immune response. In the case of infection with the extracellular parasite Trypanosoma brucei, attenuating the ability of adipocytes to sense the cytokine IL-17 results in a loss of control of the local immune response and an increased pathogen load. Intriguingly, comparisons of the adipocyte response to infection suggest that the immune responses of these cells occur in a pathogen-dependent manner, further confirming their complexity. Here, with a focus on murine adipose tissue, we discuss the emerging concept that, in addition to their canonical function, adipocytes are immune signalling hubs that integrate and disseminate signals from the immune system to generate a local environment conducive to pathogen clearance.
Collapse
Affiliation(s)
- Matthew C. Sinton
- Division of Immunology, Immunity to Infection and Respiratory MedicineUniversity of ManchesterUK
- Lydia Becker Institute of Immunology and InflammationUniversity of ManchesterUK
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMAUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
3
|
Semina E, Popov V, Khabibullin N, Klimovich P, Sysoeva V, Kurilina E, Tsokolaeva Z, Tkachuk V, Rubina K. New evidence for T-cadherin in COVID-19 pathogenesis, endothelial dysfunction, and lung fibrosis. Front Cell Dev Biol 2025; 13:1476329. [PMID: 40109358 PMCID: PMC11920143 DOI: 10.3389/fcell.2025.1476329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
The COVID-19 pandemic had an unprecedented impact on all aspects of human activity worldwide, frequently resulting in post-acute sequelae and affecting multiple organ systems. The underlying mechanisms driving both acute and post-acute manifestations of COVID-19 are still poorly understood, warranting further investigation for new targets. The study represents the first attempt to explore the role of T-cadherin in COVID-19 pathogenesis as well as its implications in pulmonary fibrosis and endothelial dysfunction. First, we revealed a significant decrease in T-cadherin expression in post-mortem lung samples from COVID-19 patients. This downregulated T-cadherin expression correlated with the elevated levels of VE-cadherin and reduced levels of β-catenin, suggesting a disruption in endothelial cell-cell contact integrity and function. Second, the reciprocal relation of T-cadherin and VE-cadherin expression was further confirmed using cultured human endothelial Ea.hy926 cells. T-cadherin overexpression caused a decrease in VE-cadherin mRNA expression in cultured endothelial cells providing additional evidence in favor of their interplay. Third, employing Cdh13 -/- mice, we unveiled the protective role of T-cadherin deficiency against bleomycin-induced lung fibrosis. Fourth, we demonstrated the mice lacking T-cadherin to have downregulated reactive oxygen species production and Nox2 mRNA expression in an angiotensin II-mediated endothelial dysfunction model. Our findings provide rationale for further studies into T-cadherin-mediated mechanisms in these processes.
Collapse
Affiliation(s)
- Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Polina Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ella Kurilina
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zoya Tsokolaeva
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Jiang Y, Xu L, Zheng X, Shi H. Recent advances in nutritional metabolism studies on SARS-CoV-2 infection. INFECTIOUS MEDICINE 2025; 4:100162. [PMID: 39936106 PMCID: PMC11810712 DOI: 10.1016/j.imj.2025.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025]
Abstract
In the context of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), metabolic research has become crucial for in-depth exploration of viral infection mechanisms and in searching for therapeutic strategies. This paper summarizes the interrelationships between carbohydrate, lipid, and amino acid metabolism and COVID-19 infection, discussing their roles in infection progression. SARS-CoV-2 infection leads to insulin resistance and increased glycolysis, reducing glucose utilization and shifting metabolism to use fat as an energy source. Fat is crucial for viral replication, and imbalances in amino acid metabolism may interfere with immune regulation. Consequently, metabolic changes such as hyperglycemia, hypolipidemia, and deficiency of certain amino acids following SARS-CoV-2 infection can contribute to progression toward severe conditions. These metabolic pathways not only have potential value in prediction and diagnosis but also provide new perspectives for the development of therapeutic strategies. By monitoring metabolic changes, infection severity can be predicted early, and modulating these metabolic pathways may help reduce inflammatory responses, improve immune responses, and reduce the risk of thrombosis. Research on the relationship between metabolism and SARS-CoV-2 infection provides an important scientific basis for addressing the global challenge posed by COVID-19, however, further studies are needed to validate these findings and provide more effective strategies for disease control.
Collapse
Affiliation(s)
- Yufen Jiang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Linle Xu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xuexing Zheng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Hongbo Shi
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
5
|
Andrade Barboza C, Gonçalves LM, Pereira E, Cruz RD, Andrade Louzada R, Boulina M, Almaça J. SARS-CoV-2 Spike S1 Subunit Triggers Pericyte and Microvascular Dysfunction in Human Pancreatic Islets. Diabetes 2025; 74:355-367. [PMID: 39715591 PMCID: PMC11842606 DOI: 10.2337/db24-0816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The COVID-19 pandemic has profoundly affected human health; however, the mechanisms underlying its impact on metabolic and vascular systems remain incompletely understood. Clinical evidence suggests that SARS-CoV-2 directly disrupts vascular homeostasis, with perfusion abnormalities observed in various tissues. The pancreatic islet, a key endocrine miniorgan reliant on its microvasculature for optimal function, may be particularly vulnerable. Studies have proposed a link between SARS-CoV-2 infection and islet dysfunction, but the mechanisms remain unclear. Here, we investigated how SARS-CoV-2 spike S1 protein affects human islet microvascular function. Using confocal microscopy and living pancreas slices from organ donors without diabetes, we show that a SARS-CoV-2 spike S1 recombinant protein activates pericytes, key regulators of islet capillary diameter and β-cell function, and induces capillary constriction. These effects are driven by a loss of ACE2 from pericytes' plasma membrane, impairing ACE2 activity and increasing local angiotensin II levels. Our findings highlight islet pericyte dysfunction as a potential contributor to the diabetogenic effects of SARS-CoV-2 and offer new insights into the mechanisms linking COVID-19, vascular dysfunction, and diabetes. ARTICLE HIGHLIGHTS Different components of the renin-angiotensin system are expressed by vascular cells in human pancreatic islets. The islet microvasculature is responsive to vasoactive angiotensin peptides. This pancreatic renin-angiotensin system is targeted upon incubation with a SARS-CoV-2 spike recombinant protein. SARS-CoV-2 spike activates pericytes and constricts capillaries in human islets. Islet vascular dysfunction could contribute to dysglycemia in some patients with COVID-19.
Collapse
Affiliation(s)
- Catarina Andrade Barboza
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Roxana Diaz Cruz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Ruy Andrade Louzada
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Maria Boulina
- Diabetes Research Institute, University of Miami Health System, Miami, FL
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Health System, Miami, FL
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
6
|
Baazim H, Koyuncu E, Tuncman G, Burak MF, Merkel L, Bahour N, Karabulut ES, Lee GY, Hanifehnezhad A, Karagoz ZF, Földes K, Engin I, Erman AG, Oztop S, Filazi N, Gul B, Ceylan A, Cinar OO, Can F, Kim H, Al-Hakeem A, Li H, Semerci F, Lin X, Yilmaz E, Ergonul O, Ozkul A, Hotamisligil GS. FABP4 as a therapeutic host target controlling SARS-CoV-2 infection. EMBO Mol Med 2025; 17:414-440. [PMID: 39843629 PMCID: PMC11904229 DOI: 10.1038/s44321-024-00188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Host metabolic fitness is a critical determinant of infectious disease outcomes. Obesity, aging, and other related metabolic disorders are recognized as high-risk disease modifiers for respiratory infections, including coronavirus infections, though the underlying mechanisms remain unknown. Our study highlights fatty acid-binding protein 4 (FABP4), a key regulator of metabolic dysfunction and inflammation, as a modulator of SARS-CoV-2 pathogenesis, correlating strongly with disease severity in COVID-19 patients. We demonstrate that loss of FABP4 function, by genetic or pharmacological means, reduces SARS-CoV-2 replication and disrupts the formation of viral replication organelles in adipocytes and airway epithelial cells. Importantly, FABP4 inhibitor treatment of infected hamsters diminished lung viral titers, alleviated lung damage and reduced collagen deposition. These findings highlight the therapeutic potential of targeting host metabolism in limiting coronavirus replication and mitigating the pathogenesis of infection.
Collapse
Affiliation(s)
- Hatoon Baazim
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Gürol Tuncman
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - M Furkan Burak
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lea Merkel
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nadine Bahour
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ezgi Simay Karabulut
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Grace Yankun Lee
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alireza Hanifehnezhad
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara, Türkiye
| | | | | | - Ilayda Engin
- Ankara University, Biotechnology Institute, Ankara, Türkiye
| | | | - Sidika Oztop
- Ankara Medipol University, School of Medicine, Department of Medical Biology, Ankara, Türkiye
| | - Nazlican Filazi
- Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Virology, Hatay, Türkiye
| | - Buket Gul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara, Türkiye
| | - Ahmet Ceylan
- Ankara University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Ankara, Türkiye
| | - Ozge Ozgenc Cinar
- Ankara University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Ankara, Türkiye
| | - Fusun Can
- Koç University, School of Medicine, Department of Infectious Diseases, Istanbul, Türkiye
| | - Hahn Kim
- Crescenta Biosciences Inc, Irvine, CA, USA
- Princeton University Small Molecule Screening Center, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Hui Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Erkan Yilmaz
- Ankara University, Biotechnology Institute, Ankara, Türkiye
| | - Onder Ergonul
- Koç University, School of Medicine, Department of Infectious Diseases, Istanbul, Türkiye
| | - Aykut Ozkul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara, Türkiye.
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard-MIT Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
7
|
Sauter KA, Webb GM, Bader L, Kreklywich CN, Takahashi DL, Zaro C, McGuire CM, Lewis AD, Colgin LMA, Kirigiti MA, Blomenkamp H, Pessoa C, Humkey M, Hulahan J, Sleeman M, Zweig RC, Thomas S, Thomas A, Gao L, Hirsch AJ, Levy M, Cherry SR, Kahn SE, Slifka MK, Streblow DN, Sacha JB, Kievit P, Roberts CT. Effect of obesity on the acute response to SARS-CoV-2 infection and development of post-acute sequelae of COVID-19 (PASC) in nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638792. [PMID: 40027795 PMCID: PMC11870618 DOI: 10.1101/2025.02.18.638792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Long-term adverse consequences of SARS-CoV-2 infection, termed "long COVID" or post-acute sequelae of COVID (PASC), are a major component of overall COVID-19 disease burden. Prior obesity and metabolic disease increase the severity of acute disease, but SARS-CoV-2 infection also contributes to the development of new-onset metabolic disease. Since the COVID pandemic occurred in the context of the global obesity epidemic, an important question is the extent to which pre-existing obesity modifies long-term responses to SARS-CoV-2 infection. We utilized a nonhuman primate model to compare the effects of infection with the SARS-CoV-2 delta variant in lean and obese/insulin-resistant adult male rhesus macaques over a 6-month time course. While some longitudinal responses to SARS-CoV-2 infection, including overall viral dynamics, SARS-CoV-2-specific IgG induction, cytokine profiles, and tissue persistence of viral RNA, did not appreciably differ between lean and obese animals, other responses, including neutralizing Ab dynamics, lung pathology, body weight, degree of insulin sensitivity, adipocytokine profiles, body temperature, and nighttime activity levels were significantly different in lean versus obese animals. Furthermore, several parameters in lean animals were altered following SARS-CoV-2 infection to resemble those in obese animals. Notably, persistent changes in multiple parameters were present in most animals, suggesting that PASC may be more prevalent than estimated from self-reported symptoms in human studies.
Collapse
Affiliation(s)
- Kristin A. Sauter
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, OR, USA
| | | | - Lindsay Bader
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, OR, USA
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University (OHSU), Beaverton, OR, USA
| | - Diana L. Takahashi
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, OR, USA
| | - Cicely Zaro
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, OR, USA
| | - Casey M. McGuire
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, OR, USA
| | | | | | - Melissa A. Kirigiti
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, OR, USA
| | - Hannah Blomenkamp
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, OR, USA
| | | | | | - Jesse Hulahan
- Department of Pathology and Laboratory Medicine and University of Pennsylvania, Philadelphia, PA, USA
| | - Madeleine Sleeman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Lina Gao
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Alec. J. Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health and Science University (OHSU), Beaverton, OR, USA
| | - Mayaan Levy
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara R. Cherry
- Department of Pathology and Laboratory Medicine and University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven E. Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | | | - Daniel N. Streblow
- Division of Pathobiology and Immunology, ONPRC
- Vaccine and Gene Therapy Institute, Oregon Health and Science University (OHSU), Beaverton, OR, USA
| | | | - Paul Kievit
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, OR, USA
| | - Charles T. Roberts
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, OR, USA
- Division of Reproductive and Developmental Sciences, ONPRC
| |
Collapse
|
8
|
Mancilla-Corona CO, Sanchez-Alavez M, Pineda-García G, Islas-Limon JY, Zazueta OE, Lopez-Baena JV, Rodríguez-Vásquez JI, Serafin-Higuera IR. The influence of physical fatigue on telephone-based neuropsychological test performance in COVID-19 survivors. Eur Arch Psychiatry Clin Neurosci 2025; 275:75-88. [PMID: 37336825 DOI: 10.1007/s00406-023-01638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
Fatigue has been characterized as a post COVID-19 condition known to persist months after SARS-CoV-2 infection. COVID-19 has been reported to be associated with impaired cognitive function, including disorders in attention, memory, information processing, and executive functions. The objective of this study was to determine if post-COVID fatigue, manifested as tiredness while performing low-intensity physical activity, has a detrimental effect on neuropsychological performance, to achieve this, we randomly selected 20 participants with post-COVID fatigue and 20 SARS-CoV-2 negative age-matched controls from a database of 360 residents of Tijuana, Baja California in a cross-sectional study design. All 40 participants responded to a health survey, along with a neuropsychological assessment test via telephone call. Statistical analysis was performed using a multiple linear regression model including the following independent variables: study condition (post-COVID fatigue or negative control), sex, age, years of education, hypertension, asthma, administration of supplemental oxygen during COVID-19 recovery, and the hour at which the evaluation started. Significant regression analysis was obtained for all global parameters of the assessment, including BANFE-2 score (p = 0.021, R2 Adj. = 0.263), NEUROPSI score (p = 0.008, R2 Adj. = 0.319), and total errors (p = 0.021, R2 Adj. = 0.263), with significant regression coefficients for study condition on two global parameters, BANFE-2 score (p = 0.028, β = - 0.371) and NEUROPSI score (p = 0.010, β = -0.428). These findings suggest that the presence of post-COVID fatigue is a factor associated with a decrease in neuropsychological performance.
Collapse
Affiliation(s)
- Cristian O Mancilla-Corona
- Centro de Diagnóstico COVID-19, Facultad de Medicina y Psicología, Calzada Tecnológico y Universidad S/N Delegación Mesa de Otay, 22390, Tijuana, BC, Mexico.
| | - Manuel Sanchez-Alavez
- Centro de Diagnóstico COVID-19, Facultad de Medicina y Psicología, Calzada Tecnológico y Universidad S/N Delegación Mesa de Otay, 22390, Tijuana, BC, Mexico
- Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gisela Pineda-García
- Centro de Diagnóstico COVID-19, Facultad de Medicina y Psicología, Calzada Tecnológico y Universidad S/N Delegación Mesa de Otay, 22390, Tijuana, BC, Mexico
| | - Julieta Y Islas-Limon
- Centro de Diagnóstico COVID-19, Facultad de Medicina y Psicología, Calzada Tecnológico y Universidad S/N Delegación Mesa de Otay, 22390, Tijuana, BC, Mexico
| | - Oscar E Zazueta
- Baja California Ministry of Health, Pioneros No. 1005 Centro, 21000, Mexicali, BC, Mexico
| | - Jonathan V Lopez-Baena
- Centro de Diagnóstico COVID-19, Facultad de Medicina y Psicología, Calzada Tecnológico y Universidad S/N Delegación Mesa de Otay, 22390, Tijuana, BC, Mexico
| | - Jesús I Rodríguez-Vásquez
- Centro de Diagnóstico COVID-19, Facultad de Medicina y Psicología, Calzada Tecnológico y Universidad S/N Delegación Mesa de Otay, 22390, Tijuana, BC, Mexico
| | - Idanya R Serafin-Higuera
- Centro de Diagnóstico COVID-19, Facultad de Medicina y Psicología, Calzada Tecnológico y Universidad S/N Delegación Mesa de Otay, 22390, Tijuana, BC, Mexico.
| |
Collapse
|
9
|
De Souza Dos Santos G, Alves de Carvalho França de Macedo V, Oliniski Reikdal S, Graf ME, Mario Martin B, Joaquim Meier M. Ventilator-associated pneumonia risk factors in patients with severe COVID-19 in southern Brazil: A retrospective observational study. Infect Dis Health 2025; 30:38-49. [PMID: 39168742 DOI: 10.1016/j.idh.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
BACKGOUND During the SARS-CoV-2 pandemic, a significant number of critical patients required ventilatory assistance in health institutions. In this context, Ventilator-Associated Pneumonia (VAP) was the most prevalent nosocomial infection among critically ill patients. We aimed to analyze the occurrence of VAP in critically ill patients with SARS-CoV-2 and the risk factors associated with the outcome. METHOD This is a multicenter, retrospective cohort study which included patients ≥18 years old, diagnosed with COVID-19, admitted to intensive care units (ICU) and who received invasive mechanical ventilation (MV) for >2 consecutive days. The associations between the variables were initially tested, and those that showed potential associations (p<0.05) were included in the multivariate logistic regression model. RESULTS One third of patients had an episode of VAP, with an incidence density of 34.97 cases per 1000 MV days. In addition, 42.37% (50) of the microorganisms causing VAP were multidrug-resistant, predominantly gram-negative bacteria (61.32%). More than 50% of participants developed healthcare-associated infections and 243 (73.64%) died. The factors associated with greater chances of VAP were: prone position (OR= 3.77), BMI 25-29.9 kg/m2 (OR= 4.76), pressure injury (OR= 4.41), length of stay in the ICU (OR= 1.06), positive tracheal aspirate before VAP (OR= 5.41) and dyspnea (OR= 3.80). CONCLUSIONS Patients with COVID-19 are at high risk of VAP, which leads to an increased risk of death (OR = 2.18). Multiple factors increase the chances of VAP in this population, namely: work overload in health institutions, prone position, prolonged ICU time, infusion of multiple drugs, invasive devices, and in particular, immobility in bed.
Collapse
Affiliation(s)
- Gabriela De Souza Dos Santos
- Specialized Care Planning Board, State Health Department of Parana, Curitiba, 828230-140, Brazil; Postgraduate Nursing Department, Federal University of Parana, Curitiba, 80210-170, Brazil.
| | - Viviane Alves de Carvalho França de Macedo
- Hospital Infection Control and Epidemiology Center, Santa Casa de Curitiba, Curitiba, 80010-030, Brazil; Medicine School Department, Positive University, Curitiba, 81280-330, Brazil; Department of Infectious Diseases, Faculty of Medicine at the University of São Paulo, 01246903, Brazil
| | - Samantha Oliniski Reikdal
- Nursing Department, Dom Bosco Universitary Center, Curitiba, 81010-000, Brazil; Nursing Department, Santa Cruz Universitary Center, Curitiba, 81050-180, Brazil
| | - Maria Esther Graf
- Infection Control Program, Hospital de Clınicas, Curitiba, 80060-900, Brazil; Hospital Infection Control and Epidemiology Center, Trabalhador Hospital, Curitiba, 81050-000, Brazil
| | - Beatris Mario Martin
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland Herston, Brisbane, Queensland 4029, Australia
| | - Marineli Joaquim Meier
- Postgraduate Nursing Department, Federal University of Parana, Curitiba, 80210-170, Brazil
| |
Collapse
|
10
|
Ahmed HS, Abud HN, Ahmed HS. State of type 2 diabetic Iraqi patients after hospitalization for COVID-19. Hum Antibodies 2025:10932607241304947. [PMID: 39973813 DOI: 10.1177/10932607241304947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND The coronavirus-19 (COVID-19) pandemic, triggered by the severe acute respiratory syndrome coronavirus 2, has affected over 100 million people and killed around 2 million individuals. One of the most common chronic illnesses in the world is diabetes, which greatly raises the risk of hospitalization and death for COVID-19 patients. OBJECTIVE This study aims to analyze the novel coronavirus's general characteristics and shed light on COVID-19 and its management in diabetic individuals by measuring some metabolic and inflammatory factors in type 2 diabetic patients with and without COVID-19. METHODS One hundred Iraqi patients with type 2 diabetes mellitus (T2DM) were enrolled in the current study; 50 had COVID-19 with the Omicron variant, and 50 weren't. The diagnosis was designed by the consultant medical staff at the clinic. Eligible individuals had a positive nasal swab for reverse transcription polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 infection. They were compared with 50 healthy individuals as a control group. Every participant's anthropometric and clinical features were measured. The study includes the study groups' glycemic, lipid profile, serum urea, and C-reactive protein (CRP) measurements. RESULTS There were remarkable rises (p < 0.05) in fasting and random blood glucose, serum lipid, and urea levels in diabetic patients with COVID-19 compared to those without COVID-19 and the control group. Also, a significant elevation (p = 0.01) was found in fasting serum insulin among diabetic patients with COVID-19 as compared to those without COVID-19 and the control group (32.75 ± 8.63 vs. 25.82 ± 3.50 and 10.65 ± 1.12) µU/L, respectively. Serum CRP levels significantly increased (p = 0.0001) in diabetic patients with COVID-19 compared to other groups. CONCLUSION Hyperglycemia, hyperinsulinemia, and dyslipidemia resulting from cytokine storm significantly increased the risk of hospitalization and death among coronavirus disease-19 patients. It has been concluded that T2DM reliably predicts morbidity among COVID-19 patients presenting with symptoms suggestive of severe hyperglycemia. The results also show the temporary and reversible deficiency in insulin secretion associated with severe acute respiratory syndrome coronavirus-2 infection. Consequently, it is recommended to examine variables of insulin sensitivity and pancreatic islet activity among patients with COVID-19 who have a history of diabetes.
Collapse
Affiliation(s)
- Hiba S Ahmed
- Department of Microbiology, College of Science, Al-Karkh University for Science, Baghdad, Iraq
| | - Haylim N Abud
- Department of Microbiology, College of Science, Al-Karkh University for Science, Baghdad, Iraq
| | - Hind S Ahmed
- Department of Chemistry, College of Education for Pure Science (Ibn Al Haitham), University of Baghdad, Baghdad, Iraq
| |
Collapse
|
11
|
Basaca DG, Jugănaru I, Belei O, Nicoară DM, Asproniu R, Stoicescu ER, Mărginean O. Long COVID in Children and Adolescents: Mechanisms, Symptoms, and Long-Term Impact on Health-A Comprehensive Review. J Clin Med 2025; 14:378. [PMID: 39860384 PMCID: PMC11766386 DOI: 10.3390/jcm14020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), is increasingly recognized as a condition affecting not only adults but also children and adolescents. While children often experience milder acute COVID-19 symptoms compared to adults, some develop persistent physical, psychological, and neurological symptoms lasting for weeks or months after initial infection. The most commonly reported symptoms include debilitating fatigue, respiratory issues, headaches, muscle pain, gastrointestinal disturbances, and cognitive difficulties, which significantly impact daily activities, schooling, and social interactions. Additionally, many children with long COVID experience psychological symptoms, such as anxiety, depression, mood swings, and irritability, likely exacerbated by prolonged illness and lifestyle disruptions. Risk factors for long COVID in children include pre-existing health conditions such as asthma, obesity, and neurological disorders, with adolescents and females seemingly more affected. Hypothesized mechanisms underlying long COVID include chronic immune dysregulation, persistent viral particles stimulating inflammation, autonomic nervous system dysfunction, and mitochondrial impairment, which may collectively contribute to the variety of observed symptoms. Long-term outcomes remain uncertain; however, long COVID can lead to school absenteeism, social withdrawal, and psychological distress, potentially affecting cognitive development. Severe cases may develop chronic conditions such as postural orthostatic tachycardia syndrome (POTS) and reduced exercise tolerance. This review synthesizes the existing literature on long COVID in children, examining its prevalence, symptomatology, risk factors, and potential mechanisms, with an emphasis on the need for further clinical studies. While existing research largely relies on surveys and self-reported data, clinical assessments are essential to accurately characterize long COVID in pediatric populations and to guide effective management strategies.
Collapse
Affiliation(s)
- Diana-Georgiana Basaca
- Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.-G.B.); (O.B.); (O.M.)
- Ph.D. School Department, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
| | - Iulius Jugănaru
- Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.-G.B.); (O.B.); (O.M.)
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Oana Belei
- Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.-G.B.); (O.B.); (O.M.)
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Delia-Maria Nicoară
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
| | - Raluca Asproniu
- Ph.D. School Department, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Emil Robert Stoicescu
- Research Center for Medical Communication, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Department of Radiology and Medical Imaging, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Otilia Mărginean
- Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.-G.B.); (O.B.); (O.M.)
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| |
Collapse
|
12
|
Wang Q, Wang X, Xu D, Jiang M, Gao Y, Jiang L, Liu M, Tang H, Tang L. Circulating levels of adiponectin and AdipoR expression in peripheral blood mononuclear cells are associated with lower respiratory tract Infection. Front Immunol 2025; 15:1510760. [PMID: 39840070 PMCID: PMC11746025 DOI: 10.3389/fimmu.2024.1510760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Objective The role of adiponectin (APN) in regulating inflammation is well recognized in metabolic disease, but the dysregulation of APN in lower respiratory tract infection (LRTI) remains controversial. We aimed to measure APN and its signaling receptors, adiponectin receptor (AdipoR), in peripheral blood mononuclear cells (PBMCs) from LRTI patients to explore their potential roles in the LRTI process. Methods A total of 99 LRTI patients from the Second Xiangya Hospital of Central South University were categorized into acute (n=35) and non-acute (n=64), and non-severe (n=62) and severe (n=37) groups. Serum APN was quantified using ELISA, and mRNA levels of PBMC AdipoRs were determined by RT-qPCR. Results Both levels of APN in circulation and AdipoR1 mRNA were significantly elevated in the LRTI patients (P=2.61E-04; P=2.49E-08), while no statistical difference was observed for AdipoR2. APN levels were increased in the non-acute group compared to the acute group (P=6.06E-04) and AdipoR1 levels were higher in the severe group (P=0.004). Increased APN and AdipoR1 mRNA levels were positively associated with LRTI even after adjustment for sex, age, BMI and blood lipids (OR=1.10; 95% CI 1.04-1.18; P=9.61E-04; OR=2.69; 95% CI 1.29-5.58; P=0.008). Subgroup analyses based on sex, age, and BMI revealed APN elevation in males, ≥65-year-olds, and overweight individuals, with higher AdipoR2 mRNA in females and those under 65; AdipoR1 was uniformly elevated. Additionally, APN was negatively correlated with lymphocyte count in acute and severe subgroup; AdipoR1 was positively correlated with indicators of inflammation in LRTI group. Conclusion Our study highlights that serum APN and AdipoR1 mRNA in PBMCs are associated with LRTI. Circulating APN and PBMC AdipoR1 have different significances in LRTI acute onset and severity.
Collapse
Affiliation(s)
- Qian Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuemei Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Danning Xu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mengjie Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yidan Gao
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijuan Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Haoneng Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lingli Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Soltani N, Häbel H, Balintescu A, Lind M, Grip J, Thobaben R, Nelson D, Mårtensson J. Insulin requirement trajectories during COVID-19 versus non-COVID-19 critical illness-A retrospective cohort study. Acta Anaesthesiol Scand 2025; 69:e14536. [PMID: 39402855 DOI: 10.1111/aas.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND The glycemic response to critical COVID-19 remains uncertain. We aimed to assess the association between COVID-19, insulin requirements, glycemic control, and mortality in intensive care unit (ICU) patients. METHODS We conducted a retrospective observational study of 350 COVID-19 patients and 1067 non-COVID-19 patients admitted to the ICU. Insulin requirement was defined as the total units of exogenous insulin required to cover one gram of administered carbohydrates (insulin-to-carbohydrate ratio, ICR). We used multivariable generalized linear mixed-model (GLMM) analysis to assess the association of the interaction between COVID-19 and ICU-day with daily ICR, adjusted for fixed and time-dependent covariates. Glycemic control was assessed after stratification on diabetes and COVID-19. We used multivariable logistic regression analysis to assess the association between ICR and 90-day mortality. RESULTS The mean (95% CI) of the mean daily ICR among patients without diabetes was 0.09 (0.08-0.11) U/g and 0.15 (0.11-0.18) U/g in the non-COVID-19 group and COVID-19 group (p = .01), respectively. In diabetes patients, the corresponding ICRs were 0.52 (0.43-0.62) U/g and 0.59 (0.50-0.68) U/g (p = .32). In multivariable GLMM analysis, the interaction between COVID-19 and ICU-day was independently associated with ICR (risk estimate 1.22, 95% CI 1.15-1.31, p < .001). COVID-19 was associated with higher hypoglycemia prevalence irrespective of diabetes status, higher average glucose levels, more pronounced glucose variability, and a lower proportion of glucose values within target range among patients without diabetes. On multivariable logistic regression analysis, the adjusted odds ratio for 90-day mortality was 1.77 (95% CI 0.94-3.34, p = .076) per one unit increase in mean ICR. CONCLUSION In our cohort of ICU patients, COVID-19 was associated with higher daily insulin requirements per gram of administered carbohydrates, and worse glycemic control. We found no robust association between ICR and increased odds of death at 90 days.
Collapse
Affiliation(s)
- Navid Soltani
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section of Anaesthesia and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Henrike Häbel
- Department of Learning, Informatics, Management and Ethics (LIME), Karolinska Institutet, Stockholm, Sweden
| | - Anca Balintescu
- Department of Anaesthesia and Intensive Care, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education Södersjukhuset, Section of Anaesthesia and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Lind
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medicine, NU-Hospital Group, Uddevalla, Sweden
| | - Jonathan Grip
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ragnar Thobaben
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - David Nelson
- Department of Physiology and Pharmacology, Section of Anaesthesia and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Johan Mårtensson
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section of Anaesthesia and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Yu EA, Bravo MD, Avelino-Silva VI, Bruhn RL, Busch MP, Custer B. Higher intraindividual variability of body mass index is associated with elevated risk of COVID-19 related hospitalization and post-COVID conditions. Int J Obes (Lond) 2024; 48:1711-1719. [PMID: 39134693 PMCID: PMC11674580 DOI: 10.1038/s41366-024-01603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Cardiometabolic diseases are risk factors for COVID-19 severity. The extent that cardiometabolic health represents a modifiable factor to mitigate the short- and long-term consequences from SARS-CoV-2 remains unclear. Our objective was to evaluate the associations between intraindividual variability of cardiometabolic health indicators and COVID-19 related hospitalizations and post-COVID conditions (PCC) among a relatively healthy population. METHODS This retrospective, multi-site cohort study was a post-hoc analysis among individuals with cardiometabolic health data collected during routine blood donation visits in 24 US states (2009-2018) and who responded to COVID-19 questionnaires (2021-2023). Intraindividual variability of blood pressure (systolic, diastolic), total circulating cholesterol, and body mass index (BMI) were defined as the coefficient of variation (CV) across all available donation timepoints (ranging from 3 to 74); participants were categorized into CV quartiles. Associations were evaluated by multivariable binomial regressions. RESULTS Overall, 3344 participants provided 42,090 donations (median 9 [IQR 5, 17]). The median age was 48 years (38, 56) at the first study donation. 1.2% (N = 40) were hospitalized due to COVID-19 and 15.5% (N = 519) had PCC. Higher BMI variability was associated with greater risk of COVID-19 hospitalization (4th quartile aRR 4.15 [95% CI 1.31, 13.11], p = 0.02; 3rd quartile aRR 3.41 [95% CI 1.09, 10.69], p = 0.04). Participants with higher variability of BMI had greater risk of PCC (4th quartile aRR 1.29 [95% CI 1.02, 1.64]; p = 0.04). Intraindividual variability of blood pressure (systolic, diastolic) and total circulating cholesterol were not associated with COVID-19 hospitalization or PCC risk (all p > 0.05). From causal mediation analysis, the association between the highest quartiles of BMI variability and PCC was not mediated by hospitalization (p > 0.05). CONCLUSIONS Higher intraindividual variability of BMI was associated with COVID-19 hospitalization and PCC risk. Our findings underscore the need for further elucidating mechanisms that explain these associations and importance for consistent maintenance of body weight.
Collapse
Affiliation(s)
- Elaine A Yu
- Vitalant Research Institute, San Francisco, CA, USA.
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | | | - Vivian I Avelino-Silva
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Roberta L Bruhn
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Nyarko JA, Dogbe PM, Ativi LAE, Wutsika J, Agyenim EB, Awere-Duodu A, Botaeng AT, Ntim NAA. Pathological Sequelae of SARS-CoV-2: A Review for Clinicians. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:431-445. [PMID: 39703609 PMCID: PMC11650917 DOI: 10.59249/dqjh2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic, driven by the novel coronavirus and its variants, has caused over 518 million infections and 6.25 million deaths globally, leading to a significant health crisis. Beyond its primary respiratory impact, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been implicated in various extra-pulmonary complications. Research studies reveal that the virus affects multiple organs, including the kidneys, liver, pancreas, and central nervous system (CNS), largely due to the widespread expression of Angiotensin Converting Enzyme-2 (ACE-2) receptors. Clinical evidence shows that the virus can induce diabetes by disrupting pancreatic and liver functions as well as cause acute kidney injury. Additionally, neurological complications, including cognitive impairments and neuroinflammation, have been observed in a significant number of COVID-19 patients. This review discusses the mechanisms linking SARS-CoV-2 to acute kidney injury, Type 1 and Type 2 Diabetes Mellitus (T1DM and T2DM), emphasizing its effects on pancreatic beta cells, insulin resistance, and the regulation of gluconeogenesis. We also explore how SARS-CoV-2 induces neurological complications, detailing the intricate pathways of neuro-invasion and the potential to trigger conditions such as Alzheimer's disease (AD). By elucidating the metabolic and neurological manifestations of COVID-19 and the underlying pathogenic mechanisms, this review underscores the imperative for continued research and the development of effective therapeutic interventions to mitigate the long-term and short-term impacts of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joseph Asuam Nyarko
- National Influenza Centre, Noguchi Memorial Institute
for Medical Research, Accra, Ghana
| | - Patience Mawuena Dogbe
- Department of Environmental Science, Kwame Nkrumah
University of Science and Technology, Kumasi, Ghana
| | | | - Jennifer Wutsika
- National Influenza Centre, Noguchi Memorial Institute
for Medical Research, Accra, Ghana
| | | | - Aaron Awere-Duodu
- Department of Medical Microbiology, University of Ghana
Medical School, Accra, Ghana
| | - Anthony Twumasi Botaeng
- Department of Environmental Science, Kwame Nkrumah
University of Science and Technology, Kumasi, Ghana
| | - Nana Afia Asante Ntim
- National Influenza Centre, Noguchi Memorial Institute
for Medical Research, Accra, Ghana
| |
Collapse
|
16
|
Sasikumar S, Unniappan S. SARS-CoV-2 Infection and the Neuroendocrine System. Neuroendocrinology 2024; 114:1158-1175. [PMID: 39433026 DOI: 10.1159/000542164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The novel coronavirus strain SARS-CoV-2 triggered the COVID-19 pandemic with severe economic and social ramifications. As the pathophysiology of SARS-CoV-2 infection in the respiratory system becomes more understood, growing evidence suggests that the virus also impacts the homeostasis-regulating neuroendocrine system, potentially affecting other organ systems. SUMMARY This review explores the interactions between SARS-CoV-2 and the neuroendocrine system, highlighting the effect of this virus on various endocrine glands, including the brain, hypothalamus, pituitary, pineal, thyroid, parathyroid, adrenal glands, pancreatic islets, gonads, and adipose tissue. The viral invasion disrupts normal hormonal pathways, leading to a range of endocrine disorders, immune dysregulation, and metabolic disturbances. KEY MESSAGES There is potential for SARS-CoV-2 to induce autoimmune responses, exacerbate existing endocrine conditions, and trigger new-onset disorders. Understanding these interactions is crucial for developing treatment strategies that address not only the respiratory symptoms of COVID-19 but also its endocrine complications. The review emphasizes the need for further research to elucidate the long-term effects of SARS-CoV-2 on endocrine health.
Collapse
Affiliation(s)
- Shruti Sasikumar
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
17
|
Pavel V, Amend P, Schmidtner N, Utrata A, Birner C, Schmid S, Krautbauer S, Müller M, Mester P, Buechler C. Chemerin Levels in COVID-19 Are More Affected by Underlying Diseases than by the Virus Infection Itself. Biomedicines 2024; 12:2099. [PMID: 39335612 PMCID: PMC11430512 DOI: 10.3390/biomedicines12092099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chemerin is an adipokine involved in inflammatory and metabolic diseases, and its circulating levels have been associated with inflammatory parameters in various patient cohorts. Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, which causes COVID-19, triggers inflammatory pathways. However, the association between serum chemerin levels and COVID-19 disease severity and outcomes has not been definitively established. METHODS In this study, serum chemerin levels were analyzed in 64 patients with moderate COVID-19 and 60 patients with severe disease. RESULTS The results showed that serum chemerin levels were comparable between these two groups and slightly higher than in healthy controls. Notably, COVID-19 patients with hypertension exhibited elevated serum chemerin levels, while those with liver cirrhosis had lower levels. When patients with these comorbidities were excluded from the analyses, serum chemerin levels in COVID-19 patients were similar to those in healthy controls. Positive correlations were observed between serum chemerin levels and markers such as alkaline phosphatase, C-reactive protein, eosinophils, and lymphocytes in the entire cohort, as well as in the subgroup excluding patients with hypertension and cirrhosis. Additionally, urinary chemerin levels were comparable between COVID-19 patients and controls, and neither hypertension nor dialysis significantly affected urinary chemerin levels. Both survivors and non-survivors had similar serum and urinary chemerin levels. CONCLUSIONS In conclusion, this study suggests that comorbidities such as arterial hypertension and liver cirrhosis do have a more significant impact on serum chemerin levels than SARS-CoV-2 infection itself.
Collapse
Affiliation(s)
- Vlad Pavel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Pablo Amend
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Niklas Schmidtner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Alexander Utrata
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Charlotte Birner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
18
|
Piza PMDT, de Freitas VM, Aguiar-Brito I, Calsolari-Oliveira BM, Rangel ÉB. Impact of Hyponatremia on COVID-19-Related Outcomes: A Retrospective Analysis. Biomedicines 2024; 12:1997. [PMID: 39335510 PMCID: PMC11444129 DOI: 10.3390/biomedicines12091997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Sodium disturbances are observed in one-third of patients with COVID-19 and result from multifaceted mechanisms. Notably, hyponatremia is associated with disease progression and mortality. AIM We aimed to analyze the impact of hyponatremia on COVID-19 outcomes and its correlation with clinical and laboratory parameters during the first wave. METHODS We evaluated the sodium levels of 558 patients with COVID-19 between 21 March 2020, and 31 July 2020, at a single center. We performed linear regression analyses to explore the correlation of sodium levels with COVID-19-related outcomes, demographic data, signs and symptoms, and laboratory parameters. Next, we conducted Pearson correlation analyses. A p-value < 0.05 was considered significant. RESULTS Hyponatremia was found in 35.3% of hospitalized patients with COVID-19. This was associated with the need for intensive care transfer (B = -1.210, p = 0.009) and invasive mechanical ventilation (B = -1.063, p = 0.032). Hyponatremia was frequently found in oncologic patients (p = 0.002) and solid organ transplant recipients (p < 0.001). Sodium was positively associated with diastolic blood pressure (p = 0.041) and productive cough (p = 0.022) and negatively associated with dry cough (p = 0.032), anorexia (p = 0.004), and nausea/vomiting (p = 0.007). Regarding the correlation of sodium levels with other laboratory parameters, we observed a positive correlation with hematocrit (p = 0.011), lymphocytes (p = 0.010), pCO2 (p < 0.0001), bicarbonate (p = 0.0001), and base excess (p = 0.008) and a negative correlation with the neutrophil-to-lymphocyte ratio (p = 0.009), the platelet-to-lymphocyte ratio (p = 0.033), and arterial blood glucose (p = 0.016). CONCLUSIONS Hyponatremia is a risk factor for adverse outcomes in COVID-19 patients. It is associated with demographic data and clinical and laboratory parameters. Therefore, hyponatremia is an important tool for risk stratification in COVID-19 patients.
Collapse
Affiliation(s)
- Pedro Maciel de Toledo Piza
- Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (P.M.d.T.P.); (V.M.d.F.); (I.A.-B.); (B.M.C.-O.)
| | - Victor Muniz de Freitas
- Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (P.M.d.T.P.); (V.M.d.F.); (I.A.-B.); (B.M.C.-O.)
| | - Isabella Aguiar-Brito
- Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (P.M.d.T.P.); (V.M.d.F.); (I.A.-B.); (B.M.C.-O.)
| | - Barbara Monique Calsolari-Oliveira
- Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (P.M.d.T.P.); (V.M.d.F.); (I.A.-B.); (B.M.C.-O.)
| | - Érika Bevilaqua Rangel
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo 04038-031, SP, Brazil
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
19
|
Wu K, Van Name J, Xi L. Cardiovascular abnormalities of long-COVID syndrome: Pathogenic basis and potential strategy for treatment and rehabilitation. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:221-231. [PMID: 39234483 PMCID: PMC11369840 DOI: 10.1016/j.smhs.2024.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 09/06/2024] Open
Abstract
Cardiac injury and sustained cardiovascular abnormalities in long-COVID syndrome, i.e. post-acute sequelae of coronavirus disease 2019 (COVID-19) have emerged as a debilitating health burden that has posed challenges for management of pre-existing cardiovascular conditions and other associated chronic comorbidities in the most vulnerable group of patients recovered from acute COVID-19. A clear and evidence-based guideline for treating cardiac issues of long-COVID syndrome is still lacking. In this review, we have summarized the common cardiac symptoms reported in the months after acute COVID-19 illness and further evaluated the possible pathogenic factors underlying the pathophysiology process of long-COVID. The mechanistic understanding of how Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) damages the heart and vasculatures is critical in developing targeted therapy and preventive measures for limiting the viral attacks. Despite the currently available therapeutic interventions, a considerable portion of patients recovered from severe COVID-19 have reported a reduced functional reserve due to deconditioning. Therefore, a rigorous and comprehensive cardiac rehabilitation program with individualized exercise protocols would be instrumental for the patients with long-COVID to regain the physical fitness levels comparable to their pre-illness baseline.
Collapse
Affiliation(s)
- Kainuo Wu
- Virginia Commonwealth University School of Medicine (M.D. Class 2024), Richmond, VA, 23298, USA
| | - Jonathan Van Name
- Virginia Commonwealth University School of Medicine (M.D. Class 2024), Richmond, VA, 23298, USA
| | - Lei Xi
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| |
Collapse
|
20
|
Umadevi K, Sundeep D, Varadharaj EK, Sastry CC, Shankaralingappa A, Chary RN, Vighnesh AR. Precision Detection of Fungal Co-Infections for Enhanced COVID-19 Treatment Strategies Using FESEM Imaging. Indian J Microbiol 2024; 64:1084-1098. [PMID: 39282206 PMCID: PMC11399527 DOI: 10.1007/s12088-024-01246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 09/18/2024] Open
Abstract
The treatment of fungal infections presents significant challenges due to the lack of standardized diagnostic procedures, a restricted range of antifungal treatments, and the risk of harmful interactions between antifungal medications and the immunosuppressive drugs used in anti-inflammatory treatment for critically ill patients with COVID-19. Mucormycosis and aspergillosis are the primary invasive fungal infections in patients with severe COVID-19, occurring singly or in combination. Histopathological examination is a vital diagnostic technique that details the presence and invasion of fungi within tissues and blood vessels, and the body's response to the infection. However, the pathology report omits information on the most common fungi associated with the observed morphology, as well as other potential fungi and parasites that ought to be included in the differential diagnosis. This research marks significance in diagnosing fungal infections, such as mucormycosis and aspergillosis associated to COVID-19 by field emission scanning electron microscopy (FESEM) imaging to examine unstained histopathology slides, allowing for a detailed morphological analysis of the fungus. FESEM provides an unprecedented resolution and detail, surpassing traditional Hematoxylin & Eosin (H&E) and Grocott's Methenamine Silver (GMS) staining methods in identifying and differentiating dual fungal infections and diverse fungal species. The findings underscore the critical need for individualized treatment plans for patients severely affected by COVID-19 and compounded by secondary fungal infections. The high-magnification micrographs reveal specific fungal morphology and reproductive patterns. Current treatment protocols largely depend on broad-spectrum antifungal therapies. However this FESEM guided diagnostic approach can help in targeted patient specific anti fungal therapies. Such precision could lead to more effective early interventions, addressing the complex management required for severe COVID-19 cases with coexisting fungal infections. This approach significantly advances disease management and patient recovery, advocating for personalized, precision medicine in tackling this multifaceted clinical challenge. Graphical Abstract
Collapse
Affiliation(s)
- Kovuri Umadevi
- Department of Pathology, Government Medical College and Hospital, Khaleelwadi, Nizamabad, Telangana 503001 India
| | - Dola Sundeep
- Biomedical Research Laboratory, Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | - Eswaramoorthy K Varadharaj
- Biomedical Research Laboratory, Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | - Chebbiyam Chandrasekhara Sastry
- Biomedical Research Laboratory, Department of Mechanical Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | | | - Rajarikam Nagarjuna Chary
- Department of Pathology, Government Medical College and Hospital, Khaleelwadi, Nizamabad, Telangana 503001 India
| | - Alluru Raghavendra Vighnesh
- Department of Mechanical Engineering, Indian Institute of Technology (IIT-BHU), Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
21
|
Ghosh P, Niesen MJ, Pawlowski C, Bandi H, Yoo U, Lenehan PJ, Kumar-M P, Nadig M, Ross J, Ardhanari S, O’Horo JC, Venkatakrishnan A, Rosen CJ, Telenti A, Hurt RT, Soundararajan V. Case-control study on post-COVID-19 conditions reveals severe acute infection and chronic pulmonary disease as potential risk factors. iScience 2024; 27:110406. [PMID: 39081289 PMCID: PMC11284568 DOI: 10.1016/j.isci.2024.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/28/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Post-COVID-19 conditions (long COVID) has impacted many individuals, yet risk factors for this condition are poorly understood. This retrospective analysis of 88,943 COVID-19 patients at a multi-state US health system compares phenotypes, laboratory tests, medication orders, and outcomes for 1,086 long-COVID patients and their matched controls. We found that history of chronic pulmonary disease (CPD) (odds ratio: 1.9, 95% CI: [1.5, 2.6]), migraine (OR: 2.2, [1.6, 3.1]), and fibromyalgia (OR: 2.3, [1.3, 3.8]) were more common for long-COVID patients. During the acute infection phase long COVID patients exhibited high triglycerides, low HDL cholesterol, and a high neutrophil-lymphocyte ratio; and were more likely hospitalized (5% vs. 1%). Our findings suggest severity of acute infection and history of CPD, migraine, chronic fatigue syndrome (CFS), or fibromyalgia as risk factors for long COVID. These results suggest that suppressing acute disease severity proactively, especially in patients at high risk, can reduce incidence of long COVID.
Collapse
Affiliation(s)
| | | | | | - Hari Bandi
- nference, Inc., Cambridge, MA 02139, USA
| | - Unice Yoo
- nference, Inc., Cambridge, MA 02139, USA
| | | | | | | | - Jason Ross
- nference, Inc., 18 3rd St. S.W., Rochester, MN 55902, USA
| | | | | | | | - Clifford J. Rosen
- Maine Medical Center, Portland, ME 04102, USA
- RECOVER Maine, MaineHealth Institute for Research, Scarborough, ME, USA
| | | | | | - Venky Soundararajan
- nference Labs, Bengaluru, India
- nference, Inc., Cambridge, MA 02139, USA
- nference, Inc., 18 3rd St. S.W., Rochester, MN 55902, USA
- nference, Inc., 2424 Erwin Road, Durham, NC 27705, USA
- Anumana, Inc., Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Front Immunol 2024; 15:1433531. [PMID: 39188722 PMCID: PMC11345197 DOI: 10.3389/fimmu.2024.1433531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Post-COVID-19 condition is recognized as a multifactorial disorder, with persistent presence of viral antigens, discordant immunity, delayed viral clearance, and chronic inflammation. Obesity has emerged as an independent risk factor for both SARS-CoV-2 infection and its subsequent sequelae. In this study, we aimed to predict the molecular mechanisms linking obesity and post-COVID-19 distress. Viral antigen-exposed adipose tissues display remarkable levels of viral receptors, facilitating viral entry, deposition, and chronic release of inflammatory mediators and cells in patients. Subsequently, obesity-associated inflammatory insults are predicted to disturb cellular and humoral immunity by triggering abnormal cell differentiation and lymphocyte exhaustion. In particular, the decline in SARS-CoV-2 antibody titers and T-cell exhaustion due to chronic inflammation may account for delayed virus clearance and persistent activation of inflammatory responses. Taken together, obesity-associated defective immunity is a critical control point of intervention against post-COVID-19 progression, particularly in subjects with chronic metabolic distress.
Collapse
Affiliation(s)
- Soonwoo Jang
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
| | - Wooyoung Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
23
|
Galúcio VCA, de Menezes DC, Chaves ECR, van den Berg AVS, de Lima PDL, da Costa Vasconcelos PF, Quaresma JAS, Falcão LFM. Laboratory profiling of patients with long COVID in the Brazilian Amazon region: A cross-sectional study. J Med Virol 2024; 96:e29828. [PMID: 39081145 DOI: 10.1002/jmv.29828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 01/25/2025]
Abstract
The condition commonly referred to as long coronavirus disease (COVID) is characterized by the continuation of symptoms, sometimes accompanied by new symptoms that persist after the resolution of acute coronavirus disease 2019 (COVID-19). This observational cross-sectional study investigated 332 patients with long COVID in the Brazilian Amazon region. The study aimed to elucidate the systemic interactions associated with long COVID by compiling the findings related to hematological, coagulation, immunological, metabolic, hepatic, renal, and muscular profiles. Participants with long COVID were identified using rigorous criteria and underwent thorough laboratory examinations. The obtained data were subsequently analyzed, allowing for comparisons, associations, and correlations between findings within distinct groups in the study. Significant associations were observed between hospitalization during the acute phase and persistent laboratory abnormalities, suggesting a potential link between acute severity and long-term effects. Notably, individuals with long COVID for over a year exhibited elevated levels of monocytes, prolonged prothrombin times, reduced prothrombin activity, high levels of lactate dehydrogenase, and an increased frequency of qualitative C-reactive protein detection. This study provides valuable insights into the laboratory risk profile of patients with long COVID, particularly in the unique context of the Amazon region, where patients exhibit persistent symptoms lasting up to 1261 days.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juarez Antônio Simões Quaresma
- Centre for Biological Health Sciences, State University of Pará (UEPA), Belém, Brazil
- School of Medicine, São Paulo University (USP), São Paulo, Brazil
- Tropical Medicine Centre, Federal University of Pará (UFPA), Belém, Brazil
| | - Luiz Fábio Magno Falcão
- Centre for Biological Health Sciences, State University of Pará (UEPA), Belém, Brazil
- School of Medicine, São Paulo University (USP), São Paulo, Brazil
| |
Collapse
|
24
|
Matamalas JT, Chelvanambi S, Decano JL, França RF, Halu A, Santinelli-Pestana DV, Aikawa E, Malhotra R, Aikawa M. Obesity and age are transmission risk factors for SARS-CoV-2 infection among exposed individuals. PNAS NEXUS 2024; 3:pgae294. [PMID: 39192848 PMCID: PMC11348562 DOI: 10.1093/pnasnexus/pgae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The coronavirus disease (COVID-19) pandemic has occurred in Massachusetts in multiple waves led by a series of emerging variants. While the evidence has linked obesity with severe symptoms of COVID-19, the effect of obesity on susceptibility to SARS-CoV-2 infection remains unclear. Identification of intrinsic factors, which increase the likelihood of exposed individuals succumbing to productive SARS-CoV-2 infection could help plan mitigation efforts to curb the illness. We aim to investigate whether obese individuals have a higher susceptibility to developing productive SARS-CoV-2 infection given comparable exposure to nonobese individuals. This case-control study leveraged data from the Mass General Brigham's (MGB) electronic medical records (EMR), containing 687,813 patients, to determine whether obesity at any age increases the proportion of infections. We used PCR results of 72,613 subjects who tested positive to SARS-CoV-2 or declared exposure to the virus independently of the result of the test. For this study, we defined susceptibility as the likelihood of testing positive upon suspected exposure. We demonstrate evidence that SARS-CoV-2 exposed obese individuals were more prone to become COVID positive than nonobese individuals [adjusted odds ratio = 1.34 (95% CI: 1.29-1.39)]. Temporal analysis showed significantly increased susceptibility in obese individuals across the duration of the pandemic in Massachusetts. Obese exposed individuals are at a higher risk of getting infected with SARS-CoV-2. This indicates that obesity is not only a risk factor for worsened outcomes but also increases the risk for infection upon exposure. Identifying such populations early will be crucial for curbing the spread of this infectious disease.
Collapse
Affiliation(s)
- Joan T Matamalas
- Department of Medicine, Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Sarvesh Chelvanambi
- Department of Medicine, Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Julius L Decano
- Department of Medicine, Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Raony F França
- Faculty of Medicine, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, SP 01246-903, Brazil
| | - Arda Halu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Diego V Santinelli-Pestana
- Department of Medicine, Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Elena Aikawa
- Department of Medicine, Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
- Department of Medicine, Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Masanori Aikawa
- Department of Medicine, Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
- Department of Medicine, Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
25
|
Quagliariello V, Canale ML, Bisceglia I, Maurea C, Gabrielli D, Tarantini L, Paccone A, Inno A, Oliva S, Cadeddu Dessalvi C, Zito C, Caraglia M, Berretta M, D’Aiuto G, Maurea N. Addressing Post-Acute COVID-19 Syndrome in Cancer Patients, from Visceral Obesity and Myosteatosis to Systemic Inflammation: Implications in Cardio-Onco-Metabolism. Biomedicines 2024; 12:1650. [PMID: 39200115 PMCID: PMC11351439 DOI: 10.3390/biomedicines12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology described several shared risk factors that predispose patients to both cardiovascular disease and cancer. Post-acute COVID-19 syndrome is a chronic condition that occurs in many patients who have experienced a SARS-CoV-2 infection, mainly based on chronic fatigue, sedentary lifestyle, cramps, breathing difficulties, and reduced lung performance. Post-acute COVID-19 exposes patients to increased visceral adiposity, insulin resistance, myosteatosis, and white adipose tissue content (surrounded by M1 macrophages and characterized by a Th1/Th17 phenotype), which increases the risk of cardiovascular mortality and cancer recurrence. In this review, the main metabolic affections of post-acute COVID-19 syndrome in cancer patients at low and high risk of cardiomyopathies will be summarized. Furthermore, several non-pharmacological strategies aimed at reducing atherosclerotic and cardiac risk will be provided, especially through anti-inflammatory nutrition with a low insulin and glycemic index, appropriate physical activity, and immune-modulating bioactivities able to reduce visceral obesity and myosteatosis, improving insulin-related signaling and myocardial metabolism.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| | | | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Carlo Maurea
- Neurology Department, University of Salerno, 84084 Fisciano, Italy;
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Luigi Tarantini
- Divisione di Cardiologia, Arcispedale S. Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio-Emilia, 42122 Reggio Emilia, Italy;
| | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| | - Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy;
| | - Stefano Oliva
- UOSD Cardiologia di Interesse Oncologico IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | | | - Concetta Zito
- Cardiology Division, University Hospital Polyclinic G. Martino, University of Messina, 98122 Messina, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 7, 80138 Naples, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | | | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| |
Collapse
|
26
|
Kartika R, Subekti I, Kurniawan F, Wafa S, Pradnjaparamita T, Tahapary DL, Wibowo H. Altered Body Composition and Cytokine Production in Patients with Elevated HOMA-IR after SARS-CoV-2 Infection: A 12-Month Longitudinal Study. Biomedicines 2024; 12:1581. [PMID: 39062154 PMCID: PMC11274364 DOI: 10.3390/biomedicines12071581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Altered body composition and cytokine production due to SARS-CoV-2 antigens may affect homeostasis model assessment for insulin resistance (HOMA-IR) after SARS-CoV-2 infection. To elucidate this phenomenon, we conducted a longitudinal study involving 47 COVID-19 patients, who were followed up for 12 months. During recruitment, body composition and glucose indices were measured, and heparin blood samples were collected for measuring cytokine production. HOMA-IR was considered an elevated or non-elevated group based on the ratio between HOMA-IR at 12 months and 1 month of convalescence. Those with elevated HOMA-IR had a significantly higher body mass index, body fat percentage, and visceral fat rating and had a lower lean mass and lean/fat mass ratio than their counterparts. During the convalescent period, the elevated HOMA-IR group had lower TNFα, IFNγ, IL-2, IL-10, and granzyme B expression levels but had higher TNFα/IL-10, IFNγ/IL-10, IL-2/IL-10, and granzyme B/IL-10 ratios than the other group. The reduced cytokine production and pro-/anti-inflammatory imbalance in patients with elevated HOMA-IR may suggest immune cell dysfunction toward SARS-CoV-2. Patients with elevated HOMA-IR after SARS-CoV-2 infection may experience an increase in BMI and body fat percentage, leading to increased immune dysfunction and chronic inflammatory condition. A nutritional approach and promotion of physical activity may help reduce HOMA-IR and ameliorate glucose indices in these patients.
Collapse
Affiliation(s)
- Rona Kartika
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta 10430, Indonesia;
- Metabolic Disorder, Cardiovascular, and Aging Research Center, Indonesia Medical Education & Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta 10430, Indonesia; (F.K.); (S.W.); (T.P.); (D.L.T.)
| | - Imam Subekti
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jl. P. Diponegoro No. 71, Jakarta 10430, Indonesia;
| | - Farid Kurniawan
- Metabolic Disorder, Cardiovascular, and Aging Research Center, Indonesia Medical Education & Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta 10430, Indonesia; (F.K.); (S.W.); (T.P.); (D.L.T.)
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jl. P. Diponegoro No. 71, Jakarta 10430, Indonesia;
| | - Syahidatul Wafa
- Metabolic Disorder, Cardiovascular, and Aging Research Center, Indonesia Medical Education & Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta 10430, Indonesia; (F.K.); (S.W.); (T.P.); (D.L.T.)
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jl. P. Diponegoro No. 71, Jakarta 10430, Indonesia;
| | - Tika Pradnjaparamita
- Metabolic Disorder, Cardiovascular, and Aging Research Center, Indonesia Medical Education & Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta 10430, Indonesia; (F.K.); (S.W.); (T.P.); (D.L.T.)
| | - Dicky L. Tahapary
- Metabolic Disorder, Cardiovascular, and Aging Research Center, Indonesia Medical Education & Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta 10430, Indonesia; (F.K.); (S.W.); (T.P.); (D.L.T.)
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jl. P. Diponegoro No. 71, Jakarta 10430, Indonesia;
| | - Heri Wibowo
- Metabolic Disorder, Cardiovascular, and Aging Research Center, Indonesia Medical Education & Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta 10430, Indonesia; (F.K.); (S.W.); (T.P.); (D.L.T.)
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta 10430, Indonesia
| |
Collapse
|
27
|
Pilger BI, Castro A, Vasconcellos FF, Moura KF, Signini ÉDF, Marqueze LFB, Fiorenza-Neto EA, Rocha MT, Pedroso GS, Cavaglieri CR, Ferreira AG, Figueiredo C, Minuzzi LG, Gatti da Silva GH, Castro GS, Lira FS, Seelaender M, Pinho RA. Obesity-dependent molecular alterations in fatal COVID-19: A retrospective postmortem study of metabolomic profile of adipose tissue. J Cell Biochem 2024; 125:e30566. [PMID: 38591648 DOI: 10.1002/jcb.30566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
We investigated the effects of obesity on metabolic, inflammatory, and oxidative stress parameters in the adipose tissue of patients with fatal COVID-19. Postmortem biopsies of subcutaneous adipose tissue were obtained from 25 unvaccinated inpatients who passed from COVID-19, stratified as nonobese (N-OB; body mass index [BMI], 26.5 ± 2.3 kg m-2) or obese (OB BMI 34.2 ± 5.1 kg m-2). Univariate and multivariate analyses revealed that body composition was responsible for most of the variations detected in the metabolome, with greater dispersion observed in the OB group. Fifteen metabolites were major segregation factors. Results from the OB group showed higher levels of creatinine, myo-inositol, O-acetylcholine, and succinate, and lower levels of sarcosine. The N-OB group showed lower levels of glutathione peroxidase activity, as well as higher content of IL-6 and adiponectin. We revealed significant changes in the metabolomic profile of the adipose tissue in fatal COVID-19 cases, with high adiposity playing a key role in these observed variations. These findings highlight the potential involvement of metabolic and inflammatory pathways, possibly dependent on hypoxia, shedding light on the impact of obesity on disease pathogenesis and suggesting avenues for further research and possible therapeutic targets.
Collapse
Affiliation(s)
- Bruna I Pilger
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Alex Castro
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Universidade Federal de São Carlos, São Carlos, Brazil
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Franciane F Vasconcellos
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Karen F Moura
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Étore De Favari Signini
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Luis Felipe B Marqueze
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Edson A Fiorenza-Neto
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Mateus T Rocha
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Giulia S Pedroso
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Claudia R Cavaglieri
- Exercise Physiology Laboratory, Faculty of Physical Education, University of Campinas, Campinas, Brazil
| | - Antonio G Ferreira
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Luciele G Minuzzi
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Guilherme H Gatti da Silva
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Gabriela S Castro
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Ricardo A Pinho
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
28
|
Mehraeen E, Abbaspour F, Banach M, SeyedAlinaghi S, Zarebidoki A, Tamehri Zadeh SS. The prognostic significance of insulin resistance in COVID-19: a review. J Diabetes Metab Disord 2024; 23:305-322. [PMID: 38932824 PMCID: PMC11196450 DOI: 10.1007/s40200-024-01385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/31/2023] [Indexed: 06/28/2024]
Abstract
Objectives Emerging publications indicate that diabetes predisposes patients with COVID-19 to more severe complications, which is partly attributed to inflammatory condition. In the current review, we reviewed recent published literature to provide evidence on the role of insulin resistance (IR) in diabetes, the association between diabetes and COVID-19 severity and mortality, the impact of COVID-19 infection on incident new-onset diabetes, mechanisms responsible for IR in COVID-19 patients, and the predictive value of different surrogates of IR in COVID-19. Method The literature search performs to find out studies that have assessed the association between IR surrogates and morbidity and mortality in patients with COVID-19. Results We showed that there is a bulk of evidence in support of the fact that diabetes is a potent risk factor for enhanced morbidity and mortality in COVID-19 patients. COVID-19 patients with diabetes are more prone to remarkable dysglycemia compared to those without diabetes, which is associated with an unfavourable prognosis. Furthermore, SARS-COV2 can make patients predispose to IR and diabetes via activating ISR, affecting RAAS signaling pathway, provoking inflammation, and changing the expression of PPARɣ and SREBP-1. Additionally, higher IR is associated with increased morbidity and mortality in COVID-19 patients and different surrogates of IR can be utilized as a prognostic biomarker for COVID-19 patients. Conclusion Different surrogates of IR can be utilized as predictors of COVID-19 complications and death.
Collapse
Affiliation(s)
- Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Faeze Abbaspour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 93338 Lodz, Poland
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Zarebidoki
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Saeed Tamehri Zadeh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Velenjak, P.O. Box 19395-4763, Tehran, Iran
| |
Collapse
|
29
|
Zhang Y, Chen S, Tian Y, Fu X. Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects. Front Cell Infect Microbiol 2024; 14:1407261. [PMID: 38846354 PMCID: PMC11155306 DOI: 10.3389/fcimb.2024.1407261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
SARS-CoV-2 is the causative virus of the devastating COVID-19 pandemic that results in an unparalleled global health and economic crisis. Despite unprecedented scientific efforts and therapeutic interventions, the fight against COVID-19 continues as the rapid emergence of different SARS-CoV-2 variants of concern and the increasing challenge of long COVID-19, raising a vast demand to understand the pathomechanisms of COVID-19 and its long-term sequelae and develop therapeutic strategies beyond the virus per se. Notably, in addition to the virus itself, the replication cycle of SARS-CoV-2 and clinical severity of COVID-19 is also governed by host factors. In this review, we therefore comprehensively overview the replication cycle and pathogenesis of SARS-CoV-2 from the perspective of host factors and host-virus interactions. We sequentially outline the pathological implications of molecular interactions between host factors and SARS-CoV-2 in multi-organ and multi-system long COVID-19, and summarize current therapeutic strategies and agents targeting host factors for treating these diseases. This knowledge would be key for the identification of new pathophysiological aspects and mechanisms, and the development of actionable therapeutic targets and strategies for tackling COVID-19 and its sequelae.
Collapse
Affiliation(s)
| | | | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| |
Collapse
|
30
|
Pavel V, Räth U, Schmid S, Krautbauer S, Keller D, Amend P, Müller M, Mester P, Buechler C. Serum Adiponectin Predicts COVID-19 Severity. Biomedicines 2024; 12:1043. [PMID: 38791005 PMCID: PMC11117573 DOI: 10.3390/biomedicines12051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Adiponectin is primarily known for its protective role in metabolic diseases, and it also possesses immunoregulatory properties. Elevated levels of adiponectin have been observed in various inflammatory diseases. However, studies investigating adiponectin levels in the serum of COVID-19 patients have yielded conflicting results. This study aimed to assess serum adiponectin levels in 26 healthy controls, as well as in 64 patients with moderate and 60 patients with severe COVID-19, to determine a potential association between serum adiponectin and the severity of COVID-19. Serum adiponectin levels in severe COVID-19 patients were significantly lower than in those with moderate disease and healthy controls, who exhibited similar serum adiponectin levels. Among patients with moderate disease, positive correlations were observed between serum adiponectin and C-reactive protein levels. Of note, serum adiponectin levels of severe COVID-19 cases were comparable between patients with and without dialysis or vasopressor therapy. Superinfection with bacteria did not exert a notable influence on serum adiponectin levels in patients with severe disease. Patients who were diagnosed with severe COVID-19 and vancomycin-resistant enterococci bacteremia showed a significant reduction in their serum adiponectin levels. An analysis conducted on the entire cohort, including both moderate and severe COVID-19 patients, showed that individuals who did not survive had lower serum adiponectin levels when compared to those who survived. In summary, this study highlights a decrease in serum adiponectin levels in severe COVID-19 cases, indicating the potential utility of adiponectin as an additional biomarker for monitoring disease severity in COVID-19 or critical illnesses in general.
Collapse
Affiliation(s)
- Vlad Pavel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Ulrich Räth
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Dennis Keller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Pablo Amend
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| |
Collapse
|
31
|
Alvarado M, Campos-Campos L, Guerrero-Romero F, Simental-Mendía LE. The Triglycerides and Glucose Index Is an Independent Risk Factor for Acute Respiratory Distress Syndrome in Patients with COVID-19. Metab Syndr Relat Disord 2024; 22:276-280. [PMID: 38315780 DOI: 10.1089/met.2023.0247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Introduction: Although it has been observed that the triglycerides and glucose (TyG) index, a biomarker of insulin resistance, is associated with severity and morbidity by COVID-19, evidence is still scarce. Therefore, the objective of this study was to determine whether the TyG index is associated with both the degree of severity and mortality by acute respiratory distress syndrome (ARDS) in patients with COVID-19. Methods: Men and women aged 20 years or more with diagnosis of COVID-19 were included in a case-control study. Exclusion criteria were pregnancy, cancer, autoimmune diseases, autoimmune treatment, and incomplete data. Patients with severe COVID-19 ARDS were allocated into the case group, and those with mild or moderate COVID-19 ARDS in the control group. COVID-19 was defined by a positive reverse transcriptase-polymerase chain reaction test for SARS-CoV-2, and ARDS was defined according to the Berlin criteria. Results: A total of 206 patients were included and allocated into the case (n = 103) and control (n = 103) groups. The logistic regression analysis adjusted by age, sex, and body mass index showed that the TyG index is significantly associated with moderate [odds ratio (OR) = 6.0; 95% confidence interval (CI): 1.1-30.6] and severe (OR = 9.5; 95% CI: 2.4-37.5) COVID-19 ARDS, and death (OR = 10.1; 95% CI: 2.2-46.5). Conclusion: The results of our study show a significant and independent association of the TyG index with ARDS and mortality in patients with COVID-19.
Collapse
Affiliation(s)
- Maria Alvarado
- Hospital General de Zona No. 1, Instituto Mexicano del Seguro Social, Durango, México
| | - Lizette Campos-Campos
- Hospital General de Zona No. 1, Instituto Mexicano del Seguro Social, Durango, México
| | - Fernando Guerrero-Romero
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| |
Collapse
|
32
|
Deng W, Bao L, Song Z, Zhang L, Yu P, Xu Y, Wang J, Zhao W, Zhang X, Han Y, Li Y, Liu J, Lv Q, Liang X, Li F, Qi F, Deng R, Wang S, Xiong Y, Xiao R, Wang H, Qin C. Infection with SARS-CoV-2 can cause pancreatic impairment. Signal Transduct Target Ther 2024; 9:98. [PMID: 38609366 PMCID: PMC11014980 DOI: 10.1038/s41392-024-01796-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Evidence suggests associations between COVID-19 patients or vaccines and glycometabolic dysfunction and an even higher risk of the occurrence of diabetes. Herein, we retrospectively analyzed pancreatic lesions in autopsy tissues from 67 SARS-CoV-2 infected non-human primates (NHPs) models and 121 vaccinated and infected NHPs from 2020 to 2023 and COVID-19 patients. Multi-label immunofluorescence revealed direct infection of both exocrine and endocrine pancreatic cells by the virus in NHPs and humans. Minor and limited phenotypic and histopathological changes were observed in adult models. Systemic proteomics and metabolomics results indicated metabolic disorders, mainly enriched in insulin resistance pathways, in infected adult NHPs, along with elevated fasting C-peptide and C-peptide/glucose ratio levels. Furthermore, in elder COVID-19 NHPs, SARS-CoV-2 infection causes loss of beta (β) cells and lower expressed-insulin in situ characterized by islet amyloidosis and necrosis, activation of α-SMA and aggravated fibrosis consisting of lower collagen in serum, an increase of pancreatic inflammation and stress markers, ICAM-1 and G3BP1, along with more severe glycometabolic dysfunction. In contrast, vaccination maintained glucose homeostasis by activating insulin receptor α and insulin receptor β. Overall, the cumulative risk of diabetes post-COVID-19 is closely tied to age, suggesting more attention should be paid to blood sugar management in elderly COVID-19 patients.
Collapse
Affiliation(s)
- Wei Deng
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Linlin Bao
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Zhiqi Song
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Ling Zhang
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Pin Yu
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Yanfeng Xu
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Jue Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wenjie Zhao
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yunlin Han
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Yanhong Li
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Jiangning Liu
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Qi Lv
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Xujian Liang
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Fengdi Li
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Feifei Qi
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Ran Deng
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Siyuan Wang
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Yibai Xiong
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Ruiping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
| | - Hongyang Wang
- Chinese Academy of Engineering, Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Yangpu District, Shanghai, 200438, China.
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, PR China.
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai, 200441, PR China.
| | - Chuan Qin
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China.
- Changping National laboratory (CPNL), Beijing, 102206, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Health Commission of the People's Republic of China, Beijing, PR China.
| |
Collapse
|
33
|
Jiang F, Hua C, Pan J, Peng S, Ning D, Chen C, Li S, Xu X, Wang L, Zhang C, Li M. Effect fraction of Bletilla striata (Thunb.) Reichb.f. alleviates LPS-induced acute lung injury by inhibiting p47 phox/NOX2 and promoting the Nrf2/HO-1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155186. [PMID: 38387272 DOI: 10.1016/j.phymed.2023.155186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND & AIMS The effect fraction of Bletilla striata (Thunb.) Reichb.f. (EFBS), a phenolic-rich extract, has significant protective effects on lipopolysaccharide (LPS)-induced acute lung injury (ALI), but its composition and molecular mechanisms are unclear. This study elucidated its chemical composition and possible protective mechanisms against LPS-induced ALI from an antioxidant perspective. METHODS EFBS was prepared by ethanol extraction, enriched by polyamide column chromatography, and characterized using ultra-performance liquid chromatography/time-of-flight mass spectrometry. The LPS-induced ALI model and the RAW264.7 model were used to evaluate the regulatory effects of EFBS on oxidative stress, and transcriptome analysis was performed to explore its possible molecular mechanism. Then, the pathway by which EFBS regulates oxidative stress was validated through inhibitor intervention, flow cytometry, quantitative PCR, western blotting, and immunofluorescence techniques. RESULTS A total of 22 compounds in EFBS were identified. The transcriptome analyses of RAW264.7 cells indicated that EFBS might reduce reactive oxygen species (ROS) production by inhibiting the p47phox/NADPH oxidase 2 (NOX2) pathway and upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Both in vitro and in vivo data confirmed that EFBS significantly inhibited the expression and phosphorylation of p47phox protein, thereby weakening the p47phox/NOX2 pathway and reducing ROS production. EFBS significantly increased the expression of Nrf2 in primary peritoneal macrophages and lung tissue and promoted its nuclear translocation, dose-dependent increase in HO-1 levels, and enhancement of antioxidant activity. In vitro, both Nrf2 and HO-1 inhibitors significantly reduced the scavenging effects of EFBS on ROS, further confirming that EFBS exerts antioxidant effects at least partially by upregulating the Nrf2/HO-1 pathway. CONCLUSIONS EFBS contains abundant phenanthrenes and dibenzyl polyphenols, which can reduce ROS production by inhibiting the p47phox/NOX2 pathway and enhance ROS clearance activity by upregulating the Nrf2/HO-1 pathway, thereby exerting regulatory effects on oxidative stress and improving LPS-induced ALI.
Collapse
Affiliation(s)
- Fusheng Jiang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenglong Hua
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jieli Pan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Suyu Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dandan Ning
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cheng Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shiqing Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaohua Xu
- People's Hospital of Quzhou, Quzhou 324002, China
| | - Linyan Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chunchun Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Meiya Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
34
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
35
|
Carregari VC, Reis-de-Oliveira G, Crunfli F, Smith BJ, de Souza GF, Muraro SP, Saia-Cereda VM, Vendramini PH, Baldasso PA, Silva-Costa LC, Zuccoli GS, Brandão-Teles C, Antunes A, Valença AF, Davanzo GG, Virgillio-da-Silva JV, Dos Reis Araújo T, Guimarães RC, Chaim FDM, Chaim EA, Kawagosi Onodera CM, Ludwig RG, Saccon TD, Damásio ARL, Leiria LOS, Vinolo MAR, Farias AS, Moraes-Vieira PM, Mori MA, Módena JLP, Martins-de-Souza D. Diving into the proteomic atlas of SARS-CoV-2 infected cells. Sci Rep 2024; 14:7375. [PMID: 38548777 PMCID: PMC10978884 DOI: 10.1038/s41598-024-56328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase.
Collapse
Affiliation(s)
- Victor C Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Fabiano de Souza
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Stéfanie Primon Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Veronica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Pedro H Vendramini
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paulo A Baldasso
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lícia C Silva-Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline F Valença
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gustavo G Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - João Victor Virgillio-da-Silva
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
| | | | - Raphael Campos Guimarães
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
| | | | - Elinton Adami Chaim
- Department of Surgery, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Raissa Guimarães Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tatiana Dandolini Saccon
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André R L Damásio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Osório S Leiria
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
| | - Marco Aurélio R Vinolo
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
- Hematology-Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alessandro S Farias
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, 05403-000, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, 04501-000, Brazil
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Luiz P Módena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, 04501-000, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
36
|
Zhang G, Su L, Wu W, Qiao Q, Gao S, Zhang Y, Zhang Y. Efficacy of different doses of corticosteroids in treating severe COVID-19 pneumonia. Virol J 2024; 21:74. [PMID: 38532424 PMCID: PMC10967132 DOI: 10.1186/s12985-024-02345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/17/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND To investigate the efficacy of different doses of corticosteroids in treating severe coronavirus disease 2019 (COVID-19) pneumonia. METHODS Between May 01, 2023, and June 20, 2023, 48 patients with severe COVID-19 pneumonia were treated at the Department of Respiratory and Critical Care Medicine of Jinan Fourth People's Hospital. The observation group (21 patients) received standard care and high-dose corticosteroids, (high-dose group). The control group (27 patients) received standard care and low-dose corticosteroids (low-dose group). We collected baseline data and recorded inflammatory marker levels after 3 days of treatment, body temperature recovery time, length of stay, and 28-day all-cause mortality. The results of outpatient follow-up were recorded after 1 month. RESULTS There were no significant differences in 28-day mortality and length of stay. The number of days it took for body temperature to return to normal in the high-dose group was less than in the low-dose group. The high-dose group had significantly more reduced inflammatory factors (C-reactive protein (CRP), interleukin-6 (IL-6). A total of 20 discharged patients were given 8-16 mg of methylprednisolone, depending on chest computed tomography (CT) and clinical symptoms after 1 month; in all discharged patients using oral corticosteroids, CT features improved. CONCLUSION High-dose corticosteroids had a significantly positive effect on the reduction of inflammatory factors and shortening body temperature recovery time. In the treatment of severe COVID-19 pneumonia, early administration of high-dose, short-course corticosteroids should be implemented.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| | - Lin Su
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China.
| | - Wenwen Wu
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| | - Qing Qiao
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| | - Shuncui Gao
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| | - Yan Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| | - Yanmei Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| |
Collapse
|
37
|
Li L, Li L, Cai X, Pan Z. New Insights into the Effects of SARS-CoV-2 on Metabolic Organs: A Narrative Review of COVID-19 Induced Diabetes. Diabetes Metab Syndr Obes 2024; 17:1383-1389. [PMID: 38529167 PMCID: PMC10962470 DOI: 10.2147/dmso.s454408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19)-induced new-onset diabetes has raised widespread concerns. Increased glucose concentration and insulin resistance levels were observed in the COVID-19 patients. COVID-19 patients with newly diagnosed diabetes may have worse clinical outcomes and can have serious consequences. The types and exact mechanisms of COVID-19-caused diabetes are not well understood. Understanding the direct effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on pancreatic beta cells and insulin target metabolism organs, such as the liver, muscle, and adipose tissues, will provide new ideas for preventing and treating the new-onset diabetes induced by COVID-19.
Collapse
Affiliation(s)
- Lu Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Lin Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xianhui Cai
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
38
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
39
|
Krupka S, Hoffmann A, Jasaszwili M, Dietrich A, Guiu-Jurado E, Klöting N, Blüher M. Consequences of COVID-19 on Adipose Tissue Signatures. Int J Mol Sci 2024; 25:2908. [PMID: 38474155 DOI: 10.3390/ijms25052908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Since the emergence of coronavirus disease-19 (COVID-19) in 2019, it has been crucial to investigate the causes of severe cases, particularly the higher rates of hospitalization and mortality in individuals with obesity. Previous findings suggest that adipocytes may play a role in adverse COVID-19 outcomes in people with obesity. The impact of COVID-19 vaccination and infection on adipose tissue (AT) is currently unclear. We therefore analyzed 27 paired biopsies of visceral and subcutaneous AT from donors of the Leipzig Obesity BioBank that have been categorized into three groups (1: no infection/no vaccination; 2: no infection but vaccinated; 3: infected and vaccinated) based on COVID-19 antibodies to spike (indicating vaccination) and/or nucleocapsid proteins. We provide additional insights into the impact of COVID-19 on AT biology through a comprehensive histological transcriptome and serum proteome analysis. This study demonstrates that COVID-19 infection is associated with smaller average adipocyte size. The impact of infection on gene expression was significantly more pronounced in subcutaneous than in visceral AT and mainly due to immune system-related processes. Serum proteome analysis revealed the effects of the infection on circulating adiponectin, interleukin 6 (IL-6), and carbonic anhydrase 5A (CA5A), which are all related to obesity and blood glucose abnormalities.
Collapse
Affiliation(s)
- Sontje Krupka
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Mariami Jasaszwili
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Arne Dietrich
- Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Esther Guiu-Jurado
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
40
|
Rasmi Y, di Bari I, Faisal S, Haque M, Aramwit P, da Silva A, Roshani Asl E. Herbal-based therapeutics for diabetic patients with SARS-Cov-2 infection. Mol Biol Rep 2024; 51:316. [PMID: 38376656 DOI: 10.1007/s11033-024-09291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Human SARS Coronavirus-2 (SARS-CoV-2) has infected more than 170 million people worldwide, being responsible for about 3.5 million deaths so far. Despite ongoing investigations, there is still more to understand the mechanism of COVID-19 infection completely. However, it has been evidenced that SARS-CoV-2 can cause Coronavirus disease (COVID-19) notably in diabetic people. Approximately 35% of the patients who died of this disease had diabetes. A growing number of studies have evidenced that hyperglycemia is a significant risk factor for severe SARS-CoV-2 infection and plays a key role in COVID-19 mortality and diabetes comorbidity. The uncontrolled hyperglycemia can produce low-grade inflammation and impaired immunity-mediated cytokine storm that fail multiple organs and sudden death in diabetic patients with SARS-CoV-2 infection. More importantly, SARS-CoV-2 infection and interaction with ACE2 receptors also contribute to pancreatic and metabolic impairment. Thus, using of diabetes medications has been suggested to be beneficial in the better management of diabetic COVID-19 patients. Herbal treatments, as safe and affordable therapeutic agents, have recently attracted a lot of attention in this field. Accordingly, in this review, we intend to have a deep look into the molecular mechanisms of diabetic complications in SARS-CoV-2 infection and explore the therapeutic potentials of herbal medications and natural products in the management of diabetic COVID-19 patients based on recent studies and the existing clinical evidence.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Orūmīyeh, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Orūmīyeh, Iran
| | - Ighli di Bari
- Section of Nephrology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Shah Faisal
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Munima Haque
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand
| | - Aline da Silva
- Department of Soil and Rural, Centre for Agrarian Science, Campus II, Federal University of Paraiba, Areia, João Pessoa, Brazil.
| | - Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
41
|
Gilani A, Stoll L, Homan EA, Lo JC. Adipose Signals Regulating Distal Organ Health and Disease. Diabetes 2024; 73:169-177. [PMID: 38241508 PMCID: PMC10796297 DOI: 10.2337/dbi23-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 01/21/2024]
Abstract
Excessive adiposity in obesity is a significant risk factor for development of type 2 diabetes (T2D), nonalcoholic fatty liver disease, and other cardiometabolic diseases. An unhealthy expansion of adipose tissue (AT) results in reduced adipogenesis, increased adipocyte hypertrophy, adipocyte hypoxia, chronic low-grade inflammation, increased macrophage infiltration, and insulin resistance. This ultimately culminates in AT dysfunction characterized by decreased secretion of antidiabetic adipokines such as adiponectin and adipsin and increased secretion of proinflammatory prodiabetic adipokines including RBP4 and resistin. This imbalance in adipokine secretion alters the physiological state of AT communication with target organs including pancreatic β-cells, heart, and liver. In the pancreatic β-cells, adipokines are known to have a direct effect on insulin secretion, gene expression, cell death, and/or dedifferentiation. For instance, impaired secretion of adipsin, which promotes insulin secretion and β-cell identity, results in β-cell failure and T2D, thus presenting a potential druggable target to improve and/or preserve β-cell function. The cardiac tissue is affected by both the classic white AT-secreted adipokines and the newly recognized brown AT (BAT)-secreted BATokines or lipokines that alter lipid deposition and ventricular function. In the liver, adipokines affect hepatic gluconeogenesis, lipid accumulation, and insulin sensitivity, underscoring the importance of adipose-liver communication in the pathogenesis of nonalcoholic fatty liver disease. In this perspective, we outline what is currently known about the effects of individual adipokines on pancreatic β-cells, liver, and the heart.
Collapse
Affiliation(s)
- Ankit Gilani
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Lisa Stoll
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Edwin A. Homan
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - James C. Lo
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
42
|
Wu Z, Wang J, Ullah R, Chen M, Huang K, Dong G, Fu J. Covid 19 and diabetes in children: advances and strategies. Diabetol Metab Syndr 2024; 16:28. [PMID: 38287388 PMCID: PMC10823738 DOI: 10.1186/s13098-024-01267-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Throughout the COVID-19 pandemic, there has been a notable increase in the incidence of new-onset diabetes and diabetic ketoacidosis (DKA). Simultaneously, children diagnosed with type 1 diabetes (T1D) have encountered difficulties in maintaining optimal blood glucose levels. The mechanisms underpinning these correlations still remain a puzzle. We reviewed the studies that examined changes in incidence during the pandemic. These studies utilized various metrics for comparison, which encompassed the timing of data collection, diagnostic criteria, as well as the numbers and incidence rates of diabetes and DKA. We found the incidence of diabetes and DKA was higher during the pandemic. As to mechanisms, the invivo and invitro study revealed the factors such as direct viral damage, metabolic dysfunction, and immune responses all attribute to the process of T1D after suffering from COVID-19. Furthermore, we provide some useful strategies to prevent and treat children suffering from diabetes and COVID-19. CONCLUSIONS Strong correlations have been observed between new-onset diabetes and COVID-19. Insights gleaned from clinical descriptions and basic research can offer valuable experience and recommendations for the treatment and prevention of diabetes during future pandemics.
Collapse
Affiliation(s)
- Zhaoyuan Wu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinling Wang
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Minghao Chen
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ke Huang
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
43
|
El Safadi D, Paulo-Ramos A, Hoareau M, Roche M, Krejbich-Trotot P, Viranaicken W, Lebeau G. The Influence of Metabolism on Immune Response: A Journey to Understand Immunometabolism in the Context of Viral Infection. Viruses 2023; 15:2399. [PMID: 38140640 PMCID: PMC10748259 DOI: 10.3390/v15122399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, the emergence of the concept of immunometabolism has shed light on the pivotal role that cellular metabolism plays in both the activation of immune cells and the development of immune programs. The antiviral response, a widely distributed defense mechanism used by infected cells, serves to not only control infections but also to attenuate their deleterious effects. The exploration of the role of metabolism in orchestrating the antiviral response represents a burgeoning area of research, especially considering the escalating incidence of viral outbreaks coupled with the increasing prevalence of metabolic diseases. Here, we present a review of current knowledge regarding immunometabolism and the antiviral response during viral infections. Initially, we delve into the concept of immunometabolism by examining its application in the field of cancer-a domain that has long spearheaded inquiries into this fascinating intersection of disciplines. Subsequently, we explore examples of immune cells whose activation is intricately regulated by metabolic processes. Progressing with a systematic and cellular approach, our aim is to unravel the potential role of metabolism in antiviral defense, placing significant emphasis on the innate and canonical interferon response.
Collapse
Affiliation(s)
- Daed El Safadi
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Aurélie Paulo-Ramos
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Mathilde Hoareau
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Marjolaine Roche
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Pascale Krejbich-Trotot
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Wildriss Viranaicken
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Grégorie Lebeau
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| |
Collapse
|
44
|
Sintsova O, Popkova D, Kalinovskii A, Rasin A, Borozdina N, Shaykhutdinova E, Klimovich A, Menshov A, Kim N, Anastyuk S, Kusaykin M, Dyachenko I, Gladkikh I, Leychenko E. Control of postprandial hyperglycemia by oral administration of the sea anemone mucus-derived α-amylase inhibitor (magnificamide). Biomed Pharmacother 2023; 168:115743. [PMID: 37862974 DOI: 10.1016/j.biopha.2023.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Diabetes mellitus is a serious threat to human health in both developed and developing countries. Optimal disease control requires the use of a diet and a combination of several medications, including oral hypoglycemic agents such as α-glucosidase inhibitors. Currently, the arsenal of available drugs is insufficient, which determines the relevance of studying new potent α-amylase inhibitors. We implemented the recombinant production of sea anemone derived α-amylase inhibitor magnificamide in Escherichia coli. Peptide was isolated by a combination of liquid chromatography techniques. Its folding and molecular weight was proved by 1H NMR and mass spectrometry. The Ki value of magnificamide against human pancreatic α-amylase is 3.1 nM according to Morrison equation for tight binding inhibitors. Our study of the thermodynamic characteristics of binding of magnificamide to human salivary and pancreatic α-amylases by isothermal titration calorimetry showed the presence of different binding mechanisms with Kd equal to 0.11 µM and 0.1 nM, respectively. Experiments in mice with streptozotocin-induced diabetes mimicking diabetes mellitus type 1 were used to study the efficiency of magnificamide against postprandial hyperglycemia. It was found that at a dose of 0.005 mg kg-1, magnificamide effectively blocks starch breakdown and prevents the development of postprandial hyperglycemia in T1D mice. Our results demonstrated the therapeutic potential of magnificamide for the control of postprandial hyperglycemia.
Collapse
Affiliation(s)
- Oksana Sintsova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Darya Popkova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Aleksandr Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anton Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Natalya Borozdina
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia
| | - Elvira Shaykhutdinova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia
| | - Anna Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Alexander Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Natalia Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Stanislav Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Mikhail Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Igor Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia
| | - Irina Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
45
|
Moser J, Emous M, Heeringa P, Rodenhuis-Zybert IA. Mechanisms and pathophysiology of SARS-CoV-2 infection of the adipose tissue. Trends Endocrinol Metab 2023; 34:735-748. [PMID: 37673763 DOI: 10.1016/j.tem.2023.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Obesity is an independent risk factor for severe COVID-19, yet there remains a lack of consensus on the mechanisms underlying this relationship. A hypothesis that has garnered considerable attention suggests that SARS-CoV-2 disrupts adipose tissue function, either through direct infection or by indirect mechanisms. Indeed, recent reports have begun to shed some light on the important role that the adipose tissue plays during the acute phase of infection, as well as mediating long-term sequelae. In this review, we examine the evidence of extrapulmonary dissemination of SARS-CoV-2 to the adipose tissue. We discuss the mechanisms, acute and long-term implications, and possible management strategies to limit or ameliorate severe disease and long-term metabolic disturbances.
Collapse
Affiliation(s)
- Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Marloes Emous
- Center Obesity Northern Netherlands (CON), Department of Surgery, Medical Center Leeuwarden, Leeuwarden, the Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Izabela A Rodenhuis-Zybert
- Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
46
|
Kim SH, Arora I, Hsia DS, Knowler WC, LeBlanc E, Mylonakis E, Pratley R, Pittas AG. New-Onset Diabetes After COVID-19. J Clin Endocrinol Metab 2023; 108:e1164-e1174. [PMID: 37207448 PMCID: PMC11009784 DOI: 10.1210/clinem/dgad284] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
There is evidence suggesting that infection with SARS-CoV-2 can lead to several long-term sequelae including diabetes. This mini-review examines the rapidly evolving and conflicting literature on new-onset diabetes after COVID-19, which we term NODAC. We searched PubMed, MEDLINE, and medRxiv from inception until December 1, 2022, using Medical Subject Headings (MeSH) terms and free text words including "COVID-19," "SARS-CoV-2," "diabetes," "hyperglycemia," "insulin resistance," and "pancreatic β-cell." We also supplemented searches by examining reference lists from retrieved articles. Current evidence suggests that COVID-19 increases the risk of developing diabetes, but the attributable risk is uncertain because of limitations of study designs and the evolving nature of the pandemic, including new variants, widespread population exposure to the virus, diagnostic options for COVID-19, and vaccination status. The etiology of diabetes after COVID-19 is likely multifactorial and includes factors associated with host characteristics (eg, age), social determinants of health (eg, deprivation index), and pandemic-related effects both at the personal (eg, psychosocial stress) and the societal-community level (eg, containment measures). COVID-19 may have direct and indirect effects on pancreatic β-cell function and insulin sensitivity related to the acute infection and its treatment (eg, glucocorticoids); autoimmunity; persistent viral residency in multiple organs including adipose tissue; endothelial dysfunction; and hyperinflammatory state. While our understanding of NODAC continues to evolve, consideration should be given for diabetes to be classified as a post-COVID syndrome, in addition to traditional classifications of diabetes (eg, type 1 or type 2), so that the pathophysiology, natural history, and optimal management can be studied.
Collapse
Affiliation(s)
- Sun H Kim
- Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ipsa Arora
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Daniel S Hsia
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - William C Knowler
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Erin LeBlanc
- Center for Health Research, Kaiser Permanente, Portland, OR 97227, USA
| | | | - Richard Pratley
- AdventHealth Translational Research Institute, Orlando, FL 32804, USA
| | - Anastassios G Pittas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
47
|
Kawakami E, Saiki N, Yoneyama Y, Moriya C, Maezawa M, Kawamura S, Kinebuchi A, Kono T, Funata M, Sakoda A, Kondo S, Ebihara T, Matsumoto H, Togami Y, Ogura H, Sugihara F, Okuzaki D, Kojima T, Deguchi S, Vallee S, McQuade S, Islam R, Natarajan M, Ishigaki H, Nakayama M, Nguyen CT, Kitagawa Y, Wu Y, Mori K, Hishiki T, Takasaki T, Itoh Y, Takayama K, Nio Y, Takebe T. Complement factor D targeting protects endotheliopathy in organoid and monkey models of COVID-19. Cell Stem Cell 2023; 30:1315-1330.e10. [PMID: 37802037 PMCID: PMC10575686 DOI: 10.1016/j.stem.2023.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/04/2023] [Accepted: 09/01/2023] [Indexed: 10/08/2023]
Abstract
COVID-19 is linked to endotheliopathy and coagulopathy, which can result in multi-organ failure. The mechanisms causing endothelial damage due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain elusive. Here, we developed an infection-competent human vascular organoid from pluripotent stem cells for modeling endotheliopathy. Longitudinal serum proteome analysis identified aberrant complement signature in critically ill patients driven by the amplification cycle regulated by complement factor B and D (CFD). This deviant complement pattern initiates endothelial damage, neutrophil activation, and thrombosis specific to organoid-derived human blood vessels, as verified through intravital imaging. We examined a new long-acting, pH-sensitive (acid-switched) antibody targeting CFD. In both human and macaque COVID-19 models, this long-acting anti-CFD monoclonal antibody mitigated abnormal complement activation, protected endothelial cells, and curtailed the innate immune response post-viral exposure. Collectively, our findings suggest that the complement alternative pathway exacerbates endothelial injury and inflammation. This underscores the potential of CFD-targeted therapeutics against severe viral-induced inflammathrombotic outcomes.
Collapse
Affiliation(s)
- Eri Kawakami
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Norikazu Saiki
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Chiharu Moriya
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mari Maezawa
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shuntaro Kawamura
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Akiko Kinebuchi
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tamaki Kono
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaaki Funata
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Ayaka Sakoda
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Shigeru Kondo
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, 3-3-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Disease, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takashi Kojima
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Sebastien Vallee
- Rare Disease DDU, Takeda Pharmaceutical Company Ltd, 125 Binney Street, Cambridge, MA 02139, USA
| | - Susan McQuade
- Rare Disease DDU, Takeda Pharmaceutical Company Ltd, 125 Binney Street, Cambridge, MA 02139, USA; BPS Biosciences Inc., 6405 Mira Mesa Blvd. Suite 100, San Diego, CA 92121, USA
| | - Rizwana Islam
- Rare Disease DDU, Takeda Pharmaceutical Company Ltd, 125 Binney Street, Cambridge, MA 02139, USA
| | - Madhusudan Natarajan
- Rare Disease DDU, Takeda Pharmaceutical Company Ltd, 125 Binney Street, Cambridge, MA 02139, USA
| | - Hirohito Ishigaki
- Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Misako Nakayama
- Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Cong Thanh Nguyen
- Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Yoshinori Kitagawa
- Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Yunheng Wu
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kensaku Mori
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Information Technology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Research Center for Medical Bigdata, National Institute of Informatics, Tokyo 100-0003, Japan
| | - Takayuki Hishiki
- Kanagawa Prefectural Institute of Public Health, 1-3-1, Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomohiko Takasaki
- Kanagawa Prefectural Institute of Public Health, 1-3-1, Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan; Advanced Technology and Development Division, BML, INC, 1361-1, Matoba, Kawagoe-shi, Saitama 350-1101, Japan
| | - Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasunori Nio
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan.
| | - Takanori Takebe
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan; Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; The Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe) and Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
48
|
Gu SX, Yarovinsky TO, Hwa J. Fishing for "complements" with vascular organoid models of microvascular disease. Cell Stem Cell 2023; 30:1285-1286. [PMID: 37802032 DOI: 10.1016/j.stem.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
In this issue of Cell Stem Cell, Kawakami et al. develop a SARS-CoV-2 infection-competent, progenitor-derived, human vascular organoid model and uncover a role for complement factor D (CFD) in mediating microvascular immunothrombosis. This model may be applied to conditions where microvascular disease plays a major pathogenic role.
Collapse
Affiliation(s)
- Sean X Gu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Timur O Yarovinsky
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Yale Cooperative Center of Excellence in Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
49
|
Meng QT, Song WQ, Churilov LP, Zhang FM, Wang YF. Psychophysical therapy and underlying neuroendocrine mechanisms for the rehabilitation of long COVID-19. Front Endocrinol (Lausanne) 2023; 14:1120475. [PMID: 37842301 PMCID: PMC10570751 DOI: 10.3389/fendo.2023.1120475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
With the global epidemic and prevention of the COVID-19, long COVID-19 sequelae and its comprehensive prevention have attracted widespread attention. Long COVID-19 sequelae refer to that three months after acute COVID-19, the test of SARS-CoV-2 is negative, but some symptoms still exist, such as cough, prolonged dyspnea and fatigue, shortness of breath, palpitations and insomnia. Its pathological mechanism is related to direct viral damage, immunopathological response, endocrine and metabolism disorders. Although there are more effective methods for treating COVID-19, the treatment options available for patients with long COVID-19 remain quite limited. Psychophysical therapies, such as exercise, oxygen therapy, photobiomodulation, and meditation, have been attempted as treatment modalities for long COVID-19, which have the potential to promote recovery through immune regulation, antioxidant effects, and neuroendocrine regulation. Neuroendocrine regulation plays a significant role in repairing damage after viral infection, regulating immune homeostasis, and improving metabolic activity in patients with long COVID-19. This review uses oxytocin as an example to examine the neuroendocrine mechanisms involved in the psychophysical therapies of long COVID-19 syndrome and proposes a psychophysical strategy for the treatment of long COVID-19.
Collapse
Affiliation(s)
- Qing-Tai Meng
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wu-Qi Song
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Leonid P. Churilov
- Department of Experimental Tuberculosis, St. Petersburg State Research Institute of Phthisiopulmonology, Saint-Petersburg, Russia
| | - Feng-Min Zhang
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
50
|
Si Y, Fei Y, Ma H, Xu Y, Ning L, Li X, Ren Q. The causal association between polycystic ovary syndrome and susceptibility and severity of COVID-19: a bidirectional Mendelian randomization study using genetic data. Front Endocrinol (Lausanne) 2023; 14:1229900. [PMID: 37745707 PMCID: PMC10515223 DOI: 10.3389/fendo.2023.1229900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Observational studies have reported an association between polycystic ovary syndrome (PCOS) and COVID-19, but a definitive causal relationship has not been established. This study aimed to assess this association using two-way two-sample Mendelian randomization (MR). Methods A summary of PCOS characteristics was compiled using the PCOS summary statistics from the Apollo University of Cambridge Repository. COVID-19 susceptibility and severity statistics, including hospitalization and extremely severe disease, were obtained from genome-wide association studies from the COVID-19 Host Genetics Initiative. The primary analysis used the inverse variance-weighted method, supplemented by the weighted median, MR-Egger, and MR-PRESSO methods. Results The forward MR analysis showed no significant impact of PCOS on COVID-19 susceptibility, hospitalization, or severity (OR = 0.983, 1.011, 1.014; 95% CI = 0.958-1.008, 0.958-1.068, 0.934-1.101; and p = 0.173, 0.68, 0.733; respectively). Similarly, reverse MR analysis found no evidence supporting COVID-19 phenotypes as risk or protective factors for PCOS (OR = 1.041, 0.995, 0.944; 95% CI = 0.657-1.649, 0.85-1.164, 0.843-1.058; and p = 0.864, 0.945, 0.323; respectively). Consequently, no significant association between any COVID-19 phenotype and PCOS was established. Conclusion This MR study suggested that PCOS is not a causal risk factor for the susceptibility and severity of COVID-19. The associations identified in previous observational studies might be attributable to the presence of comorbidities in the patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingling Ren
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|