1
|
Wang H, Yang Y, Li T, Chang S, Zhu Y, Liu C. Drinking Water Temperature Impacts the Pathogenesis of DSS-Induced Ulcerative Colitis by Regulating Intestinal Barrier Function and Remodeling the Gut Microbiota Composition. FASEB J 2025; 39:e70645. [PMID: 40377203 DOI: 10.1096/fj.202500062r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/18/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Environmental factors, including poor dietary habits and unhealthy drinking patterns, contribute to ulcerative colitis (UC). While the relationship between diet-related malnutrition and UC has been extensively explored, the impact of drinking water temperature remains largely overlooked, prompting us to investigate its influence on UC pathogenesis and explore the underlying mechanisms. In the present study, we observed that, unlike external thermal and cold therapy, varying drinking water temperatures transiently altered the internal body temperature of the digestive tract. Specifically, chronic drinking of 0°C water had significant anti-inflammatory effects and preserved the integrity of the mucosal barrier in a colitis mouse model. Mechanistically, this temperature spectrum changed the composition of the gut microbiota from inflammation-prone (25°C drinking water) to a resting pattern similar to that of the negative control. Specifically, the abundances of Blautia and Parasutterella, two beneficial genera, were strongly increased in response to 0°C water, accompanied by elevated levels of short-chain fatty acids. In contrast, drinking 40°C water had opposite effects on all the examined parameters and generally aggravated the development of colitis. This study is the first to demonstrate how modifying the temperature of habitual drinking water can modulate colitis progression, providing a novel and noninvasive approach to UC management. Specifically, chronic consumption of 0°C water alleviated the severity of colitis, whereas 40°C water aggravated the disease. Therefore, by focusing on commonly consumed drinking water temperatures, our findings suggest that this simple intervention could be a safe, convenient, and effective therapeutic strategy.
Collapse
Affiliation(s)
- Huiting Wang
- Department of Endocrinology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, China
| | - Yiheng Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyu Li
- Department of Endocrinology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, China
| | - Shengyu Chang
- Department of Endocrinology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, China
| | - Yao Zhu
- Department of Endocrinology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, China
| | - Chang Liu
- Department of Endocrinology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Slezáková D, Adamová LM, Marček P, Kadlic P, Konečná M, Valkovič P, Minár M. A supplementary training program integrating cold exposure, breathing exercises and mindfulness as a complementary treatment for neuropsychological aspects of multiple sclerosis - a pilot interventional study. Mult Scler Relat Disord 2025; 99:106450. [PMID: 40267744 DOI: 10.1016/j.msard.2025.106450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Most of the patients with multiple sclerosis (MS) suffer from cognitive impairment, fatigue and/or mood disturbances. These symptoms are usually resistant to both disease-modifying and symptomatic treatment. Since there is a trend to a holistic approach to MS patients, we aimed to confirm the effect of combined cold exposure, controlled breathing and mindfulness - Wim Hof Method (WHM) - on neuropsychiatric symptoms of MS. METHODS In this randomized interventional study we examined the change in the score of specific neuropsychiatric scales/questionnaires before and after the 12-week WHM-based training program. We compared the change with a control group with no intervention. RESULTS We obtained complete data from 12 patients in the WHM group and 13 patients in the control group. After 12 weeks, the WHM group had significantly higher improvement in cognition - SDMT (p = 0.045), TMT-A (p = 0.041), TMT-B (p < 0.001); fatigue - FSMCC (p = 0.039); anxiety - GAD (p = 0.015), and depression - PHQ-9 (p = 0.033). CONCLUSION Our results indicate that the Wim Hof method appears to be a suitable complementary non-pharmacological treatment for neuropsychiatric symptoms of MS.
Collapse
Affiliation(s)
- Darina Slezáková
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - Louise Mária Adamová
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - Peter Marček
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - Pavol Kadlic
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - Michaela Konečná
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - Peter Valkovič
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Slovakia; Institute of Normal and Pathological Physiology, Slovak Academy of Science, Bratislava, Slovakia
| | - Michal Minár
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
3
|
Zhao B, Wang C, Sun M, Ma X, Zeng Q, Xi J, Zhou J, Pei X, Jia Y, Yue W. UC-MSCs based on biomimetic microniche exert excellent regulatory effects on acute brain inflammation through advantageous properties. Biomaterials 2025; 315:122945. [PMID: 39522143 DOI: 10.1016/j.biomaterials.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/13/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Neuroinflammation triggered by activated microglia leads to neuronal damage and, to a certain extent, neurodegeneration. Human umbilical cord mesenchymal stem cells (UC-MSCs) have good immunomodulatory and neuroprotective effects as well as therapeutic potential for neuroinflammation-related diseases. However, the complex microenvironment created by neuroinflammation poses a challenge to transplanted UC-MSCs. The emerging biomimetic microniche (BN)-based culture technology provides new opportunities to optimize the preparation of UC-MSCs; but the fundamental changes in the characteristics of UC-MSCs based on BN remain unclear, and more reliable preclinical data are needed to support their ability to regulate inflammation. Here, we systematically studied the cellular properties and inflammation regulatory capacity of UC-MSCs in conventional static planar culture (SP-UCMSCs) and suspension culture based on BN (BN-UCMSCs). In vitro, compared with SP-UCMSCs, BN-UCMSCs not only maintained the fundamental characteristics of MSCs, but also significantly enhanced cell proliferation, adhesion, and migration capabilities, etc; notably, the paracrine function and anti-inflammatory capacity of BN-UCMSCs were also enhanced. We further established a murine model of acute brain inflammation and demonstrated that the expression level of pro-inflammatory cytokines in hippocampal and cortical tissues of the BN-UCMSCs group was significantly decreased compared with that in the SP-UCMSCs group. Subsequent transcriptomic analysis of hippocampal and cortical tissues revealed that BN-UCMSCs had the advantage of significantly reducing the expression of pro-inflammatory cytokines through the TLR4-Myd88-NF-κB axis, which was further validated at the gene and protein levels. Taken together, these data strongly indicated that BN-UCMSCs exerts excellent regulatory effects on acute brain inflammation through advantageous properties.
Collapse
Affiliation(s)
- Bichun Zhao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chao Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Manqiang Sun
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaocao Ma
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing, 100853, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jiafei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Junnian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
4
|
Luo P, Gu Q, Wang J, Meng X, Zhao M. Developing an IPF Prognostic Model and Screening for Key Genes Based on Cold Exposure-Related Genes Using Bioinformatics Approaches. Biomedicines 2025; 13:690. [PMID: 40149666 PMCID: PMC11940207 DOI: 10.3390/biomedicines13030690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Cold exposure has an impact on various respiratory diseases. However, its relationship with idiopathic pulmonary fibrosis (IPF) remains to be elucidated. In this study, bioinformatics methods were utilized to explore the potential link between cold exposure and IPF. Methods: Cold exposure-related genes (CERGs) were identified using RNA-Seq data from mice exposed to cold versus room temperature conditions, along with cross-species orthologous gene conversion. Consensus clustering analysis was performed based on the CERGs. A prognostic model was established using univariate and multivariate risk analyses, as well as Lasso-Cox analysis. Differential analysis, WGCNA, and Lasso-Cox methods were employed to screen for signature genes. Results: This study identified 151 CERGs. Clustering analysis based on these CERGs revealed that IPF patients could be divided into two subgroups with differing severity levels. Significant differences were observed between these two subgroups in terms of hypoxia score, EMT score, GAP score, immune infiltration patterns, and mortality rates. A nine-gene prognostic model for IPF was established based on the CERG (AUC: 1 year: 0.81, 3 years: 0.79, 5 years: 0.91), which outperformed the GAP score (AUC: 1 year: 0.66, 3 years: 0.75, 5 years: 0.72) in prognostic accuracy. IPF patients were classified into high-risk and low-risk groups based on the RiskScore from the prognostic model, with significant differences observed between these groups in hypoxia score, EMT score, GAP score, immune infiltration patterns, and mortality rates. Ultimately, six high-risk signature genes associated with cold exposure in IPF were identified: GASK1B, HRK1, HTRA1, KCNN4, MMP9, and SPP1. Conclusions: This study suggests that cold exposure may be a potential environmental factor contributing to the progression of IPF. The prognostic model built upon cold exposure-related genes provides an effective tool for assessing the severity of IPF patients. Meanwhile, GASK1B, HRK1, HTRA1, KCNN4, MMP9, and SPP1 hold promise as potential biomarkers and therapeutic targets for IPF.
Collapse
Affiliation(s)
- Peiyao Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin 150001, China
| | - Quankuan Gu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin 150001, China
| | - Jianpeng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin 150001, China
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin 150001, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin 150001, China
| |
Collapse
|
5
|
Jaschke NP, Wang A. Integrated control of leukocyte compartments as a feature of adaptive physiology. Immunity 2025; 58:279-294. [PMID: 39909034 DOI: 10.1016/j.immuni.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/10/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
As a highly diverse and mobile organ, the immune system is uniquely equipped to participate in tissue responses in a tunable manner, depending on the number, type, and nature of cells deployed to the respective organ. Most acute organismal stressors that threaten survival-predation, infection, poisoning, and others-induce pronounced redistribution of immune cells across tissue compartments. Here, we review the current understanding of leukocyte compartmentalization under homeostatic and noxious conditions. We argue that leukocyte shuttling between compartments is a function of local tissue demands, which are linked to the organ's contribution to adaptive physiology at steady state and upon challenge. We highlight the neuroendocrine signals that relay and organize this trafficking behavior and outline mechanisms underlying the functional diversification of leukocyte responses. In this context, we discuss important areas of future inquiry and the implications of this scientific space for clinical medicine in the era of targeted immunomodulation.
Collapse
Affiliation(s)
- Nikolai P Jaschke
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| | - Andrew Wang
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Li FXZ, Xu F, Li CC, Lei LM, Shan SK, Zheng MH, Lin X, Guo B, Tang KX, Duan JY, Wu YY, Cao YC, Liu JJ, Yuan LQ. Cold Exposure Alleviates T2DM Through Plasma-Derived Extracellular Vesicles. Int J Nanomedicine 2024; 19:10077-10095. [PMID: 39371478 PMCID: PMC11456273 DOI: 10.2147/ijn.s441847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/14/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Anecdotal reports have praised the benefits of cold exposure, exemplified by activities like winter swimming and cold water immersion. Cold exposure has garnered acclaim for its potential to confer benefits and potentially alleviate diabetes. We posited that systemic cold temperature (CT, 4-8°C) likely influences the organism's blood components through ambient temperature, prompting our investigation into the effects of chronic cold exposure on type 2 diabetic (T2DM) mice and our initial exploration of how cold exposure mitigates the incidence of T2DM. Methods The effects of CT (4-8°C) or room temperature (RT, 22-25°C) on T2DM mice were investigated. Mice blood and organ specimens were collected for fully automated biochemical testing, ELISA, HE staining, immunohistochemistry, and immunofluorescence. Glucose uptake was assessed using flow cytometry with 2-NBDG. Changes in potential signaling pathways such as protein kinase B (AKT), phosphorylated AKT (p-AKT), insulin receptor substrates 1 (IRS1), and phosphorylated IRS1 (p-IRS1) were evaluated by Western blot. Results CT or CT mice plasma-derived extracellular vesicles (CT-EVs) remarkably reduced blood glucose levels and improved insulin sensitivity in T2DM mice. This treatment enhanced glucose metabolism, systemic insulin sensitivity, and insulin secretion function while promoting glycogen accumulation in the liver and muscle. Additionally, CT-EVs treatment protected against the streptozocin (STZ)-induced destruction of islets in T2DM mice by inhibiting β-cell apoptosis. CT-EVs also shielded islets from destruction and increased the expression of p-IRS1 and p-AKT in adipocytes and hepatocytes. In vitro experiments further confirmed its pro-insulin sensitivity effect. Conclusion Our data indicate that cold exposure may have a potentially beneficial effect on the development of T2DM, mainly through the anti-diabetic effect of plasma-derived EVs released during cold stimulation. This phenomenon could significantly contribute to understanding the lower prevalence of diabetes in colder regions.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Jun-Jie Liu
- Department of Periodontal Division, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| |
Collapse
|
7
|
Vasek D, Holicek P, Galatik F, Kratochvilova A, Porubska B, Somova V, Fikarova N, Hajkova M, Prevorovsky M, Zurmanova JM, Krulova M. Immune response to cold exposure: Role of γδ T cells and TLR2-mediated inflammation. Eur J Immunol 2024; 54:e2350897. [PMID: 38988146 DOI: 10.1002/eji.202350897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The mammalian body possesses remarkable adaptability to cold exposure, involving intricate adjustments in cellular metabolism, ultimately leading to thermogenesis. However, cold-induced stress can impact immune response, primarily through noradrenaline-mediated pathways. In our study, we utilized a rat model subjected to short-term or long-term mild cold exposure to investigate systemic immune response during the cold acclimation. To provide human relevance, we included a group of regular cold swimmers in our study. Our research revealed complex relationship between cold exposure, neural signaling, immune response, and thermogenic regulation. One-day cold exposure triggered stress response, including cytokine production in white adipose tissue, subsequently activating brown adipose tissue, and inducing thermogenesis. We further studied systemic immune response, including the proportion of leukocytes and cytokines production. Interestingly, γδ T cells emerged as possible regulators in the broader systemic response, suggesting their possible contribution in the dynamic process of cold adaptation. We employed RNA-seq to gain further insights into the mechanisms by which γδ T cells participate in the response to cold. Additionally, we challenged rats exposed to cold with the Toll-like receptor 2 agonist, showing significant modulation of immune response. These findings significantly contribute to understanding of the physiological acclimation that occur in response to cold exposure.
Collapse
Affiliation(s)
- Daniel Vasek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Frantisek Galatik
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Kratochvilova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Bianka Porubska
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Somova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Natalie Fikarova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Hajkova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Prevorovsky
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Di Y, Li H, Yang J, Feng M, Wang S, Li W, Wang X, Zhu Y, Shi Y, Feng R, Qu B. PPARγ/NF-κB axis contributes to cold-induced resolution of experimental colitis and preservation of intestinal barrier. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167326. [PMID: 38960052 DOI: 10.1016/j.bbadis.2024.167326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Environmental stress is a significant contributor to the development of inflammatory bowel disease (IBD). The involvement of temperature stimulation in the development of IBD remains uncertain. Our preliminary statistical data suggest that the prevalence of IBD is slightly lower in colder regions compared to non-cold regions. The observation indicates that temperature changes may play a key role in the occurrence and progression of IBD. Here, we hypothesized that cold stress has a protective effect on IBD. METHODS The cold exposure model for mice was placed in a constant temperature and humidity chamber, maintained at a temperature of 4 °C. Colitis models were induced in the mice using TNBS or DSS. To promote the detection methods more clinically, fluorescence confocal endoscopy was used to observe the mucosal microcirculation status of the colon in the live model. Changes in the colonic wall of the mice were detected using 9.4 T Magnetic Resonance Imaging (MRI) imaging and in vivo fluorescence imaging. Hematoxylin and eosin (H&E) and Immunofluorescence (IF) staining confirmed the pathological alterations in the colons of sacrificed mice. Molecular changes at the protein level were assessed through Western blotting and Enzyme-Linked Immunosorbent Assay (ELISA) assays. RNA sequencing (RNA-seq) and metabolomics (n = 18) were jointly analyzed to investigate the biological changes in the colon of mice treated by cold exposure. RESULTS Cold exposure decreased the pathologic and disease activity index scores in a mouse model. Endomicroscopy revealed that cold exposure preserved colonic mucosal microcirculation, and 9.4 T MRI imaging revealed alleviation of intestinal wall thickness. In addition, the expression of the TLR4 and PP65 proteins was downregulated and epithelial cell junctions were strengthened after cold exposure. Intriguingly, we found that cold exposure reversed the decrease in ZO-1 and occludin protein levels in dextran sulfate sodium (DSS)- and trinitrobenzenesulfonic acid-induced colitis mouse models. Multi-omics analysis revealed the biological landscape of DSS-induced colitis under cold exposure and identified that the peroxisome proliferator-activated receptor (PPAR) signaling pathway mediates the effects of cold on colitis. Subsequent administration of rosiglitazone (PPAR agonist) enhanced the protective effect of cold exposure on colitis, whereas GW9662 (PPAR antagonist) administration mitigated these protective effects. Overall, cold exposure ameliorated the progression of mouse colitis through the PPARγ/NF-κB signaling axis and preserved the intestinal mucosal barrier. CONCLUSION Our study provides a mechanistic link between intestinal inflammation and cold exposure, providing a theoretical framework for understanding the differences in the prevalence of IBD between the colder regions and non-cold regions, and offering new insights into IBD therapy.
Collapse
Affiliation(s)
- Yuzhu Di
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hui Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Jia Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Minghao Feng
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Shuang Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Wanying Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xiuqing Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yuxin Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yan Shi
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150028, China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang 150081, China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Heilongjiang 150081, China
| | - Bo Qu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
9
|
Belousova O, Lopatina A, Melnikov M. The role of dopamine in the modulation of monocyte-induced Th17- and Th1-immune response in multiple sclerosis. Int Immunopharmacol 2024; 137:112540. [PMID: 38908080 DOI: 10.1016/j.intimp.2024.112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) with autoimmune mechanism of development. The investigation of neuroimmune interaction is one of the most developing directions in MS pathogenesis study. Catecholamines are direct mediators of this interaction and can be involved in the pathogenesis of MS by modulating cells of both innate and adaptive immune systems. The aim of this study was to investigate the influence of dopamine and norepinephrine on the ability of monocytes of patients with relapsing-remitting MS, to induce Th17- and Th1-immune response, which play a crucial role in the autoimmunity of the CNS. We found, that both dopamine and norepinephrine modulate the production of Th17- (IL-23, IL-1β, and IL-6) and Th1-promoting (IL-12p70) cytokines by activated peripheral blood mononuclear cells or CD14+ monocytes in patients with MS and in healthy subjects. We also found the inhibitory effect of dopamine and norepinephrine on monocyte-induced production of IL-17 and IFN-γ by autologous CD4+ T-cells in both groups. Finally, the multidirectional role of D1- and D2-like dopaminergic receptors in the modulatory effect of dopamine on the ability of CD14+ monocytes to activate CD4+ T-cells was established, expanding the potential role of dopamine in the neuroimmune interaction.
Collapse
Affiliation(s)
- Olga Belousova
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnologies of the Federal Medical-Biological Agency of Russia, 117513, Moscow, Russia
| | - Anna Lopatina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnologies of the Federal Medical-Biological Agency of Russia, 117513, Moscow, Russia
| | - Mikhail Melnikov
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnologies of the Federal Medical-Biological Agency of Russia, 117513, Moscow, Russia; Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency, 115478, Moscow, Russia.
| |
Collapse
|
10
|
Stojchevski R, Chandrasekaran P, Hadzi-Petrushev N, Mladenov M, Avtanski D. Adipose Tissue Dysfunction Related to Climate Change and Air Pollution: Understanding the Metabolic Consequences. Int J Mol Sci 2024; 25:7849. [PMID: 39063092 PMCID: PMC11277516 DOI: 10.3390/ijms25147849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator, interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue (BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function in the presence of uncoupled protein 1 (UCP1). Recently, studies on climate change and the influence of environmental pollutants on energy homeostasis and obesity have drawn increasing attention. The reciprocal relationship between increasing adiposity and increasing temperatures results in reduced adaptive thermogenesis, decreased physical activity, and increased carbon footprint production. In addition, the impact of climate change makes obese individuals more prone to developing type 2 diabetes mellitus (T2DM). An impaired response to heat stress, compromised vasodilation, and sweating increase the risk of diabetes-related comorbidities. This comprehensive review provides information about the effects of climate change on obesity and adipose tissue, the risk of T2DM development, and insights into the environmental pollutants causing adipose tissue dysfunction and obesity. The effects of altered dietary patterns on adiposity and adaptation strategies to mitigate the detrimental effects of climate change are also discussed.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
11
|
Lei LM, Li FXZ, Lin X, Xu F, Shan SK, Guo B, Zheng MH, Tang KX, Wang Y, Xu QS, Ouyang WL, Duan JY, Wu YY, Cao YC, Zhou ZA, He SY, Wu YL, Chen X, Lin ZJ, Pan Y, Yuan LQ, Li ZH. Cold exposure-induced plasma exosomes impair bone mass by inhibiting autophagy. J Nanobiotechnology 2024; 22:361. [PMID: 38910236 PMCID: PMC11194967 DOI: 10.1186/s12951-024-02640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/14/2024] [Indexed: 06/25/2024] Open
Abstract
Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.
Collapse
Affiliation(s)
- Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ouyang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ye-Chi Cao
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Si-Yang He
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yi Pan
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, No. 374 The Dianmian Avenue, Wuhua, Kunming, Yunnan, 650101, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
12
|
Wang H, Ülgen M, Trajkovski M. Importance of temperature on immuno-metabolic regulation and cancer progression. FEBS J 2024; 291:832-845. [PMID: 36152006 DOI: 10.1111/febs.16632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapies emerge as promising strategies for restricting tumour growth. The tumour microenvironment (TME) has a major impact on the anti-tumour immune response and on the efficacy of the immunotherapies. Recent studies have linked changes in the ambient temperature with particular immuno-metabolic reprogramming and anti-cancer immune response in laboratory animals. Here, we describe the energetic balance of the organism during change in temperature, and link this to the immune alterations that could be of relevance for cancer, as well as for other human diseases. We highlight the contribution of the gut microbiota in modifying this interaction. We describe the overall metabolic response and underlying mechanisms of tumourigenesis in mouse models at varying ambient temperatures and shed light on their potential importance in developing therapeutics against cancer.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Melis Ülgen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
14
|
Liu J, Peng F, Cheng H, Zhang D, Zhang Y, Wang L, Tang F, Wang J, Wan Y, Wu J, Zhou Y, Feng W, Peng C. Chronic cold environment regulates rheumatoid arthritis through modulation of gut microbiota-derived bile acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166837. [PMID: 37689184 DOI: 10.1016/j.scitotenv.2023.166837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
The pathologies of many diseases are influenced by environmental temperature. As early as the classical Roman age, people believed that exposure to cold weather was bad for rheumatoid arthritis (RA). However, there is no direct evidence supporting this notion, and the molecular mechanisms of the effects of chronic cold exposure on RA remain unknown. Here, in a temperature-conditioned environment, we found that chronic cold exposure aggravates collagen-induced arthritis (CIA) by increasing ankle swelling, bone erosion, and cytokine levels in rats. Furthermore, in chronic cold-exposed CIA rats, gut microbiota dysbiosis was identified, including a decrease in the differential relative abundance of the families Lachnospiraceae and Ruminococcaceae. We also found that an antibiotic cocktail suppressed arthritis severity under cold conditions. Notably, the fecal microbiota transplantation (FMT) results showed that transplantation of cold-adapted microbiota partly recapitulated the microbiota signature in the respective donor rats and phenocopied the cold-induced effects on CIA rats. In addition, cold exposure disturbed bile acid profiles, in particular decreasing gut microbiota-derived taurohyodeoxycholic acid (THDCA) levels. The perturbation of bile acids was also associated with activation of the TGR5-cAMP-PKA axis and NLRP3 inflammasome. Oral THDCA supplementation mitigated the arthritis exacerbation induced by chronic cold exposure. Our findings identify an important role of aberrant gut microbiota-derived bile acids in cold exposure-related RA, highlighting potential opportunities to treat cold-related RA by manipulating the gut microbiota and/or supplementing with THDCA.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lixia Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yinlin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
15
|
Yan J, Hu C. Bone marrow immune cells stop weight regain. Cell Metab 2023; 35:1845-1846. [PMID: 37939653 DOI: 10.1016/j.cmet.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 11/10/2023]
Abstract
Weight regain is a major challenge in the long-term management of obesity; however, the underlying mechanisms remain unclear. Zhou et al. found that bone-marrow-derived CD7+ monocytes respond to fluctuating nutritional stress and suppress weight regain by promoting beige fat thermogenesis.
Collapse
Affiliation(s)
- Jing Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China.
| |
Collapse
|
16
|
Shao S, Chen C, Shi G, Zhou Y, Wei Y, Wu L, Sun L, Zhang T. JAK inhibition ameliorated experimental autoimmune encephalomyelitis by blocking GM-CSF-driven inflammatory signature of monocytes. Acta Pharm Sin B 2023; 13:4185-4201. [PMID: 37799385 PMCID: PMC10547959 DOI: 10.1016/j.apsb.2023.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/27/2023] [Accepted: 07/13/2023] [Indexed: 10/07/2023] Open
Abstract
Monocytes are key effectors in autoimmunity-related diseases in the central nervous system (CNS) due to the critical roles of these cells in the production of proinflammatory cytokines, differentiation of T-helper (Th) cells, and antigen presentation. The JAK-STAT signaling is crucial for initiating monocytes induced immune responses by relaying cytokines signaling. However, the role of this pathway in modulating the communication between monocytes and Th cells in the pathogenesis of multiple sclerosis (MS) is unclear. Here, we show that the JAK1/2/3 and STAT1/3/5/6 subtypes involved in the demyelination mediated by the differentiation of pathological Th1 and Th17 and the CNS-infiltrating inflammatory monocytes in experimental autoimmune encephalomyelitis (EAE), a model for MS. JAK inhibition prevented the CNS-infiltrating CCR2-dependent Ly6Chi monocytes and monocyte-derived dendritic cells in EAE mice. In parallel, the proportion of GM-CSF+CD4+ T cells and GM-CSF secretion were decreased in pathological Th17 cells by JAK inhibition, which in turns converted CNS-invading monocytes into antigen-presenting cells to mediate tissue damage. Together, our data highlight the therapeutic potential of JAK inhibition in treating EAE by blocking the GM-CSF-driven inflammatory signature of monocytes.
Collapse
Affiliation(s)
| | | | - Gaona Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yazi Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
17
|
Gong L, Zhao S, Chu X, Yang H, Li Y, Wei S, Li F, Zhang Y, Li S, Jiang P. Assessment of cold exposure-induced metabolic changes in mice using untargeted metabolomics. Front Mol Biosci 2023; 10:1228771. [PMID: 37719264 PMCID: PMC10500074 DOI: 10.3389/fmolb.2023.1228771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Background: Cold exposure (CE) can effectively modulate adipose tissue metabolism and improve metabolic health. Although previous metabolomics studies have primarily focused on analyzing one or two samples from serum, brown adipose tissue (BAT), white adipose tissue (WAT), and liver samples, there is a significant lack of simultaneous analysis of multiple tissues regarding the metabolic changes induced by CE in mice. Therefore, our study aims to investigate the metabolic profiles of the major tissues involved. Methods: A total of 14 male C57BL/6J mice were randomly assigned to two groups: the control group (n = 7) and the CE group (n = 7). Metabolite determination was carried out using gas chromatography-mass spectrometry (GC-MS), and multivariate analysis was employed to identify metabolites exhibiting differential expression between the two groups. Results: In our study, we identified 32 discriminant metabolites in BAT, 17 in WAT, 21 in serum, 7 in the liver, 16 in the spleen, and 26 in the kidney, respectively. Among these metabolites, amino acids, fatty acids, and nucleotides emerged as the most significantly altered compounds. These metabolites were found to be associated with 12 differential metabolic pathways closely related to amino acids, fatty acids, and energy metabolism. Conclusion: Our study may provide valuable insights into the metabolic effects induced by CE, and they have the potential to inspire novel approaches for treating metabolic diseases.
Collapse
Affiliation(s)
| | - Shiyuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| | - Xue Chu
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
| | - Hui Yang
- Tengzhou Central People’s Hospital, Tengzhou, China
| | - Yanan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Graduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - Fengfeng Li
- Tengzhou Central People’s Hospital, Tengzhou, China
| | - Yazhou Zhang
- Tengzhou Central People’s Hospital, Tengzhou, China
| | - Shuhui Li
- Tengzhou Central People’s Hospital, Tengzhou, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| |
Collapse
|
18
|
Mizuno Y, Nakanishi Y, Kumanogoh A. Pathophysiological functions of semaphorins in the sympathetic nervous system. Inflamm Regen 2023; 43:30. [PMID: 37291626 DOI: 10.1186/s41232-023-00281-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Upon exposure to external stressors, the body senses them and activates the sympathetic nervous system (SNS) to maintain the homeostasis, which is known as the "fight-or-flight" response. Recent studies have revealed that the SNS also plays pivotal roles in regulating immune responses, such as hematopoiesis, leukocyte mobilization, and inflammation. Indeed, overactivation of the SNS causes many inflammatory diseases, including cardiovascular diseases, metabolic disorders, and autoimmune diseases. However, the molecular basis essential for SNS-mediated immune regulation is not completely understood. In this review, we focus on axon guidance cues, semaphorins, which play multifaceted roles in neural and immune systems. We summarize the functions of semaphorins in the crosstalk between the SNS and the immune system, exploring its pathophysiological roles.
Collapse
Affiliation(s)
- Yumiko Mizuno
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
19
|
Aquilano K, Zhou B, Brestoff JR, Lettieri-Barbato D. Multifaceted mitochondrial quality control in brown adipose tissue. Trends Cell Biol 2023; 33:517-529. [PMID: 36272883 PMCID: PMC11657393 DOI: 10.1016/j.tcb.2022.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Brown adipose tissue (BAT) controls mammalian core body temperature by non-shivering thermogenesis. BAT is extraordinarily rich in mitochondria, which have the peculiarity of generating heat by uncoupled respiration. Since the mitochondrial activity of BAT is subject to cycles of activation and deactivation in response to environmental temperature changes, an integrated mitochondrial quality control (MQC) system is of fundamental importance to ensure BAT physiology. Here, we provide an overview of the conventional and alternative mechanisms through which thermogenic adipocytes selectively remove damaged parts of mitochondria and how macrophages participate in the MQC system by removing extracellular mitochondrial waste to maintain the thermogenic function of BAT.
Collapse
Affiliation(s)
- Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT 06030, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; IRCCS, Fondazione Santa Lucia, 00179 Rome, Italy.
| |
Collapse
|
20
|
Ding Z, Chen W, Wu H, Li W, Mao X, Su W, Zhang Y, Lin N. Integrative network fusion-based multi-omics study for biomarker identification and patient classification of rheumatoid arthritis. Chin Med 2023; 18:48. [PMID: 37143094 PMCID: PMC10158004 DOI: 10.1186/s13020-023-00750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Cold-dampness Syndrome (RA-Cold) and Hot-dampness Syndrome (RA-Hot) are two distinct groups of rheumatoid arthritis (RA) patients with different clinical symptoms based on traditional Chinese medicine (TCM) theories and clinical empirical knowledge. However, the biological basis of the two syndromes has not been fully elucidated, which may restrict the development of personalized medicine and drug discovery for RA diagnosis and therapy. METHODS An integrative strategy combining clinical transcriptomics, phenomics, and metabolomics data based on clinical cohorts and adjuvant-induced arthritis rat models was performed to identify novel candidate biomarkers and to investigate the biological basis of RA-Cold and RA-Hot. RESULTS The main clinical symptoms of RA-Cold patients are joint swelling, pain, and contracture, which may be associated with the dysregulation of T cell-mediated immunity, osteoblast differentiation, and subsequent disorders of steroid biosynthesis and phenylalanine metabolism. In contrast, the main clinical symptoms of RA-Hot patients are fever, irritability, and vertigo, which may be associated with various signals regulating angiogenesis, adrenocorticotropic hormone release, and NLRP3 inflammasome activation, leading to disorders of steroid biosynthesis, nicotinamide, and sphingolipid metabolism. IL17F, 5-HT, and IL4I1 were identified as candidate biomarkers of RA-Cold, while S1P and GLNS were identified as candidate biomarkers of RA-Hot. CONCLUSIONS The current study presents the most comprehensive metabonomic and transcriptomic profiling of serum, urine, synovial fluid, and synovial tissue samples obtained from RA-Cold and RA-Hot patients and experimental animal models to date. Through the integration of multi-omics data and clinical independent validation, a list of novel candidate biomarkers of RA-Cold and RA-Hot syndromes were identified, that may be useful in improving RA diagnosis and therapy.
Collapse
Affiliation(s)
- Zihe Ding
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Wenjia Chen
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Hao Wu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weijie Li
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Xia Mao
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Weiwei Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanqiong Zhang
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Na Lin
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
21
|
Ginting RP, Lee JM, Lee MW. The Influence of Ambient Temperature on Adipose Tissue Homeostasis, Metabolic Diseases and Cancers. Cells 2023; 12:cells12060881. [PMID: 36980222 PMCID: PMC10047443 DOI: 10.3390/cells12060881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Adipose tissue is a recognized energy storage organ during excessive energy intake and an endocrine and thermoregulator, which interacts with other tissues to regulate systemic metabolism. Adipose tissue dysfunction is observed in most obese mouse models and humans. However, most studies using mouse models were conducted at room temperature (RT), where mice were chronically exposed to mild cold. In this condition, energy use is prioritized for thermogenesis to maintain body temperature in mice. It also leads to the activation of the sympathetic nervous system, followed by the activation of β-adrenergic signaling. As humans live primarily in their thermoneutral (TN) zone, RT housing for mice limits the interpretation of disease studies from mouse models to humans. Therefore, housing mice in their TN zone (~28–30 °C) can be considered to mimic humans physiologically. However, factors such as temperature ranges and TN pre-acclimatization periods should be examined to obtain reliable results. In this review, we discuss how adipose tissue responds to housing temperature and the outcomes of the TN zone in metabolic disease studies. This review highlights the critical role of TN housing in mouse models for studying adipose tissue function and human metabolic diseases.
Collapse
Affiliation(s)
- Rehna Paula Ginting
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Ji-Min Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Min-Woo Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
- Correspondence: ; Tel.: +82-41-413-5029
| |
Collapse
|
22
|
Jiang Z, Yin X, Wang M, Wang Y, Li F, Gao Y, Han G, Gao Z, Wang Z. β-Hydroxybutyrate alleviates pyroptosis in MPP+/MPTP-induced Parkinson’s disease models via inhibiting STAT3/NLRP3/GSDMD pathway. Int Immunopharmacol 2022; 113:109451. [DOI: 10.1016/j.intimp.2022.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
|
23
|
Cao Y, Zhang M, Li Y, Lu J, Zhou W, Li X, Shi H, Xu B, Li S. O-GlcNAcylation of SIRT1 Protects against Cold Stress-Induced Skeletal Muscle Damage via Amelioration of Mitochondrial Homeostasis. Int J Mol Sci 2022; 23:ijms232314520. [PMID: 36498847 PMCID: PMC9737900 DOI: 10.3390/ijms232314520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cold stress disturbs cellular metabolic and energy homeostasis, which is one of the causes of stress-induced illnesses. O-GlcNAcylation is a nutrient-sensing pathway involved in a myriad of cellular processes. It plays a key role in metabolic homeostasis. Nevertheless, a specific sensing mechanism linking skeletal muscle to O-GlcNAcylation in cold stress is unknown. In this study, O-GlcNAcylation of SIRT1 was targeted to explore the mechanism of skeletal muscle adaptation to cold stress. Ogt mKO aggravated skeletal muscle fibrosis induced by cold stress. At the same time, Ogt gene deletion accelerated the homeostasis imbalance and oxidative stress of skeletal muscle mitochondria induced by cold stress. In vitro results showed that inhibition of SIRT1's O-GlcNAcylation accelerated mild hypothermia induced mitochondrial homeostasis in mouse myogenic cells (C2C12 cells). However, overexpression of SIRT1's O-GlcNAcylation improved the above phenomena. Thus, these results reveal a protective role of OGT-SIRT1 in skeletal muscle's adaptation to cold stress, and our findings will provide new avenues to combat stress-induced diseases.
Collapse
Affiliation(s)
- Yu Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Meng Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ye Li
- Sheep Disease Laboratory, Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wanhui Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoshuang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (B.X.); (S.L.)
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (B.X.); (S.L.)
| |
Collapse
|
24
|
Shi C, Fu W, Zhang X, Zhang Q, Zeng F, Nijiati S, Du C, Liu X, Wang M, Yao Y, Huang H, Zheng N, Chen X, Wu B, Zhou Z. Boosting the Immunoactivity of T Cells by Resonant Thermal Radiation from Electric Graphene Films for Improved Cancer Immunotherapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Wenxing Fu
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices Pen‐Tung Sah Institute of Micro‐Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province College of Chemistry and Chemical
| | - Xinyi Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Qianyu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Fantian Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Sureya Nijiati
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Chao Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Xiaomin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Mingkun Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Youliang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Hongling Huang
- State Key Laboratory for Cellular Stress Biology School of Life Sciences Faculty of Medicine and Life Sciences Xiamen University Fujian 361102 China
| | - Nanfeng Zheng
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices Pen‐Tung Sah Institute of Micro‐Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province College of Chemistry and Chemical
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering Clinical Imaging Research Centre Centre for Translational Medicine Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
| | - Binghui Wu
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices Pen‐Tung Sah Institute of Micro‐Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province College of Chemistry and Chemical
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| |
Collapse
|
25
|
Stojanović O, Miguel-Aliaga I, Trajkovski M. Intestinal plasticity and metabolism as regulators of organismal energy homeostasis. Nat Metab 2022; 4:1444-1458. [PMID: 36396854 DOI: 10.1038/s42255-022-00679-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
The small intestine displays marked anatomical and functional plasticity that includes adaptive alterations in adult gut morphology, enteroendocrine cell profile and their hormone secretion, as well as nutrient utilization and storage. In this Perspective, we examine how shifts in dietary and environmental conditions bring about changes in gut size, and describe how the intestine adapts to changes in internal state, bowel resection and gastric bypass surgery. We highlight the critical importance of these intestinal remodelling processes in maintaining energy balance of the organism, and in protecting the metabolism of other organs. The intestinal resizing is supported by changes in the microbiota composition, and by activation of carbohydrate and fatty acid metabolism, which govern the intestinal stem cell proliferation, intestinal cell fate, as well as survivability of differentiated epithelial cells. The discovery that intestinal remodelling is part of the normal physiological adaptation to various triggers, and the potential for harnessing the reversible gut plasticity, in our view, holds extraordinary promise for developing therapeutic approaches against metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Ozren Stojanović
- Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
26
|
Susceptibility to the Common Cold Virus is Associated with Day Length. iScience 2022; 25:104789. [PMID: 35982792 PMCID: PMC9379560 DOI: 10.1016/j.isci.2022.104789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022] Open
Abstract
Seasonal rhythms are endogenous timing mechanisms that allow animals living at temperate latitudes to synchronize their physiology to the seasons. Human viral respiratory disease is prevalent in the winter at temperate latitudes, but the role of endogenous mechanisms in these recurring annual patterns is unclear. The Common Cold Project is a repository of data describing the experimental viral challenge of 1,337 participants across the seasons of the year. We report a secondary analysis of these data to investigate if susceptibility to the common cold is associated with day length. The majority of the participants (78%) showed signs of infection but only 32% developed clinical signs of disease, and the probability of infection was significantly higher in longer day lengths (summer), but the disease was more likely in short (winter) day lengths. The persistence of winter disease patterns in experimental conditions supports the role of endogenous seasonality in human susceptibility to viral infection. Outbreaks of viral respiratory disease recur in winter in the northern hemisphere In controlled experiments, common cold infection was more likely in summer Infection was more likely to progress to the development of cold in winter Innate seasonality of human immunity could affect the prevalence of the common cold
Collapse
|
27
|
Basic principles of neuroimmunology. Semin Immunopathol 2022; 44:685-695. [PMID: 35732977 DOI: 10.1007/s00281-022-00951-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/08/2022] [Indexed: 01/20/2023]
Abstract
The brain is an immune-privileged organ such that immune cell infiltration is highly regulated and better tolerating the introduction of antigen to reduce risk of harmful inflammation. Thus, the composition and the nature of the immune response is fundamentally different in the brain where avoiding immunopathology is prioritized compared to other peripheral organs. While the principle of immune privilege in the central nervous system (CNS) still holds true, the role of the immune system in the CNS has been revisited over the recent years. This redefining of immune privilege in the brain is a result of the recent re-discovery of the extensive CNS meningeal lymphatic system and the identification of resident T cells in the brain, meningeal layers, and its surrounding cerebrospinal fluid (CSF) in both humans and rodents. While neuro-immune interactions have been classically studied in the context of neuroinflammatory disease, recent works have also elucidated unconventional roles of immune-derived cytokines in neurological function, highlighting the many implications and potential of neuro-immune interactions. As a result, the study of neuro-immune interactions is becoming increasingly important in understanding both CNS homeostasis and disease. Here, we review the anatomically distinct immune compartments within the brain, the known mechanisms of leukocyte trafficking and infiltration into the CNS and unique transcriptional and functional characteristics of CNS-resident immune cells.
Collapse
|
28
|
Lu J, Fu S, Dai J, Hu J, Li S, Ji H, Wang Z, Yu J, Bao J, Xu B, Guo J, Yang H. Integrated metabolism and epigenetic modifications in the macrophages of mice in responses to cold stress. J Zhejiang Univ Sci B 2022; 23:461-480. [PMID: 35686526 PMCID: PMC9198231 DOI: 10.1631/jzus.b2101091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The negative effects of low temperature can readily induce a variety of diseases. We sought to understand the reasons why cold stress induces disease by studying the mechanisms of fine-tuning in macrophages following cold exposure. We found that cold stress triggers increased macrophage activation accompanied by metabolic reprogramming of aerobic glycolysis. The discovery, by genome-wide RNA sequencing, of defective mitochondria in mice macrophages following cold exposure indicated that mitochondrial defects may contribute to this process. In addition, changes in metabolism drive the differentiation of macrophages by affecting histone modifications. Finally, we showed that histone acetylation and lactylation are modulators of macrophage differentiation following cold exposure. Collectively, metabolism-related epigenetic modifications are essential for the differentiation of macrophages in cold-stressed mice, and the regulation of metabolism may be crucial for alleviating the harm induced by cold stress.
Collapse
Affiliation(s)
- Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jie Dai
- Shanghai Bioprofile Co. Ltd., Shanghai 201100, China
| | - Jianwen Hu
- Shanghai Bioprofile Co. Ltd., Shanghai 201100, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhiquan Wang
- Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T5J 4P6, Canada
| | - Jiahong Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiming Bao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
29
|
Hadadi N, Spiljar M, Steinbach K, Çolakoğlu M, Chevalier C, Salinas G, Merkler D, Trajkovski M. Comparative multi-tissue profiling reveals extensive tissue-specificity in transcriptome reprogramming during thermal adaptation. eLife 2022; 11:78556. [PMID: 35578890 PMCID: PMC9113744 DOI: 10.7554/elife.78556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/24/2022] [Indexed: 12/02/2022] Open
Abstract
Thermal adaptation is an extensively used intervention for enhancing or suppressing thermogenic and mitochondrial activity in adipose tissues. As such, it has been suggested as a potential lifestyle intervention for body weight maintenance. While the metabolic consequences of thermal acclimation are not limited to the adipose tissues, the impact on the rest of the tissues in context of their gene expression profile remains unclear. Here, we provide a systematic characterization of the effects in a comparative multi-tissue RNA sequencing approach following exposure of mice to 10 °C, 22 °C, or 34 °C in a panel of organs consisting of spleen, bone marrow, spinal cord, brain, hypothalamus, ileum, liver, quadriceps, subcutaneous-, visceral- and brown adipose tissues. We highlight that transcriptional responses to temperature alterations exhibit a high degree of tissue-specificity both at the gene level and at GO enrichment gene sets, and show that the tissue-specificity is not directed by the distinct basic gene expression pattern exhibited by the various organs. Our study places the adaptation of individual tissues to different temperatures in a whole-organism framework and provides integrative transcriptional analysis necessary for understanding the temperature-mediated biological programming. Humans, mice and most other mammals are constantly exposed to fluctuations in the temperature of their environment. These fluctuations cause striking metabolic effects in the body, for example, exposure to cold promotes burning of calories to generate heat, thereby reducing how much fat accumulates in the body. On the other hand, warmer temperatures strengthen the bones and protect against a bone disease known as osteoporosis. As such, it has been suggested that exposure to alternating warm or cold temperatures could be a potential lifestyle intervention that conveys various benefits to our health. Our body stores fat in tissues known as adipose tissues, which are found all over the body including under the skin and around our major organs and muscles. Exposure to cold triggers changes in the activities of some genes in the adipose tissues to burn more calories. But it remains unclear how temperature affects the activities of other organs with respect to their expression of genes in the whole-body context. Hadadi, Spiljar et al. used an RNA sequencing approach to study the activities of genes in various tissues of mice exposed to cold (10°C), room temperature (22°C), or mild warm (34°C). The experiments revealed numerous genes whose levels were different in the various organs and temperatures tested. Overall, adipose tissues experienced the biggest changes in gene levels between different temperatures, followed by tissues involved in immune responses, and the brain and spinal cord tissues. Each organ changed gene expression levels in its own way. , and this was not due to the different intimate gene expression profile between the various organs. These findings improve our understanding of how changes in temperature affect mammals by putting the responses of individual tissues into the context of the whole body. Hadadi, Spiljar et al. also generated a web-based, free-to-use application to allow others to view and further analyze the data collected in this work for gene levels in the various organs of interest.
Collapse
Affiliation(s)
- Noushin Hadadi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland.,Diabetes center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Martina Spiljar
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland.,Diabetes center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karin Steinbach
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Melis Çolakoğlu
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland.,Diabetes center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire Chevalier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland.,Diabetes center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gabriela Salinas
- NGS- Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center, Göttingen, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland.,Diabetes center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|