1
|
Liu X, Wang W, Wang Y, Duan W, Liu C, Quan P, Xiao J, Zhang Y, Hao Y, Fang L, Song Y, Zhang W. Biochemical strategy-based hybrid hydrogel dressing-mediated in situ synthesis of selenoproteins for DFU immunity-microbiota homeostasis regulation. Biomaterials 2025; 317:123114. [PMID: 39854881 DOI: 10.1016/j.biomaterials.2025.123114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Chronic consequences of diabetes that are most commonly encountered are diabetic foot ulcers (DFUs), driven by microbiota-immune system dyshomeostasis, eventually leading to delayed wound healing. Available therapies, such as systemic or topical administration of anti-inflammatory or antimicrobial agents, are limited due to antibiotic resistance and immune dysfunction. Herein, a hybrid hydrogel dressing is developed as the artificial bioadhesive barrier at wound sites to maintain microbial and immunological homeostasis locally and have potent anti-inflammatory effects. Specifically, Zero-valent selenium nanoparticles are synthesized and encapsulated into the alginate-polyacrylamide interpenetrating hydrogel networks, during which trehalose is adopted to modify the network defects. Besides, as an anti-adhesion agent, trehalose has shown the ability to prevent immune degradation by reducing bacteria binding to HUVECs. The obtained hybrid hydrogel dressing serves as a physical barrier against microbiome invasion, further regulates the composition of the wound microbiome to restore microbial immune homeostasis at the wound site, and cooperatively relieves DFU-associated symptoms. Meanwhile, the hydrogel dressing can synthesize selenoproteins in situ based on biochemical strategies and significantly reduce the secretion of proinflammatory cytokines. The proposed biochemical strategy based on the hybrid hydrogel dressings can efficiently restore microbiota-immune homeostasis in the wounds, presenting a promising approach for DFU therapy in clinics.
Collapse
Affiliation(s)
- Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Weidi Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yali Wang
- Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tangshan, 063000, China
| | - Wenyuan Duan
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jiali Xiao
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yunning Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yu Hao
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yilin Song
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
2
|
Hieshima K, Sugiyama S, Yoshida A, Kurinami N, Suzuki T, Miyamoto F, Kajiwara K, Jinnouchi K, Jinnouchi T, Jinnouchi H. High Frequency of Defecation under Metformin Use May Be a Potential Glucose-lowering Factor Independent of the Dose-dependent Effect of Metformin in Patients with Type 2 Diabetes Mellitus. Intern Med 2025; 64:1485-1495. [PMID: 39462598 DOI: 10.2169/internalmedicine.3982-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Objective Our previous study indicated that the efficacy of metformin in lowering glycated hemoglobin (HbA1c) levels may be influenced by the pretreatment frequency of defecation (FD) in patients with type 2 diabetes mellitus (T2DM). This study aimed to further examine how FD and the metformin dose may affect HbA1c changes (ΔHbA1c) in T2DM patients. Methods A retrospective analysis was conducted on inpatients who received antidiabetic treatment without altering dosages for six months post-discharge, except for minor insulin adjustments. For new patients, FD was assessed before (pretreatment FD) and after the initiation of antidiabetic therapy (posttreatment FD). For patients already on treatment, FD was evaluated during hospitalization (posttreatment FD). Patients were categorized based on their metformin use, and the relationship between FD and ΔHbA1c was assessed 1.5-6 months post-discharge. The impact of the metformin dose and posttreatment FD on the ΔHbA1c level was analyzed, along with other factors affecting posttreatment FD. Results The analysis included 89 patients (41 on metformin, 21 newly treated; 48 not on metformin, 17 newly treated). Both pre- and posttreatment FD were linked to ΔHbA1c levels in the metformin group. The metformin dose correlated with posttreatment FD but not with pretreatment FD. A significant relationship was observed between ΔHbA1c and the metformin dose. A multiple regression analysis identified posttreatment FD and metformin dose as significant independent factors influencing ΔHbA1c levels. Additionally, diabetic peripheral neuropathy and diabetes duration were found to diminish the effectiveness of metformin, likely due to decreased posttreatment FD. Conclusion FD may independently contribute to the dose-dependent HbA1c-lowering effects of metformin.
Collapse
Affiliation(s)
| | - Seigo Sugiyama
- Diabetes Care Center, Jinnouchi Hospital, Japan
- Cardiovascular Division, Diabetes Care Center, Jinnouchi Hospital, Japan
| | | | | | | | | | | | | | | | - Hideaki Jinnouchi
- Diabetes Care Center, Jinnouchi Hospital, Japan
- Cardiovascular Division, Diabetes Care Center, Jinnouchi Hospital, Japan
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Kumamoto University Hospital, Japan
| |
Collapse
|
3
|
Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, Cao P. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduct Target Ther 2025; 10:132. [PMID: 40274830 PMCID: PMC12022100 DOI: 10.1038/s41392-025-02175-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes mellitus, significantly impacting patient quality of life and contributing to morbidity and mortality. Affecting approximately 50% of patients with diabetes, DN is predominantly characterized by distal symmetric polyneuropathy, leading to sensory loss, pain, and motor dysfunction, often resulting in diabetic foot ulcers and lower-limb amputations. The pathogenesis of DN is multifaceted, involving hyperglycemia, dyslipidemia, oxidative stress, mitochondrial dysfunction, and inflammation, which collectively damage peripheral nerves. Despite extensive research, disease-modifying treatments remain elusive, with current management primarily focusing on symptom control. This review explores the complex mechanisms underlying DN and highlights recent advances in diagnostic and therapeutic strategies. Emerging insights into the molecular and cellular pathways have unveiled potential targets for intervention, including neuroprotective agents, gene and stem cell therapies, and innovative pharmacological approaches. Additionally, novel diagnostic tools, such as corneal confocal microscopy and biomarker-based tests, have improved early detection and intervention. Lifestyle modifications and multidisciplinary care strategies can enhance patient outcomes. While significant progress has been made, further research is required to develop therapies that can effectively halt or reverse disease progression, ultimately improving the lives of individuals with DN. This review provides a comprehensive overview of current understanding and future directions in DN research and management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzhe Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Hu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Tao B, Shen X, Li G, Wu X, Yang Y, Sheng C, Zhang Y, Wang L, Zhao Z, Song Q, Yan D, Yan S, Xu Y, Yuan H, Zhou H, Liu J. New Evidence, Creative Insights, and Strategic Solutions: Advancing the Understanding and Practice of Diabetes Osteoporosis. J Diabetes 2025; 17:e70091. [PMID: 40265523 PMCID: PMC12015633 DOI: 10.1111/1753-0407.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Diabetes osteoporosis is a debilitating condition that significantly impacts human health. However, it is often underdiagnosed and not addressed in a timely or appropriate manner. METHODS Recent studies were reviewed to explore the roles of energy metabolism, sarcopeina, low-grade inflammation and gut microbiota in the development of diabetes osteoporosis. RESULTS Osteoporosis in diabetic patients differs from primary osteoporosis. Novel biomarkers and risk factors that are biologically, physiologically, and pathologically linked to the development of diabetes osteoporosis are emerging, necessitating a shift in strategies for diagnosis, risk stratification, and prevention of diabetes osteoporosis. CONCLUSIONS There is an urgent need to approach this disorder from a fresh perspective, initiating a range of basic research and clinical investigations.
Collapse
Affiliation(s)
- Bei Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ximei Shen
- Department of Endocrinology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Guangfei Li
- Department of Orthopedics, Osteoporosis Clinical CenterThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiyu Wu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yuying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chunxiang Sheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical UniversityNational Center for OrthopedicsBeijingChina
- JST Sarcopenia Research Centre, Beijing Research Institute of Traumatology and Orthopedics, Beijing Jishuitan HospitalCapital Medical University, National Center for OrthopedicsBeijingChina
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qi Song
- Department of Radiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen UniversityShenzhen Clinical Research Center for Metabolic DiseasesShenzhenChina
| | - Sunjie Yan
- Department of Endocrinology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Youjia Xu
- Department of Orthopedics, Osteoporosis Clinical CenterThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Houde Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Noureldein MH, Rumora AE, Teener SJ, Rigan DM, Hayes JM, Mendelson FE, Carter AD, Rubin WG, Savelieff MG, Feldman EL. Dietary Fatty Acid Composition Alters Gut Microbiome in Mice with Obesity-Induced Peripheral Neuropathy. Nutrients 2025; 17:737. [PMID: 40005065 PMCID: PMC11858455 DOI: 10.3390/nu17040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Peripheral neuropathy (PN), a complication of diabetes and obesity, progresses through a complex pathophysiology. Lifestyle interventions to manage systemic metabolism are recommended to prevent or slow PN, given the multifactorial risks of diabetes and obesity. A high-fat diet rich in saturated fatty acids (SFAs) induces PN, which a diet rich in monounsaturated fatty acids (MUFAs) rescues, independent of weight loss, suggesting factors beyond systemic metabolism impact nerve health. Interest has grown in gut microbiome mechanisms in PN, which is characterized by a distinct microbiota signature that correlates with sciatic nerve lipidome. METHODS Herein, we postulated that SFA- versus MUFA-rich diet would impact gut microbiome composition and correlate with PN development. To assess causality, we performed fecal microbiota transplantation (FMT) from donor mice fed SFA- versus MUFA-rich diet to lean recipient mice and assessed metabolic and PN phenotypes. RESULTS We found that the SFA-rich diet altered the microbiome community structure, which the MUFA-rich diet partially reversed. PN metrics correlated with several microbial families, some containing genera with feasible mechanisms of action for microbiome-mediated effects on PN. SFA and MUFA FMT did not impact metabolic phenotypes in recipient mice although SFA FMT marginally induced motor PN. CONCLUSIONS The involvement of diet-mediated changes in the microbiome on PN and gut-nerve axis may warrant further study.
Collapse
Affiliation(s)
- Mohamed H. Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy E. Rumora
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Samuel J. Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diana M. Rigan
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew D. Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Whitney G. Rubin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G. Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Li M, Ding L, Cao L, Zhang Z, Li X, Li Z, Xia Q, Yin K, Song S, Wang Z, Du H, Zhao D, Li X, Wang Z. Natural products targeting AMPK signaling pathway therapy, diabetes mellitus and its complications. Front Pharmacol 2025; 16:1534634. [PMID: 39963239 PMCID: PMC11830733 DOI: 10.3389/fphar.2025.1534634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Diabetes mellitus (DM) ranks among the most prevalent chronic metabolic diseases, characterized primarily by a persistent elevation in blood glucose levels. This condition typically stems from either insufficient insulin secretion or a functional defect in the insulin itself. Clinically, diabetes is primarily classified into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), with T2DM comprising nearly 90% of all diagnosed cases. Notably, the global incidence of T2DM has surged dramatically over recent decades. The adenylate-activated protein kinase (AMPK) signaling pathway is crucial in regulating cellular energy metabolism, marking it as a significant therapeutic target for diabetes and related complications. Natural products, characterized by their diverse origins, multifaceted bioactivities, and relative safety, hold considerable promise in modulating the AMPK pathway. This review article explores the advances in research on natural products that target the AMPK signaling pathway, aiming to inform the development of innovative antidiabetic therapies.
Collapse
Affiliation(s)
- Min Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Liyuan Cao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Xueyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zirui Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Qinjing Xia
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Kai Yin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zihan Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Haijian Du
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
7
|
Jiang Y, Yang J, Wei M, Shou J, Shen S, Yu Z, Zhang Z, Cai J, Lyu Y, Yang D, Han Y, Zhu J, Liu Z, Ma D, Xing GG, Li M. Probiotics alleviate painful diabetic neuropathy by modulating the microbiota-gut-nerve axis in rats. J Neuroinflammation 2025; 22:30. [PMID: 39894793 PMCID: PMC11789326 DOI: 10.1186/s12974-025-03352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
Painful diabetic neuropathy (PDN) is one of the most common complications of diabetes. Recent studies suggested that gut microbiota dysbiosis contributes to the development of PDN, but underlying mechanisms remain elusive. In this study, we found decreased probiotics generating bacteria such as Lactobacillus and Bifidobacterium strains in the PDN rats. Supplementation with multiple probiotics for 12 weeks alleviated pain, reversed nerve fiber lesions, and restored neuronal hyperexcitability. Probiotics administration effectively attenuated intestinal barrier impairment, reduced serum lipopolysaccharide and proinflammatory cytokines, and mitigated disruptions in the blood-nerve barrier. Furthermore, probiotics treatment inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway and reduced proinflammatory cytokines in the sciatic nerve of the PDN rats. Together, our findings suggest that gut microbiota dysbiosis participates in PDN pathogenesis, and probiotics offer therapeutic potential via modulating the microbiota-gut-nerve axis.
Collapse
Affiliation(s)
- Ye Jiang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Min Wei
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jiayin Shou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Shixiong Shen
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhuoying Yu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zixian Zhang
- Neuroscience Research Institute, Peking University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing, China
| | - Yanhan Lyu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jinpiao Zhu
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhigang Liu
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Daqing Ma
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing, China.
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
8
|
Zhou X, Chen X, Davis MM, Snyder MP. Embracing Interpersonal Variability of Microbiome in Precision Medicine. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:8-13. [PMID: 40313605 PMCID: PMC12040794 DOI: 10.1007/s43657-024-00201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 05/03/2025]
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Xin Chen
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Mark M. Davis
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
9
|
Wang X, Tian R, Liang C, Jia Y, Zhao L, Xie Q, Huang F, Yuan H. Biomimetic nanoplatform with microbiome modulation and antioxidant functions ameliorating insulin resistance and pancreatic β-cell dysfunction for T2DM management. Biomaterials 2025; 313:122804. [PMID: 39236631 DOI: 10.1016/j.biomaterials.2024.122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Insulin resistance and pancreatic β-cell dysfunction are the main pathogenesis of type 2 diabetes mellitus (T2DM). However, insulin therapy and diabetes medications do not effectively solve the two problems simultaneously. In this study, a biomimetic oral hydrogen nanogenerator that leverages the benefits of edible plant-derived exosomes and hydrogen therapy was constructed to overcome this dilemma by modulating gut microbiota and ameliorating oxidative stress and inflammatory responses. Hollow mesoporous silica (HMS) nanoparticles encapsulating ammonia borane (A) were used to overcome the inefficiency of H2 delivery in traditional hydrogen therapy, and exosomes originating from ginger (GE) were employed to enhance biocompatibility and regulate intestinal flora. Our study showed that HMS/A@GE not only considerably ameliorated insulin resistance and liver steatosis, but inhibited the dedifferentiation of islet β-cell and enhanced pancreatic β-cell proportion in T2DM model mice. In addition to its antioxidant and anti-inflammatory effects, HMS/A@GE augmented the abundance of Lactobacilli spp. and tryptophan metabolites, such as indole and indole acetic acid, which further activated the AhR/IL-22 pathway to improve intestinal-barrier function and metabolic impairments. This study offers a potentially viable strategy for addressing the current limitations of diabetes treatment by integrating gut-microbiota remodelling with antioxidant therapies.
Collapse
Affiliation(s)
- Xiudan Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Rui Tian
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Chenghong Liang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Yifan Jia
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Lingyun Zhao
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Qinyuan Xie
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Fenglian Huang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China.
| |
Collapse
|
10
|
Zhang S, Tang S, Liu Y, Xue B, Xie Q, Zhao L, Yuan H. Protein-bound uremic toxins as therapeutic targets for cardiovascular, kidney, and metabolic disorders. Front Endocrinol (Lausanne) 2025; 16:1500336. [PMID: 39931238 PMCID: PMC11808018 DOI: 10.3389/fendo.2025.1500336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome is a systemic clinical condition characterized by pathological and physiological interactions among metabolic abnormalities, chronic kidney disease, and cardiovascular diseases, leading to multi-organ dysfunction and a higher incidence of cardiovascular endpoints. Traditional approaches to managing CKM syndrome risk are inadequate in these patients, necessitating strategies targeting specific CKM syndrome risk factors. Increasing evidence suggests that addressing uremic toxins and/or pathways induced by uremic toxins may reduce CKM syndrome risk and treat the disease. This review explores the interactions among heart, kidney, and metabolic pathways in the context of uremic toxins and underscores the significant role of uremic toxins as potential therapeutic targets in the pathophysiology of these diseases. Strategies aimed at regulating these uremic toxins offer potential avenues for reversing and managing CKM syndrome, providing new insights for its clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huijuan Yuan
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| |
Collapse
|
11
|
Jia W, Chan JC, Wong TY, Fisher EB. Diabetes in China: epidemiology, pathophysiology and multi-omics. Nat Metab 2025; 7:16-34. [PMID: 39809974 DOI: 10.1038/s42255-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Although diabetes is now a global epidemic, China has the highest number of affected people, presenting profound public health and socioeconomic challenges. In China, rapid ecological and lifestyle shifts have dramatically altered diabetes epidemiology and risk factors. In this Review, we summarize the epidemiological trends and the impact of traditional and emerging risk factors on Chinese diabetes prevalence. We also explore recent genetic, metagenomic and metabolomic studies of diabetes in Chinese, highlighting their role in pathogenesis and clinical management. Although heterogeneity across these multidimensional areas poses major analytic challenges in classifying patterns or features, they have also provided an opportunity to increase the accuracy and specificity of diagnosis for personalized treatment and prevention. National strategies and ongoing research are essential for improving diabetes detection, prevention and control, and for personalizing care to alleviate societal impacts and maintain quality of life.
Collapse
Affiliation(s)
- Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute for Proactive Healthcare, Shanghai Jiao Tong University, Shanghai, China.
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences and Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Tien Y Wong
- Tsinghua Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Singapore National Eye Center, SingHealth, Singapore, Singapore
| | - Edwin B Fisher
- Peers for Progress, Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Høyer KL, Dahl Baunwall SM, Kornum DS, Klinge MW, Drewes AM, Yderstræde KB, Thingholm LB, Mortensen MS, Mikkelsen S, Erikstrup C, Hvas CL, Krogh K. Faecal microbiota transplantation for patients with diabetes type 1 and severe gastrointestinal neuropathy (FADIGAS): a randomised, double-blinded, placebo-controlled trial. EClinicalMedicine 2025; 79:103000. [PMID: 39791110 PMCID: PMC11714726 DOI: 10.1016/j.eclinm.2024.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
Background Diabetic gastroenteropathy is associated with nausea, vomiting, bloating, pain, constipation, and diarrhoea. Current therapies are scarce. We tested faecal microbiota transplantation (FMT) for patients with type 1 diabetes and gastroenteropathy. Methods In a randomised, double-blinded, placebo-controlled pilot trial, adults with type 1 diabetes and moderate-to-severe gastrointestinal symptoms were randomised (1:1) to encapsulated FMT or placebo. Each patient received around 25 capsules containing 50 g of faeces, administered in a single dose. The placebo capsules contained glycerol, saline and food colouring. All patients received FMT as a second intervention. The primary endpoint was number of adverse events of severity grade 2 or more assessed by the Common Terminology Criteria for Adverse Events during the week following the first intervention. Secondary endpoints included gastrointestinal symptoms and quality of life assessed four weeks after treatment. Public trial registration, ClinicalTrials.govNCT04749030. Findings We randomised 20 patients to FMT or placebo. Following this intervention, 26 adverse events of grade 2 or more occurred. Four patients in the FMT group reported seven adverse events, and five patients in the placebo group reported 19, with no differences between the groups. The most frequent adverse events were diarrhoea, bloating, and abdominal pain. No serious adverse events were related to the treatment. Patients who received FMT reduced their median Gastrointestinal Symptom Rating Scale-Irritable Bowel Syndrome score from 58 (IQR 54-65) to 35 (32-48), whereas patients receiving placebo reduced their score from 64 (55-70) to 56 (50-77) (p = 0.01). The Irritable Bowel Syndrome Impact Scale score improved from 108 (101-123) to 140 (124-161) with FMT and 77 (53-129) to 92 (54-142) with placebo (p = 0.02). The Patient Assessment of Gastrointestinal Symptom Severity Index declined from a median of 42 (28-47) to 25 (14-31) after FMT and 47 (31-69) to 41 (36-64) after placebo (p = 0.03). Interpretation FMT was safe and improved clinical outcomes for patients with type 1 diabetes suffering from bowel symptoms. Funding Steno Collaborative Grant.
Collapse
Affiliation(s)
- Katrine Lundby Høyer
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Mark Dahl Baunwall
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ditte Smed Kornum
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Winther Klinge
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Asbjørn Mohr Drewes
- Mech-Sense and Centre for Pancreatic Diseases, Department of Gastroenterology and Hepatology, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | | | | | | | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Dawi J, Misakyan Y, Affa S, Kades S, Narasimhan A, Hajjar F, Besser M, Tumanyan K, Venketaraman V. Oxidative Stress, Glutathione Insufficiency, and Inflammatory Pathways in Type 2 Diabetes Mellitus: Implications for Therapeutic Interventions. Biomedicines 2024; 13:18. [PMID: 39857603 PMCID: PMC11762874 DOI: 10.3390/biomedicines13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is significantly associated with oxidative stress, resulting from the imbalance between reactive oxygen species (ROS) production and antioxidant defenses. This imbalance contributes to insulin resistance, β-cell dysfunction, and complications in organs like the vasculature and nervous system. Glutathione (GSH), a major antioxidant, is crucial for neutralizing ROS, but GSH levels are notably low in T2DM, exacerbating oxidative stress and inflammation. Elevated interleukin-6 (IL-6) levels further intensify inflammation and oxidative stress, disrupting insulin signaling and worsening complications such as nephropathy, retinopathy, and neuropathy. While lifestyle modifications and antioxidant supplementation are current approaches for managing oxidative stress, their effectiveness in preventing complications remains under study. Recent investigations suggest that GSH and Vitamin D3 supplementation may offer dual-action benefits, as Vitamin D3 not only has anti-inflammatory properties but also promotes GSH synthesis. This dual action helps mitigate both oxidative stress and inflammation, addressing key pathological features of T2DM. This review highlights the complex interactions between oxidative stress, GSH insufficiency, and IL-6, and emphasizes the potential of targeted therapies to improve the management and outcomes of T2DM.
Collapse
Affiliation(s)
- John Dawi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Yura Misakyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Stephen Affa
- Department of Chemistry, Physics, and Engineering, Los Angeles Valley College, Valley Glen, CA 91401, USA;
| | - Samuel Kades
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Ananya Narasimhan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Fouad Hajjar
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Max Besser
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Kevin Tumanyan
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| |
Collapse
|
14
|
Setiawan E, Ginting CN, Jonny J, Hernowo BA, Putranto TA. Clinical Trial: Effect of Autologous Dendritic Cell Administration on Improving Neuropathy Symptoms and Inflammatory Biomarkers in Diabetic Neuropathy. Curr Issues Mol Biol 2024; 46:14366-14380. [PMID: 39727989 DOI: 10.3390/cimb46120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global health concern, with diabetic neuropathy (DN) being a prevalent complication. Current DN treatments focus on blood glucose control and pain management, which show limited efficacy. This study explored the effects of autologous dendritic cell (DC) administration on improving DN symptoms. A quasi-experimental clinical trial was conducted on 28 DN patients at Gatot Soebroto Army Hospital. Patients received autologous DC administration, with their Toronto Clinical Neuropathy Score (TCNS), Transforming Growth Factor-β (TGF-β), and Vascular Cell Adhesion Molecule-1 (VCAM-1) levels measured before and at four weeks after treatment. The results show an average TCNS reduction from 8.93 to 7.5 (p < 0.001). TGF-β levels increased slightly from 41.16 ng/mL to 44.18 ng/mL (p > 0.05). VCAM-1 levels increased from 1389.75 ng/mL to 1403.85 ng/mL. Correlation analysis showed that TGF-β levels had a significant negative correlation with the TCNS (r = -0.353; p = 0.033) and VCAM-1 levels (r = -0.521; p = 0.002). Autologous DC administration significantly improves DN. While the changes in TGF-β and VCAM-1 levels were not statistically significant, their trends suggest that there was an anti-inflammatory effect. These findings highlight the potential of autologous DC therapy as a complementary approach to manage DN through inflammation reduction and nerve repair.
Collapse
Affiliation(s)
- Erwin Setiawan
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Department of Neurology, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
| | | | - Jonny Jonny
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Faculty of Military Medicine, Indonesia Defence University, Bogor 16810, Indonesia
- Faculty of Medicine, Universitas Pembangunan Nasional "Veteran" Jakarta, Jakarta 12450, Indonesia
- Nephrology Division, Department of Internal Medicine, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
| | - Bhimo Aji Hernowo
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
| | - Terawan Agus Putranto
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Faculty of Medicine, Universitas Pembangunan Nasional "Veteran" Jakarta, Jakarta 12450, Indonesia
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
- Department of Radiology, Gatot Soebroto Army Central Hospital, Jakarta 10410, Indonesia
| |
Collapse
|
15
|
Gupta U, Dey P. The oral microbial odyssey influencing chronic metabolic disease. Arch Physiol Biochem 2024; 130:831-847. [PMID: 38145405 DOI: 10.1080/13813455.2023.2296346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Since the oral cavity is the gateway to the gut, oral microbes likely hold the potential to influence metabolic disease by affecting the gut microbiota. METHOD A thorough review of literature has been performed to link the alterations in oral microbiota with chronic metabolic disease by influencing the gut microbiota. RESULT A strong correlation exists between abnormalities in oral microbiota and several systemic disorders, such as cardiovascular disease, diabetes, and obesity, which likely initially manifest as oral diseases. Ensuring adequate oral hygiene practices and cultivating diverse oral microflora are crucial for the preservation of general well-being. Oral bacteria have the ability to establish and endure in the gastrointestinal tract, leading to the development of prolonged inflammation and activation of the immune system. Oral microbe-associated prophylactic strategies could be beneficial in mitigating metabolic diseases. CONCLUSION Oral microbiota can have a profound impact on the gut microbiota and influence the pathogenesis of metabolic diseases.
Collapse
Affiliation(s)
- Upasana Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
16
|
Wang Z, Wu X, Wang Y, Wen Q, Cui B, Zhang F. Colonic transendoscopic enteral tubing is revolutionizing intestinal therapeutics, diagnosis, and microbiome research. Therap Adv Gastroenterol 2024; 17:17562848241301574. [PMID: 39582897 PMCID: PMC11585053 DOI: 10.1177/17562848241301574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
The intestine, as a crucial organ of the human body, has remained enigmatic despite the remarkable advancements in modern medical technology. Over the past decades, the invention of endoscopic technology has made the noninvasive intervention of the intestine a reality, expanding diagnostic and therapeutic options for diseases. However, due to the single-treatment feature of endoscopic procedures, continuous or repeated medication administration, sampling, and decompression drainage within the intestine have yet to be fulfilled. These limitations persisted until the invention of colonic transendoscopic enteral tubing (TET) in 2014, which realized repeated fecal microbiota transplantation, medication administration, and decompression drainage for the treatment of colon perforation and intestinal obstruction, as well as in situ dynamic sampling. These breakthroughs have not gone unnoticed, gaining global attention and recommendations from guidelines and consensuses. TET has emerged as a novel microbial research tool that offers new paradigms for human microbiome research. This review aims to update the research progress based on TET.
Collapse
Affiliation(s)
- Zheyu Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Xia Wu
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Yaxue Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Quan Wen
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| |
Collapse
|
17
|
Wu G, Xu T, Zhao N, Lam YY, Ding X, Wei D, Fan J, Shi Y, Li X, Li M, Ji S, Wang X, Fu H, Zhang F, Shi Y, Zhang C, Peng Y, Zhao L. A core microbiome signature as an indicator of health. Cell 2024; 187:6550-6565.e11. [PMID: 39378879 DOI: 10.1016/j.cell.2024.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/29/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The gut microbiota is crucial for human health, functioning as a complex adaptive system akin to a vital organ. To identify core health-relevant gut microbes, we followed the systems biology tenet that stable relationships signify core components. By analyzing metagenomic datasets from a high-fiber dietary intervention in type 2 diabetes and 26 case-control studies across 15 diseases, we identified a set of stably correlated genome pairs within co-abundance networks perturbed by dietary interventions and diseases. These genomes formed a "two competing guilds" (TCGs) model, with one guild specialized in fiber fermentation and butyrate production and the other characterized by virulence and antibiotic resistance. Our random forest models successfully distinguished cases from controls across multiple diseases and predicted immunotherapy outcomes through the use of these genomes. Our guild-based approach, which is genome specific, database independent, and interaction focused, identifies a core microbiome signature that serves as a holistic health indicator and a potential common target for health enhancement.
Collapse
Affiliation(s)
- Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA
| | - Ting Xu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naisi Zhao
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Yan Y Lam
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Dongqin Wei
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Jian Fan
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Yajuan Shi
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Xiaofeng Li
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Mi Li
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Shenjie Ji
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Xuejiao Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Huaqing Fu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhang
- Nutrition Department (Clinical Study Center of Functional Food), The Affiliated Hospital of Jiangnan University Wuxi, Wuxi, Jiangsu 214122, China
| | - Yu Shi
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China.
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA.
| |
Collapse
|
18
|
Zhou X, Zheng W, Kong W, Zeng T. Dietary patterns and diabetic microvascular complications risk: a Mendelian randomization study of European ancestry. Front Nutr 2024; 11:1429603. [PMID: 39555188 PMCID: PMC11566142 DOI: 10.3389/fnut.2024.1429603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Previous observational studies about the link between dietary factors and diabetic microvascular complications (DMCs) is controversial. Thus, we systemically assessed the potential causal relationship between diet and DMCs risk using Mendelian randomization (MR) methods. Methods We used genome-wide association studies (GWAS) statistics to estimate the causal effects of 17 dietary patterns on three common DMCs in European. Summary statistics on dietary intakes were obtained from the UK biobank, and data on DMCs [diabetic retinopathy (DR), diabetic nephropathy (DN), and diabetic neuropathy (DNP)] were obtained from the FinnGen Consortium. A two-sample MR (TSMR) was conducted to explore the causal relationships of dietary habits with DMCs. In addition, multivariable MR analysis (MVMR) was performed to adjust for traditional risk factors for eating habits, and evaluated the direct or indirect effects of diet on DMCs. Results TSMR analysis revealed that salad/raw vegetable intake (odd ratio [OR]: 2.830; 95% confidence interval [CI]: 1.102-7.267; p = 0.0306) and fresh fruit intake (OR: 2.735; 95% CI: 1.622-4.611; p = 0.0002; false discovery rate [FDR] = 0.0082) increased the risk of DR, whereas cheese intake (OR: 0.742; 95% CI: 0.563-0.978; p = 0.0339) and cereal intake (OR: 0.658; 95% CI: 0.444-0.976; p = 0.0374) decreased the risk of DR. Salad/raw vegetable (OR: 6.540; 95% CI: 1.061-40.300; p = 0.0430) and fresh fruit consumption (OR: 3.573; 95% CI: 1.263-10.107; p = 0.0164) are risk factors for DN, while cereal consumption (OR: 0.380; 95% CI: 0.174-0.833; p = 0.0156) is the opposite. And genetically predicted higher pork intake increased the risk of DNP (OR: 160.971; 95% CI: 8.832-2933.974; p = 0.0006; FDR = 0.0153). The MVMR analysis revealed that cheese intake may act as an independent protective factor for DR development. Moreover, fresh fruit intake, salad/raw vegetable intake and pork intake may be independent risk factors for DR, DN and DNP, respectively. Other causal associations between dietary habits and DMCs risk may be mediated by intermediate factors. Conclusion This causal relationship study supports that specific dietary interventions may reduce the risk of DMCs.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenbin Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
Qin X, Sun J, Chen S, Xu Y, Lu L, Lu M, Li J, Ma Y, Lou F, Zou H. Gut microbiota predict retinopathy in patients with diabetes: A longitudinal cohort study. Appl Microbiol Biotechnol 2024; 108:497. [PMID: 39466432 PMCID: PMC11519154 DOI: 10.1007/s00253-024-13316-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/27/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
The gut microbiota has emerged as an independent risk factor for diabetes and its complications. This research aimed to delve into the intricate relationship between the gut microbiome and diabetic retinopathy (DR) through a dual approach of cross-sectional and prospective cohort studies. In our cross-sectional study cross-sectional investigation involving ninety-nine individuals with diabetes, distinct microbial signatures associated with DR were identified. Specifically, gut microbiome profiling revealed decreased levels of Butyricicoccus and Ruminococcus torques group, alongside upregulated methanogenesis pathways among DR patients. These individuals concurrently exhibited lower concentrations of short-chain fatty acids in their plasma. Leveraging machine learning models, including random forest classifiers, we constructed a panel of microbial genera and genes that robustly differentiated DR cases. Importantly, these genera also demonstrated significant correlations with dietary patterns and the molecular profiles of peripheral blood mononuclear cells. Building upon these findings, our prospective cohort study followed 62 diabetes patients over a 2-year period to assess the predictive value of these microbial markers. The results underlined the panel's efficacy in predicting DR incidence. By stratifying patients based on the predictive genera and metabolites identified in the cross-sectional phase, we established significant associations between reduced levels of Butyricicoccus, plasma acetate, and increased susceptibility to DR. This investigation not only deepens our understanding of how gut microbiota influences DR but also underscores the potential of microbial markers as early indicators of disease risk. These insights hold promise for developing targeted interventions aimed at mitigating the impact of diabetic complications. KEY POINTS: • Microbial signatures are differed in diabetic patients with and without retinopathy • DR-related taxa are linked to dietary habits and transcriptomic profiles • Lower abundances of Butyricicoccus and acetate were prospectively associated with DR.
Collapse
Affiliation(s)
- Xinran Qin
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Sun
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuli Chen
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xu
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Lina Lu
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Min Lu
- Community Health Service Center of Jiangsu Road Subdistrict, Changning District, Shanghai, China
| | - Jieying Li
- Community Health Service Center of Jiangsu Road Subdistrict, Changning District, Shanghai, China
| | - Yingyan Ma
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fangzhou Lou
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
| |
Collapse
|
20
|
Cimen I. Targeting oral-gut microbial transmission in diabetic coronary heart disease: unveiling key pathogenic mechanisms. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2287-2288. [PMID: 38967899 DOI: 10.1007/s11427-024-2667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Affiliation(s)
- Ismail Cimen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, 14642, USA.
| |
Collapse
|
21
|
Zhen J, Zhang Y, Li Y, Zhou Y, Cai Y, Huang G, Xu A. The gut microbiota intervenes in glucose tolerance and inflammation by regulating the biosynthesis of taurodeoxycholic acid and carnosine. Front Cell Infect Microbiol 2024; 14:1423662. [PMID: 39206042 PMCID: PMC11351283 DOI: 10.3389/fcimb.2024.1423662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study aims to investigate the pathogenesis of hyperglycemia and its associated vasculopathy using multiomics analyses in diabetes and impaired glucose tolerance, and validate the mechanism using the cell experiments. Methods In this study, we conducted a comprehensive analysis of the metagenomic sequencing data of diabetes to explore the key genera related to its occurrence. Subsequently, participants diagnosed with impaired glucose tolerance (IGT), and healthy subjects, were recruited for fecal and blood sample collection. The dysbiosis of the gut microbiota (GM) and its associated metabolites were analyzed using 16S rDNA sequencing and liquid chromatograph mass spectrometry, respectively. The regulation of gene and protein expression was evaluated through mRNA sequencing and data-independent acquisition technology, respectively. The specific mechanism by which GM dysbiosis affects hyperglycemia and its related vasculopathy was investigated using real-time qPCR, Western blotting, and enzyme-linked immunosorbent assay techniques in HepG2 cells and neutrophils. Results Based on the published data, the key alterable genera in the GM associated with diabetes were identified as Blautia, Lactobacillus, Bacteroides, Prevotella, Faecalibacterium, Bifidobacterium, Ruminococcus, Clostridium, and Lachnoclostridium. The related metabolic pathways were identified as cholate degradation and L-histidine biosynthesis. Noteworthy, Blautia and Faecalibacterium displayed similar alterations in patients with IGT compared to those observed in patients with diabetes, and the GM metabolites, tauroursodeoxycholic acid (TUDCA) and carnosine (CARN, a downstream metabolite of histidine and alanine) were both found to be decreased, which in turn regulated the expression of proteins in plasma and mRNAs in neutrophils. Subsequent experiments focused on insulin-like growth factor-binding protein 3 and interleukin-6 due to their impact on blood glucose regulation and associated vascular inflammation. Both proteins were found to be suppressed by TUDCA and CARN in HepG2 cells and neutrophils. Conclusion Dysbiosis of the GM occurred throughout the entire progression from IGT to diabetes, characterized by an increase in Blautia and a decrease in Faecalibacterium, leading to reduced levels of TUDCA and CARN, which alleviated their inhibition on the expression of insulin-like growth factor-binding protein 3 and interleukin-6, contributing to the development of hyperglycemia and associated vasculopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Cingolani F, Balasubramaniam A, Srinivasan S. Molecular mechanisms of enteric neuropathies in high-fat diet feeding and diabetes. Neurogastroenterol Motil 2024:e14897. [PMID: 39119749 PMCID: PMC11807233 DOI: 10.1111/nmo.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Obesity and diabetes are associated with altered gastrointestinal function and with the development of abdominal pain, nausea, diarrhea, and constipation among other symptoms. The enteric nervous system (ENS) regulates gastrointestinal motility. Enteric neuropathies defined as damage or loss of enteric neurons can lead to motility disorders. PURPOSE Here, we review the molecular mechanisms that drive enteric neurodegeneration in diabetes and obesity, including signaling pathways leading to neuronal cell death, oxidative stress, and microbiota alteration. We also highlight potential approaches to treat enteric neuropathies including antioxidant therapy to prevent oxidative stress-induced damage and the use of stem cells.
Collapse
Affiliation(s)
- Francesca Cingolani
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Arun Balasubramaniam
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
23
|
Xu M, Hao J, Qi Y, Wu B, Li R, Yang X, Zhang Y, Liu Y. Causal effects of gut microbiota on diabetic neuropathy: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1388927. [PMID: 39157679 PMCID: PMC11329939 DOI: 10.3389/fendo.2024.1388927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Objective Previous observational studies have suggested an association between gut microbiota and diabetic neuropathy (DN). However, confounding factors and reverse causality make the causal relationship between gut microbiota and DN uncertain. We aimed to investigate the interactive causal relationships between the abundance of gut microbiota and DN. Methods We conducted a Mendelian randomization (MR) analysis to examine the causal relationship between gut microbiota and DN. Genomic data on gut microbiota at the genus level were obtained from the MiBioGen Consortium, including 18,340 individuals of European descent. Data on diabetic polyneuropathy (DPN) were obtained from the FinnGen Consortium, which included 1,048 cases and 374,434 controls, while data on diabetic autonomic neuropathy (DAN) were also obtained from the FinnGen Consortium, including 111 cases and 374,434 controls. Causal effects were primarily estimated using inverse variance weighted (IVW) analysis, supplemented with four validation methods, and additional sensitivity analyses to assess the pleiotropy, heterogeneity, and robustness of instrumental variables. Results The IVW analysis indicated that Prevotella 9 had a protective effect on DPN (OR = 0.715, 95% CI: 0.521-0.982, P = 0.038), and Bacteroides also showed a protective effect (OR = 0.602, 95% CI: 0.364-0.996, P = 0.048). On the other hand, Ruminococcus 2 had a promoting effect on DPN (OR = 1.449, 95% CI: 1.008-2.083, P = 0.045). Blautia (OR = 0.161, 95% CI: 0.035-0.733, P = 0.018), Clostridium innocuum group (OR = 3.033, 95% CI: 1.379-6.672, P = 0.006), and Howardella (OR = 2.595, 95% CI: 1.074-6.269, P = 0.034) were causally associated with DAN in the IVW analysis, with no evidence of heterogeneity or pleiotropy. Sensitivity analyses showed no significant pleiotropy or heterogeneity. Conclusion Our study identified a causal relationship between gut microbiota and the increased or decreased risk of diabetic neuropathy. These findings underscore the importance of adopting a comprehensive approach that combines gut microbiota modulation with other therapeutic interventions in the management of diabetic neuropathy.
Collapse
Affiliation(s)
- Ming Xu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinxuan Hao
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yijie Qi
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Baofeng Wu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ru Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xifeng Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yi Zhang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
24
|
Tang F, Shen L, Gu Z, Zhang L, Fang L, Sun H, Ma D, Guo Y, Yang Y, Lu B, Li Q, Zhong S, Wang Z. Causal relationships between gut microbiota, gut metabolites, and diabetic neuropathy: A mendelian randomization study. Clin Nutr ESPEN 2024; 62:128-136. [PMID: 38901934 DOI: 10.1016/j.clnesp.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Previous studies have shown a strong correlation between gut microbiota and diabetes and its associated complications. We aimed to evaluate the causal relationships between the gut microbiota, gut metabolites, and diabetic neuropathy. METHODS Summary statistics of 211 gut microbiota and 12 gut-related metabolites (β-hydroxybutyric acid, betaine, trimethylamine-N-oxide, carnitine, choline, glutamate, kynurenine, phenylalanine, propionic acid, serotonin, tryptophan, and tyrosine) were obtained from previous genome-wide association studies (GWAS). A two-sample Mendelian randomization (MR) design was used to estimate the effects of gut microbiota and gut metabolites on the risk of diabetic neuropathy based on FinnGen GWAS. RESULTS Higher levels of Acidaminococcaceae (OR = 0.62; 95%CI = 0.46 to 0.84; P = 0.002), Peptococcaceae (OR = 0.70; 95%CI = 0.54 to 0.90; P = 0.006), and Eubacterium coprostanoligenes group (OR = 0.68; 95%CI = 0.50 to 0.93; P = 0.016) are genetically determined to provide protection against diabetic neuropathy. Conversely, the presence of Alistipes (OR = 1.65; 95%CI = 1.18 to 2.31; P = 0.003), ChristensenellaceaeR7 group (OR = 1.52; 95%CI = 1.03 to 2.23; P = 0.033), Eggerthella (OR = 1.28; 95%CI = 1.05 to 1.55; P = 0.014), RuminococcaceaeUCG013 (OR = 1.35; 95%CI = 1.01 to 1.82; P = 0.046), and Firmicutes (OR = 1.42; 95%CI = 1.05 to 1.93; P = 0.023) increases the risk of diabetic neuropathy. Moreover, a correlation has been identified between diabetic neuropathy and two gut metabolites: betaine (OR = 0.95; 95%CI = 0.90 to 1.00; P = 0.033) and tyrosine (OR = 1.03; 95%CI = 1.01 to 1.06; P = 0.019). Sensitivity analysis indicated robust results with no sign of heterogeneity or pleiotropy. CONCLUSION The present study elucidated the impact of specific gut microbiota and gut metabolites on the susceptibility to diabetic neuropathy. Interventions targeting the improvement of the gut microbiota diversity and composition hold considerable promise as a potential strategy.
Collapse
Affiliation(s)
- Fengyan Tang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Liwen Shen
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Ziliang Gu
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Li Zhang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Lingna Fang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Heping Sun
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Dan Ma
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Yuting Guo
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Yiqian Yang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Bing Lu
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Quanmin Li
- Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Shao Zhong
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China; Department of Clinical Nutrition, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| | - Zhaoxiang Wang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| |
Collapse
|
25
|
Guo K, Ye J, Li J, Huang J, Zhou Z. Effects of gut microbiome on type 1 diabetes susceptibility and complications: A large-scale bidirectional Mendelian randomization and external validation study. Diabetes Obes Metab 2024; 26:3306-3317. [PMID: 38751358 DOI: 10.1111/dom.15658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 07/10/2024]
Abstract
AIM To assess and verify the effect of the gut microbiome on the susceptibility and complications of type 1 diabetes (T1D). MATERIALS AND METHODS To achieve this aim, a two-sample and reverse Mendelian randomization (MR) analysis was conducted. In addition, an external validation study was performed using individual microbiome data of patients with T1D from the gutMEGA datasets and the National Clinical Research Center for Metabolic Diseases. The circulating metabolites facilitated two-sample MR analysis, mediation and multivariable MR analysis to evaluate the direct relationship between the gut microbiome and T1D complications. RESULTS The MR analysis results from the discovery and validation phases confirmed that Veillonellaceae can potentially reduce the susceptibility of T1D. In the gutMEGA dataset, the average relative abundance of Veillonellaceae in patients with T1D was 0.66%, compared with 1.09% in the controls. Furthermore, the external validation, which included 60 patients with T1D and 30 matched healthy controls, found that the median relative abundance of Veillonellaceae was also lower than controls at 1.10% (95% CI 0.50%-1.80%). Specifically, the Eubacterium coprostanoligenes group, known for its ability to regulate cholesterol, was significantly associated with a lower risk of developing renal, neurological and ophthalmic complications in T1D. Moreover, high cholesterol in small high-density lipoprotein and cholesteryl esters in high-density lipoprotein were associated with a reduced risk of T1D renal and ophthalmic complications. The mediation and multivariable MR analysis combining cholesterol indicated that the E. coprostanoligenes group is the most dominant factor influencing T1D complications. CONCLUSIONS Our findings supported the potential causal effect of gut microbiota on the susceptibility and complications of T1D.
Collapse
Affiliation(s)
- Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianan Ye
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
26
|
Tang S, Wu G, Liu Y, Xue B, Zhang S, Zhang W, Jia Y, Xie Q, Liang C, Wang L, Heng H, Wei W, Shi X, Hu Y, Yang J, Zhao L, Wang X, Zhao L, Yuan H. Guild-level signature of gut microbiome for diabetic kidney disease. mBio 2024; 15:e0073524. [PMID: 38819146 PMCID: PMC11253615 DOI: 10.1128/mbio.00735-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 06/01/2024] Open
Abstract
Current microbiome signatures for chronic diseases such as diabetic kidney disease (DKD) are mainly based on low-resolution taxa such as genus or phyla and are often inconsistent among studies. In microbial ecosystems, bacterial functions are strain specific, and taxonomically different bacteria tend to form co-abundance functional groups called guilds. Here, we identified guild-level signatures for DKD by performing in-depth metagenomic sequencing and conducting genome-centric and guild-based analysis on fecal samples from 116 DKD patients and 91 healthy subjects. Redundancy analysis on 1,543 high-quality metagenome-assembled genomes (HQMAGs) identified 54 HQMAGs that were differentially distributed among the young healthy control group, elderly healthy control group, early-stage DKD patients (EDG), and late-stage DKD patients (LDG). Co-abundance network analysis classified the 54 HQMAGs into two guilds. Compared to guild 2, guild 1 contained more short-chain fatty acid biosynthesis genes and fewer genes encoding uremic toxin indole biosynthesis, antibiotic resistance, and virulence factors. Guild indices, derived from the total abundance of guild members and their diversity, delineated DKD patients from healthy subjects and between different severities of DKD. Age-adjusted partial Spearman correlation analysis showed that the guild indices were correlated with DKD disease progression and with risk indicators of poor prognosis. We further validated that the random forest classification model established with the 54 HQMAGs was also applicable for classifying patients with end-stage renal disease and healthy subjects in an independent data set. Therefore, this genome-level, guild-based microbial analysis strategy may identify DKD patients with different severity at an earlier stage to guide clinical interventions. IMPORTANCE Traditionally, microbiome research has been constrained by the reliance on taxonomic classifications that may not reflect the functional dynamics or the ecological interactions within microbial communities. By transcending these limitations with a genome-centric and guild-based analysis, our study sheds light on the intricate and specific interactions between microbial strains and diabetic kidney disease (DKD). We have unveiled two distinct microbial guilds with opposite influences on host health, which may redefine our understanding of microbial contributions to disease progression. The implications of our findings extend beyond mere association, providing potential pathways for intervention and opening new avenues for patient stratification in clinical settings. This work paves the way for a paradigm shift in microbiome research in DKD and potentially other chronic kidney diseases, from a focus on taxonomy to a more nuanced view of microbial ecology and function that is more closely aligned with clinical outcomes.
Collapse
Affiliation(s)
- Shasha Tang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences Rutgers University, New Brunswick, New Jersey, USA
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, New Jersey, USA
| | - Yalei Liu
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Binghua Xue
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Shihan Zhang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Weiwei Zhang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Yifan Jia
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Qinyuan Xie
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Chenghong Liang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Limin Wang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Hongyan Heng
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Wei Wei
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Xiaoyang Shi
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Yimeng Hu
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Junpeng Yang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Lingyun Zhao
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Xiaobing Wang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Liping Zhao
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences Rutgers University, New Brunswick, New Jersey, USA
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, New Jersey, USA
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huijuan Yuan
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| |
Collapse
|
27
|
Xie L, Gan W, Cai G. The causal relationship between gut microbiota and diabetic neuropathy: a bi-directional two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1402014. [PMID: 39050567 PMCID: PMC11266094 DOI: 10.3389/fendo.2024.1402014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Background Many studies suggest a strong correlation between gut microbiota (GM) and diabetic neuropathy (DN). However, the precise causal relationship between GM and DN has yet to be fully elucidated. Hence, a bi-directional Mendelian randomization (MR) analysis was used to examine the association between GM and DN. Methods Widely known genome-wide association study (GWAS) of GM was collected from the MiBio Gen project. Summary-level datasets for DN were taken from the FinnGen project. Inverse variance weighted approach was used for evaluating the causal relationship between GM and DN. Subsequently, pleiotropy and heterogeneity tests were performed to verify the reliability of the data. Furthermore, a bidirectional two-sample MR analysis was done to investigate the directionality of the causal relationships. Gene Ontology analysis was conducted to identify the associations that could indicate biological functions. Results We identified potential causal associations between GM and DN (p< 0.05 in all three MR methods). Among them, we found increased levels of Christensenellaceae R-7 (Odds ratio, OR= 1.52; 95% confidence interval, CI = 1.03-2.23; p = 0.03), Ruminococcaceae UCG013 (OR =1.35; 95% CI = 1.00-1.85; p = 0.04), and Eggerthella groups (OR = 1.27; 95% CI = 1.05-1.55; p = 0.01), which may be associated with a higher risk of DN, while increased levels of Peptococcaceae (OR = 0.69; 95% CI = 0.54-0.90; p< 0.01) and Eubacterium coprostanoligenes groups (OR = 0.68; 95% CI = 0.49-0.93; p = 0.01) could be associated with a lower risk. Gene Ontology pathway analysis revealed enrichment of genes regulated by the associated single-nucleotide polymorphisms (SNPs) in the apical plasma membrane, glycosyltransferase activity, hexosyltransferase activity and membrane raft. Reverse MR analyses indicated that DN was associated with five microbial taxa in all three MR methods. Conclusion The results of our study validate the possible causative relationship between GM and DN. This discovery gives new perspectives into the mechanism on how GM influences DN, and establishes a theoretical foundation for future investigations into targeted preventive measures.
Collapse
Affiliation(s)
- Long Xie
- Department of Orthopedics, The Fourth Hospital of Changsha (The Changsha Affiliated Hospital of Hunan Normal University), Hunan Normal University, Changsha, China
| | - Wen Gan
- Department of Thoracic Surgery, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| | - GuangRong Cai
- Trauma Department of Orthopaedics, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| |
Collapse
|
28
|
Du X, Cui X, Fan R, Pan J, Cui X. Characteristics of gut microbiome in patients with pediatric solid tumor. Front Pediatr 2024; 12:1388673. [PMID: 39026939 PMCID: PMC11254798 DOI: 10.3389/fped.2024.1388673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Background Pediatric solid tumors are a common malignant disease in children, and more and more studies have proved that there is an inseparable relationship between adult tumors and intestinal microbiome, but the changes in the intestinal microbiota of pediatric solid tumor (PST) patients have been scarcely examined. This study aims to examine the differences in the intestinal microbiota features between patients diagnosed with PST and healthy controls (HCs). Methods To elucidate the unique characteristics of the gut microbiota in pediatric patients with solid tumors, we recruited 23 PST patients and 20 HCs. A total of 43 stool samples were gathered, and then 16S rRNA sequencing was performed. Results We noticed a noticeable pattern of elevated diversity in the gut microbiota within the PST groups. The differences in microbial communities among two groups were remarkable, regarding the analysis at the class level, the abundance of Bacilli was markedly increased in PST patients compared to HCs (P < 0.05), regarding the analysis at the genus level, The presence of Enterococcus was significantly higher in PST cases compared to HCs (P < 0.01), while Lachnospiraceae unclassified, Lachnospira, Haemophilus and Colidextribacter in PST cases, the abundance was significantly reduced. (P < 0.05), 6 genera, including Bacilli, Lactobacillales, Enterococcaceae and Morganella, showed a significant enrichment compared to healthy controls, while 10 genera, including Bilophila, Colidextribacter, Pasteurellales, Haemophilus, Lachnospiraceae unclassified, Lachnospira and Fusobacteriales, were significant reduction in the PST groups. Conclusion Our research conducted the characterization analysis of the gut microbiota in PST patients for the first time. More importantly, there are some notable differences in the gut microbiota between PST patients and healthy controls, which we believe is an interesting finding.
Collapse
Affiliation(s)
| | | | | | | | - Xichun Cui
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Niimi N, Sango K. Gut microbiota dysbiosis as a novel pathogenic factor of diabetic peripheral neuropathy. J Diabetes Investig 2024; 15:817-819. [PMID: 38563254 PMCID: PMC11215671 DOI: 10.1111/jdi.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Naoko Niimi
- Diabetic Neuropathy ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kazunori Sango
- Diabetic Neuropathy ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| |
Collapse
|
30
|
Liu C, Wang W, Zhao S, Chen S, Chen H, Wang S, Li Z, Qian H, Tian X. Discovery of first-in-class highly selective TRPV1 antagonists with dual analgesic and hypoglycemic effects. Bioorg Med Chem 2024; 107:117750. [PMID: 38776567 DOI: 10.1016/j.bmc.2024.117750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Analgesia and blood sugar control are considered as two main unmet clinical needs for diabetes related neuropathic pain patients. Transient receptor potential vanilloid type-1 (TRPV1) channel is a highly validated target for pain perception, while no TRPV1 antagonists have been approved due to hyperthermia side effects. Herein, two series of new TRPV1 antagonists with flavonoid skeleton were designed by the structure-based drug design (SBDD) strategy. After comprehensive evaluation, compound CX-3 was identified as a promising TRPV1 antagonist. CX-3 exhibited equivalent TRPV1 antagonistic activity with classical TRPV1 antagonist BCTC in vitro, and exerted better analgesic activity in vivo than that of BCTC in the formalin induced inflammatory pain model without hyperthermia risk. Moreover, CX-3 exhibited robust glucose-lowering effects and showed high selectivity over other ion channels. Overall, these findings identified a first-in-class highly selective TRPV1 antagonist CX-3, which is a promising candidate to target the pathogenesis of diabetes related neuropathic pain.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shiyu Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haoyang Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
31
|
Zhang J, Wang H, Liu Y, Shi M, Zhang M, Zhang H, Chen J. Advances in fecal microbiota transplantation for the treatment of diabetes mellitus. Front Cell Infect Microbiol 2024; 14:1370999. [PMID: 38660489 PMCID: PMC11039806 DOI: 10.3389/fcimb.2024.1370999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetes mellitus (DM) refers to a group of chronic diseases with global prevalence, characterized by persistent hyperglycemia resulting from various etiologies. DM can harm various organ systems and lead to acute or chronic complications, which severely endanger human well-being. Traditional treatment mainly involves controlling blood sugar levels through replacement therapy with drugs and insulin; however, some patients still find a satisfactory curative effect difficult to achieve. Extensive research has demonstrated a close correlation between enteric dysbacteriosis and the pathogenesis of various types of DM, paving the way for novel therapeutic approaches targeting the gut microbiota to manage DM. Fecal microbiota transplantation (FMT), a method for re-establishing the intestinal microbiome balance, offers new possibilities for treating diabetes. This article provides a comprehensive review of the correlation between DM and the gut microbiota, as well as the current advancements in FMT treatment for DM, using FMT as an illustrative example. This study aims to offer novel perspectives and establish a theoretical foundation for the clinical diagnosis and management of DM.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Min Shi
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Minna Zhang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Hong Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Juan Chen
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
32
|
Li Y, Liu Y, Cui J, Zhu M, Wang W, Chen K, Huang L, Liu Y. Oral-gut microbial transmission promotes diabetic coronary heart disease. Cardiovasc Diabetol 2024; 23:123. [PMID: 38581039 PMCID: PMC10998415 DOI: 10.1186/s12933-024-02217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Diabetes is a predominant driver of coronary artery disease worldwide. This study aims to unravel the distinct characteristics of oral and gut microbiota in diabetic coronary heart disease (DCHD). Simultaneously, we aim to establish a causal link between the diabetes-driven oral-gut microbiota axis and increased susceptibility to diabetic myocardial ischemia-reperfusion injury (MIRI). METHODS We comprehensively investigated the microbial landscape in the oral and gut microbiota in DCHD using a discovery cohort (n = 183) and a validation chohort (n = 68). Systematically obtained oral (tongue-coating) and fecal specimens were subjected to metagenomic sequencing and qPCR analysis, respectively, to holistically characterize the microbial consortia. Next, we induced diabetic MIRI by administering streptozotocin to C57BL/6 mice and subsequently investigated the potential mechanisms of the oral-gut microbiota axis through antibiotic pre-treatment followed by gavage with specific bacterial strains (Fusobacterium nucleatum or fecal microbiota from DCHD patients) to C57BL/6 mice. RESULTS Specific microbial signatures such as oral Fusobacterium nucleatum and gut Lactobacillus, Eubacterium, and Roseburia faecis, were identified as potential microbial biomarkers in DCHD. We further validated that oral Fusobacterium nucleatum and gut Lactobacillus are increased in DCHD patients, with a positive correlation between the two. Experimental evidence revealed that in hyperglycemic mice, augmented Fusobacterium nucleatum levels in the oral cavity were accompanied by an imbalance in the oral-gut axis, characterized by an increased coexistence of Fusobacterium nucleatum and Lactobacillus, along with elevated cardiac miRNA-21 and a greater extent of myocardial damage indicated by TTC, HE, TUNEL staining, all of which contributed to exacerbated MIRI. CONCLUSION Our findings not only uncover dysregulation of the oral-gut microbiota axis in diabetes patients but also highlight the pivotal intermediary role of the increased abundance of oral F. nucleatum and gut Lactobacillus in exacerbating MIRI. Targeting the oral-gut microbiota axis emerges as a potent strategy for preventing and treating DCHD. Oral-gut microbial transmission constitutes an intermediate mechanism by which diabetes influences myocardial injury, offering new insights into preventing acute events in diabetic patients with coronary heart disease.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100078, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jing Cui
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, 100078, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
33
|
Chen CC, Tseng PH, Hsueh HW, Chiang MC, Tzeng SR, Chiang TH, Wu MS, Hsieh ST, Chao CC. Altered gut microbiota in Taiwanese A97S predominant transthyretin amyloidosis with polyneuropathy. Sci Rep 2024; 14:6195. [PMID: 38486098 PMCID: PMC10940600 DOI: 10.1038/s41598-024-56984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Increasing evidence suggests that gut microbiota alterations are related to development and phenotypes of many neuropsychiatric diseases. Here, we evaluated the fecal microbiota and its clinical correlates in patients with hereditary transthyretin amyloidosis (ATTRv) and polyneuropathy. Fecal microbiota from 38 ATTRv patients and 39 age-matched controls was analyzed by sequencing 16S V3-V4 ribosomal RNA, and its relationships with clinical characteristics of polyneuropathy and cardiomyopathy were explored. The familial amyloidotic polyneuropathy stage was stage I, II, and III in 13, 18, and 7 patients. 99mTc-PYP SPECT showed a visual score of 2 in 15 and 3 in 21 patients. The gut microbiota of ATTRv patients showed higher alpha diversity (ASV richness and Shannon effective numbers) and dissimilar beta diversity compared to controls. Relative abundance of microbiota was dominated by Firmicutes and decreased in Bacteroidetes in ATTRv patients than in controls. Patients with more myocardial amyloid deposition were associated with increased alpha diversity, and the abundance of Clostridia was significantly correlated with pathophysiology of polyneuropathy in ATTRv patients. These findings demonstrated alterations in the gut microbiota, especially Firmicutes, in ATTRv. The association between altered microbiota and phenotypes of cardiomyopathy and polyneuropathy might suggest potential contributions of gut microbiota to ATTRv pathogenesis.
Collapse
Affiliation(s)
- Chieh-Chang Chen
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ping-Huei Tseng
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsueh-Wen Hsueh
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shiou-Ru Tzeng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung Hsien Chiang
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chi-Chao Chao
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
34
|
Li Y, Liu Q, Zhang L, Zou J, He R, Zhou Y, Qian C, Zhu Y, Chen R, Zhang Y, Cai P, Wang M, Shao W, Ji M, Wu H, Zhang F, Liu Z, Liu Y. Washed microbiota transplantation reduces glycemic variability in unstable diabetes. J Diabetes 2024; 16:e13485. [PMID: 37846600 PMCID: PMC10859319 DOI: 10.1111/1753-0407.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Dysbiosis of gut microbiota is causally linked to impaired host glucose metabolism. We aimed to study effects of the new method of fecal microbiota transplantation, washed microbiota transplantation (WMT), on reducing glycemic variability (GV) in unstable diabetes. METHODS Fourteen eligible patients received three allogenic WMTs and were followed up at 1 week, 1 month, and 3 months. Primary outcomes were daily insulin dose, glucose excursions during meal tests, and GV indices calculated from continuous monitoring or self-monitoring glucose values. Secondary outcomes were multiomics data, including 16S rRNA gene sequencing, metagenomics, and metabolomics to explore underlying mechanisms. RESULTS Daily insulin dose and glucose excursions markedly dropped, whereas GV indices significantly improved up to 1 month. WMT increased gut microbial alpha diversity, beta diversity, and network complexity. Taxonomic changes featured lower abundance of genera Bacteroides and Escherichia-Shigella, and higher abundance of genus Prevotella. Metagenomics functional annotations revealed enrichment of distinct microbial metabolic pathways, including methane biosynthesis, citrate cycle, amino acid degradation, and butyrate production. Derived metabolites correlated significantly with improved GV indices. WMT did not change circulating inflammatory cytokines, enteroendocrine hormones, or C-peptide. CONCLUSIONS WMT showed strong ameliorating effect on GV, raising the possibility of targeting gut microbiota as an effective regimen to reduce GV in diabetes.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Qing Liu
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Lingyu Zhang
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Jing Zou
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Rongbo He
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Ying Zhou
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Chen Qian
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Yuxiao Zhu
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Rourou Chen
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Ying Zhang
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Pengpeng Cai
- Digestive Endoscopy Center, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Miao Wang
- Division of Microbiotherapy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Wei Shao
- Department of Science and Technology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen BiologyNanjing Medical UniversityNanjingChina
| | - Hao Wu
- Human Phenome InstituteFudan UniversityShanghaiChina
| | - Faming Zhang
- Division of Microbiotherapy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
- Medical Center for Digestive Diseasesthe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjingChina
| | - Zejian Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingChina
| | - Yu Liu
- Department of Endocrinology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
35
|
Zheng M, Ye H, Yang X, Shen L, Dang X, Liu X, Gong Y, Wu Q, Wang L, Ge X, Fang X, Hou B, Zhang P, Tang R, Zheng K, Huang XF, Yu Y. Probiotic Clostridium butyricum ameliorates cognitive impairment in obesity via the microbiota-gut-brain axis. Brain Behav Immun 2024; 115:565-587. [PMID: 37981012 DOI: 10.1016/j.bbi.2023.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Obesity is a risk factor for cognitive dysfunction and neurodegenerative disease, including Alzheimer's disease (AD). The gut microbiota-brain axis is altered in obesity and linked to cognitive impairment and neurodegenerative disorders. Here, we targeted obesity-induced cognitive impairment by testing the impact of the probiotic Clostridium butyricum, which has previously shown beneficial effects on gut homeostasis and brain function. Firstly, we characterized and analyzed the gut microbial profiles of participants with obesity and the correlation between gut microbiota and cognitive scores. Then, using an obese mouse model induced by a Western-style diet (high-fat and fiber-deficient diet), the effects of Clostridium butyricum on the microbiota-gut-brain axis and hippocampal cognitive function were evaluated. Finally, fecal microbiota transplantation was performed to assess the functional link between Clostridium butyricum remodeling gut microbiota and hippocampal synaptic protein and cognitive behaviors. Our results showed that participants with obesity had gut microbiota dysbiosis characterized by an increase in phylum Proteobacteria and a decrease in Clostridium butyricum, which were closely associated with cognitive decline. In diet-induced obese mice, oral Clostridium butyricum supplementation significantly alleviated cognitive impairment, attenuated the deficit of hippocampal neurite outgrowth and synaptic ultrastructure, improved hippocampal transcriptome related to synapses and dendrites; a comparison of the effects of Clostridium butyricum in mice against human AD datasets revealed that many of the genes changes in AD were reversed by Clostridium butyricum; concurrently, Clostridium butyricum also prevented gut microbiota dysbiosis, colonic barrier impairment and inflammation, and attenuated endotoxemia. Importantly, fecal microbiota transplantation from donor-obese mice with Clostridium butyricum supplementation facilitated cognitive variables and colonic integrity compared with from donor obese mice, highlighting that Clostridium butyricum's impact on cognitive function is largely due to its ability to remodel gut microbiota. Our findings provide the first insights into the neuroprotective effects of Clostridium butyricum on obesity-associated cognitive impairments and neurodegeneration via the gut microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huaiyu Ye
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lijun Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xuemei Dang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qingyuan Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221004, China
| | - Benchi Hou
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
36
|
Yu Y, Wang W, Zhang F. The Next Generation Fecal Microbiota Transplantation: To Transplant Bacteria or Virome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301097. [PMID: 37914662 PMCID: PMC10724401 DOI: 10.1002/advs.202301097] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/02/2023] [Indexed: 11/03/2023]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for dysbiosis-related diseases. However, the clinical practice of crude fecal transplants presents limitations in terms of acceptability and reproductivity. Consequently, two alternative solutions to FMT are developed: transplanting bacteria communities or virome. Advanced methods for transplanting bacteria mainly include washed microbiota transplantation and bacteria spores treatment. Transplanting the virome is also explored, with the development of fecal virome transplantation, which involves filtering the virome from feces. These approaches provide more palatable options for patients and healthcare providers while minimizing research heterogeneity. In general, the evolution of the next generation of FMT in global trends is fecal microbiota components transplantation which mainly focuses on transplanting bacteria or virome.
Collapse
Affiliation(s)
- You Yu
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Weihong Wang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
- Department of Microbiota MedicineSir Run Run HospitalNanjing Medical UniversityNanjing211166China
| |
Collapse
|
37
|
Tong A, Wang D, Liu X, Li Z, Zhao R, Liu B, Zhao C. The Potential Hypoglycemic Competence of Low Molecular Weight Polysaccharides Obtained from Laminaria japonica. Foods 2023; 12:3809. [PMID: 37893702 PMCID: PMC10605990 DOI: 10.3390/foods12203809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to assess the hypoglycemic efficacy of low molecular weight polysaccharides fractions obtained from Laminaria japonica (LJOO) in a model of type 2 diabetes mellitus (T2DM) constructed using mice. Biochemical parameters were measured after 4 weeks of continuous gavage, and fasting blood glucose (FBG) concentrations were analyzed. Pathological changes in tissues were assessed. The intestinal contents were obtained for 16S rDNA high-throughput sequencing analysis and detection of short-chain fatty acids (SCFAs). LJOO lowered FBG and insulin concentrations. It altered the gut microbiota composition, as evidenced by enriched probiotic bacteria, along with an increase in the Bacteroidetes/Firmicutes ratio and a decrease in the population of harmful bacteria. LJOO stimulated the growth of SCFA-producing bacteria, thereby increasing cecal SCFAs levels. LJOO can potentially aid in alleviating T2DM and related gut microbiota dysbiosis. LJOO may be used as a food supplement for patients with T2DM.
Collapse
Affiliation(s)
- Aijun Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
| | - Dengwei Wang
- Department of Chronic and Noncommunicable Disease Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, China;
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China;
| | - Zhiqun Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
| | - Runfan Zhao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (A.T.); (Z.L.)
- Marine Food Research and Development Center, Fuzhou Ocean Research Institute, Fuzhou 350002, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
38
|
Lu G, Zhang S, Wang R, Zhang Z, Wang W, Wen Q, Zhang F, Li P. Global Trends in Research of Pain-Gut-Microbiota Relationship and How Nutrition Can Modulate This Link. Nutrients 2023; 15:3704. [PMID: 37686738 PMCID: PMC10490108 DOI: 10.3390/nu15173704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION The link between gut microbiota and chronic painful conditions has recently gained attention. Nutrition, as a common intervention in daily life and medical practice, is closely related to microbiota and pain. However, no published bibliometric reports have analyzed the scientific literature concerning the link. METHODS AND RESULTS We used bibliometrics to identify the characteristics of the global scientific output over the past 20 years. We also aimed to capture and describe how nutrition can modulate the abovementioned link. Relevant papers were searched in the Web of Science database. All necessary publication and citation data were acquired and exported to Bibliometrix for further analyses. The keywords mentioned were illustrated using visualization maps. In total, 1551 papers shed light on the relationship from 2003 to 2022. However, only 122 papers discussed how nutritional interventions can modulate this link. The citations and attention were concentrated on the gut microbiota, pain, and probiotics in terms of the pain-gut relationship. Nutritional status has gained attention in motor themes of a thematic map. CONCLUSIONS This bibliometric analysis was applied to identify the scientific literature linking gut microbiota, chronic painful conditions, and nutrition, revealing the popular research topics and authors, scientific institutions, countries, and journals in this field. This study enriches the evidence moving boundaries of microbiota medicine as a clinical medicine.
Collapse
Affiliation(s)
- Gaochen Lu
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Sheng Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Rui Wang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Zulun Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Weihong Wang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Quan Wen
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Faming Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| | - Pan Li
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|