1
|
Lee YH, Lee J, Jeong J, Park K, Baik B, Kwon Y, Kim K, Khim KW, Ji H, Lee JY, Kim K, Kim JW, Dao T, Kim M, Lee TY, Yang YR, Yoon H, Ryu D, Hwang S, Lee H, Nam D, Kim WK, Park NH, Yun H, Choi JH. Hepatic miR-93 promotes the pathogenesis of metabolic dysfunction-associated steatotic liver disease by suppressing SIRT1. Metabolism 2025; 169:156266. [PMID: 40228656 DOI: 10.1016/j.metabol.2025.156266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND AND AIMS The molecular mechanisms underlying metabolic dysfunction-associated steatotic liver disease (MASLD) remain largely unclear; however, emerging evidence suggests that microRNAs (miRNAs) play a critical role in modulating transcriptional regulation of target genes involved in MASLD. This study aims to elucidate the role of miR-93 in lipid metabolism and MASLD progression. METHODS We comprehensively analyzed miRNA expression profiles in liver tissues from patients with MASLD and diet-induced obese mice. miR-93 knockout (KO) mice were fed a high-fat-high-fructose (HFHFr) diet to assess the impact of miR-93 deficiency on MASLD. Transcriptome analysis was performed to elucidate the molecular mechanisms and role of miR-93 in MASLD. Additionally, we employed a high-throughput screening system to identify drugs capable of modulating miR-93 expression. RESULTS miR-93 was significantly upregulated in the livers of patients with MASLD and diet-induced obese mice. miR-93 KO mice exhibited reduced hepatic steatosis. Specifically, miR-93 deficiency upregulated genes involved in fatty acid oxidation and downregulated genes associated with cholesterol biosynthesis. Sirtuin 1 (SIRT1) was identified as a direct target of miR-93, and miR-93 KO enhanced SIRT1 expression and activated the LKB1-AMPK signaling pathway. Niacin treatment downregulated miR-93, ameliorating hepatic steatosis by enhancing SIRT1 activity. CONCLUSIONS These findings implicate miR-93 as a novel therapeutic target for MASLD. The study demonstrates the therapeutic potential of niacin in modulating the miR-93/SIRT1 axis, providing a new potential treatment for MASLD, a disease with limited current treatment options.
Collapse
Affiliation(s)
- Yo Han Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinyoung Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Joonho Jeong
- Division of Hepatology, Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital (UUH), Ulsan 44033, Republic of Korea
| | - Kieun Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Bukyung Baik
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuseong Kwon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Kimyeong Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Keon Woo Khim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Haneul Ji
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji Young Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwangho Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji Won Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tam Dao
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine (SKKU), Suwon 16419, Republic of Korea
| | - Misung Kim
- Department of Pathology, University of Ulsan College of Medicine, Ulsan University Hospital (UUH), Ulsan 44033, Republic of Korea
| | - Tae Young Lee
- Department of Radiology, University of Ulsan College of Medicine, Ulsan University Hospital (UUH), Ulsan 44033, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine (SKKU), Suwon 16419, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Dougu Nam
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Neung Hwa Park
- Division of Hepatology, Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital (UUH), Ulsan 44033, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy and Research Institute for Drug Development, Pusan National University (PNU), Busan 46241, Republic of Korea.
| | - Jang Hyun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Upadhyay V, Ortega EF, Ramirez Hernandez LA, Alexander M, Kaur G, Trepka K, Rock RR, Shima RT, Cheshire WC, Alipanah-Lechner N, Calfee CS, Matthay MA, Lee JV, Goga A, Jain IH, Turnbaugh PJ. Gut bacterial lactate stimulates lung epithelial mitochondria and exacerbates acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645052. [PMID: 40196632 PMCID: PMC11974820 DOI: 10.1101/2025.03.24.645052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is an often fatal critical illness where lung epithelial injury leads to intrapulmonary fluid accumulation. ARDS became widespread during the COVID-19 pandemic, motivating a renewed effort to understand the complex etiology of this disease. Rigorous prior work has implicated lung endothelial and epithelial injury in response to an insult such as bacterial infection; however, the impact of microorganisms found in other organs on ARDS remains unclear. Here, we use a combination of gnotobiotic mice, cell culture experiments, and re-analyses of a large metabolomics dataset from ARDS patients to reveal that gut bacteria impact lung cellular respiration by releasing metabolites that alter mitochondrial activity in lung epithelium. Colonization of germ-free mice with a complex gut microbiota stimulated lung mitochondrial gene expression. A single human gut bacterial species, Bifidobacterium adolescentis, was sufficient to replicate this effect, leading to a significant increase in mitochondrial membrane potential in lung epithelial cells. We then used genome sequencing and mass spectrometry to confirm that B. adolescentis produces L -lactate, which was sufficient to increase mitochondrial activity in lung epithelial cells. Finally, we found that serum lactate was significantly associated with disease severity in patients with ARDS from the Early Assessment of Renal and Lung Injury (EARLI) cohort. Together, these results emphasize the importance of more broadly characterizing the microbial etiology of ARDS and other lung diseases given the ability of gut bacterial metabolites to remotely control lung cellular respiration. Our discovery of a single bacteria-metabolite pair provides a proof-of-concept for systematically testing other microbial metabolites and a mechanistic biomarker that could be pursued in future clinical studies. Furthermore, our work adds to the growing literature linking the microbiome to mitochondrial function, raising intriguing questions as to the bidirectional communication between our endo- and ecto-symbionts.
Collapse
|
3
|
Yaku K, Palikhe S, Iqbal T, Hayat F, Watanabe Y, Fujisaka S, Izumi H, Yoshida T, Karim M, Uchida H, Nawaz A, Tobe K, Mori H, Migaud ME, Nakagawa T. Nicotinamide riboside and nicotinamide mononucleotide facilitate NAD + synthesis via enterohepatic circulation. SCIENCE ADVANCES 2025; 11:eadr1538. [PMID: 40117359 PMCID: PMC11927621 DOI: 10.1126/sciadv.adr1538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
Decreased nicotinamide adenine dinucleotide (oxidized form) (NAD+) levels are reportedly associated with several aging-related disorders. Thus, supplementation with NAD+ precursors, such as nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), exhibits beneficial effects against these disorders. However, the in vivo metabolic pathways of NMN and NR remain to be elucidated. In this study, we comprehensively analyzed the fate of orally and intravenously administered NMN and NR in mice using NAD+ metabolomics. We found that only a small portion of orally administered NMN and NR was directly absorbed from the small intestine and that most of them underwent gut microbiota-mediated deamidation and conversion to nicotinic acid (NA). Moreover, intravenously administered NMN and NR were rapidly degraded into nicotinamide and secreted to bile followed by deamidation to NA by gut microbiota. Thus, enterohepatic circulated NA is preferentially used in the liver. These findings showed that NMN and NR are indirectly converted to NAD+ via unexpected metabolic pathways.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Tooba Iqbal
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Faisal Hayat
- Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36693, USA
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Mariam Karim
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Hitoshi Uchida
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Research Center for Pre-Disease Science, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36693, USA
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Research Center for Pre-Disease Science, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| |
Collapse
|
4
|
dos Santos PP, Fujimori ASS, Polegato BF, Okoshi MP. The Therapeutic Potential of Orange Juice in Cardiac Remodeling: A Metabolomics Approach. Metabolites 2025; 15:198. [PMID: 40137162 PMCID: PMC11944373 DOI: 10.3390/metabo15030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide, and the process of cardiac remodeling lies at the core of most of these diseases. Sustained cardiac remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure, and ultimately death. Therefore, in order to attenuate cardiac remodeling and reduce mortality, different therapies have been used, but it is important to identify adjuvant factors that can help to modulate this process. One of these factors is the inclusion of affordable foods in the diet with potential cardioprotective properties. Orange juice intake has been associated with several beneficial metabolic changes, which may influence cardiac remodeling induced by cardiovascular diseases. Current opinion highlights how the metabolites and metabolic pathways modulated by orange juice consumption could potentially attenuate cardiac remodeling. It was observed that orange juice intake significantly modulates phospholipids, energy metabolism, endocannabinoid signaling, amino acids, and gut microbiota diversity, improving insulin resistance, dyslipidemia, and metabolic syndrome. Specifically, modulation of phosphatidylethanolamine (PE) metabolism and activation of PPARα and PPARγ receptors, associated with improved energy metabolism, mitochondrial function, and oxidative stress, showed protective effects on the heart. Furthermore, orange juice intake positively impacted gut microbiota diversity and led to an increase in beneficial bacterial populations, correlated with improved metabolic syndrome. These findings suggest that orange juice may act as a metabolic modulator, with potential therapeutic implications for cardiac remodeling associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Priscila Portugal dos Santos
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (B.F.P.); (M.P.O.)
| | | | | | | |
Collapse
|
5
|
Guggeis MA, Harris DM, Welz L, Rosenstiel P, Aden K. Microbiota-derived metabolites in inflammatory bowel disease. Semin Immunopathol 2025; 47:19. [PMID: 40032666 DOI: 10.1007/s00281-025-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025]
Abstract
Understanding the role of the gut microbiota in the pathogenesis of inflammatory bowel diseases (IBD) has been an area of intense research over the past decades. Patients with IBD exhibit alterations in their microbial composition compared to healthy controls. However, studies focusing solely on taxonomic analyses have struggled to deliver replicable findings across cohorts regarding which microbial species drive the distinct patterns in IBD. The focus of research has therefore shifted to studying the functionality of gut microbes, especially by investigating their effector molecules involved in the immunomodulatory functions of the microbiota, namely metabolites. Metabolic profiles are altered in IBD, and several metabolites have been shown to play a causative role in shaping immune functions in animal models. Therefore, understanding the complex communication between the microbiota, metabolites, and the host bears great potential to unlock new biomarkers for diagnosis, disease course and therapy response as well as novel therapeutic options in the treatment of IBD. In this review, we primarily focus on promising classes of metabolites which are thought to exert beneficial effects and are generally decreased in IBD. Though results from human trials are promising, they have not so far provided a large-scale break-through in IBD-therapy improvement. We therefore propose tailored personalized supplementation of microbiota and metabolites based on multi-omics analysis which accounts for the individual microbial and metabolic profiles in IBD patients rather than one-size-fits-all approaches.
Collapse
Affiliation(s)
- Martina A Guggeis
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Danielle Mm Harris
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Division Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
| |
Collapse
|
6
|
Madawala R, Banks JL, Hancock SE, Quek LE, Turner N, Wu LE. CD38 mediates nicotinamide mononucleotide base exchange to yield nicotinic acid mononucleotide. J Biol Chem 2025; 301:108248. [PMID: 39894219 PMCID: PMC11903787 DOI: 10.1016/j.jbc.2025.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Nicotinamide mononucleotide (NMN) is a widely investigated metabolic precursor to the prominent enzyme cofactor NAD+, where it is assumed that delivery of this compound results in its direct incorporation into NAD+via the canonical salvage/recycling pathway. Surprisingly, treatment with this salvage pathway intermediate leads to increases in nicotinic acid mononucleotide (NaMN) and nicotinic acid adenine dinucleotide, two members of the Preiss-Handler/de novo pathways. In mammals, these pathways are not known to intersect prior to the production of NAD+. Here, we show that the cell surface enzyme CD38 can mediate a base-exchange reaction on NMN, whereby the nicotinamide ring is exchanged with a free nicotinic acid to yield the Preiss-Handler/de novo pathway intermediate NaMN, with in vivo small molecule inhibition of CD38 abolishing the NMN-induced increase in NaMN and nicotinic acid adenine dinucleotide. Together, these data demonstrate a new mechanism by which the salvage pathway and Preiss-Handler/de novo pathways can exchange intermediates in mammalian NAD+ biosynthesis.
Collapse
Affiliation(s)
- Romanthi Madawala
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Jasmine L Banks
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Sarah E Hancock
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Nigel Turner
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
| | - Lindsay E Wu
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
7
|
Ferro V, Moco S. NAD + (nicotinamide adenine dinucleotide, oxidized form). Trends Endocrinol Metab 2025; 36:292-293. [PMID: 39266435 DOI: 10.1016/j.tem.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024]
Affiliation(s)
- Valentina Ferro
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sofia Moco
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Zhang Z, Guo Q, Yang Z, Sun Y, Jiang S, He Y, Li J, Zhang J. Bifidobacterium adolescentis-derived nicotinic acid improves host skeletal muscle mitochondrial function to ameliorate sarcopenia. Cell Rep 2025; 44:115265. [PMID: 39908139 DOI: 10.1016/j.celrep.2025.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Sarcopenia significantly diminishes quality of life and increases mortality risk in older adults. While the connection between the gut microbiome and muscle health is recognized, the underlying mechanisms are poorly understood. In this study, shotgun metagenomics revealed that Bifidobacterium adolescentis is notably depleted in individuals with sarcopenia, correlating with reduced muscle mass and function. This finding was validated in aged mice. Metabolomics analysis identified nicotinic acid as a key metabolite produced by B. adolescentis, linked to improvements in muscle mass and functionality in individuals with sarcopenia. Mechanistically, nicotinic acid restores nicotinamide adenine dinucleotide (NAD+) levels in muscle, inhibits the FoxO3/Atrogin-1/Murf-1 axis, and promotes satellite cell proliferation, reducing muscle atrophy. Additionally, NAD+ activation enhances the silent-information-regulator 1 (SIRT1)/peroxisome-proliferator-activated-receptor-γ-coactivator 1-alpha (PGC-1α) axis, stimulating mitochondrial biogenesis and promoting oxidative metabolism in slow-twitch fibers, ultimately improving muscle function. Our findings suggest that B. adolescentis-derived nicotinic acid could be a promising therapeutic strategy for individuals with sarcopenia.
Collapse
Affiliation(s)
- Zeng Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Quan Guo
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Zhihan Yang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Yukai Sun
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Yangli He
- Department of Health Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Jiahe Li
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
9
|
Lu J, Jiang M, Chai D, Sun Y, Wu L. Integrative analysis of intestinal flora and untargeted metabolomics in attention-deficit/hyperactivity disorder. Front Microbiol 2025; 16:1452423. [PMID: 39944648 PMCID: PMC11817268 DOI: 10.3389/fmicb.2025.1452423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a clinically common neurodevelopmental disorder of the brain. In addition to genetic factors, an imbalance in gut flora may also play a role in the development of ADHD. Currently, it is critical to investigate the function of gut flora and related metabolites, which may form the fundamental basis of bidirectional cross-linking between the brain and the gut, in addition to focusing on the changed gut flora in ADHD. This study aimed to investigate the possible relationship between changes in gut flora and metabolites and ADHD by analyzing metagenome and untargeted metabolomics of fecal samples from ADHD patients. Specifically, we attempted to identify key metabolites and the metabolic pathways they are involved in, as well as analyze in detail the structure and composition of the gut flora of ADHD patients. In order to further investigate the relationship between gut flora and ADHD symptoms, some behavioral studies were conducted following the transplantation of gut flora from ADHD patients into rats. The results of the metagenome analysis revealed several distinct strains, including Bacteroides cellulosilyticus, which could be important for diagnosing ADHD. Additionally, the ADHD group showed modifications in several metabolic pathways and metabolites, including the nicotinamide and nicotinic acid metabolic pathways and the metabolite nicotinamide in this pathway. The behavioral results demonstrated that rats with ADHD gut flora transplants displayed increased locomotor activity and interest, indicating that the onset of behaviors such as ADHD could be facilitated by the flora associated with ADHD. This research verified the alterations in gut flora and metabolism observed in ADHD patients and provided a list of metabolites and flora that were significantly altered in ADHD. Simultaneously, our findings revealed that modifications to the microbiome could potentially trigger behavioral changes in animals, providing an experimental basis for comprehending the function and influence of gut flora on ADHD. These results might provide new perspectives for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Jiamin Lu
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Maoying Jiang
- Behavioral Pediatric Department and Child Primary Care Department, Hangzhou Children’s Hospital, Hangzhou, China
| | - Dingyue Chai
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuzi Sun
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lihui Wu
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
10
|
Imai SI. NAD World 3.0: the importance of the NMN transporter and eNAMPT in mammalian aging and longevity control. NPJ AGING 2025; 11:4. [PMID: 39870672 PMCID: PMC11772665 DOI: 10.1038/s41514-025-00192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Over the past five years, systemic NAD+ (nicotinamide adenine dinucleotide) decline has been accepted to be a key driving force of aging in the field of aging research. The original version of the NAD World concept was proposed in 2009, providing an integrated view of the NAD+-centric, systemic regulatory network for mammalian aging and longevity control. The reformulated version of the concept, the NAD World 2.0, was then proposed in 2016, emphasizing the importance of the inter-tissue communications between the hypothalamus and peripheral tissues including adipose tissue and skeletal muscle. There has been significant progress in our understanding of the importance of nicotinamide mononucleotide (NMN), a key NAD+ intermediate, and nicotinamide phosphoribosyltransferase (NAMPT), particularly extracellular NAMPT (eNAMPT). With these exciting developments, the further reformulated version of the concept, the NAD World 3.0, is now proposed, featuring multi-layered feedback loops mediated by NMN and eNAMPT for mammalian aging and longevity control.
Collapse
Affiliation(s)
- Shin-Ichiro Imai
- Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, St. Louis, Missouri, USA.
- Institute for Research on Productive Aging (IRPA), Tokyo, Japan.
| |
Collapse
|
11
|
Liang X, Shan T, Zheng X, Zhang Z, Fan Y, Zhang H, Zhang L, Liang H. Study on the Regulatory Mechanism of Niacin Combined with B. animalis F1-7 in Alleviating Alcoholic Fatty Liver Disease by Up-Regulating GPR109A. Nutrients 2024; 16:4170. [PMID: 39683563 DOI: 10.3390/nu16234170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study aimed to investigate the effects of niacin combined with B. animalis F1-7 on the improvement of alcoholic fatty liver disease (AFLD) in mice and its potential regulatory mechanism. METHODS A total of 75 8-week-old male C57BL/6N mice were acclimated for one week and randomly divided into five groups: control group, alcohol model group (AFLD), niacin intervention group (NA), B. animalis F1-7 intervention group (F1-7), and niacin combined with B. animalis F1-7 intervention group (NF). The experiment lasted for 8 weeks. RESULTS The results showed that all intervention groups could effectively reduce the serum lipid levels and inflammatory response of mice induced by alcohol to varying degrees. The immunofluorescence analysis showed that the GPR109A in the liver and intestine of the NF group was significantly enhanced compared with the other groups. Niacin combined with B. animalis F1-7 better restored the gut microbiota. Meanwhile, each intervention group could increase their levels of SCFAs. Among them, the combination group increased the levels of acetic acid and butyric acid more significantly than the other two groups. The Spearman's correlation analysis of gut microbiota and SCFAs showed that Norank_f_Eubacterium_coprostanoligenes_group, Allobaculum, and Akkermansia were positively correlated with changes in SCFAs, while Coriobacteriaceae_UCG-002, Romboutsia, and Clostridium_sensu_stricro_1 were negatively correlated. CONCLUSIONS Niacin combined with B. animalis F1-7 better regulated the gut microbial balance and increased the SCFAs in mice with alcoholic steatohepatitis. The mechanism was related to the activation of the target GPR109A, which regulates the key proteins involved in lipid synthesis and β-oxidation to improve lipid metabolic disorders.
Collapse
Affiliation(s)
- Xi Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Tianhu Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xiumei Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yanping Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
12
|
Zhou X, Rong R, Liang G, Wu Y, Xu C, Xiao H, Ji D, Xia X. Self-Assembly Hypoxic and ROS Dual Response Nano Prodrug as a New Therapeutic Approach for Glaucoma Treatments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407043. [PMID: 39229928 PMCID: PMC11538650 DOI: 10.1002/advs.202407043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Glaucoma is an irreversible blinding eye disease characterized by retinal ganglion cell (RGC) death.Previous studies have demonstrated that protecting mitochondria and activating the CaMKII/CREB signaling pathway can effectively protect RGC and axon. However, currently treatments are often unsatisfactory, and the pathogenesis of glaucoma requires further elucidation. In this study, a ROS-responsive dual drug conjugate (OLN monomer) is first designed that simultaneously bonds nicotinamide and oleic acid. The conjugate self-assembled into nanoparticles (uhOLN-NPs) through the aggregation of multiple micelles and possesses ROS scavenging capability. Then, a polymer with a hypoxic response function is designed, which encapsulates uhOLN-NPs to form nanoparticles with hypoxic and ROS responses (HOLN-NPs). Under hypoxia in RGCs, the azo bond of HOLN-NPs breaks and releases uhOLN-NPs. Meanwhile, under high ROS conditions, the thioketone bond broke, leading to the dissociation of nano-prodrug. The released nicotinamide and oleic acid co-scavenge ROS and activate the CaMKII/CREB pathway, protecting mitochondria in RGCs. HOLN-NPs exhibit a significantly superior protective effect on R28 cells in glutamate models of glaucoma. The accumulation of HOLN-NPs in retinal RGCs lead to significant inhibition of RGC apoptosis and axonal damage in vivo. Notably, HOLN-NPs provide a new therapeutic approach for patients with neurodegenerative disease.
Collapse
Affiliation(s)
- Xuezhi Zhou
- Department of OphthalmologyXiangya Hospital, Central South UniversityChangshaHunan410008P. R. China
- Hunan Key Laboratory of OphthalmologyChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DiseasesCentral South UniversityChangshaHunan410008P. R. China
| | - Rong Rong
- Department of OphthalmologyXiangya Hospital, Central South UniversityChangshaHunan410008P. R. China
- Hunan Key Laboratory of OphthalmologyChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DiseasesCentral South UniversityChangshaHunan410008P. R. China
| | - Ganghao Liang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer PhysicsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yukun Wu
- Department of OphthalmologyXiangya Hospital, Central South UniversityChangshaHunan410008P. R. China
- Hunan Key Laboratory of OphthalmologyChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DiseasesCentral South UniversityChangshaHunan410008P. R. China
| | - Chun Xu
- School of DentistryThe University of QueenslandBrisbane4006Australia
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer PhysicsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Dan Ji
- Department of OphthalmologyXiangya Hospital, Central South UniversityChangshaHunan410008P. R. China
- Hunan Key Laboratory of OphthalmologyChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DiseasesCentral South UniversityChangshaHunan410008P. R. China
| | - Xiaobo Xia
- Department of OphthalmologyXiangya Hospital, Central South UniversityChangshaHunan410008P. R. China
- Hunan Key Laboratory of OphthalmologyChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DiseasesCentral South UniversityChangshaHunan410008P. R. China
| |
Collapse
|
13
|
Zhou J, Han J. Association of niacin intake and metabolic dysfunction-associated steatotic liver disease: findings from National Health and Nutrition Examination Survey. BMC Public Health 2024; 24:2742. [PMID: 39379884 PMCID: PMC11462762 DOI: 10.1186/s12889-024-20161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
AIM This study aims to explore the relationship between niacin intake and the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) within a large, multi-ethnic cohort. METHODS A total of 2946 participants from the National Health and Nutrition Examination Survey (NHANES) were carefully selected based on strict inclusion and exclusion criteria. Participants meeting the eligibility criteria underwent two dietary recall interviews, and niacin intake was calculated using the USDA's Food and Nutrient Database for Dietary Studies (FNDDS). Liver steatosis was diagnosed using a Controlled Attenuation Parameter (CAP) of 248 dB/m, and MASLD diagnosis was based on metabolic indicators. Weighted multivariate logistic regression was utilized to analyze the correlation between niacin intake and MASLD prevalence, with potential nonlinear relationships explored through restricted cubic spline (RCS) regression. RESULTS Analysis of baseline data revealed that MASLD patients had lower niacin intake levels and poorer metabolic biomarker profiles. Both RCS analysis and multivariate logistic regression indicated a U-shaped association between niacin intake and MASLD prevalence. Specifically, there was a non-linear dose-response relationship, with the odds of MASLD gradually decreasing with increasing niacin intake until reaching a threshold of 23.6 mg, beyond which the odds of MASLD began to increase. CONCLUSION This study confirms a U-shaped nonlinear relationship between niacin intake and MASLD prevalence within the diverse American population.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Infectious Diseases, Affiliated Wuxi Fifth Hospital of Jiangnan University, The Fifth People's Hospital of Wuxi, Wuxi, 214065, China
| | - Jun Han
- Department of Infectious Diseases, Affiliated Wuxi Fifth Hospital of Jiangnan University, The Fifth People's Hospital of Wuxi, Wuxi, 214065, China.
| |
Collapse
|
14
|
Noronha KJ, Lucas KN, Paradkar S, Edmonds J, Friedman S, Murray MA, Liu S, Sajed DP, Sachs C, Spurrier J, Raponi M, Liang J, Zeng H, Sundaram RK, Shuch B, Vasquez JC, Bindra RS. NAPRT Silencing in FH-Deficient Renal Cell Carcinoma Confers Therapeutic Vulnerabilities via NAD+ Depletion. Mol Cancer Res 2024; 22:973-988. [PMID: 38949523 PMCID: PMC11445649 DOI: 10.1158/1541-7786.mcr-23-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is caused by loss of function mutations in fumarate hydratase (FH) and results in an aggressive subtype of renal cell carcinoma with limited treatment options. Loss of FH leads to accumulation of fumarate, an oncometabolite that disrupts multiple cellular processes and drives tumor progression. High levels of fumarate inhibit alpha ketoglutarate-dependent dioxygenases, including the ten-eleven translocation (TET) enzymes, and can lead to global DNA hypermethylation. Here, we report patterns of hypermethylation in FH-mutant cell lines and tumor samples are associated with the silencing of nicotinate phosphoribosyl transferase (NAPRT), a rate-limiting enzyme in the Preiss-Handler pathway of NAD+ biosynthesis, in a subset of HLRCC cases. NAPRT is hypermethylated at a CpG island in the promoter in cell line models and patient samples, resulting in loss of NAPRT expression. We find that FH-deficient RCC models with loss of NAPRT expression, as well as other oncometabolite-producing cancer models that silence NAPRT, are extremely sensitive to nicotinamide phosphoribosyl transferase inhibitors (NAMPTi). NAPRT silencing was also associated with synergistic tumor cell killing with PARP inhibitors and NAMPTis, which was associated with effects on PAR-mediated DNA repair. Overall, our findings indicate that NAPRT silencing can be targeted in oncometabolite-producing cancers and elucidates how oncometabolite-associated hypermethylation can impact diverse cellular processes and lead to therapeutically relevant vulnerabilities in cancer cells. Implications: NAPRT is a novel biomarker for targeting NAD+ metabolism in FH-deficient HLRCCs with NAMPTis alone and targeting DNA repair processes with the combination of NAMPTis and PARP inhibitors.
Collapse
Affiliation(s)
- Katelyn J. Noronha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | - Karlie N. Lucas
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Sateja Paradkar
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Joseph Edmonds
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Sam Friedman
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Matthew A. Murray
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Samantha Liu
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Dipti P. Sajed
- Department of Pathology, University of California Los Angeles, Los Angeles, California.
| | - Chana Sachs
- Department of Pathology, University of California Los Angeles, Los Angeles, California.
| | | | | | - Jiayu Liang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Ranjini K. Sundaram
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Brian Shuch
- Institute of Urologic Oncology, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California.
| | - Juan C. Vasquez
- Department of Pediatric Hematology and Oncology, Yale University, New Haven, Connecticut.
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| |
Collapse
|
15
|
Migaud ME, Ziegler M, Baur JA. Regulation of and challenges in targeting NAD + metabolism. Nat Rev Mol Cell Biol 2024; 25:822-840. [PMID: 39026037 DOI: 10.1038/s41580-024-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction-oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans.
Collapse
Affiliation(s)
- Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA.
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Joseph A Baur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Broome SC, Whitfield J, Karagounis LG, Hawley JA. Mitochondria as Nutritional Targets to Maintain Muscle Health and Physical Function During Ageing. Sports Med 2024; 54:2291-2309. [PMID: 39060742 PMCID: PMC11393155 DOI: 10.1007/s40279-024-02072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The age-related loss of skeletal muscle mass and physical function leads to a loss of independence and an increased reliance on health-care. Mitochondria are crucial in the aetiology of sarcopenia and have been identified as key targets for interventions that can attenuate declines in physical capacity. Exercise training is a primary intervention that reduces many of the deleterious effects of ageing in skeletal muscle quality and function. However, habitual levels of physical activity decline with age, making it necessary to implement adjunct treatments to maintain skeletal muscle mitochondrial health and physical function. This review provides an overview of the effects of ageing and exercise training on human skeletal muscle mitochondria and considers several supplements that have plausible mechanistic underpinning to improve physical function in ageing through their interactions with mitochondria. Several supplements, including MitoQ, urolithin A, omega-3 polyunsaturated fatty acids (n3-PUFAs), and a combination of glycine and N-acetylcysteine (GlyNAC) can improve physical function in older individuals through a variety of inter-dependent mechanisms including increases in mitochondrial biogenesis and energetics, decreases in mitochondrial reactive oxygen species emission and oxidative damage, and improvements in mitochondrial quality control. While there is evidence that some nicotinamide adenine dinucleotide precursors can improve physical function in older individuals, such an outcome seems unrelated to and independent of changes in skeletal muscle mitochondrial function. Future research should investigate the safety and efficacy of compounds that can improve skeletal muscle health in preclinical models through mechanisms involving mitochondria, such as mitochondrial-derived peptides and mitochondrial uncouplers, with a view to extending the human health-span.
Collapse
Affiliation(s)
- Sophie C Broome
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| | - Leonidas G Karagounis
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
17
|
Lin X, He K, Gu Z, Zhao X. Emerging chemophysiological diversity of gut microbiota metabolites. Trends Pharmacol Sci 2024; 45:824-838. [PMID: 39129061 DOI: 10.1016/j.tips.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Human physiology is profoundly influenced by the gut microbiota, which generates a wide array of metabolites. These microbiota-derived compounds serve as signaling molecules, interacting with various cellular targets in the gastrointestinal tract and distant organs, thereby impacting our immune, metabolic, and neurobehavioral systems. Recent advancements have unveiled unique physiological functions of diverse metabolites derived from tryptophan (Trp) and bile acids (BAs). This review highlights the emerging chemophysiological diversity of these metabolites and discusses the role of chemical and biological tools in analyzing and therapeutically manipulating microbial metabolism and host targets, with the aim of bridging the chemical diversity with physiological complexity in host-microbe molecular interactions.
Collapse
Affiliation(s)
- Xiaorong Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kaixin He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, Zhejiang, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Xiaohui Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
18
|
Ding L, Weger BD, Liu J, Zhou L, Lim Y, Wang D, Xie Z, Liu J, Ren J, Zheng J, Zhang Q, Yu M, Weger M, Morrison M, Xiao X, Gachon F. Maternal high fat diet induces circadian clock-independent endocrine alterations impacting the metabolism of the offspring. iScience 2024; 27:110343. [PMID: 39045103 PMCID: PMC11263959 DOI: 10.1016/j.isci.2024.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Maternal obesity has long-term effects on offspring metabolic health. Among the potential mechanisms, prior research has indicated potential disruptions in circadian rhythms and gut microbiota in the offspring. To challenge this hypothesis, we implemented a maternal high fat diet regimen before and during pregnancy, followed by a standard diet after birth. Our findings confirm that maternal obesity impacts offspring birth weight and glucose and lipid metabolisms. However, we found minimal impact on circadian rhythms and microbiota that are predominantly driven by the feeding/fasting cycle. Notably, maternal obesity altered rhythmic liver gene expression, affecting mitochondrial function and inflammatory response without disrupting the hepatic circadian clock. These changes could be explained by a masculinization of liver gene expression similar to the changes observed in polycystic ovarian syndrome. Intriguingly, such alterations seem to provide the first-generation offspring with a degree of protection against obesity when exposed to a high fat diet.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Benjamin D. Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100022, China
| | - Yenkai Lim
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ziyan Xie
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Australian Infectious Diseases Research Centre, St. Lucia, QLD 4072, Australia
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
19
|
Noecker C, Turnbaugh PJ. Emerging tools and best practices for studying gut microbial community metabolism. Nat Metab 2024; 6:1225-1236. [PMID: 38961185 DOI: 10.1038/s42255-024-01074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
The human gut microbiome vastly extends the set of metabolic reactions catalysed by our own cells, with far-reaching consequences for host health and disease. However, our knowledge of gut microbial metabolism relies on a handful of model organisms, limiting our ability to interpret and predict the metabolism of complex microbial communities. In this Perspective, we discuss emerging tools for analysing and modelling the metabolism of gut microorganisms and for linking microorganisms, pathways and metabolites at the ecosystem level, highlighting promising best practices for researchers. Continued progress in this area will also require infrastructure development to facilitate cross-disciplinary synthesis of scientific findings. Collectively, these efforts can enable a broader and deeper understanding of the workings of the gut ecosystem and open new possibilities for microbiome manipulation and therapy.
Collapse
Affiliation(s)
- Cecilia Noecker
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Kane AE, Chellappa K, Schultz MB, Arnold M, Li J, Amorim J, Diener C, Zhu D, Mitchell SJ, Griffin P, Tian X, Petty C, Conway R, Walsh K, Shelerud L, Duesing C, Mueller A, Li K, McNamara M, Shima RT, Mitchell J, Bonkowski MS, de Cabo R, Gibbons SM, Wu LE, Ikeno Y, Baur JA, Rajman L, Sinclair DA. Long-term NMN treatment increases lifespan and healthspan in mice in a sex dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599604. [PMID: 38979132 PMCID: PMC11230277 DOI: 10.1101/2024.06.21.599604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is essential for many enzymatic reactions, including those involved in energy metabolism, DNA repair and the activity of sirtuins, a family of defensive deacylases. During aging, levels of NAD + can decrease by up to 50% in some tissues, the repletion of which provides a range of health benefits in both mice and humans. Whether or not the NAD + precursor nicotinamide mononucleotide (NMN) extends lifespan in mammals is not known. Here we investigate the effect of long-term administration of NMN on the health, cancer burden, frailty and lifespan of male and female mice. Without increasing tumor counts or severity in any tissue, NMN treatment of males and females increased activity, maintained more youthful gene expression patterns, and reduced overall frailty. Reduced frailty with NMN treatment was associated with increases in levels of Anerotruncus colihominis, a gut bacterium associated with lower inflammation in mice and increased longevity in humans. NMN slowed the accumulation of adipose tissue later in life and improved metabolic health in male but not female mice, while in females but not males, NMN increased median lifespan by 8.5%, possible due to sex-specific effects of NMN on NAD + metabolism. Together, these data show that chronic NMN treatment delays frailty, alters the microbiome, improves male metabolic health, and increases female mouse lifespan, without increasing cancer burden. These results highlight the potential of NAD + boosters for treating age-related conditions and the importance of using both sexes for interventional lifespan studies.
Collapse
|
21
|
Benjamin C, Crews R. Nicotinamide Mononucleotide Supplementation: Understanding Metabolic Variability and Clinical Implications. Metabolites 2024; 14:341. [PMID: 38921475 PMCID: PMC11205942 DOI: 10.3390/metabo14060341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Recent years have seen a surge in research focused on NAD+ decline and potential interventions, and despite significant progress, new discoveries continue to highlight the complexity of NAD+ biology. Nicotinamide mononucleotide (NMN), a well-established NAD+ precursor, has garnered considerable interest due to its capacity to elevate NAD+ levels and induce promising health benefits in preclinical models. Clinical trials investigating NMN supplementation have yielded variable outcomes while shedding light on the intricacies of NMN metabolism and revealing the critical roles played by gut microbiota and specific cellular uptake pathways. Individual variability in factors such as lifestyle, health conditions, genetics, and gut microbiome composition likely contributes to the observed discrepancies in clinical trial results. Preliminary evidence suggests that NMN's effects may be context-dependent, varying based on a person's physiological state. Understanding these nuances is critical for definitively assessing the impact of manipulating NAD+ levels through NMN supplementation. Here, we review NMN metabolism, focusing on current knowledge, pinpointing key areas where further research is needed, and outlining future directions to advance our understanding of its potential clinical significance.
Collapse
|
22
|
Yan J, Zhang X, Zhu K, Yu M, Liu Q, De Felici M, Zhang T, Wang J, Shen W. Sleep deprivation causes gut dysbiosis impacting on systemic metabolomics leading to premature ovarian insufficiency in adolescent mice. Theranostics 2024; 14:3760-3776. [PMID: 38948060 PMCID: PMC11209713 DOI: 10.7150/thno.95197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Currently, there are occasional reports of health problems caused by sleep deprivation (SD). However, to date, there remains a lack of in-depth research regarding the effects of SD on the growth and development of oocytes in females. The present work aimed to investigate whether SD influences ovarian folliculogenesis in adolescent female mice. Methods: Using a dedicated device, SD conditions were established in 3-week old female mice (a critical stage of follicular development) for 6 weeks and gut microbiota and systemic metabolomics were analyzed. Analyses were related to parameters of folliculogenesis and reproductive performance of SD females. Results: We found that the gut microbiota and systemic metabolomics were severely altered in SD females and that these were associated with parameters of premature ovarian insufficiency (POI). These included increased granulosa cell apoptosis, reduced numbers of primordial follicles (PmFs), correlation with decreased AMH, E2, and increased LH in blood serum, and a parallel increased number of growing follicles and changes in protein expression compatible with PmF activation. SD also reduced oocyte maturation and reproductive performance. Notably, fecal microbial transplantation from SD females into normal females induced POI parameters in the latter while niacinamide (NAM) supplementation alleviated such symptoms in SD females. Conclusion: Gut microbiota and alterations in systemic metabolomics caused by SD induced POI features in juvenile females that could be counteracted with NAM supplementation.
Collapse
Affiliation(s)
- Jiamao Yan
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xiaoyuan Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Kexin Zhu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingchun Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Junjie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
23
|
Bedu-Ferrari C, Biscarrat P, Pepke F, Vati S, Chaudemanche C, Castelli F, Chollet C, Rué O, Hennequet-Antier C, Langella P, Cherbuy C. In-depth characterization of a selection of gut commensal bacteria reveals their functional capacities to metabolize dietary carbohydrates with prebiotic potential. mSystems 2024; 9:e0140123. [PMID: 38441031 PMCID: PMC11019791 DOI: 10.1128/msystems.01401-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/11/2024] [Indexed: 03/06/2024] Open
Abstract
The microbial utilization of dietary carbohydrates is closely linked to the pivotal role of the gut microbiome in human health. Inherent to the modulation of complex microbial communities, a prebiotic implies the selective utilization of a specific substrate, relying on the metabolic capacities of targeted microbes. In this study, we investigated the metabolic capacities of 17 commensal bacteria of the human gut microbiome toward dietary carbohydrates with prebiotic potential. First, in vitro experiments allowed the classification of bacterial growth and fermentation profiles in response to various carbon sources, including agave inulin, corn fiber, polydextrose, and citrus pectin. The influence of phylogenetic affiliation appeared to statistically outweigh carbon sources in determining the degree of carbohydrate utilization. Second, we narrowed our focus on six commensal bacteria representative of the Bacteroidetes and Firmicutes phyla to perform an untargeted high-resolution liquid chromatography-mass spectrometry metabolomic analysis: Bacteroides xylanisolvens, Bacteroides thetaiotaomicron, Bacteroides intestinalis, Subdoligranulum variabile, Roseburia intestinalis, and Eubacterium rectale exhibited distinct metabolomic profiles in response to different carbon sources. The relative abundance of bacterial metabolites was significantly influenced by dietary carbohydrates, with these effects being strain-specific and/or carbohydrate-specific. Particularly, the findings indicated an elevation in short-chain fatty acids and other metabolites, including succinate, gamma-aminobutyric acid, and nicotinic acid. These metabolites were associated with putative health benefits. Finally, an RNA-Seq transcriptomic approach provided deeper insights into the underlying mechanisms of carbohydrate metabolization. Restricting our focus on four commensal bacteria, including B. xylanisolvens, B. thetaiotaomicron, S. variabile, and R. intestinalis, carbon sources did significantly modulate the level of bacterial genes related to the enzymatic machinery involved in the metabolization of dietary carbohydrates. This study provides a holistic view of the molecular strategies induced during the dynamic interplay between dietary carbohydrates with prebiotic potential and gut commensal bacteria. IMPORTANCE This study explores at a molecular level the interactions between commensal health-relevant bacteria and dietary carbohydrates holding prebiotic potential. We showed that prebiotic breakdown involves the specific activation of gene expression related to carbohydrate metabolism. We also identified metabolites produced by each bacteria that are potentially related to our digestive health. The characterization of the functional activities of health-relevant bacteria toward prebiotic substances can yield a better application of prebiotics in clinical interventions and personalized nutrition. Overall, this study highlights the importance of identifying the impact of prebiotics at a low resolution of the gut microbiota to characterize the activities of targeted bacteria that can play a crucial role in our health.
Collapse
Affiliation(s)
- Cassandre Bedu-Ferrari
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- General Mills France, Boulogne Billancourt, France
| | - Paul Biscarrat
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Frederic Pepke
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sarah Vati
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Florence Castelli
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments,, CEA, INRAE, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - Céline Chollet
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments,, CEA, INRAE, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France
| | - Christelle Hennequet-Antier
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Cherbuy
- Micalis Institute, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
24
|
Iqbal T, Nakagawa T. The therapeutic perspective of NAD + precursors in age-related diseases. Biochem Biophys Res Commun 2024; 702:149590. [PMID: 38340651 DOI: 10.1016/j.bbrc.2024.149590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is the fundamental molecule that performs numerous biological reactions and is crucial for maintaining cellular homeostasis. Studies have found that NAD+ decreases with age in certain tissues, and age-related NAD+ depletion affects physiological functions and contributes to various aging-related diseases. Supplementation of NAD+ precursor significantly elevates NAD+ levels in murine tissues, effectively mitigates metabolic syndrome, enhances cardiovascular health, protects against neurodegeneration, and boosts muscular strength. Despite the versatile therapeutic functions of NAD+ in animal studies, the efficacy of NAD+ precursors in clinical studies have been limited compared with that in the pre-clinical study. Clinical studies have demonstrated that NAD+ precursor treatment efficiently increases NAD+ levels in various tissues, though their clinical proficiency is insufficient to ameliorate the diseases. However, the latest studies regarding NAD+ precursors and their metabolism highlight the significant role of gut microbiota. The studies found that orally administered NAD+ intermediates interact with the gut microbiome. These findings provide compelling evidence for future trials to further explore the involvement of gut microbiota in NAD+ metabolism. Also, the reduced form of NAD+ precursor shows their potential to raise NAD+, though preclinical studies have yet to discover their efficacy. This review sheds light on NAD+ therapeutic efficiency in preclinical and clinical studies and the effect of the gut microbiota on NAD+ metabolism.
Collapse
Affiliation(s)
- Tooba Iqbal
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan; Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan.
| |
Collapse
|
25
|
Kuerec AH, Wang W, Yi L, Tao R, Lin Z, Vaidya A, Pendse S, Thasma S, Andhalkar N, Avhad G, Kumbhar V, Maier AB. Towards personalized nicotinamide mononucleotide (NMN) supplementation: Nicotinamide adenine dinucleotide (NAD) concentration. Mech Ageing Dev 2024; 218:111917. [PMID: 38430946 DOI: 10.1016/j.mad.2024.111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Nicotinamide mononucleotide (NMN) is a precursor of nicotinamide adenine dinucleotide (NAD), which declines with age. Supplementation of NMN has been shown to improve blood NAD concentration. However, the optimal NMN dose remains unclear. This is a post-hoc analysis of a double-blinded clinical trial involving 80 generally healthy adults aged 40-65 years. The participants received a placebo or daily 300 mg, 600 mg, or 900 mg NMN for 60 days. Blood NAD concentration, blood biological age, homeostatic model assessment for insulin resistance, 6-minute walk test, and 36-item short-form survey (SF-36) were measured at baseline and after supplement. A significant dose-dependent increase in NAD concentration change (NADΔ) was observed following NMN supplementation, with a large coefficient of variation (29.2-113.3%) within group. The increase in NADΔ was associated with an improvement in the walking distance of 6-minute walk test and the SF-36 score. The median effect dose of NADΔ for the 6-minute walk test and SF-36 score was 15.7 nmol/L (95% CI: 10.9-20.5 nmol/L) and 13.5 nmol/L (95% CI; 10.5-16.5 nmol/L), respectively. Because of the high interindividual variability of the NADΔ after NMN supplementation, monitoring NAD concentration can provide valuable insights for tailoring personalized dosage regimens and optimizing NMN utilization.
Collapse
Affiliation(s)
- Ajla Hodzic Kuerec
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Weilan Wang
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Lin Yi
- Abinopharm, Inc, 3 Enterprise Drive, Suite 407, Shelton, CT 06484, USA
| | - Rongsheng Tao
- Huzhou Yihui Biotechnology Co., Ltd, 1366 Hong Feng Road, Huzhou, Zhejiang 313000, People's Republic of China
| | - Zhigang Lin
- ABA Chemicals Corporation, 67 Libing Road, Building 4, Zhangjian Hi-Tech Park, Shanghai 201203, People's Republic of China
| | - Aditi Vaidya
- ProRelix Services LLP, 102 A/B, Park Plaza, Karve Road, Karve Nagar, Pune, Maharashtra 411052, India
| | - Sohal Pendse
- ProRelix Services LLP, 102 A/B, Park Plaza, Karve Road, Karve Nagar, Pune, Maharashtra 411052, India
| | - Sornaraja Thasma
- ProRelix Services LLP, 102 A/B, Park Plaza, Karve Road, Karve Nagar, Pune, Maharashtra 411052, India
| | - Niranjan Andhalkar
- ProRelix Services LLP, 102 A/B, Park Plaza, Karve Road, Karve Nagar, Pune, Maharashtra 411052, India
| | - Ganesh Avhad
- Lotus Healthcare & Aesthetics Clinic, 5 Bramha Chambers, 2010 Sadashivpeth, Tilak Road, Pune, Maharashtra, India
| | - Vidyadhar Kumbhar
- Sunad Ayurved, Siddhivinayak Apart, Jeevan Nagar, Chinchwad, Pune, Maharashtra 411033, India
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore; Vrije Universiteit Amsterdam, Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7, Amsterdam 1081 BT, the Netherlands.
| |
Collapse
|
26
|
Bhosle A, Bae S, Zhang Y, Chun E, Avila-Pacheco J, Geistlinger L, Pishchany G, Glickman JN, Michaud M, Waldron L, Clish CB, Xavier RJ, Vlamakis H, Franzosa EA, Garrett WS, Huttenhower C. Integrated annotation prioritizes metabolites with bioactivity in inflammatory bowel disease. Mol Syst Biol 2024; 20:338-361. [PMID: 38467837 PMCID: PMC10987656 DOI: 10.1038/s44320-024-00027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Microbial biochemistry is central to the pathophysiology of inflammatory bowel diseases (IBD). Improved knowledge of microbial metabolites and their immunomodulatory roles is thus necessary for diagnosis and management. Here, we systematically analyzed the chemical, ecological, and epidemiological properties of ~82k metabolic features in 546 Integrative Human Microbiome Project (iHMP/HMP2) metabolomes, using a newly developed methodology for bioactive compound prioritization from microbial communities. This suggested >1000 metabolic features as potentially bioactive in IBD and associated ~43% of prevalent, unannotated features with at least one well-characterized metabolite, thereby providing initial information for further characterization of a significant portion of the fecal metabolome. Prioritized features included known IBD-linked chemical families such as bile acids and short-chain fatty acids, and less-explored bilirubin, polyamine, and vitamin derivatives, and other microbial products. One of these, nicotinamide riboside, reduced colitis scores in DSS-treated mice. The method, MACARRoN, is generalizable with the potential to improve microbial community characterization and provide therapeutic candidates.
Collapse
Affiliation(s)
- Amrisha Bhosle
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sena Bae
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yancong Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Ludwig Geistlinger
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Gleb Pishchany
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan N Glickman
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Levi Waldron
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hera Vlamakis
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Wendy S Garrett
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
27
|
Wu J, Han K, Sack MN. Targeting NAD+ Metabolism to Modulate Autoimmunity and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1043-1050. [PMID: 38498807 PMCID: PMC10954088 DOI: 10.4049/jimmunol.2300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 03/20/2024]
Abstract
NAD+ biology is involved in controlling redox balance, functioning as a coenzyme in numerous enzymatic reactions, and is a cofactor for Sirtuin enzymes and a substrate for multiple regulatory enzyme reactions within and outside the cell. At the same time, NAD+ levels are diminished with aging and are consumed during the development of inflammatory and autoimmune diseases linked to aberrant immune activation. Direct NAD+ augmentation via the NAD+ salvage and Priess-Handler pathways is being investigated as a putative therapeutic intervention to improve the healthspan in inflammation-linked diseases. In this review, we survey NAD+ biology and its pivotal roles in the regulation of immunity and inflammation. Furthermore, we discuss emerging studies evaluate NAD+ boosting in murine models and in human diseases, and we highlight areas of research that remain unresolved in understanding the mechanisms of action of these nutritional supplementation strategies.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
28
|
Zhang C, Xiang C, Zhou K, Liu X, Qiao G, Zhao Y, Dong K, Sun K, Liu Z. Intestinal lysozyme1 deficiency alters microbiota composition and impacts host metabolism through the emergence of NAD +-secreting ASTB Qing110 bacteria. mSystems 2024; 9:e0121423. [PMID: 38364095 PMCID: PMC10949482 DOI: 10.1128/msystems.01214-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
The intestine plays a pivotal role in nutrient absorption and host defense against pathogens, orchestrated in part by antimicrobial peptides secreted by Paneth cells. Among these peptides, lysozyme has multifaceted functions beyond its bactericidal activity. Here, we uncover the intricate relationship between intestinal lysozyme, the gut microbiota, and host metabolism. Lysozyme deficiency in mice led to altered body weight, energy expenditure, and substrate utilization, particularly on a high-fat diet. Interestingly, these metabolic benefits were linked to changes in the gut microbiota composition. Cohousing experiments revealed that the metabolic effects of lysozyme deficiency were microbiota-dependent. 16S rDNA sequencing highlighted differences in microbial communities, with ASTB_g (OTU60) highly enriched in lysozyme knockout mice. Subsequently, a novel bacterium, ASTB Qing110, corresponding to ASTB_g (OTU60), was isolated. Metabolomic analysis revealed that ASTB Qing110 secreted high levels of NAD+, potentially influencing host metabolism. This study sheds light on the complex interplay between intestinal lysozyme, the gut microbiota, and host metabolism, uncovering the potential role of ASTB Qing110 as a key player in modulating metabolic outcomes. IMPORTANCE The impact of intestinal lumen lysozyme on intestinal health is complex, arising from its multifaceted interactions with the gut microbiota. Lysozyme can both mitigate and worsen certain health conditions, varying with different scenarios. This underscores the necessity of identifying the specific bacterial responses elicited by lysozyme and understanding their molecular foundations. Our research reveals that a deficiency in intestinal lysozyme1 may offer protection against diet-induced obesity by altering bacterial populations. We discovered a strain of bacterium, ASTB Qing110, which secretes NAD+ and is predominantly found in lyz1-deficient mice. Qing110 demonstrates positive effects in both C. elegans and mouse models of ataxia telangiectasia. This study sheds light on the intricate role of lysozyme in influencing intestinal health.
Collapse
Affiliation(s)
- Chengye Zhang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Chen Xiang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Kaichen Zhou
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingchen Liu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Guofeng Qiao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Yabo Zhao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Kemeng Dong
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ke Sun
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Zhihua Liu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Lu X, Yang R, Chen Y, Chen D. NAD metabolic therapy in metabolic dysfunction-associated steatotic liver disease: Possible roles of gut microbiota. iScience 2024; 27:109174. [PMID: 38405608 PMCID: PMC10884928 DOI: 10.1016/j.isci.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly named non-alcoholic fatty liver disease (NAFLD), is induced by alterations of hepatic metabolism. As a critical metabolites function regulator, nicotinamide adenine dinucleotide (NAD) nowadays has been validated to be effective in the treatment of diet-induced murine model of MASLD. Additionally, gut microbiota has been reported to have the potential to prevent MASLD by dietary NAD precursors metabolizing together with mammals. However, the underlying mechanism remains unclear. In this review, we hypothesized that NAD enhancing mitochondrial activity might reshape a specific microbiota signature, and improve MASLD progression demonstrated by fecal microbiota transplantation. Here, this review especially focused on the mechanism of Microbiota-Gut-Liver Axis together with NAD metabolism for the MASLD progress. Notably, we found significant changes in Prevotella associated with NAD in a gut microbiome signature of certain MASLD patients. With the recent researches, we also inferred that Prevotella can not only regulate the level of NAD pool by boosting the carbon metabolism, but also play a vital part in regulating the branched-chain amino acid (BCAA)-related fatty acid metabolism pathway. Altogether, our results support the notion that the gut microbiota contribute to the dietary NAD precursors metabolism in MASLD development and the dietary NAD precursors together with certain gut microbiota may be a preventive or therapeutic strategy in MASLD management.
Collapse
Affiliation(s)
- Xinyi Lu
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Rui Yang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Daozhen Chen
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
- Department of Laboratory, Haidong Second People’s Hospital, Haidong 810699, China
| |
Collapse
|
30
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
31
|
El Tekle G, Andreeva N, Garrett WS. The Role of the Microbiome in the Etiopathogenesis of Colon Cancer. Annu Rev Physiol 2024; 86:453-478. [PMID: 38345904 DOI: 10.1146/annurev-physiol-042022-025619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Studies in preclinical models support that the gut microbiota play a critical role in the development and progression of colorectal cancer (CRC). Specific microbial species and their corresponding virulence factors or associated small molecules can contribute to CRC development and progression either via direct effects on the neoplastic transformation of epithelial cells or through interactions with the host immune system. Induction of DNA damage, activation of Wnt/β-catenin and NF-κB proinflammatory pathways, and alteration of the nutrient's availability and the metabolic activity of cancer cells are the main mechanisms by which the microbiota contribute to CRC. Within the tumor microenvironment, the gut microbiota alter the recruitment, activation, and function of various immune cells, such as T cells, macrophages, and dendritic cells. Additionally, the microbiota shape the function and composition of cancer-associated fibroblasts and extracellular matrix components, fashioning an immunosuppressive and pro-tumorigenic niche for CRC. Understanding the complex interplay between gut microbiota and tumorigenesis can provide therapeutic opportunities for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Geniver El Tekle
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Natalia Andreeva
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD + Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci 2024; 25:2092. [PMID: 38396769 PMCID: PMC10889166 DOI: 10.3390/ijms25042092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promising antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase (NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies show that NAD+ biosynthesis through the so-called "Preiss-Handler (PH) pathway", which utilizes nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases (NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging targets in cancer drug discovery, summarizing their reported inhibitors and describing their current or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus become viable targets for drug discovery.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
33
|
Yu J, Youngson NA, Laybutt DR, Morris MJ, Leigh SJ. Complementary yet divergent effects of exercise and an exercise mimetic on microbiome in high-fat diet-induced obesity. Physiol Genomics 2024; 56:136-144. [PMID: 38009223 DOI: 10.1152/physiolgenomics.00066.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023] Open
Abstract
Exercise is beneficial for obesity, partially through increased mitochondrial activity and raised nicotinamide adenine dinucleotide (NAD), a coenzyme critical for mitochondrial function and metabolism. Recent work has shown that increasing the availability of NAD through pharmacological means improves metabolic health in rodent models of diet-induced obesity and that the effect of these supplements when administered orally may be modulated by the gut microbiome. The gut microbiome is altered by both diet and exercise and is thought to contribute to some aspects of high-fat diet-induced metabolic dysfunction. We examined the independent and combined effects of treadmill exercise and nicotinamide mononucleotide (NMN) supplementation on the gut microbiome of female C57Bl6/J mice chronically fed a high-fat diet. We showed that 8 wk of treadmill exercise, oral-administered NMN, or combined therapy exert unique effects on gut microbiome composition without changing bacterial species richness. Exercise and NMN exerted additive effects on microbiota composition, and NMN partially or fully restored predicted microbial functions, specifically carbohydrate and lipid metabolism, to control levels. Further research is warranted to better understand the mechanisms underpinning the interactions between exercise and oral NAD+ precursor supplementation on gut microbiome.NEW & NOTEWORTHY Exercise and NAD+ precursor supplementation exerted additive and independent effects on gut microbiota composition and inferred function in female mice with diet-induced obesity. Notably, combining exercise and oral nicotinamide mononucleotide supplementation restored inferred microbial functions to control levels, indicating that this combination may improve high-fat diet-induced alterations to microbial metabolism.
Collapse
Affiliation(s)
- Josephine Yu
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Neil A Youngson
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Margaret J Morris
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sarah-Jane Leigh
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Chen S, Cai X, Lao L, Wang Y, Su H, Sun H. Brain-Gut-Microbiota Axis in Amyotrophic Lateral Sclerosis: A Historical Overview and Future Directions. Aging Dis 2024; 15:74-95. [PMID: 37307822 PMCID: PMC10796086 DOI: 10.14336/ad.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease which is strongly associated with age. The incidence of ALS increases from the age of 40 and peaks between the ages of 65 and 70. Most patients die of respiratory muscle paralysis or lung infections within three to five years of the appearance of symptoms, dealing a huge blow to patients and their families. With aging populations, improved diagnostic methods and changes in reporting criteria, the incidence of ALS is likely to show an upward trend in the coming decades. Despite extensive researches have been done, the cause and pathogenesis of ALS remains unclear. In recent decades, large quantities of studies focusing on gut microbiota have shown that gut microbiota and its metabolites seem to change the evolvement of ALS through the brain-gut-microbiota axis, and in turn, the progression of ALS will exacerbate the imbalance of gut microbiota, thereby forming a vicious cycle. This suggests that further exploration and identification of the function of gut microbiota in ALS may be crucial to break the bottleneck in the diagnosis and treatment of this disease. Hence, the current review summarizes and discusses the latest research advancement and future directions of ALS and brain-gut-microbiota axis, so as to help relevant researchers gain correlative information instantly.
Collapse
Affiliation(s)
- Shilan Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Lin Lao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yuxuan Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Huanxing Su
- Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau.
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Unno J, Mills KF, Ogura T, Nishimura M, Imai SI. Absolute quantification of nicotinamide mononucleotide in biological samples by double isotope-mediated liquid chromatography-tandem mass spectrometry (dimeLC-MS/MS). NPJ AGING 2024; 10:2. [PMID: 38167419 PMCID: PMC10762063 DOI: 10.1038/s41514-023-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite for fundamental biological phenomena, including aging. Nicotinamide mononucleotide (NMN) is a key NAD+ intermediate that has been extensively tested as an effective NAD+-boosting compound in mice and humans. However, the accurate measurement of NMN in biological samples has long been a challenge in the field. Here, we have established an accurate, quantitative methodology for measuring NMN by using liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) with double isotopic NMN standards. In this new methodology, the matrix effects of biological samples were properly adjusted, and the fate of NMN could be traced during sample processing. We have demonstrated that this methodology can accurately quantitate NMN levels in mouse plasma and confirmed quick, direct NMN uptake into blood circulation and cells. This double isotope-mediated LC-MS/MS (dimeLC-MS/MS) can easily be expanded to other NAD+-related metabolites as a reliable standard methodology for NAD+ biology.
Collapse
Affiliation(s)
- Junya Unno
- Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn F Mills
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tairo Ogura
- Innovation Center, Shimadzu Scientific Instruments, Inc., Columbia, MD, USA
| | - Masayuki Nishimura
- New Strategy Department, Shimadzu Scientific Instruments, Inc., Columbia, MD, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Rice J, Lautrup S, Fang EF. NAD + Boosting Strategies. Subcell Biochem 2024; 107:63-90. [PMID: 39693020 DOI: 10.1007/978-3-031-66768-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nicotinamide adenine dinucleotide (oxidized form, NAD+) serves as a co-substrate and co-enzyme in cells to execute its key roles in cell signalling pathways and energetic metabolism, arbitrating cell survival and death. It was discovered in 1906 by Arthur Harden and William John Young in yeast extract which could accelerate alcohol fermentation. NAD acts as an electron acceptor and cofactor throughout the processes of glycolysis, Tricarboxylic Acid Cycle (TCA), β oxidation, and oxidative phosphorylation (OXPHOS). NAD has two forms: NAD+ and NADH. NAD+ is the oxidising coenzyme that is reduced when it picks up electrons. NAD+ levels steadily decline with age, resulting in an increase in vulnerability to chronic illness and perturbed cellular metabolism. Boosting NAD+ levels in various model organisms have resulted in improvements in healthspan and lifespan extension. These results have prompted a search for means by which NAD+ levels in the body can be augmented by both internal and external means. The aim of this chapter is to provide an overview of NAD+, appraise clinical evidence of its importance and success in potentially extending health- and lifespan, as well as to explore NAD+ boosting strategies.
Collapse
Affiliation(s)
- Jared Rice
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
37
|
Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell 2024; 23:e13920. [PMID: 37424179 PMCID: PMC10776128 DOI: 10.1111/acel.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.
Collapse
Affiliation(s)
- Claudia Christiano Silva Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Heidi Soares Cordeiro
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Ngan Le Kim Tran
- Center for Clinical and Translational Science and Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Eduardo Nunes Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
38
|
Alghamdi M, Braidy N. Supplementation with NAD+ Precursors for Treating Alzheimer's Disease: A Metabolic Approach. J Alzheimers Dis 2024; 101:S467-S477. [PMID: 39422945 DOI: 10.3233/jad-231277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurocognitive disorder. There is no cure for AD. Maintenance on intracellular levels of nicotinamide adenine dinucleotide (NAD+) has been reported to be a promising therapeutic strategy for the treatment of AD. NAD+ precursors that represent candidate targets include nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR). Objective This systematic review provides insights into the potential therapeutic value of NAD+ precursors including NMN and NR, for the treatment of AD using preclinical and clinical studies published in the last 5 years. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol was followed to systematically search the literature using two databases. Results We found 3 studies that used NMN to treat AD in preclinical murine models. However, human clinical trials using NMN as a therapeutic intervention in AD was not available in the current literature. We also found 4 studies that investigated the potential benefits of NR for the treatment of AD in preclinical models. We also found 2 human clinical trials that showed marked improvements in plasma and neuroimaging biomarkers, and cognitive measures following supplementation with NR. Conclusions Results of preclinical and clinical studies confirm the potential benefits of NAD+ precursors for the treatment of AD. However, further clinical studies are required to confirm the increasingly important value of NAD+ precursors as effective pharmacological interventions in the clinic.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Department of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
39
|
Feng R, Yang W, Feng W, Huang X, Cen M, Peng G, Wu W, Wang Z, Jing Y, Long T, Liu Y, Li Z, Chang G, Huang K. Time-restricted feeding ameliorates non-alcoholic fatty liver disease through modulating hepatic nicotinamide metabolism via gut microbiota remodeling. Gut Microbes 2024; 16:2390164. [PMID: 39154362 PMCID: PMC11332628 DOI: 10.1080/19490976.2024.2390164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a global health concern, lacking specific therapeutic strategies. Time-restricted feeding (TRF) regimen demonstrated beneficial effects in NAFLD; however, the underlying mechanisms remain unclear. In this study, we established a NAFLD mouse model through a high-fat diet (HFD) and implemented the 16:8 TRF regimen for a duration of 6 weeks. We demonstrated that TRF remarkably alleviated hepatic steatosis in HFD mice. Of note, aldehyde oxidase 1 (AOX1), a key enzyme in hepatic nicotinamide (NAM) catabolism, exhibited apparent upregulation in response to HFD, leading to abnormal accumulation of N-Methyl-6-pyridone-3-carboxamide (N-Me-6-PY, also known as 2PY) and N-Methyl-4-pyridone-5-carboxamide (N-Me-4-PY, also known as 4PY), whereas it was almost restored by TRF. Both N-Me-6-PY and N-Me-4-PY promoted de novo lipogenesis and fatty acid uptake capacities in hepatocyte, and aggravated hepatic steatosis in mice either fed chow diet or HFD. In contrast, pharmacological inhibition of AOX1 was sufficient to ameliorate the hepatic steatosis and lipid metabolic dysregulation induced by HFD. Moreover, transplantation of fecal microbiota efficiently mimicked the modulatory effect of TRF on NAM metabolism, thus mitigating hepatic steatosis and lipid metabolic disturbance, suggesting a gut microbiota-dependent manner. In conclusion, our study reveals the intricate relationship between host NAM metabolic modification and gut microbiota remodeling during the amelioration of NAFLD by TRF, providing promising insights into the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Ruijia Feng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenchao Yang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiqi Feng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guiyan Peng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenrui Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhecun Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yexiang Jing
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Long
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangqi Chang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kan Huang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
41
|
Alexandris AS, Koliatsos VE. NAD +, Axonal Maintenance, and Neurological Disease. Antioxid Redox Signal 2023; 39:1167-1184. [PMID: 37503611 PMCID: PMC10715442 DOI: 10.1089/ars.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.
Collapse
Affiliation(s)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Freeberg KA, Udovich CC, Martens CR, Seals DR, Craighead DH. Dietary Supplementation With NAD+-Boosting Compounds in Humans: Current Knowledge and Future Directions. J Gerontol A Biol Sci Med Sci 2023; 78:2435-2448. [PMID: 37068054 PMCID: PMC10692436 DOI: 10.1093/gerona/glad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 04/18/2023] Open
Abstract
Advancing age and many disease states are associated with declines in nicotinamide adenine dinucleotide (NAD+) levels. Preclinical studies suggest that boosting NAD+ abundance with precursor compounds, such as nicotinamide riboside or nicotinamide mononucleotide, has profound effects on physiological function in models of aging and disease. Translation of these compounds for oral supplementation in humans has been increasingly studied within the last 10 years; however, the clinical evidence that raising NAD+ concentrations can improve physiological function is unclear. The goal of this review was to synthesize the published literature on the effects of chronic oral supplementation with NAD+ precursors on healthy aging and age-related chronic diseases. We identified nicotinamide riboside, nicotinamide riboside co-administered with pterostilbene, and nicotinamide mononucleotide as the most common candidates in investigations of NAD+-boosting compounds for improving physiological function in humans. Studies have been performed in generally healthy midlife and older adults, adults with cardiometabolic disease risk factors such as overweight and obesity, and numerous patient populations. Supplementation with these compounds is safe, tolerable, and can increase the abundance of NAD+ and related metabolites in multiple tissues. Dosing regimens and study durations vary greatly across interventions, and small sample sizes limit data interpretation of physiological outcomes. Limitations are identified and future research directions are suggested to further our understanding of the potential efficacy of NAD+-boosting compounds for improving physiological function and extending human health span.
Collapse
Affiliation(s)
- Kaitlin A Freeberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - CeAnn C Udovich
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
43
|
Yaku K, Nakagawa T. NAD + Precursors in Human Health and Disease: Current Status and Future Prospects. Antioxid Redox Signal 2023; 39:1133-1149. [PMID: 37335049 DOI: 10.1089/ars.2023.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) acts as a cofactor in many important biological processes. The administration of NAD+ precursors increases the intracellular NAD+ pool and has beneficial effects on physiological changes and diseases associated with aging in various organisms, including rodents and humans. Recent Advances: Evidence from preclinical studies demonstrating the beneficial effects of NAD+ precursors has rapidly increased in the last decade. The results of these studies have prompted the development of clinical trials using NAD+ precursors, particularly nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). In addition, in vivo studies of NAD+ metabolism have rapidly progressed. Critical Issues: Several studies have demonstrated that the oral administration of NAD+ precursors, such as NR and NMN, is safe and significantly increases NAD+ levels in humans. However, the efficacy of these NAD+ precursors is lower than expected from the results of preclinical studies. In addition, the identification of the contribution of the host-gut microbiota interactions to NR and NMN metabolism has added to the complexity of NAD+ metabolism. Future Directions: Further studies are required to determine the efficacy of NAD+ precursors in humans. Further in vivo studies of NAD+ metabolism are required to optimize the effects of NAD+ supplementation. There is also a need for methods of delivering NAD+ precursors to target organs or tissues to increase the outcomes of clinical trials. Antioxid. Redox Signal. 39, 1133-1149.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine; Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine; Toyama, Japan
- Research Center for Pre-Disease Science; University of Toyama, Toyama, Japan
| |
Collapse
|
44
|
Sun Y, Nie Q, Zhang S, He H, Zuo S, Chen C, Yang J, Chen H, Hu J, Li S, Cheng J, Zhang B, Zheng Z, Pan S, Huang P, Lian L, Nie S. Parabacteroides distasonis ameliorates insulin resistance via activation of intestinal GPR109a. Nat Commun 2023; 14:7740. [PMID: 38007572 PMCID: PMC10676405 DOI: 10.1038/s41467-023-43622-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
Gut microbiota plays a key role in insulin resistance (IR). Here we perform a case-control study of Chinese adults (ChiCTR2200065715) and identify that Parabacteroides distasonis is inversely correlated with IR. Treatment with P. distasonis improves IR, strengthens intestinal integrity, and reduces systemic inflammation in mice. We further demonstrate that P. distasonis-derived nicotinic acid (NA) is a vital bioactive molecule that fortifies intestinal barrier function via activating intestinal G-protein-coupled receptor 109a (GPR109a), leading to ameliorating IR. We also conduct a bioactive dietary fiber screening to induce P. distasonis growth. Dendrobium officinale polysaccharide (DOP) shows favorable growth-promoting effects on P. distasonis and protects against IR in mice simultaneously. Finally, the reduced P. distasonis and NA levels were also validated in another human type 2 diabetes mellitus cohort. These findings reveal the unique mechanisms of P. distasonis on IR and provide viable strategies for the treatment and prevention of IR by bioactive dietary fiber.
Collapse
Affiliation(s)
- Yonggan Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huijun He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Haihong Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Song Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jiaobo Cheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Baojie Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhitian Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shijie Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ping Huang
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Lian
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China.
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China.
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| |
Collapse
|
45
|
Bhasin S, Seals D, Migaud M, Musi N, Baur JA. Nicotinamide Adenine Dinucleotide in Aging Biology: Potential Applications and Many Unknowns. Endocr Rev 2023; 44:1047-1073. [PMID: 37364580 DOI: 10.1210/endrev/bnad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.
Collapse
Affiliation(s)
- Shalender Bhasin
- Department of Medicine, Harvard Medical School, Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Seals
- Department of Integrative Physiology and Medicine, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of Southern Alabama, Mobile, AL 36688, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Xu Y, Xiao W. NAD+: An Old but Promising Therapeutic Agent for Skeletal Muscle Ageing. Ageing Res Rev 2023; 92:102106. [PMID: 39492424 DOI: 10.1016/j.arr.2023.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
More than a century after the discovery of nicotinamide adenine dinucleotide (NAD+), our understanding of the molecule's role in the biology of ageing continues to evolve. As a coenzyme or substrate for many enzymes, NAD+ governs a wide range of biological processes, including energy metabolism, genomic stability, signal transduction, and cell fate. NAD+ deficiency has been recognised as a bona fide hallmark of tissue degeneration, and restoring NAD+ homeostasis helps to rejuvenate multiple mechanisms associated with tissue ageing. The progressive loss of skeletal muscle homeostasis with age is directly associated with high morbidity, disability and mortality. The aetiology of skeletal muscle ageing is complex, involving mitochondrial dysfunction, senescence and stem cell depletion, autophagy defects, chronic cellular stress, intracellular ion overload, immune cell dysfunction, circadian clock disruption, microcirculation disorders, persistent denervation, and gut microbiota dysbiosis. This review focuses on the therapeutic potential of NAD+ restoration to alleviate the above pathological factors and discusses the effects of in vivo administration of different NAD+ boosting strategies on skeletal muscle homeostasis, aiming to provide a reference for combating skeletal muscle ageing.
Collapse
Affiliation(s)
- Yingying Xu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
47
|
Novak EA, Crawford EC, Mentrup HL, Griffith BD, Fletcher DM, Flanagan MR, Schneider C, Firek B, Rogers MB, Morowitz MJ, Piganelli JD, Wang Q, Mollen KP. Epithelial NAD + depletion drives mitochondrial dysfunction and contributes to intestinal inflammation. Front Immunol 2023; 14:1231700. [PMID: 37744380 PMCID: PMC10512956 DOI: 10.3389/fimmu.2023.1231700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction We have previously demonstrated that a pathologic downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1α) within the intestinal epithelium contributes to the pathogenesis of inflammatory bowel disease (IBD). However, the mechanism underlying downregulation of PGC1α expression and activity during IBD is not yet clear. Methods Mice (male; C57Bl/6, Villincre/+;Pgc1afl/fl mice, and Pgc1afl/fl) were subjected to experimental colitis and treated with nicotinamide riboside. Western blot, high-resolution respirometry, nicotinamide adenine dinucleotide (NAD+) quantification, and immunoprecipitation were used to in this study. Results We demonstrate a significant depletion in the NAD+ levels within the intestinal epithelium of mice undergoing experimental colitis, as well as humans with ulcerative colitis. While we found no decrease in the levels of NAD+-synthesizing enzymes within the intestinal epithelium of mice undergoing experimental colitis, we did find an increase in the mRNA level, as well as the enzymatic activity, of the NAD+-consuming enzyme poly(ADP-ribose) polymerase-1 (PARP1). Treatment of mice undergoing experimental colitis with an NAD+ precursor reduced the severity of colitis, restored mitochondrial function, and increased active PGC1α levels; however, NAD+ repletion did not benefit transgenic mice that lack PGC1α within the intestinal epithelium, suggesting that the therapeutic effects require an intact PGC1α axis. Discussion Our results emphasize the importance of PGC1α expression to both mitochondrial health and homeostasis within the intestinal epithelium and suggest a novel therapeutic approach for disease management. These findings also provide a mechanistic basis for clinical trials of nicotinamide riboside in IBD patients.
Collapse
Affiliation(s)
- Elizabeth A. Novak
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Erin C. Crawford
- Division of Gastroenterology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Heather L. Mentrup
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Brian D. Griffith
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - David M. Fletcher
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | | | - Corinne Schneider
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Brian Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Matthew B. Rogers
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jon D. Piganelli
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Qian Wang
- Department of Pathology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Kevin P. Mollen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
48
|
Kim LJ, Chalmers TJ, Madawala R, Smith GC, Li C, Das A, Poon EWK, Wang J, Tucker SP, Sinclair DA, Quek LE, Wu LE. Host-microbiome interactions in nicotinamide mononucleotide (NMN) deamidation. FEBS Lett 2023; 597:2196-2220. [PMID: 37463842 DOI: 10.1002/1873-3468.14698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
The nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide mononucleotide (NMN) is a proposed therapy for age-related disease, whereby it is assumed that NMN is incorporated into NAD+ through the canonical recycling pathway. During oral delivery, NMN is exposed to the gut microbiome, which could modify the NAD+ metabolome through enzyme activities not present in the mammalian host. We show that orally delivered NMN can undergo deamidation and incorporation in mammalian tissue via the de novo pathway, which is reduced in animals treated with antibiotics to ablate the gut microbiome. Antibiotics increased the availability of NAD+ metabolites, suggesting the microbiome could be in competition with the host for dietary NAD+ precursors. These findings highlight new interactions between NMN and the gut microbiome.
Collapse
Affiliation(s)
- Lynn-Jee Kim
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | | | | | - Greg C Smith
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | - Catherine Li
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | - Abhirup Das
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | | | - Jun Wang
- GeneHarbor (Hong Kong) Biotechnologies Limited, Hong Kong Science Park, China
- School of Life Sciences, The Chinese University of Hong Kong, China
| | | | - David A Sinclair
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
- Harvard Medical School, Boston, MA, USA
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, NSW, Australia
| | - Lindsay E Wu
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| |
Collapse
|
49
|
Liu Q, Gao K, Ding X, Mo D, Guo H, Chen B, Xia B, Ye C, Chen G, Guo C. NAMPT inhibition relieves intestinal inflammation by regulating macrophage activation in experimental necrotizing enterocolitis. Biomed Pharmacother 2023; 165:115012. [PMID: 37329710 DOI: 10.1016/j.biopha.2023.115012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) is associated with various NAD+ -consuming enzymatic reactions. The precise role in intestinal mucosal immunity in necrotizing enterocolitis (NEC) is not well defined. Here, we examined whether NAMPT inhibition by the highly specific inhibitor FK866 could alleviate intestinal inflammation during the pathogenesis of NEC. In the present study, we showed that NAMPT expression was upregulated in the human terminal ileum of human infants with NEC. FK866 administration attenuated M1 macrophage polarization and relieved the symptoms of experimental NEC pups. FK866 inhibited intercellular NAD+ levels, macrophage M1 polarization, and the expression of NAD+ -dependent enzymes, such as poly (ADP ribose) polymerase 1 (PARP1) and Sirt6. Consistently, the capacity of macrophages to phagocytose zymosan particles, as well as antibacterial activity, were impaired by FK866, whereas NMN supplementation to restore NAD+ levels reversed the changes in phagocytosis and antibacterial activity. In conclusion, FK866 reduced intestinal macrophage infiltration and skewed macrophage polarization, which is implicated in intestinal mucosal immunity, thereby promoting the survival of NEC pups.
Collapse
Affiliation(s)
- Qianyang Liu
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China; Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China; Department of Obstetrics and Gynecology, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China
| | - Kai Gao
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China; Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China
| | - Xionghui Ding
- Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Mo
- Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China
| | - Hongjie Guo
- Department of anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin Chen
- Department of General Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bingshan Xia
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China; Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China; Department of Obstetrics and Gynecology, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China
| | - Cuilian Ye
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Gongli Chen
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China; Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China; Department of Obstetrics and Gynecology, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China.
| | - Chunbao Guo
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China; Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China; Department of Obstetrics and Gynecology, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
50
|
Biţă A, Scorei IR, Ciocîlteu MV, Nicolaescu OE, Pîrvu AS, Bejenaru LE, Rău G, Bejenaru C, Radu A, Neamţu J, Mogoşanu GD, Benner SA. Nicotinamide Riboside, a Promising Vitamin B 3 Derivative for Healthy Aging and Longevity: Current Research and Perspectives. Molecules 2023; 28:6078. [PMID: 37630330 PMCID: PMC10459282 DOI: 10.3390/molecules28166078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Many studies have suggested that the oxidized form of nicotinamide adenine dinucleotide (NAD+) is involved in an extensive spectrum of human pathologies, including neurodegenerative disorders, cardiomyopathy, obesity, and diabetes. Further, healthy aging and longevity appear to be closely related to NAD+ and its related metabolites, including nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). As a dietary supplement, NR appears to be well tolerated, having better pharmacodynamics and greater potency. Unfortunately, NR is a reactive molecule, often unstable during its manufacturing, transport, and storage. Recently, work related to prebiotic chemistry discovered that NR borate is considerably more stable than NR itself. However, immediately upon consumption, the borate dissociates from the NR borate and is lost in the body through dilution and binding to other species, notably carbohydrates such as fructose and glucose. The NR left behind is expected to behave pharmacologically in ways identical to NR itself. This review provides a comprehensive summary (through Q1 of 2023) of the literature that makes the case for the consumption of NR as a dietary supplement. It then summarizes the challenges of delivering quality NR to consumers using standard synthesis, manufacture, shipping, and storage approaches. It concludes by outlining the advantages of NR borate in these processes.
Collapse
Affiliation(s)
- Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Maria Viorica Ciocîlteu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - Oana Elena Nicolaescu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Andreea Silvia Pîrvu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
| | - Gabriela Rău
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.B.); (A.R.)
| | - Johny Neamţu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Avenue, Room N112, Alachua, FL 32615, USA;
| |
Collapse
|