1
|
Babolhavaeji K, Ahmadi A, Shokoohizadeh L. Shiga Toxin: Emerging Producer Strains, Prophylactic Approaches, and Application in Cancer Therapy. J Cancer Prev 2024; 29:120-128. [PMID: 39790227 PMCID: PMC11706725 DOI: 10.15430/jcp.24.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025] Open
Abstract
Shiga toxin-producing Escherichia coli is the most prevalent bacterial strain responsible for Shiga toxin-related infections. While Shiga toxin is inherently toxic, it has potential therapeutic applications as a component of anticancer drugs. Despite its association with infections and harmful effects on human health, Shiga toxin is being explored as a viable element in drug delivery systems targeting cancer cells. The findings indicate that the production of mutated bacteria containing Shiga toxin is an effective preventive strategy for immunization against these toxins. Furthermore, the B subunit of Shiga toxin shows promise for imaging cancer cells, opening new paths for therapeutic interventions.
Collapse
Affiliation(s)
- Kiandokht Babolhavaeji
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amjad Ahmadi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Shokoohizadeh
- Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Hamadan, IranAvicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Wang X, Yu D, Chui L, Zhou T, Feng Y, Cao Y, Zhi S. A Comprehensive Review on Shiga Toxin Subtypes and Their Niche-Related Distribution Characteristics in Shiga-Toxin-Producing E. coli and Other Bacterial Hosts. Microorganisms 2024; 12:687. [PMID: 38674631 PMCID: PMC11052178 DOI: 10.3390/microorganisms12040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin (Stx), the main virulence factor of Shiga-toxin-producing E. coli (STEC), was first discovered in Shigella dysenteriae strains. While several other bacterial species have since been reported to produce Stx, STEC poses the most significant risk to human health due to its widespread prevalence across various animal hosts that have close contact with human populations. Based on its biochemical and molecular characteristics, Shiga toxin can be grouped into two types, Stx1 and Stx2, among which a variety of variants and subtypes have been identified in various bacteria and host species. Interestingly, the different Stx subtypes appear to vary in their host distribution characteristics and in the severity of diseases that they are associated with. As such, this review provides a comprehensive overview on the bacterial species that have been recorded to possess stx genes to date, with a specific focus on the various Stx subtype variants discovered in STEC, their prevalence in certain host species, and their disease-related characteristics. This review provides a better understanding of the Stx subtypes and highlights the need for rapid and accurate approaches to toxin subtyping for the proper evaluation of the health risks associated with Shiga-toxin-related bacterial food contamination and human infections.
Collapse
Affiliation(s)
- Xuan Wang
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Daniel Yu
- School of Public Health, Univeristy of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Linda Chui
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Tiantian Zhou
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yu Feng
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yuhao Cao
- School of Basic Medical Sciences, Ningbo University, Ningbo 315000, China;
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| |
Collapse
|
3
|
Li S, Anvari S, Ptacek G, Upadhyay I, Kaminski RW, Sack DA, Zhang W. A broadly immunogenic polyvalent Shigella multiepitope fusion antigen protein protects against Shigella sonnei and Shigella flexneri lethal pulmonary challenges in mice. Infect Immun 2023; 91:e0031623. [PMID: 37795982 PMCID: PMC10652900 DOI: 10.1128/iai.00316-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
There are no licensed vaccines for Shigella, a leading cause of children's diarrhea and a common etiology of travelers' diarrhea. To develop a cross-protective Shigella vaccine, in this study, we constructed a polyvalent protein immunogen to present conserved immunodominant epitopes of Shigella invasion plasmid antigens B (IpaB) and D (IpaD), VirG, GuaB, and Shiga toxins on backbone protein IpaD, by applying an epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform, examined protein (Shigella MEFA) broad immunogenicity, and evaluated antibody function against Shigella invasion and Shiga toxin cytotoxicity but also protection against Shigella lethal challenge. Mice intramuscularly immunized with Shigella MEFA protein developed IgG responses to IpaB, IpaD, VirG, GuaB, and Shiga toxins 1 and 2; mouse sera significantly reduced invasion of Shigella sonnei, Shigella flexneri serotype 2a, 3a, or 6, Shigella boydii, and Shigella dysenteriae type 1 and neutralized cytotoxicity of Shiga toxins of Shigella and Shiga toxin-producing Escherichia coli in vitro. Moreover, mice intranasally immunized with Shigella MEFA protein (adjuvanted with dmLT) developed antigen-specific serum IgG, lung IgG and IgA, and fecal IgA antibodies, and survived from lethal pulmonary challenge with S. sonnei or S. flexneri serotype 2a, 3a, or 6. In contrast, the control mice died, became unresponsive, or lost 20% of body weight in 48 h. These results indicated that this Shigella MEFA protein is broadly immunogenic, induces broadly functional antibodies, and cross-protects against lethal pulmonary challenges with S. sonnei or S. flexneri serotypes, suggesting a potential application of this polyvalent MEFA protein in Shigella vaccine development.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shaghayegh Anvari
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Galen Ptacek
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Robert W. Kaminski
- Department of Enteric Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - David A. Sack
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
The Prophage and Us-Shiga Toxin Phages Revisited. Pathogens 2023; 12:pathogens12020232. [PMID: 36839504 PMCID: PMC9960153 DOI: 10.3390/pathogens12020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The authors first met in 1998 at the University of Würzburg, Germany, at the Institute of Hygiene and Microbiology, in Helge Karch's lab, where Herbert Schmidt worked as a PostDoc and Maite Muniesa visited the lab for a postdoctoral research stay to work on phages encoding Shiga toxin 2e (Stx2e) [...].
Collapse
|
5
|
Pilla G, Arcari G, Tang CM, Carattoli A. Virulence plasmid pINV as a genetic signature for Shigella flexneri phylogeny. Microb Genom 2022; 8. [PMID: 35759406 PMCID: PMC9455713 DOI: 10.1099/mgen.0.000846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella flexneri is a major health burden in low- and middle-income countries, where it is a leading cause of mortality associated with diarrhoea in children, and shows an increasing incidence among travellers and men having sex with men. Like all Shigella spp., S. flexneri has evolved from commensal Escherichia coli following the acquisition of a large plasmid pINV, which contains genes essential for virulence. Current sequence typing schemes of Shigella are based on combinations of chromosomal genetic loci, since pINV-encoded virulence genes are often lost during growth in the laboratory, making these elements inappropriate for sequence typing. By performing comparative analysis of pINVs from S. flexneri strains isolated from different geographical regions and belonging to different serotypes, we found that in contrast to plasmid-encoded virulence genes, plasmid maintenance genes are highly stable pINV-encoded elements. For the first time, to our knowledge, we have developed a S. flexneri plasmid multilocus sequence typing (pMLST) method based on different combinations of alleles of the vapBC and yacAB toxin–antitoxin (TA) systems, and the parAB partitioning system. This enables typing of S. flexneri pINV plasmids into distinct ‘virulence sequence types’ (vSTs). Furthermore, the phylogenies of vST alleles and bacterial host core genomes suggests an intimate co-evolution of pINV with the chromosome of its bacterial host, consistent with previous findings. This work demonstrates the potential of plasmid maintenance loci as genetic characteristics to study as well as to trace the molecular phylogenesis of S. flexneri pINV and the phylogenetic relationship of this plasmid with its bacterial host.
Collapse
Affiliation(s)
- Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Population structure analysis and laboratory monitoring of Shigella by core-genome multilocus sequence typing. Nat Commun 2022; 13:551. [PMID: 35087053 PMCID: PMC8795385 DOI: 10.1038/s41467-022-28121-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
Abstract
The laboratory surveillance of bacillary dysentery is based on a standardised Shigella typing scheme that classifies Shigella strains into four serogroups and more than 50 serotypes on the basis of biochemical tests and lipopolysaccharide O-antigen serotyping. Real-time genomic surveillance of Shigella infections has been implemented in several countries, but without the use of a standardised typing scheme. Here, we study over 4000 reference strains and clinical isolates of Shigella, covering all serotypes, with both the current serotyping scheme and the standardised EnteroBase core-genome multilocus sequence typing scheme (cgMLST). The Shigella genomes are grouped into eight phylogenetically distinct clusters, within the E. coli species. The cgMLST hierarchical clustering (HC) analysis at different levels of resolution (HC2000 to HC400) recognises the natural population structure of Shigella. By contrast, the serotyping scheme is affected by horizontal gene transfer, leading to a conflation of genetically unrelated Shigella strains and a separation of genetically related strains. The use of this cgMLST scheme will facilitate the transition from traditional phenotypic typing to routine whole-genome sequencing for the laboratory surveillance of Shigella infections. Lab-based surveillance of Shigella has traditionally been based on serotyping but increasing availability of whole genome sequencing could enable higher resolution typing. Here, the authors apply a core genome multilocus sequence typing scheme to Shigella sequence data and describe its population structure.
Collapse
|
7
|
Zhi S, Parsons BD, Szelewicki J, Yuen YTK, Fach P, Delannoy S, Li V, Ferrato C, Freedman SB, Lee BE, Pang XL, Chui L. Identification of Shiga-Toxin-Producing Shigella Infections in Travel and Non-Travel Related Cases in Alberta, Canada. Toxins (Basel) 2021; 13:toxins13110755. [PMID: 34822539 PMCID: PMC8618429 DOI: 10.3390/toxins13110755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 01/21/2023] Open
Abstract
It has long been accepted that Shiga toxin (Stx) only exists in Shigella dysenteriae serotype 1. However, in recent decades, the presence of Shiga toxin genes (stx) in other Shigella spp. have been reported. We screened 366 Shigella flexneri strains from Alberta, Canada (2003 to 2016) for stx and 26 positive strains were identified. These isolates are highly related with the majority originating from the Dominican Republic and three isolates with Haiti origin. Both phylogenetic and spanning tree analysis of the 26 Alberta and 29 stx positive S. flexneri originating from the U.S., France, Canada (Quebec) and Haiti suggests that there are geographic specific distribution patterns (Haiti and Dominican Republic clades). This study provides the first comprehensive whole genome based phylogenetic analysis of stx positive S. flexneri strains as well as their global transmission, which signify the public health risks of global spreading of these strains.
Collapse
Affiliation(s)
- Shuai Zhi
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315000, China;
- School of Medicine, Ningbo University, Ningbo 315000, China
| | - Brendon D. Parsons
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada; (B.D.P.); (J.S.); (Y.T.K.Y.); (X.-L.P.)
| | - Jonas Szelewicki
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada; (B.D.P.); (J.S.); (Y.T.K.Y.); (X.-L.P.)
| | - Yue T. K. Yuen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada; (B.D.P.); (J.S.); (Y.T.K.Y.); (X.-L.P.)
| | - Patrick Fach
- Agency for Food, Environmental and Occupational Health and Safety (ANSES), Food Safety Laboratory, COLiPATH Research Unit & IDPA Genomics Platform, FR-94700 Maisons-Alfort, France; (P.F.); (S.D.)
| | - Sabine Delannoy
- Agency for Food, Environmental and Occupational Health and Safety (ANSES), Food Safety Laboratory, COLiPATH Research Unit & IDPA Genomics Platform, FR-94700 Maisons-Alfort, France; (P.F.); (S.D.)
| | - Vincent Li
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
| | - Christina Ferrato
- Alberta Precision Laboratories-ProvLab, Calgary, AB T2N 4W4, Canada;
| | - Stephen B. Freedman
- Alberta Children’s Hospital, Division of Pediatric Emergency Medicine and Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Alberta Children’s Hospital Research Institute, Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine & Dentistry, Women and Children’s Health Research Institute, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada; (B.D.P.); (J.S.); (Y.T.K.Y.); (X.-L.P.)
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada; (B.D.P.); (J.S.); (Y.T.K.Y.); (X.-L.P.)
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
- Correspondence:
| |
Collapse
|
8
|
Pinto G, Sampaio M, Dias O, Almeida C, Azeredo J, Oliveira H. Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genomics 2021; 22:366. [PMID: 34011288 PMCID: PMC8136144 DOI: 10.1186/s12864-021-07685-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background A total of 179 Shiga toxin-producing Escherichia coli (STEC) complete genomes were analyzed in terms of serotypes, prophage coding regions, and stx gene variants and their distribution. We further examined the genetic diversity of Stx-converting phage genomes (Stx phages), focusing on the lysis-lysogeny decision and lytic cassettes. Results We show that most STEC isolates belong to non-O157 serotypes (73 %), regardless the sources and geographical regions. While the majority of STEC genomes contain a single stx gene (61 %), strains containing two (35 %), three (3 %) and four (1 %) stx genes were also found, being stx2 the most prevalent gene variant. Their location is exclusively found in intact prophage regions, indicating that they are phage-borne. We further demonstrate that Stx phages can be grouped into four clusters (A, B, C and D), three subclusters (A1, A2 and A3) and one singleton, based on their shared gene content. This cluster distribution is in good agreement with their predicted virion morphologies. Stx phage genomes are highly diverse with a vast number of 1,838 gene phamilies (phams) of related sequences (of which 677 are orphams i.e. unique genes) and, although having high mosaicism, they are generally organized into three major transcripts. While the mechanisms that guide lysis–lysogeny decision are complex, there is a strong selective pressure to maintain the stx genes location close to the lytic cassette composed of predicted SAR-endolysin and pin-holin lytic proteins. The evolution of STEC Stx phages seems to be strongly related to acquiring genetic material, probably from horizontal gene transfer events. Conclusions This work provides novel insights on the genetic structure of Stx phages, showing a high genetic diversity throughout the genomes, where the various lysis-lysogeny regulatory systems are in contrast with an uncommon, but conserved, lytic system always adjacent to stx genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07685-0.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
9
|
van den Beld MJC, Reubsaet FAG, Pijnacker R, Harpal A, Kuiling S, Heerkens EM, Hoeve-Bakker BJA(D, Noomen RCEA, Hendriks ACA, Borst D, van der Heide H, Kooistra-Smid AMD(M, Rossen JWA. A Multifactorial Approach for Surveillance of Shigella spp. and Entero-Invasive Escherichia coli Is Important for Detecting (Inter)national Clusters. Front Microbiol 2020; 11:564103. [PMID: 33193150 PMCID: PMC7604320 DOI: 10.3389/fmicb.2020.564103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023] Open
Abstract
Shigella spp. and entero-invasive Escherichia coli (EIEC) can cause mild diarrhea to dysentery. In Netherlands, although shigellosis is a notifiable disease, there is no laboratory surveillance for Shigella spp. and EIEC in place. Consequently, the population structure for circulating Shigella spp. and EIEC isolates is not known. This study describes the phenotypic and serological characteristics, the phenotypic and genetic antimicrobial resistance (AMR) profiles, the virulence gene profiles, the classic multi-locus sequence types (MLST) and core genome (cg)MLST types, and the epidemiology of 414 Shigella spp. and EIEC isolates collected during a cross-sectional study in Netherlands in 2016 and 2017. S. sonnei (56%), S. flexneri (25%), and EIEC (15%) were detected predominantly in Netherlands, of which the EIEC isolates were most diverse according to their phenotypical profile, O-types, MLST types, and cgMLST clades. Virulence gene profiling showed that none of the isolates harbored Shiga toxin genes. Most S. flexneri and EIEC isolates possessed nearly all virulence genes examined, while these genes were only detected in approximately half of the S. sonnei isolates, probably due to loss of the large invasion plasmid upon subculturing. Phenotypical resistance correlated well with the resistant genotype, except for the genes involved in resistance to aminoglycosides. A substantial part of the characterized isolates was resistant to antimicrobials advised for treatment, i.e., 73% was phenotypically resistant to co-trimoxazole and 19% to ciprofloxacin. AMR was particularly observed in isolates from male patients who had sex with men (MSM) or from patients that had traveled to Asia. Furthermore, isolates related to international clusters were also circulating in Netherlands. Travel-related isolates formed clusters with isolates from patients without travel history, indicating their emergence into the Dutch population. In conclusion, laboratory surveillance using whole genome sequencing as high-resolution typing technique and for genetic characterization of isolates complements the current epidemiological surveillance, as the latter is not sufficient to detect all (inter)national clusters, emphasizing the importance of multifactorial public health approaches.
Collapse
Affiliation(s)
- Maaike J. C. van den Beld
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Frans A. G. Reubsaet
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Roan Pijnacker
- Infectious Diseases, Epidemiology and Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Airien Harpal
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Sjoerd Kuiling
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Evy M. Heerkens
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - B. J. A. (Dieneke) Hoeve-Bakker
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ramón C. E. A. Noomen
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Amber C. A. Hendriks
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Dyogo Borst
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Han van der Heide
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - A. M. D. (Mirjam) Kooistra-Smid
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Medical Microbiology, Certe, Groningen, Netherlands
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Joseph A, Cointe A, Mariani Kurkdjian P, Rafat C, Hertig A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins (Basel) 2020; 12:E67. [PMID: 31973203 PMCID: PMC7076748 DOI: 10.3390/toxins12020067] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/28/2023] Open
Abstract
The severity of human infection by one of the many Shiga toxin-producing Escherichia coli (STEC) is determined by a number of factors: the bacterial genome, the capacity of human societies to prevent foodborne epidemics, the medical condition of infected patients (in particular their hydration status, often compromised by severe diarrhea), and by our capacity to devise new therapeutic approaches, most specifically to combat the bacterial virulence factors, as opposed to our current strategies that essentially aim to palliate organ deficiencies. The last major outbreak in 2011 in Germany, which killed more than 50 people in Europe, was evidence that an effective treatment was still lacking. Herein, we review the current knowledge of STEC virulence, how societies organize the prevention of human disease, and how physicians treat (and, hopefully, will treat) its potentially fatal complications. In particular, we focus on STEC-induced hemolytic and uremic syndrome (HUS), where the intrusion of toxins inside endothelial cells results in massive cell death, activation of the coagulation within capillaries, and eventually organ failure.
Collapse
Affiliation(s)
- Adrien Joseph
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Aurélie Cointe
- Department of Microbiology, AP-HP, Hôpital Robert Debré, F-75019 Paris, France; (A.C.); (P.M.K.)
| | | | - Cédric Rafat
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Alexandre Hertig
- Department of Renal Transplantation, Sorbonne Université, AP-HP, Hôpital Pitié Salpêtrière, F-75013 Paris, France
| |
Collapse
|
11
|
El-Kazzaz SS, Mashaly GES, S. Zeid M. Multidrug Resistant <i>Shigella</i> Associated with Class 1 Integrase and Other Virulence Genes as a Cause of Diarrhea in Pediatric Patients. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ojmm.2020.101001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Van Goethem N, Descamps T, Devleesschauwer B, Roosens NHC, Boon NAM, Van Oyen H, Robert A. Status and potential of bacterial genomics for public health practice: a scoping review. Implement Sci 2019; 14:79. [PMID: 31409417 PMCID: PMC6692930 DOI: 10.1186/s13012-019-0930-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is increasingly being translated into routine public health practice, affecting the surveillance and control of many pathogens. The purpose of this scoping review is to identify and characterize the recent literature concerning the application of bacterial pathogen genomics for public health practice and to assess the added value, challenges, and needs related to its implementation from an epidemiologist's perspective. METHODS In this scoping review, a systematic PubMed search with forward and backward snowballing was performed to identify manuscripts in English published between January 2015 and September 2018. Included studies had to describe the application of NGS on bacterial isolates within a public health setting. The studied pathogen, year of publication, country, number of isolates, sampling fraction, setting, public health application, study aim, level of implementation, time orientation of the NGS analyses, and key findings were extracted from each study. Due to a large heterogeneity of settings, applications, pathogens, and study measurements, a descriptive narrative synthesis of the eligible studies was performed. RESULTS Out of the 275 included articles, 164 were outbreak investigations, 70 focused on strategy-oriented surveillance, and 41 on control-oriented surveillance. Main applications included the use of whole-genome sequencing (WGS) data for (1) source tracing, (2) early outbreak detection, (3) unraveling transmission dynamics, (4) monitoring drug resistance, (5) detecting cross-border transmission events, (6) identifying the emergence of strains with enhanced virulence or zoonotic potential, and (7) assessing the impact of prevention and control programs. The superior resolution over conventional typing methods to infer transmission routes was reported as an added value, as well as the ability to simultaneously characterize the resistome and virulome of the studied pathogen. However, the full potential of pathogen genomics can only be reached through its integration with high-quality contextual data. CONCLUSIONS For several pathogens, it is time for a shift from proof-of-concept studies to routine use of WGS during outbreak investigations and surveillance activities. However, some implementation challenges from the epidemiologist's perspective remain, such as data integration, quality of contextual data, sampling strategies, and meaningful interpretations. Interdisciplinary, inter-sectoral, and international collaborations are key for an appropriate genomics-informed surveillance.
Collapse
Affiliation(s)
- Nina Van Goethem
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Woluwe-Saint-Lambert, Belgium
| | - Tine Descamps
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Brecht Devleesschauwer
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Nele A. M. Boon
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Herman Van Oyen
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Public Health and Primary Care, Faculty of Medicine, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Woluwe-Saint-Lambert, Belgium
| |
Collapse
|
13
|
Sheahan T, Hakstol R, Kailasam S, Glaister GD, Hudson AJ, Wieden HJ. Rapid metagenomics analysis of EMS vehicles for monitoring pathogen load using nanopore DNA sequencing. PLoS One 2019; 14:e0219961. [PMID: 31339905 PMCID: PMC6655686 DOI: 10.1371/journal.pone.0219961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogen monitoring, detection and removal are essential to public health and outbreak management. Systems are in place for monitoring the microbial load of hospitals and public health facilities with strategies to mitigate pathogen spread. However, no such strategies are in place for ambulances, which are tasked with transporting at-risk individuals in immunocompromised states. As standard culturing techniques require a laboratory setting, and are time consuming and labour intensive, our approach was designed to be portable, inexpensive and easy to use based on the MinION third-generation sequencing platform from Oxford Nanopore Technologies. We developed a transferable sampling-to-analysis pipeline to characterize the microbial community in emergency medical service vehicles. Our approach identified over sixty-eight organisms in ambulances to the genera level, with a proportion of these being connected with health-care associated infections, such as Clostridium spp. and Staphylococcus spp. We also monitored the microbiome of different locations across three ambulances over time, and examined the dynamic community of microorganisms found in emergency medical service vehicles. Observed differences identified hot spots, which may require heightened monitoring and extensive cleaning. Through metagenomics analysis it is also possible to identify how microorganisms spread between patients and colonize an ambulance over time. The sequencing results aid in the development of practices to mitigate disease spread, while also providing a useful tool for outbreak prediction through ongoing analysis of the ambulance microbiome to identify new and emerging pathogens. Overall, this pipeline allows for the tracking and monitoring of pathogenic microorganisms of epidemiological interest, including those related to health-care associated infections.
Collapse
Affiliation(s)
- Taylor Sheahan
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Rhys Hakstol
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Senthilkumar Kailasam
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Graeme D. Glaister
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Andrew J. Hudson
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
14
|
Abbasi E, Abtahi H, van Belkum A, Ghaznavi-Rad E. Multidrug-resistant Shigella infection in pediatric patients with diarrhea from central Iran. Infect Drug Resist 2019; 12:1535-1544. [PMID: 31239729 PMCID: PMC6559769 DOI: 10.2147/idr.s203654] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background:Shigella spp. are primary pathogens of diarrhea in children worldwide. Emergence of resistance to fluoroquinolones and third-generation cephalosporins is crucial in the management of pediatric shigellosis. We determined the prevalence and the antibiotic resistance patterns of Shigella species isolated from pediatric patients in central Iran. Materials and methods: Pediatric diarrhea samples (n=230) were cultured on MacConkey and XLD agar media and in GN broth. Genus-specific PCR for ipaH was also used for detection directly from fecal specimens. Antibiotic resistance and the frequency of ESBL and AmpC genes were determined. Results: Out of the 230 samples, 19 (8.2%) cases of Shigella spp. were identified using culture. Twenty-six samples were positive by PCR (11.3%), S. flexneri (4/19; 21%) and S. sonnei (15/19; 78.9%) being the most detected. The highest antibiotic resistance rates were found for cotrimoxazole (19/19; 100%), ampicillin (16/19; 84.2%), cefixime (13/19; 68.4%) and ceftriaxone (12/19; 63.1%). Ten cases showed phenotypic ESBL presence and all these strains were positive for blaTEM, blaCTX-M-1, and blaCTX-M-15. Three strains were AmpC positive, all of which harbored blaCMY-2 and two contained blaCIT. Of the 19 Shigella isolates 5 (26.3%), 2 (10.5%), and 1 (5.2%) were phenotypically resistant to nalidixic acid, ciprofloxacin, and norfloxacin, respectively. Class 1 integron was found in 18 (94.7%) isolates whereas class 2 integron was found in 19 (100%) strains. Conclusion: We found a considerable presence of Shigella species with elevated antibiotic resistance levels. In particular, the resistance to third-generation cephalosporins (ESBL) and ciprofloxacin must be taken seriously.
Collapse
Affiliation(s)
- Elnaz Abbasi
- Department of Microbiology & Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Department of Microbiology & Immunology, Khomein University of Medical Sciences, Khomein, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Alex van Belkum
- Data Analytics Department, BioMérieux, La Balme les Grottes, France
| | - Ehsanollah Ghaznavi-Rad
- Department of Microbiology & Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
15
|
|
16
|
Abstract
The history of Shigella, the causative agent of bacillary dysentery, is a long and fascinating one. This brief historical account starts with descriptions of the disease and its impact on human health from ancient time to the present. Our story of the bacterium starts just before the identification of the dysentery bacillus by Kiyoshi Shiga in 1898 and follows the scientific discoveries and principal scientists who contributed to the elucidation of Shigella pathogenesis in the first 100 years. Over the past century, Shigella has proved to be an outstanding model of an invasive bacterial pathogen and has served as a paradigm for the study of other bacterial pathogens. In addition to invasion of epithelial cells, some of those shared virulence traits include toxin production, multiple-antibiotic resistance, virulence genes encoded on plasmids and bacteriophages, global regulation of virulence genes, pathogenicity islands, intracellular motility, remodeling of host cytoskeleton, inflammation/polymorphonuclear leukocyte signaling, apoptosis induction/inhibition, and "black holes" and antivirulence genes. While there is still much to learn from studying Shigella pathogenesis, what we have learned so far has also contributed greatly to our broader understanding of bacterial pathogenesis.
Collapse
|
17
|
Fogolari M, Mavian C, Angeletti S, Salemi M, Lampel KA, Maurelli AT. Distribution and characterization of Shiga toxin converting temperate phages carried by Shigella flexneri in Hispaniola. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 65:321-328. [PMID: 30075254 PMCID: PMC6260934 DOI: 10.1016/j.meegid.2018.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/22/2018] [Accepted: 07/29/2018] [Indexed: 01/29/2023]
Abstract
Shigella infections account for a considerable burden of acute diarrheal diseases worldwide and remain a major cause of childhood mortality in developing countries. Although, all four species of Shigella (S. dysenteriae, S. flexneri, S. boydii, and S. sonnei) cause bacillary dysentery, historically only S. dysenteriae type 1 has been recognized as carrying the genes for Shiga toxin (stx). Recent epidemiological data, however, have suggested that the emergence of stx carrying S. flexneri strains may have originated from bacteriophage-mediated inter-species horizontal gene transfer in one specific geographical area, Hispaniola. To test this hypothesis, we analyzed whole genome sequences of stx-encoding phages carried by S. flexneri strains isolated in Haiti and S. flexneri S. boydii and S. dysenteriae strains isolated from international travelers who likely acquired the infection in Haiti or the Dominican Republic. Phylogenetic analysis showed that phage sequences encoded in the Shigella strains from Hispaniola were bacteriophage φPOC-J13 and they were all closely related to a phage isolated from a USA isolate, E. coli 2009C-3133 serotype O119:H4. In addition, despite the low genetic heterogeneity of phages from different Shigella spp. circulating in the Caribbean island between 2001 and 2014, two distinct clusters emerged in Haiti and the Dominican Republic. Each cluster possibly originated from phages isolated from S. flexneri 2a, and within each cluster several instances of horizontal phage transfer from S. flexneri 2a to other species were detected. The implications of the emergence of stx-producing non-S. dysenteriae type 1 Shigella species, such as S. flexneri, spans not only the basic science behind horizontal phage spread, but also extends to medical treatment of patients infected with this pathogen.
Collapse
Affiliation(s)
- Marta Fogolari
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA.
| | | | - Anthony T Maurelli
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Rahman M, Nabi A, Asadulghani M, Faruque SM, Islam MA. Toxigenic properties and stx phage characterization of Escherichia coli O157 isolated from animal sources in a developing country setting. BMC Microbiol 2018; 18:98. [PMID: 30170562 PMCID: PMC6119239 DOI: 10.1186/s12866-018-1235-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In many Asian countries including Bangladesh E. coli O157 are prevalent in animal reservoirs and in the food chain, but the incidence of human infection due to E. coli O157 is rare. One of the reasons could be inability of the organism from animal origin to produce sufficient amount of Shiga toxin (Stx), which is the main virulence factor associated with the severe sequelae of infection. This study aimed to fill out this knowledge gap by investigating the toxigenic properties and characteristics of stx phage of E. coli O157 isolated from animal sources in Bangladesh. RESULTS We analysed 47 stx2 positive E. coli O157 of food/animal origin for stx2 gene variants, Shiga toxin production, presence of other virulence genes, stx phage insertion sites, presence of genes associated with functionality of stx phages (Q933 and Q21) and stx2 upstream region. Of the 47 isolates, 46 were positive for both stx2a and stx2d while the remaining isolate was positive for stx2d only. Reverse Passive Latex Agglutination assay (RPLA) showed that 42/47 isolates produced little or no toxin, while 5 isolates produced a high titre of toxin (64 to 128). 39/47 isolates were positive for the Toxin Non-Producing (TNP) specific regions in the stx2 promoter. Additionally, all isolates were negative for antiterminator Q933while a majority of isolates were positive for Q21 gene suggesting the presence of defective stx phage. Of the yehV and wrbA phage insertion sites, yehV was found occupied in 11 isolates while wrbA site was intact in all the isolates. None of the isolates was positive for the virulence gene, cdt but all were positive for hlyA, katP, etpD and eae genes. Isolates that produced high titre Stx (n = 5) produced complete phage particles capable of infecting multiple bacterial hosts. One of these phages was shown to produce stable lysogens in host strains rendering the Stx2 producing ability. CONCLUSION Despite low frequency in the tested isolates, E. coli O157 isolates in Bangladesh carry inducible stx phages and have the capacity to produce Stx2, indicating a potential risk of E. coli O157 infection in humans.
Collapse
Affiliation(s)
- Mahdia Rahman
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212 Bangladesh
| | - Ashikun Nabi
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212 Bangladesh
- Present Address: Department of Biology, University of Vermont, Burlington, VT 05405 USA
| | - Md Asadulghani
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212 Bangladesh
| | - Shah M. Faruque
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212 Bangladesh
- Present Address: Department of Mathematics and Natural Sciences, BRAC University, Mohakhali, Dhaka, 1212 Bangladesh
| | - Mohammad Aminul Islam
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212 Bangladesh
| |
Collapse
|
19
|
Karmali MA. Factors in the emergence of serious human infections associated with highly pathogenic strains of shiga toxin-producing Escherichia coli. Int J Med Microbiol 2018; 308:1067-1072. [PMID: 30146439 DOI: 10.1016/j.ijmm.2018.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/29/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022] Open
Abstract
The appearance of highly pathogenic strains of Shiga toxin (Stx)-producingEscherichia. coli (STEC) has owed largely to the acquisition of Stx-encoding prophages by strains of E. coli that have pre-existing potential as enteric pathogens, such as atypical enteropathogenic E. coli (aEPEC) and enteroaggregative E. coli (EAEC). However, while high pathogenic potential is necessary, it is not sufficient for such strains to have a serious public health impact (i.e., large outbreaks, many cases of HUS, or both). To do so requires susceptible hosts and additional elements related to transmission, such as, socio-economic, societal, and lifestyle, factors. Two examples are discussed to illustrate this. The factors involved in the emergence of serious disease associated with E. coli O157:H7 in the 1980s probably included a massive increase in population exposure to this pathogen, likely as a result of the introduction of factory farming of cattle in the 1960s, and the development and wide patronage of fast food hamburger restaurants, and, potentially, waning immunity to intimin as a result of the reduction of incidence of enteropathogenic E. coli (EPEC) infection. In the devastating outbreak of Stx2-positiveEAEC O104:H4 in 2011, the wide distribution of the proposed vehicle of transmission, imported fenugreek seeds, was decisive in the exposure of a large population in Central Europe to this pathogen. Contributing factors likely included a preference for eating raw sprouts as a healthy food choice by the affected cases, many of whom were women. Low population levels of immunity to Stx2 probably contributed to the severe clinical outcome. A better understanding of the factors responsible for the emergence of potentially dangerous STEC pathogens as well as of extensive and serious disease associated with them can enhance public health strategies to respond to them.
Collapse
Affiliation(s)
- Mohamed A Karmali
- Public Health Consultant, 388 Princess Avenue, Toronto, M2N 3S9, Canada.
| |
Collapse
|
20
|
McLauchlin J, Aird H, Charlett A, Chattaway M, Elviss N, Hartman H, Jenkins C, Jørgensen F, Larkin L, Sadler-Reeves L, Willis C. Imported edible leaves collected at retail sale in England during 2017 with an emphasis on betel and curry leaves: microbiological quality with respect toSalmonella, Shiga-toxin-producingE. coli(STEC) and levels ofEscherichia coli. J Appl Microbiol 2018; 125:1175-1185. [DOI: 10.1111/jam.13931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 11/29/2022]
Affiliation(s)
- J. McLauchlin
- Public Health England Food Water and Environmental Microbiology Services; National Infection Service; London UK
- Institute of Infection and Global Health; University of Liverpool; Liverpool UK
| | - H. Aird
- Public Health England Food Water and Environmental Microbiology Laboratory York; National Infection Service; York UK
| | - A. Charlett
- Public Health England Statistics, Modelling and Economics Department; National Infection Service; London UK
| | - M. Chattaway
- Public Health England Gastrointestinal Bacteria Reference Unit; National Infection Service; London UK
| | - N. Elviss
- Public Health England Food Water and Environmental Microbiology Laboratory London; National Infection Service; London UK
| | - H. Hartman
- Public Health England Gastrointestinal Bacteria Reference Unit; National Infection Service; London UK
| | - C. Jenkins
- Public Health England Gastrointestinal Bacteria Reference Unit; National Infection Service; London UK
| | - F. Jørgensen
- Public Health England Food Water and Environmental Microbiology Laboratory Porton; National Infection Service; Salisbury UK
| | - L. Larkin
- Public Health England; Gastrointestinal Infections Department; National Infection Service; London UK
| | - L. Sadler-Reeves
- Public Health England Food Water and Environmental Microbiology Laboratory Porton; National Infection Service; Salisbury UK
| | - C. Willis
- Public Health England Food Water and Environmental Microbiology Laboratory Porton; National Infection Service; Salisbury UK
| |
Collapse
|
21
|
Yaghoubi S, Ranjbar R, Dallal MMS, Fard SY, Shirazi MH, Mahmoudi M. Profiling of Virulence-associated Factors in Shigella Species Isolated from Acute Pediatric Diarrheal Samples in Tehran, Iran. Osong Public Health Res Perspect 2017; 8:220-226. [PMID: 28781945 PMCID: PMC5525559 DOI: 10.24171/j.phrp.2017.8.3.09] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The genus Shigella comprises the most infectious and diarrheagenic bacteria causing severe diseases, mostly in children under five years of age. This study aimed to detect nine virulence genes (ipaBCD, VirA, sen, set1A, set1B, ial, ipaH, stx, and sat) in Shigella species (spp.) using multiplex polymerase chain reaction (MPCR) and to determine the relation of Shigella spp. from pediatric diarrheal samples with hospitalization and bloody diarrhea in Tehran, Iran. METHODS Shigella spp. were isolated and identified using standard microbiological and serological methods. The virulence genes were detected using MPCR. RESULTS Seventy-five Shigella spp. (40 S. sonnei, 33 S. flexneri, 1 S. dysenteriae, and 1 S. boydii) were isolated in this study. The prevalence of ial, sen, sat, set1A, and set1B was 74.7%, 45.4%, 28%, 24%, and 24%, respectively. All S. flexneri isolates, while no S. sonnei, S. dysenteriae, or S. boydii isolates, contained sat, set1A, and set1B. All isolates were positive for ipaH, ipaBCD, and virA, while one (1.4%) of the isolates contained stx. The highest prevalence of virulence determinants was found in S. flexneri serotype IIa. Nineteen (57.6%) of 33 S. flexneri isolates were positive for ipaBCD, ipaH, virA, ial, and sat. The sen determinants were found to be statistically significantly associated with hospitalization and bloody diarrhea (p = 0.001). CONCLUSION This study revealed a high prevalence of enterotoxin genes in S. flexneri, especially in serotype 2a, and has presented relations between a few clinical features of shigellosis and numerous virulence determinants of clinical isolates of Shigella spp.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Yasliani Fard
- Department of Microbiology and Immunology, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Hasan Shirazi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Mahmoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Lamba K, Nelson JA, Kimura AC, Poe A, Collins J, Kao AS, Cruz L, Inami G, Vaishampayan J, Garza A, Chaturvedi V, Vugia DJ. Shiga Toxin 1-Producing Shigella sonnei Infections, California, United States, 2014-2015. Emerg Infect Dis 2016; 22:679-86. [PMID: 26982255 PMCID: PMC4806944 DOI: 10.3201/eid2204.151825] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Shiga toxins (Stx) are primarily associated with Shiga toxin–producing Escherichia coli and Shigella dysenteriae serotype 1. Stx production by other shigellae is uncommon, but in 2014, Stx1-producing S. sonnei infections were detected in California. Surveillance was enhanced to test S. sonnei isolates for the presence and expression of stx genes, perform DNA subtyping, describe clinical and epidemiologic characteristics of case-patients, and investigate for sources of infection. During June 2014–April 2015, we identified 56 cases of Stx1-producing S. sonnei, in 2 clusters. All isolates encoded stx1 and produced active Stx1. Multiple pulsed-field gel electrophoresis patterns were identified. Bloody diarrhea was reported by 71% of case-patients; none had hemolytic uremic syndrome. Some initial cases were epidemiologically linked to travel to Mexico, but subsequent infections were transmitted domestically. Continued surveillance of Stx1-producing S. sonnei in California is necessary to characterize its features and plan for reduction of its spread in the United States.
Collapse
|
23
|
Mellor GE, Fegan N, Duffy LL, McMILLAN KE, Jordan D, Barlow RS. National Survey of Shiga Toxin-Producing Escherichia coli Serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian Beef Cattle Feces. J Food Prot 2016; 79:1868-1874. [PMID: 28221921 DOI: 10.4315/0362-028x.jfp-15-507] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Escherichia coli O157 and six non-O157 Shiga toxin-producing E. coli (STEC) serotypes (O26, O45, O103, O111, O121, and O145, colloquially referred to as the "big 6") have been classified as adulterants of raw nonintact beef products in the United States. While beef cattle are a known reservoir for the prototype STEC serotype, E. coli O157, less is known about the dissemination of non-O157 STEC serotypes in Australian cattle. In the present study, 1,500 fecal samples were collected at slaughter from adult (n =628) and young (n =286) beef cattle, adult (n =128) and young (n =143) dairy cattle, and veal calves (n = 315) across 31 Australian export-registered processing establishments. Fecal samples were enriched and tested for E. coli O157 and the big 6 STEC serotypes using BAX System PCR and immunomagnetic separation methods. Pathogenic STEC (pSTEC; isolates that possess stx, eae, and an O antigen marker for O157 or a big 6 serotype) were isolated from 115 samples (7.7%), of which 100 (6.7%) contained E. coli O157 and 19 (1.3%) contained a big 6 serotype. Four of the 115 samples contained multiple pSTEC serotypes. Among samples confirmed for big 6 pSTEC, 15 (1%) contained E. coli O26 and 4 (0.3%) contained E. coli O111. pSTEC of serotypes O45, O103, O121, and O145 were not isolated from any sample, even though genes indicative of E. coli belonging to these serotypes were detected by PCR. Analysis of animal classes revealed a higher pSTEC prevalence in younger animals, including veal (12.7%), young beef (9.8%), and young dairy (7.0%), than in adult animals, including adult beef (5.1%) and adult dairy (3.9%). This study is the largest of its kind undertaken in Australia. In contrast to E. coli O157 and consistent with previous findings, this study reports a relatively low prevalence of big 6 pSTEC serotypes in Australian cattle populations.
Collapse
Affiliation(s)
- Glen E Mellor
- CSIRO Agriculture and Food, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia
| | - Narelle Fegan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Lesley L Duffy
- CSIRO Agriculture and Food, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia
| | - Kate E McMILLAN
- CSIRO Agriculture and Food, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia
| | - David Jordan
- Department of Primary Industries, 1243 Bruxner Highway, Wollongbar, New South Wales 2477, Australia
| | - Robert S Barlow
- CSIRO Agriculture and Food, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia
| |
Collapse
|
24
|
Guerra MMM, de Almeida AM, Willingham AL. An overview of food safety and bacterial foodborne zoonoses in food production animals in the Caribbean region. Trop Anim Health Prod 2016; 48:1095-108. [PMID: 27215411 PMCID: PMC4943981 DOI: 10.1007/s11250-016-1082-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/09/2016] [Indexed: 11/26/2022]
Abstract
Foodborne diseases (FBDs) in the Caribbean have a high economic burden. Public health and tourism concerns rise along with the increasing number of cases and outbreaks registered over the last 20 years. Salmonella spp., Shigella spp., and Campylobacter spp. are the main bacteria associated with these incidents. In spite of undertaking limited surveillance on FBD in the region, records related to bacterial foodborne zoonoses in food-producing animals and their associated epidemiologic significance are poorly documented, giving rise to concerns about the importance of the livestock, food animal product sectors, and consumption patterns. In this review, we report the available published literature over the last 20 years on selected bacterial foodborne zoonoses in the Caribbean region and also address other food safety-related aspects (e.g., FBD food attribution, importance, surveillance), mainly aiming at recognizing data gaps and identifying possible research approaches in the animal health sector.
Collapse
Affiliation(s)
| | - Andre M de Almeida
- Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts and Nevis.
| | - Arve Lee Willingham
- Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts and Nevis
| |
Collapse
|
25
|
Secreted Compounds of the Probiotic Bacillus clausii Strain O/C Inhibit the Cytotoxic Effects Induced by Clostridium difficile and Bacillus cereus Toxins. Antimicrob Agents Chemother 2016; 60:3445-54. [PMID: 27001810 DOI: 10.1128/aac.02815-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/15/2016] [Indexed: 12/18/2022] Open
Abstract
Although the use of probiotics based on Bacillus strains to fight off intestinal pathogens and antibiotic-associated diarrhea is widespread, the mechanisms involved in producing their beneficial effects remain unclear. Here, we studied the ability of compounds secreted by the probiotic Bacillus clausii strain O/C to counteract the cytotoxic effects induced by toxins of two pathogens, Clostridium difficile and Bacillus cereus, by evaluating eukaryotic cell viability and expression of selected genes. Coincubation of C. difficile and B. cereus toxic culture supernatants with the B. clausii supernatant completely prevented the damage induced by toxins in Vero and Caco-2 cells. The hemolytic effect of B. cereus was also avoided by the probiotic supernatant. Moreover, in these cells, the expression of rhoB, encoding a Rho GTPase target for C. difficile toxins, was normalized when C. difficile supernatant was pretreated using the B. clausii supernatant. All of the beneficial effects observed with the probiotic were abolished by the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF). Suspecting the involvement of a secreted protease in this protective effect, a protease was purified from the B. clausii supernatant and identified as a serine protease (M-protease; GenBank accession number Q99405). Experiments on Vero cells demonstrated the antitoxic activity of the purified protease against pathogen supernatants. This is the first report showing the capacity of a protease secreted by probiotic bacteria to inhibit the cytotoxic effects of toxinogenic C. difficile and B. cereus strains. This extracellular compound could be responsible, at least in part, for the protective effects observed for this human probiotic in antibiotic-associated diarrhea.
Collapse
|
26
|
The HC, Thanh DP, Holt KE, Thomson NR, Baker S. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat Rev Microbiol 2016; 14:235-50. [PMID: 26923111 DOI: 10.1038/nrmicro.2016.10] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp.
Collapse
Affiliation(s)
- Hao Chung The
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Kathryn E Holt
- Centre for Systems Genomics, University of Melbourne.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Nicholas R Thomson
- Bacterial Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK.,Department of Pathogen and Molecular Biology, The London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| |
Collapse
|
27
|
Gray MD, Leonard SR, Lacher DW, Lampel KA, Alam MT, Morris JG, Ali A, LaBreck PT, Maurelli AT. Stx-Producing Shigella Species From Patients in Haiti: An Emerging Pathogen With the Potential for Global Spread. Open Forum Infect Dis 2015; 2:ofv134. [PMID: 26484357 PMCID: PMC4606844 DOI: 10.1093/ofid/ofv134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/04/2015] [Indexed: 11/14/2022] Open
Abstract
Shiga toxins (Stx) are commonly produced by Shigella dysenteriae serotype 1 and Stx-producing Escherichia coli. However, the toxin genes have been detected in additional Shigella species. We recently reported the emergence of Stx-producing Shigella in travelers in the United States and France who had recently visited Hispaniola (Haiti and the Dominican Republic). In this study, we confirm this epidemiological link by identifying Stx-producing Shigella from Haitian patients attending clinics near Port-au-Prince. We also demonstrate that the bacteriophage encoding Stx is capable of dissemination to stx-negative Shigella species found in Haiti, suggesting that Stx-producing Shigella may become more widespread within that region.
Collapse
Affiliation(s)
- Miranda D. Gray
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda
| | - Susan R. Leonard
- US Food and Drug Administration, Center for Food Safety and Nutrition, Laurel, Maryland
| | - David W. Lacher
- US Food and Drug Administration, Center for Food Safety and Nutrition, Laurel, Maryland
| | - Keith A. Lampel
- US Food and Drug Administration, Center for Food Safety and Nutrition, Laurel, Maryland
| | - Meer T. Alam
- University of Florida, Emerging Pathogens Institute,
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville
| | | | - Afsar Ali
- University of Florida, Emerging Pathogens Institute,
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville
| | - Patrick T. LaBreck
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda
| | - Anthony T. Maurelli
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda
| |
Collapse
|
28
|
Bekal S, Pilon PA, Cloutier N, Doualla-Bell F, Longtin J. Identification of Shigella flexneri isolates carrying the Shiga toxin 1-producing gene in Quebec, Canada, linked to travel to Haiti. Can J Microbiol 2015; 61:995-6. [PMID: 26401981 DOI: 10.1139/cjm-2015-0538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sadjia Bekal
- a Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada.,b Département de Microbiologie, Infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Pierre A Pilon
- c Direction régionale de santé publique de Montréal, Quebec, Canada
| | - Nancy Cloutier
- a Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Florence Doualla-Bell
- a Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada.,d Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Jean Longtin
- a Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada.,e Centre de recherche en infectiologie de l'Université Laval, Quebec, Canada
| |
Collapse
|