1
|
Zeisler ZR, Love M, Rutishauser U, Stoll FM, Rudebeck PH. Consistent Hierarchies of Single-Neuron Timescales in Mice, Macaques, and Humans. J Neurosci 2025; 45:e2155242025. [PMID: 40180571 PMCID: PMC12060611 DOI: 10.1523/jneurosci.2155-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
The intrinsic timescales of single neurons are thought to be hierarchically organized across the cortex, but whether hierarchical variation in timescales is a general brain organizing principle across mammalian species remains unclear. Here, we took a cross-species approach and estimated neuronal timescales of thousands of single neurons recorded across frontal cortex, amygdala, and hippocampus in mice, monkeys, and humans of both sexes using a task-agnostic method. We identify largely consistent hierarchies of timescales in frontal and limbic regions across species: hippocampus had the shortest timescale whereas anterior cingulate cortex had the longest. Within this scheme, variability across species was found, most notably in amygdala and orbitofrontal cortex. We show that variation in timescales is not simply related to differences in spiking statistics nor the result of cytoarchitectonic features such as cortical granularity. Thus, hierarchically organized timescales are a consistent organizing principle across species and appear to be related to a combination of intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Zachary R Zeisler
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Marques Love
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Center for Neural Science and Medicine, Department of Biological Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
2
|
Luppi AI, Uhrig L, Tasserie J, Shafiei G, Muta K, Hata J, Okano H, Golkowski D, Ranft A, Ilg R, Jordan D, Gini S, Liu ZQ, Yee Y, Signorelli CM, Cofre R, Destexhe A, Menon DK, Stamatakis EA, Connor CW, Gozzi A, Fulcher BD, Jarraya B, Misic B. Comprehensive profiling of anaesthetised brain dynamics across phylogeny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644729. [PMID: 40196621 PMCID: PMC11974681 DOI: 10.1101/2025.03.22.644729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The intrinsic dynamics of neuronal circuits shape information processing and cognitive function. Combining non-invasive neuroimaging with anaesthetic-induced suppression of information processing provides a unique opportunity to understand how local dynamics mediate the link between neurobiology and the organism's functional repertoire. To address this question, we compile a unique dataset of multi-scale neural activity during wakefulness and anesthesia encompassing human, macaque, marmoset, mouse and nematode. We then apply massive feature extraction to comprehensively characterize local neural dynamics across > 6 000 time-series features. Using dynamics as a common space for comparison across species, we identify a phylogenetically conserved dynamical profile of anaesthesia that encompasses multiple features, including reductions in intrinsic timescales. This dynamical signature has an evolutionarily conserved spatial layout, covarying with transcriptional profiles of excitatory and inhibitory neurotransmission across human, macaque and mouse cortex. At the network level, anesthetic-induced changes in local dynamics manifest as reductions in inter-regional synchrony. This relationship between local dynamics and global connectivity can be recapitulated in silico using a connectome-based computational model. Finally, this dynamical regime of anaesthesia is experimentally reversed in vivo by deep-brain stimulation of the centromedian thalamus in the macaque, resulting in restored arousal and behavioural responsiveness. Altogether, comprehensive dynamical phenotyping reveals that spatiotemporal isolation of local neural activity during anesthesia is conserved across species and anesthetics.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK
- St John’s College, University of Cambridge, Cambridge, UK
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Golia Shafiei
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanako Muta
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tolz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Silvia Gini
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | - Zhen-Qi Liu
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Yohan Yee
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Camilo M. Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Philosophy of Artificial Intelligence, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Cofre
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - Alain Destexhe
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Christopher W. Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biomedical Engineering, Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - Alessandro Gozzi
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Sydney, Australia
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Neurology, Foch Hospital, Suresnes, France
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
3
|
Hasson U. Uncovering a Timescale Hierarchy by Studying the Brain in a Natural Context. J Neurosci 2025; 45:e2368242025. [PMID: 40107727 PMCID: PMC11924986 DOI: 10.1523/jneurosci.2368-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 03/22/2025] Open
Abstract
As we train multiple generations of students to narrowly design clever, carefully controlled experiments in our confined lab spaces, we may fail to notice, as a field, that we have overlooked fundamental aspects of human cognition. This is a first-person account of how our research and understanding of the neural code were forever transformed when we decided to open the lab's door to the natural world. This journey started with the decision to shift from controlled stimuli to natural dynamic and "messy" stimuli. This transition enabled us to focus on how information is accumulated and processed over time. As a result, we have discovered a new topographic mapping of the hierarchy of cortical processing timescales. I will conclude with a general observation of the paradigm shift occurring in the field as it increasingly emphasizes the study of the neural processes that underlie human behavior in natural, everyday contexts. I am excited to share this journey with you.
Collapse
Affiliation(s)
- Uri Hasson
- Psychology Department and the Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
4
|
Munoz F, Jensen G, Shinn M, Alkan Y, Murray JD, Terrace HS, Ferrera VP. Learning decouples accuracy and reaction time for rapid decisions in a transitive inference task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.636952. [PMID: 39990363 PMCID: PMC11844555 DOI: 10.1101/2025.02.11.636952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The accumulation of evidence over time, formalized in the drift diffusion model (DDM), has become a prevalent model of deliberative decision-making. Here, we adapted this model to understand better the role of latent variables in a serial learning task where decisions were made rapidly and did not show typical accuracy and response time patterns. We fit behavioral data using PyDDM (Shinn et al., 2020). We trained macaque monkeys (N = 3) on a transitive inference transfer task. They learned the implied order in a ranked list of 7 novel pictures in each behavioral session, indicating their choices by making saccadic eye movements. They reliably learned each new list order within 200-300 trials with asymptotic accuracy of around 80-90% correct. Their responses showed a symbolic distance effect, with 60% accuracy for adjacent list items and 90% accuracy for the largest symbolic distance. Although performance accuracy improved with learning and symbolic distance, reaction times were nearly invariant. Nevertheless, both accuracy and reaction time were well fit by the generalized drift-diffusion model. The fits were achieved by simultaneously increasing both the evidence accumulation rate and a collapsing bound to capture the shape of the reaction time distributions. These results indicate that decision-making during learning and transfer in a TI task may be characterized by a "variable collapsing bound" DDM. These results point to a unique dynamical regime of the DDM framework during serial learning.
Collapse
|
5
|
Wu K, Gollo LL. Mapping and modeling age-related changes in intrinsic neural timescales. Commun Biol 2025; 8:167. [PMID: 39901043 PMCID: PMC11791184 DOI: 10.1038/s42003-025-07517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/10/2025] [Indexed: 02/05/2025] Open
Abstract
Intrinsic timescales of brain regions exhibit heterogeneity, escalating with hierarchical levels, and are crucial for the temporal integration of external stimuli. Aging, often associated with cognitive decline, involves progressive neuronal and synaptic loss, reshaping brain structure and dynamics. However, the impact of these structural changes on temporal coding in the aging brain remains unclear. We mapped intrinsic timescales and gray matter volume (GMV) using magnetic resonance imaging (MRI) in young and elderly adults. We found shorter intrinsic timescales across multiple large-scale functional networks in the elderly cohort, and a significant positive association between intrinsic timescales and GMV. Additionally, age-related decline in performance on visual discrimination tasks was linked to a reduction in intrinsic timescales in the cuneus. To explain these age-related shifts, we developed an age-dependent spiking neuron network model. In younger subjects, brain regions were near a critical branching regime, while regions in elderly subjects had fewer neurons and synapses, pushing the dynamics toward a subcritical regime. The model accurately reproduced the empirical results, showing longer intrinsic timescales in young adults due to critical slowing down. Our findings reveal how age-related structural brain changes may drive alterations in brain dynamics, offering testable predictions and informing possible interventions targeting cognitive decline.
Collapse
Affiliation(s)
- Kaichao Wu
- Brain Networks and Modelling Laboratory and The Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Leonardo L Gollo
- Brain Networks and Modelling Laboratory and The Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.
- Instituto de Física Interdisciplinary Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain.
| |
Collapse
|
6
|
Iigaya K, Larsen T, Fong T, O'Doherty JP. Computational and Neural Evidence for Altered Fast and Slow Learning from Losses in Problem Gambling. J Neurosci 2025; 45:e0080242024. [PMID: 39557579 DOI: 10.1523/jneurosci.0080-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
Learning occurs across multiple timescales, with fast learning crucial for adapting to sudden environmental changes, and slow learning beneficial for extracting robust knowledge from multiple events. Here, we asked if miscalibrated fast vs slow learning can lead to maladaptive decision-making in individuals with problem gambling. We recruited participants with problem gambling (PG; N = 20; 9 female and 11 male) and a recreational gambling control group without any symptoms associated with PG (N = 20; 10 female and 10 male) from the community in Los Angeles, CA. Participants performed a decision-making task involving reward-learning and loss-avoidance while being scanned with fMRI. Using computational model fitting, we found that individuals in the PG group showed evidence for an excessive dependence on slow timescales and a reduced reliance on fast timescales during learning. fMRI data implicated the putamen, an area associated with habit, and medial prefrontal cortex (PFC) in slow loss-value encoding, with significantly more robust encoding in medial PFC in the PG group compared to controls. The PG group also exhibited stronger loss prediction error encoding in the insular cortex. These findings suggest that individuals with PG have an impaired ability to adjust their predictions following losses, manifested by a stronger influence of slow value learning. This impairment could contribute to the behavioral inflexibility of problem gamblers, particularly the persistence in gambling behavior typically observed in those individuals after incurring loss outcomes.
Collapse
Affiliation(s)
- Kiyohito Iigaya
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032
- Center for Theoretical Neuroscience and Zuckerman Institute, Columbia University, New York, New York 10027
- New York State Psychiatric Institute, New York, New York 10032
| | - Tobias Larsen
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125
| | - Timothy Fong
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90024
| | - John P O'Doherty
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
7
|
Song M, Shin EJ, Seo H, Soltani A, Steinmetz NA, Lee D, Jung MW, Paik SB. Hierarchical gradients of multiple timescales in the mammalian forebrain. Proc Natl Acad Sci U S A 2024; 121:e2415695121. [PMID: 39671181 DOI: 10.1073/pnas.2415695121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Many anatomical and physiological features of cortical circuits, ranging from the biophysical properties of synapses to the connectivity patterns among different neuron types, exhibit consistent variation along the hierarchical axis from sensory to association areas. Notably, the temporal correlation of neural activity at rest, known as the intrinsic timescale, increases systematically along this hierarchy in both primates and rodents, analogous to the increasing scale and complexity of spatial receptive fields. However, how the timescales for task-related activity vary across brain regions and whether their hierarchical organization appears consistently across different mammalian species remain unexplored. Here, we show that both the intrinsic timescale and those of task-related activity follow a similar hierarchical gradient in the cortices of monkeys, rats, and mice. We also found that these timescales covary similarly in both the cortex and basal ganglia, whereas the timescales of thalamic activity are shorter than cortical timescales and do not conform to the hierarchical order predicted by their cortical projections. These results suggest that the hierarchical gradient of cortical timescales might represent a universal feature of intracortical circuits in the mammalian brain.
Collapse
Affiliation(s)
- Min Song
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Eun Ju Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Hyojung Seo
- Department of Psychiatry, Yale University, New Haven, CT 06520
| | - Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Nicholas A Steinmetz
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Daeyeol Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218
- Kavli Discovery Neuroscience Institute, Johns Hopkins University, Baltimore, MD 21218
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Mecklenbrauck F, Sepulcre J, Fehring J, Schubotz RI. Decoding cortical chronotopy-Comparing the influence of different cortical organizational schemes. Neuroimage 2024; 303:120914. [PMID: 39491762 DOI: 10.1016/j.neuroimage.2024.120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
The brain's diverse intrinsic timescales enable us to perceive stimuli with varying temporal persistency. This study aimed to uncover the cortical organizational schemes underlying these variations, revealing the neural architecture for processing a wide range of sensory experiences. We collected resting-state fMRI, task-fMRI, and diffusion-weighted imaging data from 47 individuals. Based on this data, we extracted six organizational schemes: (1) the structural Rich Club (RC) architecture, shown to synchronize the connectome; (2) the structural Diverse Club architecture, as an alternative to the RC based on the network's module structure; (3) the functional uni-to-multimodal gradient, reflected in a wide range of structural and functional features; and (4) the spatial posterior/lateral-to-anterior/medial gradient, established for hierarchical levels of cognitive control. Also, we explored the effects of (5) structural graph theoretical measures of centrality and (6) cytoarchitectural differences. Using Bayesian model comparison, we contrasted the impact of these organizational schemes on (1) intrinsic resting-state timescales and (2) inter-subject correlation (ISC) from a task involving hierarchically nested digit sequences. As expected, resting-state timescales were slower in structural network hubs, hierarchically higher areas defined by the functional and spatial gradients, and thicker cortical regions. ISC analysis demonstrated hints for the engagement of higher cortical areas with more temporally persistent stimuli. Finally, the model comparison identified the uni-to-multimodal gradient as the best organizational scheme for explaining the chronotopy in both task and rest. Future research should explore the microarchitectural features that shape this gradient, elucidating how our brain adapts and evolves across different modes of processing.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| | - Jorge Sepulcre
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Jana Fehring
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany; Institute for Biomagnetism and Biosignal Analysis, Münster, Germany.
| | - Ricarda I Schubotz
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| |
Collapse
|
9
|
Zeisler ZR, Love M, Rutishauser U, Stoll FM, Rudebeck PH. Consistent hierarchies of single-neuron timescales in mice, macaques and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621133. [PMID: 39553955 PMCID: PMC11565977 DOI: 10.1101/2024.10.30.621133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The intrinsic timescales of single neurons are thought to be hierarchically organized across the cortex. This conclusion, however, is primarily based on analyses of neural responses from macaques. Whether hierarchical variation in timescales is a general brain organizing principle across mammals remains unclear. Here we took a cross-species approach and estimated neuronal timescales of thousands of single neurons recorded across multiple areas in mice, monkeys, and humans using a task-agnostic method. We identify largely consistent hierarchies of timescales in frontal and limbic regions across species: hippocampus had the shortest timescale whereas anterior cingulate cortex had the longest. Within this scheme, variability across species was found, most notably in amygdala and orbitofrontal cortex. We show that variation in timescales is not simply related to differences in spiking statistics nor the result of cytoarchitectonic features such as cortical granularity. Thus, hierarchically organized timescales are a consistent organizing principle across species and appear to be related to a combination of intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Zachary R. Zeisler
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Marques Love
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Center for Neural Science and Medicine, Department of Biological Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Frederic M. Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
10
|
Lendner JD, Lin JJ, Larsson PG, Helfrich RF. Multiple Intrinsic Timescales Govern Distinct Brain States in Human Sleep. J Neurosci 2024; 44:e0171242024. [PMID: 39187378 PMCID: PMC11484545 DOI: 10.1523/jneurosci.0171-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Human sleep exhibits multiple, recurrent temporal regularities, ranging from circadian rhythms to sleep stage cycles and neuronal oscillations during nonrapid eye movement sleep. Moreover, recent evidence revealed a functional role of aperiodic activity, which reliably discriminates different sleep stages. Aperiodic activity is commonly defined as the spectral slope χ of the 1/frequency (1/fχ) decay function of the electrophysiological power spectrum. However, several lines of inquiry now indicate that the aperiodic component of the power spectrum might be better characterized by a superposition of several decay processes with associated timescales. Here, we determined multiple timescales, which jointly shape aperiodic activity using human intracranial electroencephalography. Across three independent studies (47 participants, 23 female), our results reveal that aperiodic activity reliably dissociated sleep stage-dependent dynamics in a regionally specific manner. A principled approach to parametrize aperiodic activity delineated several, spatially and state-specific timescales. Lastly, we employed pharmacological modulation by means of propofol anesthesia to disentangle state-invariant timescales that may reflect physical properties of the underlying neural population from state-specific timescales that likely constitute functional interactions. Collectively, these results establish the presence of multiple intrinsic timescales that define the electrophysiological power spectrum during distinct brain states.
Collapse
Affiliation(s)
- Janna D Lendner
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Tübingen 72076, Germany
| | - Jack J Lin
- Department of Neurology, UC Davis, Sacramento, California 95816
- Center for Mind and Brain, UC Davis, Davis, California 95618
| | - Pål G Larsson
- Department of Neurosurgery, University of Oslo Medical Center, Oslo 0372, Norway
| | - Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
| |
Collapse
|
11
|
Kiyonaga A, Miller JA, D'Esposito M. Lateral prefrontal cortex controls interplay between working memory and actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613601. [PMID: 39345454 PMCID: PMC11429898 DOI: 10.1101/2024.09.17.613601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Humans must often keep multiple task goals in mind, at different levels of priority and immediacy, while also interacting with the environment. We might need to remember information for an upcoming task while engaged in more immediate actions. Consequently, actively maintained working memory (WM) content may bleed into ongoing but unrelated motor behavior. Here, we experimentally test the impact of WM maintenance on action execution, and we transcranially stimulate lateral prefrontal cortex (PFC) to parse its functional contributions to WM-motor interactions. We first created a task scenario wherein human participants (both sexes) executed cued hand movements during WM maintenance. We manipulated the compatibility between WM and movement goals at the trial level and the statistical likelihood that the two would be compatible at the block level. We found that remembering directional words (e.g., 'left', 'down') biased the trajectory and speed of hand movements that occurred during the WM delay, but the bias was dampened in blocks when WM content predictably conflicted with movement goals. Then we targeted left lateral PFC with two different transcranial magnetic stimulation (TMS) protocols before participants completed the task. We found that an intermittent theta-burst protocol, which is thought to be excitatory, dampened sensitivity to block-level control demands (i.e., proactive control), while a continuous theta-burst protocol, which is thought to be inhibitory, dampened adaptation to trial-by-trial conflict (i.e., reactive control). Therefore, lateral PFC is involved in controlling the interplay between WM content and manual action, but different PFC mechanisms may support different time-scales of adaptive control.
Collapse
|
12
|
Senkowski D, Engel AK. Multi-timescale neural dynamics for multisensory integration. Nat Rev Neurosci 2024; 25:625-642. [PMID: 39090214 DOI: 10.1038/s41583-024-00845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Carrying out any everyday task, be it driving in traffic, conversing with friends or playing basketball, requires rapid selection, integration and segregation of stimuli from different sensory modalities. At present, even the most advanced artificial intelligence-based systems are unable to replicate the multisensory processes that the human brain routinely performs, but how neural circuits in the brain carry out these processes is still not well understood. In this Perspective, we discuss recent findings that shed fresh light on the oscillatory neural mechanisms that mediate multisensory integration (MI), including power modulations, phase resetting, phase-amplitude coupling and dynamic functional connectivity. We then consider studies that also suggest multi-timescale dynamics in intrinsic ongoing neural activity and during stimulus-driven bottom-up and cognitive top-down neural network processing in the context of MI. We propose a new concept of MI that emphasizes the critical role of neural dynamics at multiple timescales within and across brain networks, enabling the simultaneous integration, segregation, hierarchical structuring and selection of information in different time windows. To highlight predictions from our multi-timescale concept of MI, real-world scenarios in which multi-timescale processes may coordinate MI in a flexible and adaptive manner are considered.
Collapse
Affiliation(s)
- Daniel Senkowski
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Ventura B, Çatal Y, Wolman A, Buccellato A, Cooper AC, Northoff G. Intrinsic neural timescales exhibit different lengths in distinct meditation techniques. Neuroimage 2024; 297:120745. [PMID: 39069224 DOI: 10.1016/j.neuroimage.2024.120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Meditation encompasses a range of practices employing diverse induction techniques, each characterized by a distinct attentional focus. In Mantra meditation, for instance, practitioners direct their attention narrowly to a given sentence that is recursively repeated, while other forms of meditation such as Shoonya meditation are induced by a wider attentional focus. Here we aimed to identify the neural underpinnings and correlates associated with this spectrum of distinct attentional foci. To accomplish this, we used EEG data to estimate the brain's intrinsic neural timescales (INTs), that is, its temporal windows of activity, by calculating the Autocorrelation Window (ACW) of the EEG signal. The autocorrelation function measures the similarity of a timeseries with a time-lagged version of itself by correlating the signal with itself on different time lags, consequently providing an estimation of INTs length. Therefore, through using the ACW metric, our objective was to explore whether there is a correspondence between the length of the brain's temporal windows of activity and the width of the attentional scope during various meditation techniques. This was performed on three groups of highly proficient practitioners belonging to different meditation traditions, as well as a meditation-naïve control group. Our results indicated that practices with a wider attentional focus, like Shoonya meditation, exhibit longer ACW durations compared to practices requiring a narrower attentional focus, such as Mantra meditation or body-scanning Vipassana meditation. Together, we demonstrated that distinct meditation techniques with varying widths of attentional foci exhibit unique durations in their brain's INTs. This may suggest that the width of the attentional scope during meditation relates and corresponds to the width of the brain's temporal windows in its neural activity. SIGNIFICANCE STATEMENT: Our research uncovered the neural mechanisms that underpin the attentional foci in various meditation techniques. We revealed that distinct meditation induction techniques, featured by their range of attentional widths, are characterized by varying lengths of intrinsic neural timescales (INTs) within the brain, as measured by the Autocorrelation Window function. This finding may bridge the gap between the width of attentional windows (subjective) and the width of the temporal windows in the brain's neural activity (objective) during different meditation techniques, offering a new understanding of how cognitive and neural processes are related to each other. This work holds significant implications, especially in the context of the increasing use of meditation in mental health and well-being interventions. By elucidating the distinct neural foundations of different meditation techniques, our research aims to pave the way for developing more tailored and effective meditation-based treatments.
Collapse
Affiliation(s)
- Bianca Ventura
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa K1N 6N5, ON, Canada.
| | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa K1Z 7K4, ON, Canada.
| | - Angelika Wolman
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa K1N 6N5, ON, Canada.
| | - Andrea Buccellato
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, Padova 35129, Italy; Department of General Psychology, University of Padova, Via Venezia, 8, 35131 Padova, Italy.
| | - Austin Clinton Cooper
- Integrated Program of Neuroscience, Room 302, Irving Ludmer Building, 1033 Pine Avenue W., McGill University, Montreal, QC H3A 1A1, Canada.
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa K1Z 7K4, ON, Canada.
| |
Collapse
|
14
|
Monosov IE, Zimmermann J, Frank MJ, Mathis MW, Baker JT. Ethological computational psychiatry: Challenges and opportunities. Curr Opin Neurobiol 2024; 86:102881. [PMID: 38696972 PMCID: PMC11162904 DOI: 10.1016/j.conb.2024.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Studying the intricacies of individual subjects' moods and cognitive processing over extended periods of time presents a formidable challenge in medicine. While much of systems neuroscience appropriately focuses on the link between neural circuit functions and well-constrained behaviors over short timescales (e.g., trials, hours), many mental health conditions involve complex interactions of mood and cognition that are non-stationary across behavioral contexts and evolve over extended timescales. Here, we discuss opportunities, challenges, and possible future directions in computational psychiatry to quantify non-stationary continuously monitored behaviors. We suggest that this exploratory effort may contribute to a more precision-based approach to treating mental disorders and facilitate a more robust reverse translation across animal species. We conclude with ethical considerations for any field that aims to bridge artificial intelligence and patient monitoring.
Collapse
Affiliation(s)
- Ilya E. Monosov
- Departments of Neuroscience, Biomedical Engineering, Electrical Engineering, and Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Michael J. Frank
- Carney Center for Computational Brain Science, Brown University, Providence, RI, USA
| | | | | |
Collapse
|
15
|
Oemisch M, Seo H. Therapeutic doses of ketamine acutely attenuate the aversive effect of losses during decision-making. eLife 2024; 12:RP87529. [PMID: 38700991 PMCID: PMC11068354 DOI: 10.7554/elife.87529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
The discovery of rapid-acting antidepressant, ketamine has opened a pathway to a new generation of treatments for depression, and inspired neuroscientific investigation based on a new perspective that non-adaptive changes in the intrinsic excitatory and inhibitory circuitry might underlie the pathophysiology of depression. Nevertheless, it still remains largely unknown how the hypothesized molecular and synaptic levels of changes in the circuitry might mediate behavioral and neuropsychological changes underlying depression, and how ketamine might restore adaptive behavior. Here, we used computational models to analyze behavioral changes induced by therapeutic doses of ketamine, while rhesus macaques were iteratively making decisions based on gains and losses of tokens. When administered intramuscularly or intranasally, ketamine reduced the aversiveness of undesirable outcomes such as losses of tokens without significantly affecting the evaluation of gains, behavioral perseveration, motivation, and other cognitive aspects of learning such as temporal credit assignment and time scales of choice and outcome memory. Ketamine's potentially antidepressant effect was separable from other side effects such as fixation errors, which unlike outcome evaluation, was readily countered with strong motivation to avoid errors. We discuss how the acute effect of ketamine to reduce the initial impact of negative events could potentially mediate longer-term antidepressant effects through mitigating the cumulative effect of those events produced by slowly decaying memory, and how the disruption-resistant affective memory might pose challenges in treating depression. Our study also invites future investigations on ketamine's antidepressant action over diverse mood states and with affective events exerting their impacts at diverse time scales.
Collapse
Affiliation(s)
- Mariann Oemisch
- Department of Neuroscience, Yale School of MedicineNew HavenUnited States
| | - Hyojung Seo
- Department of Psychiatry and Neuroscience, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
16
|
Brands AM, Devore S, Devinsky O, Doyle W, Flinker A, Friedman D, Dugan P, Winawer J, Groen IIA. Temporal dynamics of short-term neural adaptation across human visual cortex. PLoS Comput Biol 2024; 20:e1012161. [PMID: 38815000 PMCID: PMC11166327 DOI: 10.1371/journal.pcbi.1012161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/11/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024] Open
Abstract
Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation occurs across the visual cortex, it is unclear how adaptation patterns and computational mechanisms differ across the visual hierarchy. Here we characterize two signatures of short-term neural adaptation in time-varying intracranial electroencephalography (iEEG) data collected while participants viewed naturalistic image categories varying in duration and repetition interval. Ventral- and lateral-occipitotemporal cortex exhibit slower and prolonged adaptation to single stimuli and slower recovery from adaptation to repeated stimuli compared to V1-V3. For category-selective electrodes, recovery from adaptation is slower for preferred than non-preferred stimuli. To model neural adaptation we augment our delayed divisive normalization (DN) model by scaling the input strength as a function of stimulus category, enabling the model to accurately predict neural responses across multiple image categories. The model fits suggest that differences in adaptation patterns arise from slower normalization dynamics in higher visual areas interacting with differences in input strength resulting from category selectivity. Our results reveal systematic differences in temporal adaptation of neural population responses between lower and higher visual brain areas and show that a single computational model of history-dependent normalization dynamics, fit with area-specific parameters, accounts for these differences.
Collapse
Affiliation(s)
| | - Sasha Devore
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Orrin Devinsky
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Werner Doyle
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Adeen Flinker
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Daniel Friedman
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Patricia Dugan
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, New York, United States of America
| | | |
Collapse
|
17
|
Karimi-Rouzbahani H. Evidence for Multiscale Multiplexed Representation of Visual Features in EEG. Neural Comput 2024; 36:412-436. [PMID: 38363657 DOI: 10.1162/neco_a_01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/01/2023] [Indexed: 02/18/2024]
Abstract
Distinct neural processes such as sensory and memory processes are often encoded over distinct timescales of neural activations. Animal studies have shown that this multiscale coding strategy is also implemented for individual components of a single process, such as individual features of a multifeature stimulus in sensory coding. However, the generalizability of this encoding strategy to the human brain has remained unclear. We asked if individual features of visual stimuli were encoded over distinct timescales. We applied a multiscale time-resolved decoding method to electroencephalography (EEG) collected from human subjects presented with grating visual stimuli to estimate the timescale of individual stimulus features. We observed that the orientation and color of the stimuli were encoded in shorter timescales, whereas spatial frequency and the contrast of the same stimuli were encoded in longer timescales. The stimulus features appeared in temporally overlapping windows along the trial supporting a multiplexed coding strategy. These results provide evidence for a multiplexed, multiscale coding strategy in the human visual system.
Collapse
Affiliation(s)
- Hamid Karimi-Rouzbahani
- Neurosciences Centre, Mater Hospital, Brisbane 4101, Australia
- Queensland Brain Institute, University of Queensland, Brisbane 4067, Australia
- Mater Research Institute, University of Queensland, Brisbane 4101, Australia
| |
Collapse
|
18
|
Trepka E, Spitmaan M, Qi XL, Constantinidis C, Soltani A. Training-Dependent Gradients of Timescales of Neural Dynamics in the Primate Prefrontal Cortex and Their Contributions to Working Memory. J Neurosci 2024; 44:e2442212023. [PMID: 37973375 PMCID: PMC10866190 DOI: 10.1523/jneurosci.2442-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Cortical neurons exhibit multiple timescales related to dynamics of spontaneous fluctuations (intrinsic timescales) and response to task events (seasonal timescales) in addition to selectivity to task-relevant signals. These timescales increase systematically across the cortical hierarchy, for example, from parietal to prefrontal and cingulate cortex, pointing to their role in cortical computations. It is currently unknown whether these timescales are inherent properties of neurons and/or depend on training in a specific task and if the latter, how their modulations contribute to task performance. To address these questions, we analyzed single-cell recordings within five subregions of the prefrontal cortex (PFC) of male macaques before and after training on a working-memory task. We found fine-grained but opposite gradients of intrinsic and seasonal timescales that mainly appeared after training. Intrinsic timescales decreased whereas seasonal timescales increased from posterior to anterior subregions within both dorsal and ventral PFC. Moreover, training was accompanied by increases in proportions of neurons that exhibited intrinsic and seasonal timescales. These effects were comparable to the emergence of response selectivity due to training. Finally, task selectivity accompanied opposite neural dynamics such that neurons with task-relevant selectivity exhibited longer intrinsic and shorter seasonal timescales. Notably, neurons with longer intrinsic and shorter seasonal timescales exhibited superior population-level coding, but these advantages extended to the delay period mainly after training. Together, our results provide evidence for plastic, fine-grained gradients of timescales within PFC that can influence both single-cell and population coding, pointing to the importance of these timescales in understanding cognition.
Collapse
Affiliation(s)
- Ethan Trepka
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, New Hampshire
- Neurosciences Program, Stanford University, Stanford 94305, California
| | - Mehran Spitmaan
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, New Hampshire
| | - Xue-Lian Qi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem 27157, North Carolina
| | | | - Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, New Hampshire
| |
Collapse
|
19
|
Yue WL, Ng KK, Koh AJ, Perini F, Doshi K, Zhou JH, Lim J. Mindfulness-based therapy improves brain functional network reconfiguration efficiency. Transl Psychiatry 2023; 13:345. [PMID: 37951943 PMCID: PMC10640625 DOI: 10.1038/s41398-023-02642-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Mindfulness-based interventions are showing increasing promise as a treatment for psychological disorders, with improvements in cognition and emotion regulation after intervention. Understanding the changes in functional brain activity and neural plasticity that underlie these benefits from mindfulness interventions is thus of interest in current neuroimaging research. Previous studies have found functional brain changes during resting and task states to be associated with mindfulness both cross-sectionally and longitudinally, particularly in the executive control, default mode and salience networks. However, limited research has combined information from rest and task to study mindfulness-related functional changes in the brain, particularly in the context of intervention studies with active controls. Recent work has found that the reconfiguration efficiency of brain activity patterns between rest and task states is behaviorally relevant in healthy young adults. Thus, we applied this measure to investigate how mindfulness intervention changed functional reconfiguration between rest and a breath-counting task in elderly participants with self-reported sleep difficulties. Improving on previous longitudinal designs, we compared the intervention effects of a mindfulness-based therapy to an active control (sleep hygiene) intervention. We found that mindfulness intervention improved self-reported mindfulness measures and brain functional reconfiguration efficiency in the executive control, default mode and salience networks, though the brain and behavioral changes were not associated with each other. Our findings suggest that neuroplasticity may be induced through regular mindfulness practice, thus bringing the intrinsic functional configuration in participants' brains closer to a state required for mindful awareness.
Collapse
Affiliation(s)
- Wan Lin Yue
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amelia Jialing Koh
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Francesca Perini
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kinjal Doshi
- Department of Psychology, Singapore General Hospital, Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - Julian Lim
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Psychology, National University of, Singapore, Singapore.
| |
Collapse
|
20
|
Trepka E, Spitmaan M, Qi XL, Constantinidis C, Soltani A. Training-dependent gradients of timescales of neural dynamics in the primate prefrontal cortex and their contributions to working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555857. [PMID: 37693584 PMCID: PMC10491183 DOI: 10.1101/2023.09.01.555857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cortical neurons exhibit multiple timescales related to dynamics of spontaneous fluctuations (intrinsic timescales) and response to task events (seasonal timescales) in addition to selectivity to task-relevant signals. These timescales increase systematically across the cortical hierarchy, e.g., from parietal to prefrontal and cingulate cortex, pointing to their role in cortical computations. It is currently unknown whether these timescales depend on training in a specific task and/or are an inherent property of neurons, and whether more fine-grained hierarchies of timescales exist within specific cortical regions. To address these questions, we analyzed single-cell recordings within five subregions of the prefrontal cortex (PFC) of male macaques before and after training on a working-memory task. We found fine-grained but opposite gradients of intrinsic and seasonal timescales that mainly appeared after training. Intrinsic timescales decreased whereas seasonal timescales increased from posterior to anterior subregions within both dorsal and ventral PFC. Moreover, training was accompanied by increases in proportions of neurons that exhibited intrinsic and seasonal timescales. These effects were comparable to the emergence of response selectivity due to training. Finally, task selectivity accompanied opposite neural dynamics such that neurons with task-relevant selectivity exhibited longer intrinsic and shorter seasonal timescales. Notably, neurons with longer intrinsic and shorter seasonal timescales exhibited superior population-level coding, but these advantages extended to the delay period mainly after training. Together, our results provide evidence for plastic, fine-grained gradients of timescales within PFC that can influence both single-cell and population coding, pointing to the importance of these timescales in understanding cognition. Significance statement Recent studies have demonstrated that neural responses exhibit dynamics with different timescales that follow a certain order or hierarchy across cortical areas. While the hierarchy of timescales is consistent across different tasks, it is unknown if these timescales emerge only after training or if they represent inherent properties of neurons. To answer this question, we estimated multiple timescales in neural response across five subregions of the monkeys' lateral prefrontal cortex before and after training on a working-memory task. Our results provide evidence for fine-grained gradients related to certain neural dynamics. Moreover, we show that these timescales depend on and can be modulated by training in a cognitive task, and contribute to encoding of task-relevant information at single-cell and population levels.
Collapse
|
21
|
Woo JH, Aguirre CG, Bari BA, Tsutsui KI, Grabenhorst F, Cohen JY, Schultz W, Izquierdo A, Soltani A. Mechanisms of adjustments to different types of uncertainty in the reward environment across mice and monkeys. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:600-619. [PMID: 36823249 PMCID: PMC10444905 DOI: 10.3758/s13415-022-01059-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 02/25/2023]
Abstract
Despite being unpredictable and uncertain, reward environments often exhibit certain regularities, and animals navigating these environments try to detect and utilize such regularities to adapt their behavior. However, successful learning requires that animals also adjust to uncertainty associated with those regularities. Here, we analyzed choice data from two comparable dynamic foraging tasks in mice and monkeys to investigate mechanisms underlying adjustments to different types of uncertainty. In these tasks, animals selected between two choice options that delivered reward probabilistically, while baseline reward probabilities changed after a variable number (block) of trials without any cues to the animals. To measure adjustments in behavior, we applied multiple metrics based on information theory that quantify consistency in behavior, and fit choice data using reinforcement learning models. We found that in both species, learning and choice were affected by uncertainty about reward outcomes (in terms of determining the better option) and by expectation about when the environment may change. However, these effects were mediated through different mechanisms. First, more uncertainty about the better option resulted in slower learning and forgetting in mice, whereas it had no significant effect in monkeys. Second, expectation of block switches accompanied slower learning, faster forgetting, and increased stochasticity in choice in mice, whereas it only reduced learning rates in monkeys. Overall, while demonstrating the usefulness of metrics based on information theory in examining adaptive behavior, our study provides evidence for multiple types of adjustments in learning and choice behavior according to uncertainty in the reward environment.
Collapse
Affiliation(s)
- Jae Hyung Woo
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Claudia G Aguirre
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bilal A Bari
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Ken-Ichiro Tsutsui
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Fabian Grabenhorst
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Jeremiah Y Cohen
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Wolfram Schultz
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Alicia Izquierdo
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
22
|
Manea AMG, Zilverstand A, Hayden B, Zimmermann J. Neural timescales reflect behavioral demands in freely moving rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534470. [PMID: 37034608 PMCID: PMC10081241 DOI: 10.1101/2023.03.27.534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Previous work has demonstrated remarkably reproducible and consistent hierarchies of neural timescales across cortical areas at rest. The question arises how such stable hierarchies give rise to adaptive behavior that requires flexible adjustment of temporal coding and integration demands. Potentially, this previously found lack of variability in the hierarchical organization of neural timescales could be a reflection of the structure of the laboratory contexts in which they were measured. Indeed, computational work demonstrates the existence of multiple temporal hierarchies within the same anatomical network when the input structure is altered. We posit that unconstrained behavioral environments where relatively little temporal demands are imposed from the experimenter are an ideal test bed to address the question of whether the hierarchical organization and the magnitude of neural timescales reflect ongoing behavioral demands. To tackle this question, we measured timescales of local field potential activity while rhesus macaques were foraging freely in a large open space. We find a hierarchy of neural timescales that is unique to this foraging environment. Importantly, although the magnitude of neural timescales generally expanded with task engagement, the brain areas' relative position in the hierarchy was stable across the recording sessions. Notably, the magnitude of neural timescales monotonically expanded with task engagement across a relatively long temporal scale spanning the duration of the recording session. Over shorter temporal scales, the magnitude of neural timescales changed dynamically around foraging events. Moreover, the change in the magnitude of neural timescales contained functionally relevant information, differentiating between seemingly similar events in terms of motor demands and associated reward. That is, the patterns of change were associated with the cognitive and behavioral meaning of these events. Finally, we demonstrated that brain areas were differentially affected by these behavioral demands - i.e., the expansion of neural timescales was not the same across all areas. Together, these results demonstrate that the observed hierarchy of neural timescales is context-dependent and that changes in the magnitude of neural timescales are closely related to overall task engagement and behavioral demands.
Collapse
Affiliation(s)
- Ana M G Manea
- Department of Neuroscience, University of Minnesota, Minneapolis MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis MN
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis MN
| | - Benjamin Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis MN
| |
Collapse
|
23
|
Heimer O, Kron A, Hertz U. Temporal dynamics of the semantic versus affective representations of valence during reversal learning. Cognition 2023; 236:105423. [PMID: 36933517 DOI: 10.1016/j.cognition.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Valence, the representation of a stimulus in terms of good or bad, plays a central role in models of affect, value-based learning theories, and value-based decision-making models. Previous work used Unconditioned Stimulus (US) to support a theoretical division between two different types of valence representations for a stimulus: the semantic representation of valence, i.e., stored accumulated knowledge about the value of the stimulus, and the affective representation of valence, i.e., the valence of the affective response to this stimulus. The current work extended past research by using a neutral Conditioned Stimulus (CS) in the context of reversal learning, a type of associative learning. The impact of expected uncertainty (the variability of rewards) and unexpected uncertainty (reversal) on the evolving temporal dynamics of the two types of valence representations of the CS was tested in two experiments. Results show that in an environment presenting the two types of uncertainty, the adaptation process (learning rate) of the choices and of the semantic valence representation is slower than the adaptation of the affective valence representation. In contrast, in environments with only unexpected uncertainty (i.e., fixed rewards), there is no difference in the temporal dynamics of the two types of valence representations. Implications for models of affect, value-based learning theories, and value-based decision-making models are discussed.
Collapse
Affiliation(s)
- Orit Heimer
- Department of Psychology, University of Haifa, Haifa, Israel.
| | - Assaf Kron
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Uri Hertz
- Department of Cognitive Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
24
|
Bero J, Li Y, Kumar A, Humphries C, Nag S, Lee H, Ahn WY, Hahn S, Constable RT, Kim H, Lee D. Coordinated anatomical and functional variability in the human brain during adolescence. Hum Brain Mapp 2023; 44:1767-1778. [PMID: 36479851 PMCID: PMC9921246 DOI: 10.1002/hbm.26173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Adolescence represents a time of unparalleled brain development. In particular, developmental changes in morphometric and cytoarchitectural features are accompanied by maturation in the functional connectivity (FC). Here, we examined how three facets of the brain, including myelination, cortical thickness (CT), and resting-state FC, interact in children between the ages of 10 and 15. We investigated the pattern of coordination in these measures by computing correlation matrices for each measure as well as meta-correlations among them both at the regional and network levels. The results revealed consistently higher meta-correlations among myelin, CT, and FC in the sensory-motor cortical areas than in the association cortical areas. We also found that these meta-correlations were stable and little affected by age-related changes in each measure. In addition, regional variations in the meta-correlations were consistent with the previously identified gradient in the FC and therefore reflected the hierarchy of cortical information processing, and this relationship persists in the adult brain. These results demonstrate that heterogeneity in FC among multiple cortical areas are closely coordinated with the development of cortical myelination and thickness during adolescence.
Collapse
Affiliation(s)
- John Bero
- Neurogazer, Inc.BaltimoreMarylandUSA
| | - Yang Li
- Neurogazer, Inc.BaltimoreMarylandUSA
| | | | | | | | | | - Woo Young Ahn
- Department of PsychologySeoul National UniversitySeoulKorea
| | - Sowon Hahn
- Department of PsychologySeoul National UniversitySeoulKorea
| | - Robert Todd Constable
- Department of Diagnostic Radiology and NeurosurgeryYale School of MedicineNew HavenConnecticutUSA
| | - Hackjin Kim
- Department of PsychologyKorea UniversitySeoulKorea
| | - Daeyeol Lee
- Neurogazer, Inc.BaltimoreMarylandUSA
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
- Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
25
|
Takahashi Y, Murata S, Ueki M, Tomita H, Yamashita Y. Interaction between Functional Connectivity and Neural Excitability in Autism: A Novel Framework for Computational Modeling and Application to Biological Data. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2023; 7:14-29. [PMID: 38774640 PMCID: PMC11104370 DOI: 10.5334/cpsy.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Functional connectivity (FC) and neural excitability may interact to affect symptoms of autism spectrum disorder (ASD). We tested this hypothesis with neural network simulations, and applied it with functional magnetic resonance imaging (fMRI). A hierarchical recurrent neural network embodying predictive processing theory was subjected to a facial emotion recognition task. Neural network simulations examined the effects of FC and neural excitability on changes in neural representations by developmental learning, and eventually on ASD-like performance. Next, by mapping each neural network condition to subject subgroups on the basis of fMRI parameters, the association between ASD-like performance in the simulation and ASD diagnosis in the corresponding subject subgroup was examined. In the neural network simulation, the more homogeneous the neural excitability of the lower-level network, the more ASD-like the performance (reduced generalization and emotion recognition capability). In addition, in homogeneous networks, the higher the FC, the more ASD-like performance, while in heterogeneous networks, the higher the FC, the less ASD-like performance, demonstrating that FC and neural excitability interact. As an underlying mechanism, neural excitability determines the generalization capability of top-down prediction, and FC determines whether the model's information processing will be top-down prediction-dependent or bottom-up sensory-input dependent. In fMRI datasets, ASD was actually more prevalent in subject subgroups corresponding to the network condition showing ASD-like performance. The current study suggests an interaction between FC and neural excitability, and presents a novel framework for computational modeling and biological application of a developmental learning process underlying cognitive alterations in ASD.
Collapse
Affiliation(s)
- Yuta Takahashi
- Department of Psychiatry, Tohoku University Hospital, Japan
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Japan
- Department of Information Medicine, National Center of Neurology and Psychiatry, Japan
| | - Shingo Murata
- Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Japan
| | - Masao Ueki
- School of Information and Data Sciences, Nagasaki University, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Japan
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Center of Neurology and Psychiatry, Japan
| |
Collapse
|
26
|
Qiao J, Wang Y, Wang S. Natural frequencies of neural activities and cognitions may serve as precise targets of rhythmic interventions to the aging brain. Front Aging Neurosci 2022; 14:988193. [PMID: 36172484 PMCID: PMC9510897 DOI: 10.3389/fnagi.2022.988193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Rhythmic neural activities are critical to the efficiency of regulatory procedures in brain functions. However, brain functions usually decline in aging as accompanied by frequency shift and temporal dedifferentiation of neural activities. Considering the strong oscillations and long-lasting after-effects induced by rhythmic brain stimulations, we suggest that non-invasive rhythmic brain stimulation technique may help restore the natural frequencies of neural activities in aging to that in younger and healthy brains. Although with tremendous work to do, this technique offers great opportunities for the restoration of normal brain functions in aging, or even in those suffering from neurodegenerative diseases and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jingwen Qiao
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Shouyan Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Pinto L, Tank DW, Brody CD. Multiple timescales of sensory-evidence accumulation across the dorsal cortex. eLife 2022; 11:e70263. [PMID: 35708483 PMCID: PMC9203055 DOI: 10.7554/elife.70263] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical areas seem to form a hierarchy of intrinsic timescales, but the relevance of this organization for cognitive behavior remains unknown. In particular, decisions requiring the gradual accrual of sensory evidence over time recruit widespread areas across this hierarchy. Here, we tested the hypothesis that this recruitment is related to the intrinsic integration timescales of these widespread areas. We trained mice to accumulate evidence over seconds while navigating in virtual reality and optogenetically silenced the activity of many cortical areas during different brief trial epochs. We found that the inactivation of all tested areas affected the evidence-accumulation computation. Specifically, we observed distinct changes in the weighting of sensory evidence occurring during and before silencing, such that frontal inactivations led to stronger deficits on long timescales than posterior cortical ones. Inactivation of a subset of frontal areas also led to moderate effects on behavioral processes beyond evidence accumulation. Moreover, large-scale cortical Ca2+ activity during task performance displayed different temporal integration windows. Our findings suggest that the intrinsic timescale hierarchy of distributed cortical areas is an important component of evidence-accumulation mechanisms.
Collapse
Affiliation(s)
- Lucas Pinto
- Department of Neuroscience, Northwestern UniversityChicagoUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - David W Tank
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
28
|
Klein-Flügge MC, Bongioanni A, Rushworth MFS. Medial and orbital frontal cortex in decision-making and flexible behavior. Neuron 2022; 110:2743-2770. [PMID: 35705077 DOI: 10.1016/j.neuron.2022.05.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
The medial frontal cortex and adjacent orbitofrontal cortex have been the focus of investigations of decision-making, behavioral flexibility, and social behavior. We review studies conducted in humans, macaques, and rodents and argue that several regions with different functional roles can be identified in the dorsal anterior cingulate cortex, perigenual anterior cingulate cortex, anterior medial frontal cortex, ventromedial prefrontal cortex, and medial and lateral parts of the orbitofrontal cortex. There is increasing evidence that the manner in which these areas represent the value of the environment and specific choices is different from subcortical brain regions and more complex than previously thought. Although activity in some regions reflects distributions of reward and opportunities across the environment, in other cases, activity reflects the structural relationships between features of the environment that animals can use to infer what decision to take even if they have not encountered identical opportunities in the past.
Collapse
Affiliation(s)
- Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Psychiatry, University of Oxford, Warneford Lane, Headington, Oxford OX3 7JX, UK.
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
29
|
Grossman CD, Cohen JY. Neuromodulation and Neurophysiology on the Timescale of Learning and Decision-Making. Annu Rev Neurosci 2022; 45:317-337. [PMID: 35363533 DOI: 10.1146/annurev-neuro-092021-125059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nervous systems evolved to effectively navigate the dynamics of the environment to achieve their goals. One framework used to study this fundamental problem arose in the study of learning and decision-making. In this framework, the demands of effective behavior require slow dynamics-on the scale of seconds to minutes-of networks of neurons. Here, we review the phenomena and mechanisms involved. Using vignettes from a few species and areas of the nervous system, we view neuromodulators as key substrates for temporal scaling of neuronal dynamics. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, and Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Jeremiah Y Cohen
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, and Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
30
|
Manea AMG, Zilverstand A, Ugurbil K, Heilbronner SR, Zimmermann J. Intrinsic timescales as an organizational principle of neural processing across the whole rhesus macaque brain. eLife 2022; 11:e75540. [PMID: 35234612 PMCID: PMC8923667 DOI: 10.7554/elife.75540] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hierarchical temporal dynamics are a fundamental computational property of the brain; however, there are no whole brain, noninvasive investigations into timescales of neural processing in animal models. To that end, we used the spatial resolution and sensitivity of ultrahigh field functional magnetic resonance imaging (fMRI) performed at 10.5 T to probe timescales across the whole macaque brain. We uncovered within-species consistency between timescales estimated from fMRI and electrophysiology. Crucially, we extended existing electrophysiological hierarchies to whole-brain topographies. Our results validate the complementary use of hemodynamic and electrophysiological intrinsic timescales, establishing a basis for future translational work. Further, with these results in hand, we were able to show that one facet of the high-dimensional functional connectivity (FC) topography of any region in the brain is closely related to hierarchical temporal dynamics. We demonstrated that intrinsic timescales are organized along spatial gradients that closely match FC gradient topographies across the whole brain. We conclude that intrinsic timescales are a unifying organizational principle of neural processing across the whole brain.
Collapse
Affiliation(s)
- Ana MG Manea
- Department of Neuroscience, University of MinnesotaMinneapolisUnited States
- Center for Magnetic Resonance Research, University of MinnesotaMinneapolisUnited States
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences , University of MinnesotaMinneapolisUnited States
- Medical Discovery Team on Addiction, University of MinnesotaMinneapolisUnited States
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of MinnesotaMinneapolisUnited States
- Center for Neuroengineering, University of MinnesotaMinneapolisUnited States
- Department of Radiology, University of MinnesotaMinneapolisUnited States
| | - Sarah R Heilbronner
- Department of Neuroscience, University of MinnesotaMinneapolisUnited States
- Medical Discovery Team on Addiction, University of MinnesotaMinneapolisUnited States
- Center for Neuroengineering, University of MinnesotaMinneapolisUnited States
| | - Jan Zimmermann
- Department of Neuroscience, University of MinnesotaMinneapolisUnited States
- Center for Magnetic Resonance Research, University of MinnesotaMinneapolisUnited States
- Medical Discovery Team on Addiction, University of MinnesotaMinneapolisUnited States
- Center for Neuroengineering, University of MinnesotaMinneapolisUnited States
- Department of Biomedical Engineering, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
31
|
Wolff A, Berberian N, Golesorkhi M, Gomez-Pilar J, Zilio F, Northoff G. Intrinsic neural timescales: temporal integration and segregation. Trends Cogn Sci 2022; 26:159-173. [PMID: 34991988 DOI: 10.1016/j.tics.2021.11.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
We are continuously bombarded by external inputs of various timescales from the environment. How does the brain process this multitude of timescales? Recent resting state studies show a hierarchy of intrinsic neural timescales (INT) with a shorter duration in unimodal regions (e.g., visual cortex and auditory cortex) and a longer duration in transmodal regions (e.g., default mode network). This unimodal-transmodal hierarchy is present across acquisition modalities [electroencephalogram (EEG)/magnetoencephalogram (MEG) and fMRI] and can be found in different species and during a variety of different task states. Together, this suggests that the hierarchy of INT is central to the temporal integration (combining successive stimuli) and segregation (separating successive stimuli) of external inputs from the environment, leading to temporal segmentation and prediction in perception and cognition.
Collapse
Affiliation(s)
- Annemarie Wolff
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Nareg Berberian
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Mehrshad Golesorkhi
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicia, (CIBER-BBN), Madrid, Spain
| | - Federico Zilio
- Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padova, Padua, Italy
| | - Georg Northoff
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Soltani A, Koechlin E. Computational models of adaptive behavior and prefrontal cortex. Neuropsychopharmacology 2022; 47:58-71. [PMID: 34389808 PMCID: PMC8617006 DOI: 10.1038/s41386-021-01123-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
The real world is uncertain, and while ever changing, it constantly presents itself in terms of new sets of behavioral options. To attain the flexibility required to tackle these challenges successfully, most mammalian brains are equipped with certain computational abilities that rely on the prefrontal cortex (PFC). By examining learning in terms of internal models associating stimuli, actions, and outcomes, we argue here that adaptive behavior relies on specific interactions between multiple systems including: (1) selective models learning stimulus-action associations through rewards; (2) predictive models learning stimulus- and/or action-outcome associations through statistical inferences anticipating behavioral outcomes; and (3) contextual models learning external cues associated with latent states of the environment. Critically, the PFC combines these internal models by forming task sets to drive behavior and, moreover, constantly evaluates the reliability of actor task sets in predicting external contingencies to switch between task sets or create new ones. We review different models of adaptive behavior to demonstrate how their components map onto this unifying framework and specific PFC regions. Finally, we discuss how our framework may help to better understand the neural computations and the cognitive architecture of PFC regions guiding adaptive behavior.
Collapse
Affiliation(s)
- Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Etienne Koechlin
- Institut National de la Sante et de la Recherche Medicale, Universite Pierre et Marie Curie, Ecole Normale Superieure, Paris, France.
| |
Collapse
|
33
|
Farashahi S, Soltani A. Computational mechanisms of distributed value representations and mixed learning strategies. Nat Commun 2021; 12:7191. [PMID: 34893597 PMCID: PMC8664930 DOI: 10.1038/s41467-021-27413-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Learning appropriate representations of the reward environment is challenging in the real world where there are many options, each with multiple attributes or features. Despite existence of alternative solutions for this challenge, neural mechanisms underlying emergence and adoption of value representations and learning strategies remain unknown. To address this, we measure learning and choice during a multi-dimensional probabilistic learning task in humans and trained recurrent neural networks (RNNs) to capture our experimental observations. We find that human participants estimate stimulus-outcome associations by learning and combining estimates of reward probabilities associated with the informative feature followed by those of informative conjunctions. Through analyzing representations, connectivity, and lesioning of the RNNs, we demonstrate this mixed learning strategy relies on a distributed neural code and opponency between excitatory and inhibitory neurons through value-dependent disinhibition. Together, our results suggest computational and neural mechanisms underlying emergence of complex learning strategies in naturalistic settings.
Collapse
Affiliation(s)
- Shiva Farashahi
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, USA.
| | - Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
34
|
Bradfield L, Balleine B. Editorial overview: Value-based decision making: control, value, and context in action. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Golesorkhi M, Gomez-Pilar J, Zilio F, Berberian N, Wolff A, Yagoub MCE, Northoff G. The brain and its time: intrinsic neural timescales are key for input processing. Commun Biol 2021; 4:970. [PMID: 34400800 PMCID: PMC8368044 DOI: 10.1038/s42003-021-02483-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
We process and integrate multiple timescales into one meaningful whole. Recent evidence suggests that the brain displays a complex multiscale temporal organization. Different regions exhibit different timescales as described by the concept of intrinsic neural timescales (INT); however, their function and neural mechanisms remains unclear. We review recent literature on INT and propose that they are key for input processing. Specifically, they are shared across different species, i.e., input sharing. This suggests a role of INT in encoding inputs through matching the inputs' stochastics with the ongoing temporal statistics of the brain's neural activity, i.e., input encoding. Following simulation and empirical data, we point out input integration versus segregation and input sampling as key temporal mechanisms of input processing. This deeply grounds the brain within its environmental and evolutionary context. It carries major implications in understanding mental features and psychiatric disorders, as well as going beyond the brain in integrating timescales into artificial intelligence.
Collapse
Affiliation(s)
- Mehrshad Golesorkhi
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada ,grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- grid.5239.d0000 0001 2286 5329Biomedical Engineering Group, University of Valladolid, Valladolid, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
| | - Federico Zilio
- grid.5608.b0000 0004 1757 3470Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy
| | - Nareg Berberian
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Annemarie Wolff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Mustapha C. E. Yagoub
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada ,grid.410595.c0000 0001 2230 9154Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China ,grid.13402.340000 0004 1759 700XMental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|