1
|
Patiyal S, Dhall A, Kumar N, Raghava GPS. HLA-DR4Pred2: An improved method for predicting HLA-DRB1*04:01 binders. Methods 2024; 232:18-28. [PMID: 39433152 DOI: 10.1016/j.ymeth.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
HLA-DRB1*04:01 is associated with numerous diseases, including sclerosis, arthritis, diabetes, and COVID-19, emphasizing the need to scan for binders in the antigens to develop immunotherapies and vaccines. Current prediction methods are often limited by their reliance on the small datasets. This study presents HLA-DR4Pred2, developed on a large dataset containing 12,676 binders and an equal number of non-binders. It's an improved version of HLA-DR4Pred, which was trained on a small dataset, containing 576 binders and an equal number of non-binders. All models were trained, optimized, and tested on 80 % of the data using five-fold cross-validation and evaluated on the remaining 20 %. A range of machine learning techniques was employed, achieving maximum AUROC of 0.90 and 0.87, using composition and binary profile features, respectively. The performance of the composition-based model increased to 0.93, when combined with BLAST search. Additionally, models developed on the realistic dataset containing 12,676 binders and 86,300 non-binders, achieved a maximum AUROC of 0.99. Our proposed method outperformed existing methods when we compared the performance of our best model to that of existing methods on the independent dataset. Finally, we developed a standalone tool and a webserver for HLADR4Pred2, enabling the prediction, design, and virtual scanning of HLA-DRB1*04:01 binding peptides, and we also released a Python package available on the Python Package Index (https://webs.iiitd.edu.in/raghava/hladr4pred2/; https://github.com/raghavagps/hladr4pred2; https://pypi.org/project/hladr4pred2/).
Collapse
Affiliation(s)
- Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Nishant Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| |
Collapse
|
2
|
Wassenaar TM, Harville T, Chastain J, Wanchai V, Ussery DW. DNA structural features and variability of complete MHC locus sequences. FRONTIERS IN BIOINFORMATICS 2024; 4:1392613. [PMID: 39022183 PMCID: PMC11251971 DOI: 10.3389/fbinf.2024.1392613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The major histocompatibility (MHC) locus, also known as the Human Leukocyte Antigen (HLA) genes, is located on the short arm of chromosome 6, and contains three regions (Class I, Class II and Class III). This 5 Mbp locus is one of the most variable regions of the human genome, yet it also encodes a set of highly conserved and important proteins related to immunological response. Genetic variations in this region are responsible for more diseases than in the entire rest of the human genome. However, information on local structural features of the DNA is largely ignored. With recent advances in long-read sequencing technology, it is now becoming possible to sequence the entire 5 Mbp MHC locus, producing complete diploid haplotypes of the whole region. Here, we describe structural maps based on the complete sequences from six different homozygous HLA cell lines. We find long-range structural variability in the different sequences for DNA stacking energy, position preference and curvature, variation in repeats, as well as more local changes in regions forming open chromatin structures, likely to influence gene expression levels. These structural maps can be useful in visualizing large scale structural variation across HLA types, in particular when this can be complemented with epigenetic signals.
Collapse
Affiliation(s)
| | - Terry Harville
- Department of Pathology and Laboratory Services, and Department of Internal Medicine, Division of Hematology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jonathan Chastain
- Department of Pediatrics, The University of Arkansas for Medical Sciences University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Visanu Wanchai
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - David W. Ussery
- Department of BioMedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
3
|
Mazzieri A, Montanucci P, Basta G, Calafiore R. The role behind the scenes of Tregs and Th17s in Hashimoto's thyroiditis: Toward a pivotal role of FOXP3 and BACH2. Front Immunol 2022; 13:1098243. [PMID: 36578493 PMCID: PMC9791026 DOI: 10.3389/fimmu.2022.1098243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
In Hashimoto's thyroiditis (HT), the genetic bases play a central role in determining development of the disease. In particular, the most frequent genes involved in the onset of HT are the Human Leukocyte Antigen (HLA). However, there are other genes and transcription factors in the autoimmune background of HT, both isolated and as part of autoimmune polyendocrine syndromes (APS). Recently more interest is being fueled toward BACH2 (BTB Domain and CNC Homolog 2), that promotes Tregs (T regulators lymphocytes) differentiation and enhances Treg-mediated immunity. The synergistic interaction between environmental agents and the aforementioned genes leads to the onset of autoimmunity and ultimately to damage of the thyroid gland. In this scenario, the role of Th17 (T helper-17 lymphocytes) and Treg cells is still less defined as compared to action of Th1 cells (T helper-1 lymphocytes) and cytotoxic lymphocytes (CD8 + T lymphocytes). Evidences show that an imbalance of Th17/Treg ratio represents a prognostic factor with respect to the gland damage. Moreover, the deficient ability of Treg to inhibit the proliferation of T cells against the self can break the immune balance. In light of these considerations, the use of genetic panels and the progress of immunotherapy could allow for better targeting treatment and preventive interventions in subjects with potential or early stage of HT.
Collapse
Affiliation(s)
- Alessio Mazzieri
- Translational Medicine and Surgery, Department of Medicine and Surgery, University of Perugia, Perugia, Italy,*Correspondence: Alessio Mazzieri,
| | - Pia Montanucci
- Division of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Basta
- Division of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Division of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Saba N, Raja GK, Yusuf O, Rehman S, Munir S, Sajjad S, Mansoor A. Study of HLA class II loci reveals DQB1*03:03:02 as a risk factor for asthma in a Pakistani population. Int J Immunogenet 2022; 49:372-378. [PMID: 36271816 DOI: 10.1111/iji.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/12/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
Asthma, a chronic inflammatory disorder of the lungs and airways, typically results from a combination of multiple environmental and genetic factors. Human leucocyte antigen (HLA) region on chromosome 6p21 encodes the most highly polymorphic loci in the human genome, encoding genes with central roles in the immune function where HLA loci are strongly associated with various immune-mediated diseases such as autoimmunity, allergies and infection. The alleles of HLA class II genes such as DRB1 and DQB1 are the key genetic markers in the development of asthma and have been extensively studied in different ethnicities of the world population. However, the genetic screening of HLA class II alleles and haplotypes in Pakistani asthmatics has not been studied so far. The aim of the present study was to screen the HLA class II DRB1 and DQB1 alleles in asthma cases and controls in a Pakistani population. Seven hundred and two healthy controls and asthma patients were genotyped for HLA class II by sequence-specific polymerase chain reaction assays. The HLA-DRB1 and HLA-DQB1 allele and haplotype frequencies were calculated, and their risk or protective association with asthma was determined. Two-locus haplotypes of DRB1 and DQB1 alleles were imputed using Arlequin version 3.1 software. The signals of association with asthma were stronger at the DQB1 locus as compared to DRB1. HLA DQB1*03:03:02 (odds ratio [OR] = 2.42, 95% confidence interval [CI] = 1.34-4.25) was significantly associated with an increased risk of asthma, as was the haplotype comprised allele DRB1*07:01-DQB1*03:03:02 (OR = 2.40, 95% CI = 1.25-4.62). In contrast, DQB1*06 (OR = 0.39, 95% CI = 0.22-0.70) and DQB1*06:02 (OR = 0.27, 95% CI = 0.10-0.71) emerged as protective alleles for asthma. Our data concludes that the HLA DQB1*03:03:02 allele was a risk allele for asthma, whereas two DQB1 alleles, DQB1*06 and DQB1*06:02, were associated with asthma protection. Our findings highlight a prominent role for HLA-DQB1 alleles in asthma pathogenesis in studied Pakistani cases. More studies, especially with a larger study cohort are needed to confirm the utility of HLA DQB1*03:03:02 as a predictive marker.
Collapse
Affiliation(s)
- Nusrat Saba
- Institute of Biomedical and Genetic Engineering (IBGE), G-9/1 24-Mauve Area Islamabad, Islamabad, Pakistan.,University Institute of Biochemistry and Biotechnology, Pir Mehar Ali Shah Arid Agriculture University Rawalpindi, Pakistan
| | - Ghazala Kaukab Raja
- University Institute of Biochemistry and Biotechnology, Pir Mehar Ali Shah Arid Agriculture University Rawalpindi, Pakistan
| | - Osman Yusuf
- The Allergy and Asthma Institute of Pakistan, Islamabad, Pakistan
| | - Sadia Rehman
- Institute of Biomedical and Genetic Engineering (IBGE), G-9/1 24-Mauve Area Islamabad, Islamabad, Pakistan
| | - Saeeda Munir
- Institute of Biomedical and Genetic Engineering (IBGE), G-9/1 24-Mauve Area Islamabad, Islamabad, Pakistan
| | - Sumaira Sajjad
- Institute of Biomedical and Genetic Engineering (IBGE), G-9/1 24-Mauve Area Islamabad, Islamabad, Pakistan
| | - Atika Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), G-9/1 24-Mauve Area Islamabad, Islamabad, Pakistan
| |
Collapse
|
5
|
HLA-DQB1*05:02, *05:03, and *03:01 alleles as risk factors for myasthenia gravis in a Spanish cohort. Neurol Sci 2022; 43:5057-5065. [DOI: 10.1007/s10072-022-06102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
|
6
|
Merle H, Béral L, Rocher M, Pierre M, Jean-Charles A, Béra O, Rosamont LA, Robert PY, Lézin A. Class II Human Leukocyte Antigen (HLA) and Susceptibility to Polypoidal Choroidal Vasculopathy in Afro-Caribbean Descent. Clin Ophthalmol 2022; 16:1047-1053. [PMID: 35418742 PMCID: PMC8995864 DOI: 10.2147/opth.s337084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose To evaluate how the HLA genotype is associated to the polypoidal choroidal vasculopathy (PCV) in a population of patients of Afro-Caribbean descent. Methods Forty-seven patients were diagnosed with PCV. The number of control patients was 457. All affected patients and control patients were of Afro-Caribbean descent and natives to Martinique. HLA typing was based on blood sample, using the polymerase chain reaction technique. Comparison of HLA alleles between the 2 groups was done using chi-2 test, odds ratio (OR) and confidence interval using Woolf’s method. The Bonferroni correction was considered significant when p-value ≤0.05. Alleles frequency was analyzed for DRB1 and DQB1 locus. Results HLA-DRB1*13 allele was significantly associated to PCV (OR = 2.02, CI = [1.3; 3.13], p = 0.003). In group DRB1, the Bonferroni correction significance threshold was <0.004. HLA-DQB1*04 allele was significantly associated to PCV (OR = 3.5, CI = [1.48; 8.3], p = 0.006). In group DQB1, the Bonferroni correction significance threshold was <0.006. Conclusion Two HLA alleles are positively associated to PCV. The possible association between PCV and certain alleles suggest HLA implication in PCV pathogeny, most likely by modeling the immune system response.
Collapse
Affiliation(s)
- Harold Merle
- Department of Ophthalmology, University Hospital of Martinique, Fort de France, French West Indies, France
- Correspondence: Harold Merle, Department of Ophthalmology, University Hospital of Martinique, Hôpital Pierre Zobda Quitman, BP 632, Martinique, Fort de France, 97261 Cedex, French West Indies, France, Tel +596 596 552 251, Fax +596 596 758 447, Email
| | - Laurence Béral
- Department of Ophthalmology, University Hospital of Guadeloupe, Pointe à Pitre, French West Indies, France
| | - Maxime Rocher
- Department of Ophthalmology, University Hospital of Limoges, France
| | - Mitta Pierre
- Department of Ophthalmology, University Hospital of Martinique, Fort de France, French West Indies, France
| | - Albert Jean-Charles
- Department of Ophthalmology, University Hospital of Martinique, Fort de France, French West Indies, France
| | - Odile Béra
- Department of Genetics, University Hospital of Martinique, Fort de France, French West Indies, France
| | - Laurie-Anne Rosamont
- Department of Genetics, University Hospital of Martinique, Fort de France, French West Indies, France
| | | | - Agnes Lézin
- Department of Genetics, University Hospital of Martinique, Fort de France, French West Indies, France
| |
Collapse
|
7
|
Svyatova G, Mirzakhmetova D, Berezina G, Murtazaliyeva A. Immunogenetic aspects of idiopathic recurrent miscarriage in the Kazakh population. J Med Life 2021; 14:676-682. [PMID: 35027970 PMCID: PMC8742903 DOI: 10.25122/jml-2021-0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
There are numerous scientific studies of recurrent miscarriage (RM) with possible causes, such as fetal chromosomal abnormalities, infectious agents, adverse environmental factors, bad habits, anatomical defects, thrombophilic disorders, etc. However, RM causes in 50% of cases remain unknown. These RM cases do not have any explainable etiology, and they require in-depth etiopathogenesis study, thus they are considered idiopathic RM. The purpose of this research is to study polymorphisms relationship of the immune response genes CX3CR1 (rs3732379, Val249Ile), CTLA4 (rs3087243, CT60 G/A), and HLA DQA1, DQB1, DRB1 (major histocompatibility complex, class II) with the idiopathic form of recurrent miscarriage (iRM) development in Kazakh population. Independent replicative TagMan genotyping for 302 patients with iRM and 300 women with normal reproduction was performed. It has been shown that carriage of unfavorable genotypes (Val/Ile, Val/Val) by the Val249Ile polymorphism of the CX3CR1 gene increases the risk of developing iRM by 1.43 times. Search for associations of genes allelic variants of HLA class 2 complex with iRM revealed *501 allele in DQA1 locus, *0301 in DQB1 locus, *10, *12, *15, *16 alleles in DRB1 locus, which increases the risk of developing iRM in Kazakh population with OR from 1.34 to 4.5. As a result of the study, obtained highly significant associations of immune response genes with the development of iRM in the Kazakh population indicate the possible involvement of the immune system interaction of mother cells with syncytiotrophoblast, which is realized by vascularization defects, defective embryo implantation, and leads to early pregnancies' termination.
Collapse
Affiliation(s)
- Gulnara Svyatova
- Republican Medical Genetic Consultation, JSC Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Dinara Mirzakhmetova
- Republican Medical Genetic Consultation, JSC Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Galina Berezina
- Republican Medical Genetic Consultation, JSC Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Alexandra Murtazaliyeva
- Republican Medical Genetic Consultation, JSC Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| |
Collapse
|
8
|
Alper CA. The Path to Conserved Extended Haplotypes: Megabase-Length Haplotypes at High Population Frequency. Front Genet 2021; 12:716603. [PMID: 34422017 PMCID: PMC8378214 DOI: 10.3389/fgene.2021.716603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
This minireview describes the history of the conceptual development of conserved extended haplotypes (CEHs): megabase-length haplotypes that exist at high (≥0.5%) population frequency. My career began in internal medicine, shifted to pediatrics, and clinical practice changed to research. My research interest was initially in hematology: on plasma proteins, their metabolism, synthesis, and function. This narrowed to a focus on proteins of the human complement system, their role in immunity and their genetics, beginning with polymorphism and deficiency of C3. My group identified genetic polymorphisms and/or inherited deficiencies of C2, C4, C6, and C8. After defining glycine-rich beta glycoprotein as factor B (Bf) in the properdin system, we found that the genes for Bf (CFB), C2, C4A, and C4B were inherited as a single haplotypic unit which we named the "complotype." Complotypes are located within the major histocompatibility complex (MHC) between HLA-B and HLA-DRB1 and are designated (in arbitrary order) by their CFB, C2, C4A, and C4B types. Pedigree analysis revealed long stretches (several megabases) of apparently fixed DNA within the MHC that we referred to as "extended haplotypes" (later as "CEHs"). About 10 to 12 common CEHs constitute at least 25 - 30% of MHC haplotypes among European Caucasian populations. These CEHs contain virtually all the most common markers of MHC-associated diseases. In the case of type 1 diabetes, we have proposed a purely genetic and epigenetic model (with a small number of Mendelian recessive disease genes) that explains all the puzzling features of the disease, including its rising incidence.
Collapse
Affiliation(s)
- Chester A Alper
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Eleftheriou A, Petry CJ, Hughes IA, Ong KK, Dunger DB. The High-Risk Type 1 Diabetes HLA-DR and HLA-DQ Polymorphisms Are Differentially Associated With Growth and IGF-I Levels in Infancy: The Cambridge Baby Growth Study. Diabetes Care 2021; 44:1852-1859. [PMID: 34172490 DOI: 10.2337/dc20-2820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/05/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study explored the link between HLA polymorphisms that predispose to type 1 diabetes and birth size, infancy growth, and/or circulating IGF-I in a general population-based birth cohort. RESEARCH DESIGN AND METHODS The Cambridge Baby Growth Study is a prospective observational birth cohort study that recruited 2,229 newborns for follow-up in infancy. Of these, 612 children had DNA available for genotyping single nucleotide polymorphisms in the HLA region that capture the highest risk of type 1 diabetes: rs17426593 for DR4, rs2187668 for DR3, and rs7454108 for DQ8. Multivariate linear regression models at critical ages (cross-sectional) and mixed-effects models (longitudinal) were performed under additive genetic effects to test for associations between HLA polymorphisms and infancy weight, length, skinfold thickness (indicator of adiposity), and concentrations of IGF-I and IGF-binding protein-3 (IGFBP-3). RESULTS In longitudinal models, the minor allele of rs2187668 tagging DR3 was associated with faster linear growth (P = 0.007), which was more pronounced in boys (P = 3 × 10-7) than girls (P = 0.07), and was also associated with increasing IGF-I (P = 0.002) and IGFBP-3 (P = 0.003) concentrations in infancy. Cross-sectionally, the minor alleles of rs7454108 tagging DQ8 and rs17426593 tagging DR4 were associated with lower IGF-I concentrations at age 12 months (P = 0.003) and greater skinfold thickness at age 24 months (P = 0.003), respectively. CONCLUSIONS The variable associations of DR4, DR3, and DQ8 alleles with growth measures and IGF-I levels in infants from the general population could explain the heterogeneous growth trajectories observed in genetically at-risk cohorts. These findings could suggest distinct mechanisms involving endocrine pathways related to the HLA-conferred type 1 diabetes risk.
Collapse
Affiliation(s)
| | - Clive J Petry
- Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Ieuan A Hughes
- Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Ken K Ong
- Department of Paediatrics, University of Cambridge, Cambridge, U.K.,MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, U.K.,Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, U.K. .,Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| |
Collapse
|
10
|
Tay GK, Al Naqbi H, Mawart A, Baalfaqih Z, Almaazmi A, Deeb A, Alsafar H. Segregation Analysis of Genotyped and Family-Phased, Long Range MHC Classical Class I and Class II Haplotypes in 5 Families With Type 1 Diabetes Proband in the United Arab Emirates. Front Genet 2021; 12:670844. [PMID: 34276777 PMCID: PMC8278101 DOI: 10.3389/fgene.2021.670844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
The classical Human Leucocyte Antigen (HLA) class II haplotypes of the Major Histocompatibility Complex (MHC) that are associated with type 1 diabetes (T1D) were identified in five families from the United Arab Emirates (UAE). Segregation analyses were performed on these 5 families with the disease, 3 with one child and 2 with 2 children diagnosed with T1D. Three HLA-DR4 haplotypes were identified: HLA- DRB1∗04:01:01-DQB1∗03:02:01:01; HLA- DRB1∗04:02:01- DQB1∗03:02:01; and HLA -DRB1∗04:05:01-DQB1∗02:02:01:02. All have previously been identified to be associated with T1D in studies of the Arabian population. In the 10 parents from the 5 families, 9 had at least one HLA-DR4 and HLA-DR3 haplotype which potentially increases the risk of T1D. Of these 9 parents, 3 were heterozygous for HLA-DR4/HLA-DR3 and one was homozygous for HLA-DR3. Two haplotypes that were identified here extend to the HLA class I region were previously designated AH8.2 (HLA -A∗26-B∗08-DRB1∗03) and AH50.2 (HLA -C∗06-B∗50-DRB1∗03:01-DQ∗02) and associated with diabetes in neighboring North Indian populations. This study provides examples of MHC haplotype analysis in pedigrees to improve our understanding of the genetics of T1D in the understudied population of the UAE.
Collapse
Affiliation(s)
- Guan K Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Halima Al Naqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Aurélie Mawart
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Zahrah Baalfaqih
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Anoud Almaazmi
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Asma Deeb
- Department of Endocrinology, Mafraq Hospital, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Alper CA, Larsen CE, Trautwein MR, Alford DR. A stochastic epigenetic Mendelian oligogenic disease model for type 1 diabetes. J Autoimmun 2018; 96:123-133. [PMID: 30309752 DOI: 10.1016/j.jaut.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/12/2018] [Indexed: 01/14/2023]
Abstract
The incidence of type 1 diabetes (T1D) and some other complex diseases is increasing. The cause has been attributed to an undefined changing environment. We examine the role of the environment (or any changing non-genetic mechanism) in causing the rising incidence, and find much evidence against it: 1) Dizygotic twin T1D concordance is the same as siblings of patients in general; 2) If the environment is responsible for both the discordance among identical twins of patients with T1D and its rising incidence, the twin concordance rate should be rising, but it is not; 3) Migrants from high-to low-incidence countries continue to have high-incidence children; 4) TID incidence among the offspring of two T1D parents is identical to the monozygotic twin rate. On the other hand, genetic association studies of T1D have revealed strong susceptibility in the major histocompatibility complex and many optional additive genes of small effect throughout the human genome increasing T1D risk. We have, from an analysis of previously published family studies, developed a stochastic epigenetic Mendelian oligogenic (SEMO) model consistent with published observations. The model posits a few required recessive causal genes with incomplete penetrance explaining virtually all of the puzzling features of T1D, including its rising incidence and the specific low T1D incidence rates among first-degree relatives of patients. Since historic selection against any causal gene could prevent T1D, we postulate that the rising incidence is because of increasing population mixing of parents from some previously isolated populations that had selected against different causal genes.
Collapse
Affiliation(s)
- Chester A Alper
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Charles E Larsen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Michael R Trautwein
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Dennis R Alford
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
12
|
Gravett AM, Trautwein N, Stevanović S, Dalgleish AG, Copier J. Gemcitabine alters the proteasome composition and immunopeptidome of tumour cells. Oncoimmunology 2018; 7:e1438107. [PMID: 29930882 PMCID: PMC5990974 DOI: 10.1080/2162402x.2018.1438107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/05/2023] Open
Abstract
The antigenic makeup of tumour cells can have a profound effect on the progression of cancer and success of immunotherapies. Therefore, one strategy to improve the efficacy of cancer treatments is to augment the antigens displayed by tumours. The present study explores how the recognition of tumour cells may be altered by non-cytotoxic concentrations of gemcitabine (GEM). Testing a panel of chemotherapeutics in human cancer cell lines in vitro, it was found that GEM increased surface expression of HLA-A,B,C and that underlying this were specific increases in β-2-microglobulin and immunoproteasome subunit proteins. Furthermore, the peptide antigen repertoire displayed on HLA class I was altered, revealing a number of novel antigens, many of which that were derived from proteins involved in the DNA-damage response. Changes in the nature of the peptide antigens eluted from HLA-A,B,C after GEM treatment consisted of amino acid anchor-residue modifications and changes in peptide length which rendered peptides likely to favour alternative HLA-alleles and increased their predicted immunogenicity. Signalling through the MAPK/ERK and NFκB/RelB pathways was associated with these changes. These data may explain observations made in previous in vivo studies, advise as to which antigens should be used in future vaccination protocols and reinforce the idea that chemotherapy and immunotherapy could be used in combination.
Collapse
Affiliation(s)
- A M Gravett
- Institute for infection and immunity, St George's, University of London, London, UK
| | - N Trautwein
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - S Stevanović
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - A G Dalgleish
- Institute for infection and immunity, St George's, University of London, London, UK
| | - J Copier
- Institute for infection and immunity, St George's, University of London, London, UK
| |
Collapse
|
13
|
Lee M, Kim MJ, Oh J, Piao C, Park YW, Lee DY. Gene delivery to pancreatic islets for effective transplantation in diabetic animal. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Abstract
A haplotype is a string of nucleotides or alleles at nearby loci on one chromosome, usually inherited as a unit. Within the major histocompatibility complex (MHC) region on human chromosome 6p, independent population studies of multiple families have identified conserved extended haplotypes (CEHs) that segregate as long stretches (≥1 megabase) of essentially identical DNA sequence at relatively high (≥0.5 %) population frequency ("genetic fixity"). CEHs were first identified through segregation analysis in the early 1980s. In European Caucasian populations, the most frequent 30 CEHs account for at least one-third of all MHC haplotypes. These CEHs provide all of the known individual MHC susceptibility and protective genetic markers within those populations for several complex genetic diseases. Haplotypes are rigorously determined directly by sequencing single chromosomes or by Mendelian segregation analysis using families with informative genotypes. Four parental haplotypes are assigned unambiguously using genotypes from the two parents and from two of their haploidentical (to each other) children. However, the most common current technique to phase haplotypes is probabilistic statistical imputation, using unrelated subjects. Such probabilistic techniques have failed to detect CEHs and are thus of questionable value in identifying long-range haplotype structure and, consequently, genetic structure-function relationships. Finally, with haplotypes rigorously defined, association studies can determine frequencies of alleles among unrelated patient haplotypes vs. those among only unaffected family members (i.e., control alleles/haplotypes). Such studies reduce, as much as possible, the confounding effects of population stratification common to all genetic studies.
Collapse
Affiliation(s)
- Chester A Alper
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, CLS_03, 3 Blackfan Circle, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Charles E Larsen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, CLS_03, 3 Blackfan Circle, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| |
Collapse
|
15
|
Varzi AM, Shahsavar F, Tarrahi MJ. Distribution of HLA-DRB1 and HLA-DQB1 alleles in Lak population of Iran. Hum Immunol 2016; 77:580-3. [PMID: 27189628 DOI: 10.1016/j.humimm.2016.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/17/2016] [Accepted: 05/13/2016] [Indexed: 11/16/2022]
Abstract
Human leukocyte antigen (HLA) genes are the most polymorphic loci in the human genome and encode the highly polymorphic molecules critically involved in immune responses. Anthropological studies based on highly polymorphic HLA genes provide useful information for bone marrow donor registry, forensic medicine, disease association studies, as well as designing peptide vaccines against tumors, and infectious or autoimmune diseases. The aim of this study was to determine the HLA-DRB1 and HLA-DQB1 allele frequencies in 100 unrelated Lak individuals from Lorestan province of Iran. Finally, we compared the results with those previously described in four other Iranian populations. Commercial HLA-Type kits were used for determination of the HLA-DRB1 and HLA-DQB1 allele frequencies. Differences between populations in the distribution of HLA-DRB1 and HLA-DQB1 alleles were estimated by χ2 test with Yate's correction and Fisher's exact test. The most frequent HLA-DRB1 alleles were (*)1103=4 (23%), (*)1502 (9.5%), (*)0701 (9%), (*)0301 (8.5%), (*)1101 (7.5%) and (*)1501 (6%) while HLA-DQB1(*)0301 (40%), (*)0201 (15%), (*)0502 (10.5%), (*)0303 (10%), (*)0602=3 (9.5%), and (*)0501 (7.5%) were the most frequent alleles in Lak population. HLA-DRB1(*)0409, (*)0804, (*)1102, (*)1112, (*)1405, and HLA-DQB1(*)0503, (*)0604 were the least observed frequencies in Lak population. Our results based on HLA-DRB1 and HLA-DQB1 allele frequencies showed that the Lak population possesses the previously reported general features of the Lur and Kurd populations but still with unique, decreased or increased frequencies of several alleles. In other words, the Lak population is close to Lurs Khorramabadi and Kurd but far from Lurs Kohkiloyeh/Boyerahmad and Bakhtiari.
Collapse
Affiliation(s)
- Ali Mohammad Varzi
- Department of Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Farhad Shahsavar
- Department of Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Mohammad Javad Tarrahi
- Department of Epidemiology and Biostatistics, School of Public Health, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
16
|
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disorder that results from the T cell-mediated destruction of the pancreatic β cells and is due to interactions between environmental and genetic factors. Although Arabs have one of the highest global incidence and prevalence rates of T1D, unfortunately, there is a dearth of information regarding the genetic epidemiology of T1D in the Arab world. Arabs share several HLA haplotypes with other ethnic groups, which confer either susceptibility or protection to T1D, but they have specific haplotypes that are distinctive from other ethnicities. Among different Arab countries, several non-HLA genes were reported to be associated with susceptibility to T1D, including CTLA4, CD28, PTPN22, TCRβ, CD3z, IL15, BANK1, and ZAP70. In Arab countries, consanguinity, endogamy, and first-cousin marriage rates are some of the highest reported worldwide and are responsible for the creation of several inbreeding communities within the Arab world that have led to an increase in homozygosity of both the HLA haplotypes and non-HLA genes associated with either protection or susceptibility to T1D among Arabs. Homozygosity reduces the HLA complexity and is expected to facilitate our understanding of the mode of inheritance of HLA haplotypes and provide valuable insight into the intricate genotype-phenotype correlations in T1D patients. In this review, based on literature studies, I will discuss the current epidemiological profile and molecular genetic risks of Arabs with T1D.
Collapse
Affiliation(s)
- Hatem Zayed
- College of Health Sciences, Biomedical Program, Qatar University, Doha, Qatar.
| |
Collapse
|
17
|
Unsal IO, Ginis Z, Pinarli FA, Albayrak A, Cakal E, Sahin M, Delibasi T. Comparison of therapeutic characteristics of islet cell transplantation simultaneous with pancreatic mesenchymal stem cell transplantation in rats with Type 1 diabetes mellitus. Stem Cell Rev Rep 2016; 11:526-32. [PMID: 25297071 DOI: 10.1007/s12015-014-9563-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although, pancreas islet call transplantation is a new, promising method for type 1 diabetic patients, it remains as an experimental procedure applied in selected patients. The present study aimed to investigate effect of pancreatic mesenchymal stem cell transplantation simultaneous with islet cell transplantation on islet liveliness and thus on the treatment of diabetes in type 1 diabetic rats. The study used Wistar Albino Rats and was performed in a total of four groups [control (G1), mesenchymal stem cell (G2), islet (G3) and islet + mesencymal stem cell (G4)] each including 8 rats. Blood glucose level of the rats, in which diabetes model has been created using streptozotocin, was measured after 72 h. Blood samples were obtained from the rats 30 days after transplantation and then, their livers and pancreases were kept in 10% formaldehyde and the experiment was ended. Following staining with H&E, they were morphologically evaluated under a light microscope. Change in mean blood glucose level was statistically significant in G3 and G4 versus G1 and G2 (p = 0.001, p < 0.001, p < 0.001, and p < 0.001 respectively). Histological examination revealed that mean number of islet cells in the pancreases of the rats was higher in G4; difference between the groups was statistically significant (p < 0.001). Transplantation of islet cells together with mesenchymal stem cells showed beneficial effects in terms of prolonging survival of islet grafts suggesting that transplantation of mesenchymal stem cells together with islet cells during clinical islet transplantation may be beneficial in increasing the number of noninsulin-dependent patients in Type 1 diabetes.
Collapse
Affiliation(s)
- Ilknur Ozturk Unsal
- Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Teaching and Research Hospital, Ankara, Turkey,
| | | | | | | | | | | | | |
Collapse
|
18
|
Masuda Y, Vaziri ND, Li S, Le A, Hajighasemi-Ossareh M, Robles L, Foster CE, Stamos MJ, Al-Abodullah I, Ricordi C, Ichii H. The effect of Nrf2 pathway activation on human pancreatic islet cells. PLoS One 2015; 10:e0131012. [PMID: 26110640 PMCID: PMC4482439 DOI: 10.1371/journal.pone.0131012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022] Open
Abstract
Background Pancreatic islets are known to contain low level of antioxidants that renders them vulnerable to oxidative stress. Nrf2 is the master regulator of numerous genes, encoding antioxidant, detoxifying, and cytoprotective molecules. Activation of Nrf2 pathway induces up-regulation of numerous genes encoding antioxidant and phase II detoxifying enzymes and related proteins. However, little is known regarding the role of this pathway in human islet cells. The aim was to investigate the effect of Nrf2 activator (dh404, CDDO-9,11-dihydro-trifluoroethyl amide) on human islet cells. Methods Human islets were obtained from cadaveric donors. After dh404 treatment, Nrf2 translocation, mRNA expression, and protein abundance of its key target gene products were examined. The proportion of dh404-treated or non-treated viable islet beta cells was analyzed using flowcytemetry. The cytoprotective effects against oxidative stress and production of inflammatory mediators, and in vivo islet function after transplantation were determined. Results Nrf2 nuclear translocation was confirmed by con-focal microscope within 2 hours after treatment, which was associated with a dose-dependent increase in mRNA expression of anti-oxidants, including NQO1, HO-1, and GCLC. Enhanced HO-1 expression in dh404 treated islets was confirmed by Western Blot assay. Islet function after transplantation (2000 IEQ/mouse) to diabetic nude mice was not affected with or without dh404 treatment. After induction of oxidative stress with hydrogen peroxide (200 μM) the proportion of dh404-treated viable islet cells was significantly higher in the dh404-treated than untreated islets (74% vs.57%; P<0.05). Dh404 significantly decreased production of cytokines/chemokines including IL-1β, IL-6, IFN-γ and MCP-1. Conclusion Treatment of human pancreatic islets with the potent synthetic Nrf2 activator, dh404, significantly increased expression of the key anti-oxidants enzymes, decreased inflammatory mediators in islets and conferred protection against oxidative stress in beta cells.
Collapse
Affiliation(s)
- Yuichi Masuda
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | - Nosratola D. Vaziri
- Medicine, University of California Irvine, Irvine, California, United States of America
| | - Shiri Li
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | - Aimee Le
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | | | - Lourdes Robles
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | - Clarence E. Foster
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | - Michael J. Stamos
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | - Ismail Al-Abodullah
- Southern California Islet Cell Resources Center, Department of Diabetes, Endocrinology and Metabolism, City of Hope National Medical Center and Beckman Research Institute, Duarte, California, United States of America
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Perricone C, Shoenfeld N, Agmon-Levin N, de Carolis C, Perricone R, Shoenfeld Y. Smell and autoimmunity: a comprehensive review. Clin Rev Allergy Immunol 2014; 45:87-96. [PMID: 23233263 DOI: 10.1007/s12016-012-8343-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sense of smell is an ancient sensory modality vital for sampling and perceiving the chemical composition of surrounding environments. Olfaction involves a pathway of biochemical and electrophysiological processes, which allows the conversion of molecular information into sensations. Disturbances in the olfactory function have been investigated mainly in neurological/neurodegenerative disorders such as Alzheimer's and Parkinson's diseases; impaired sense of smell has been associated with depressed mood. Only recently, smell capability was tested in other diseases, particularly autoimmune diseases. Shoenfeld and colleagues opened this chapter showing that patients affected with systemic lupus erythematosus (SLE) have disturbances in their olfactory functions and revealed its association with neuropsychiatric manifestations of the disease. This evidence was confirmed in experimental models and replicated in other SLE populations. The connection between autoimmunity and the sense of smell was lately emphasized by studies on patients with Sjögren's syndrome and in patients with other autoimmune/immune-mediated diseases, such as polydermatomyositis, recurrent spontaneous abortion, and hereditary angioedema. Genetic susceptibility and hormonal and environmental factors may play a role in these conditions. Olfactory receptor gene clusters are located in proximity to key locus of susceptibility for autoimmune diseases such as the major histocompatibility complex, suggesting not only a physic linkage, but a functional association. Nonetheless, gender- and hormone-mediated effects are fundamental in the development of autoimmune diseases. The different connections between smell and autoimmunity, genes and hormones may suggest that this is another tessera of a mosaic which is waiting the answer of Oedipus.
Collapse
Affiliation(s)
- Carlo Perricone
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Sudden Bilateral Sensorineural Hearing Loss Associated with HLA A1-B8-DR3 Haplotype. Case Rep Otolaryngol 2013; 2013:590157. [PMID: 24106629 PMCID: PMC3782810 DOI: 10.1155/2013/590157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/28/2013] [Indexed: 11/18/2022] Open
Abstract
Sudden sensorineural hearing loss may be present as a symptom in systemic autoimmune diseases or may occur as a primary disorder without another organ involvement (autoimmune inner ear disease). The diagnosis of autoimmune inner ear disease is still predicated on clinical features, and to date specific diagnostic tests are not available. We report a case of bilateral sudden hearing loss, tinnitus, intense rotatory vertigo, and nausea in a female patient in which the clinical manifestations, in addition to raised levels of circulating immune complexes, antithyroglobulin antibodies, and the presence of the HLA A1-B8-DR3 haplotype, allowed us to hypothesize an autoimmune inner ear disease. Cyclosporine-A immunosuppressive treatment in addition to steroids helped in hearing recovery that occurred progressively with normalization of the hearing function after a five-month treatment. Cyclosporine-A could be proposed as a therapeutic option in case of autoimmune inner ear disease allowing the suspension of corticosteroids that, at high dose, expose patients to potentially serious adverse events.
Collapse
|
21
|
Status report from ‘double agent HLA’: Health and disease. Mol Immunol 2013; 55:2-7. [DOI: 10.1016/j.molimm.2012.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022]
|
22
|
Abstract
Acute graft-versus-host disease (GVHD) afflicts as much as 80% of all patients who receive an unrelated donor hematopoietic cell transplant (HCT) for the treatment of blood disorders, even with optimal donor HLA matching and use of prophylactic immunosuppressive agents. Of patients who develop acute GVHD, many are at risk for chronic GVHD and bear the burden of considerable morbidity and lowered quality of life years after transplantation. The immunogenetic basis of GVHD has been the subject of intensive investigation, with the classic HLA genetic loci being the best-characterized determinants. Recent information on the major histocompatibility complex (MHC) region of chromosome 6 as an important source of untyped genetic variation has shed light on novel GVHD determinants. These data open new paradigms for understanding the genetic basis of GVHD.
Collapse
|
23
|
Age-dependent variation of genotypes in MHC II transactivator gene (CIITA) in controls and association to type 1 diabetes. Genes Immun 2012; 13:632-40. [PMID: 23052709 DOI: 10.1038/gene.2012.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The major histocompatibility complex class II transactivator (CIITA) gene (16p13) has been reported to associate with susceptibility to multiple sclerosis, rheumatoid arthritis and myocardial infarction, recently also to celiac disease at genome-wide level. However, attempts to replicate association have been inconclusive. Previously, we have observed linkage to the CIITA region in Scandinavian type 1 diabetes (T1D) families. Here we analyze five Swedish T1D cohorts and a combined control material from previous studies of CIITA. We investigate how the genotype distribution within the CIITA gene varies depending on age, and the association to T1D. Unexpectedly, we find a significant difference in the genotype distribution for markers in CIITA (rs11074932, P=4 × 10(-5) and rs3087456, P=0.05) with respect to age, in the collected control material. This observation is replicated in an independent cohort material of about 2000 individuals (P=0.006, P=0.007). We also detect association to T1D for both markers, rs11074932 (P=0.004) and rs3087456 (P=0.001), after adjusting for age at sampling. The association remains independent of the adjacent T1D risk gene CLEC16A. Our results indicate an age-dependent variation in CIITA allele frequencies, a finding of relevance for the contrasting outcomes of previously published association studies.
Collapse
|
24
|
Abstract
Despite modern medical breakthroughs, diabetes mellitus is a worldwide leading cause of morbidity and mortality. Definitive surgical treatment of diabetes mellitus was established with the advent and refinement of clinical pancreas transplantation in the 1960s. During the following decades, critical discoveries involving islet isolation and engraftment took place. Clinical islet cell transplantation represents the potential for reduced insulin requirements and debilitating hypoglycemic episodes without the morbidity of surgery. Unfortunately, islet cell transplantation was unable to achieve comparable results with solid organ transplantation. This was until the Edmonton protocol (steroid-free immunosuppression) was described, which demonstrated that islet cell transplantation could be a viable alternative to pancreas transplantation. Significant advances in islet purification techniques and novel immunomodulatory agents have since renewed interest in islet cell transplantation. Yet the field is still challenged by a limited supply of islet cells, inadequate engraftment, and the deleterious effects of chronic immunosuppression. This article discusses the history and the current status of clinical islet cell transplantation.
Collapse
Affiliation(s)
- Avinash Agarwal
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Kenneth L. Brayman
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
25
|
Sex differences and genomics in autoimmune diseases. J Autoimmun 2012; 38:J254-65. [DOI: 10.1016/j.jaut.2011.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 12/23/2022]
|
26
|
Nonsegmental vitiligo and autoimmune mechanism. Dermatol Res Pract 2011; 2011:518090. [PMID: 21804820 PMCID: PMC3144695 DOI: 10.1155/2011/518090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 11/18/2022] Open
Abstract
Nonsegmental vitiligo is a depigmented skin disorder showing acquired, progressive, and depigmented lesions of the skin, mucosa, and hair. It is believed to be caused mainly by the autoimmune loss of melanocytes from the involved areas. It is frequently associated with other autoimmune diseases, particularly autoimmune thyroid diseases including Hashimoto's thyroiditis and Graves' disease, rheumatoid arthritis, type 1 diabetes, psoriasis, pernicious anemia, systemic lupus erythematosus, Addison's disease, and alopecia areata. This indicates the presence of genetically determined susceptibility to not only vitiligo but also to other autoimmune disorders. Here, we summarize current understanding of autoimmune pathogenesis in non-segmental vitiligo.
Collapse
|
27
|
Vandiedonck C, Taylor MS, Lockstone HE, Plant K, Taylor JM, Durrant C, Broxholme J, Fairfax BP, Knight JC. Pervasive haplotypic variation in the spliceo-transcriptome of the human major histocompatibility complex. Genome Res 2011; 21:1042-54. [PMID: 21628452 PMCID: PMC3129247 DOI: 10.1101/gr.116681.110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 04/15/2011] [Indexed: 12/17/2022]
Abstract
The human major histocompatibility complex (MHC) on chromosome 6p21 is a paradigm for genomics, showing remarkable polymorphism and striking association with immune and non-immune diseases. The complex genomic landscape of the MHC, notably strong linkage disequilibrium, has made resolving causal variants very challenging. A promising approach is to investigate gene expression levels considered as tractable intermediate phenotypes in mapping complex diseases. However, how transcription varies across the MHC, notably relative to specific haplotypes, remains unknown. Here, using an original hybrid tiling and splice junction microarray that includes alternate allele probes, we draw the first high-resolution strand-specific transcription map for three common MHC haplotypes (HLA-A1-B8-Cw7-DR3, HLA-A3-B7-Cw7-DR15, and HLA-A26-B18-Cw5-DR3-DQ2) strongly associated with autoimmune diseases including type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis. We find that haplotype-specific differences in gene expression are common across the MHC, affecting 96 genes (46.4%), most significantly the zing finger protein gene ZFP57. Differentially expressed probes are correlated with polymorphisms between haplotypes, consistent with cis effects that we directly demonstrate for ZFP57 in a cohort of healthy volunteers (P = 1.2 × 10(-14)). We establish that alternative splicing is significantly more frequent in the MHC than genome-wide (72.5% vs. 62.1% of genes, P ≤ 1 × 10(-4)) and shows marked haplotypic differences. We also unmask novel and abundant intergenic transcription involving 31% of transcribed blocks identified. Our study reveals that the renowned MHC polymorphism also manifests as transcript diversity, and our novel haplotype-based approach marks a new step toward identification of regulatory variants involved in the control of MHC-associated phenotypes and diseases.
Collapse
Affiliation(s)
- Claire Vandiedonck
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
- INSERM, UMRS-958, 75010 Paris, France
- Université Paris 7 Denis-Diderot, 75013 Paris, France
| | - Martin S. Taylor
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
- MRC Human Genetics Unit, Edinburgh EH4 2XU, United Kingdom
| | - Helen E. Lockstone
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
| | - Katharine Plant
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
| | - Jennifer M. Taylor
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
| | - Caroline Durrant
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
| | - John Broxholme
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
| | - Benjamin P. Fairfax
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
| | - Julian C. Knight
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
28
|
Chung H, McClure MC. Characterization of microsatellite loci in the SLA class I region. Genomics 2011; 97:223-34. [DOI: 10.1016/j.ygeno.2010.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/16/2010] [Accepted: 12/19/2010] [Indexed: 11/29/2022]
|
29
|
Li S, Wang H, Smith A, Zhang B, Zhang X(C, Schoch G, Geraghty D, Hansen JA, Zhao LP. Predicting multiallelic genes using unphased and flanking single nucleotide polymorphisms. Genet Epidemiol 2011; 35:85-92. [PMID: 21254215 PMCID: PMC3057054 DOI: 10.1002/gepi.20549] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/11/2010] [Indexed: 12/18/2022]
Abstract
Recent advances in genotyping technologies have enabled genomewide association studies (GWAS) of many complex traits including autoimmune disease, infectious disease, cancer and heart disease. To facilitate interpretations and establish biological basis, it could be advantageous to identify alleles of functional genes, beyond just single nucleotide polymorphisms (SNPs) within or nearby genes. Leslie et al. ([2008] Am J Hum Genet 82:48–56) have proposed an Identity-by-Decent method (IBD-based) for predicting human leukocyte antigen (HLA) alleles (multiallelic and highly polymorphic) with SNP data, and predictions have achieved a satisfactory accuracy on the order of 97%. Building upon their success, we introduce a complementary method for predicting highly polymorphic alleles using unphased SNP data as the training data set. Due to its generality and flexibility, the new method is readily applicable to large population studies. Applying it to HLA genes in a cohort of 630 healthy individuals as a training set, we constructed predictive models for HLA-A, B, C, DRB1 and DQB1. Then, we performed a validation study with another cohort of 630 healthy individuals, and the predictive models achieved predictive accuracies for HLA alleles defined at intermediate or high resolution ranging as high as (100%, 97%) for HLA-A, (98%, 96%) for B, (98%, 98%) for C, (97%, 96%) for DRB1 and (98%, 95%) for DQB1, respectively. These preliminary results suggest the feasibility of predicting other polymorphic genetic alleles, since HLA loci are almost certainly among most polymorphic genes.
Collapse
Affiliation(s)
- Sue Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hongwei Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anajane Smith
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bo Zhang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xinyi (Cindy) Zhang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gary Schoch
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel Geraghty
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John A. Hansen
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lue Ping Zhao
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
30
|
Szilágyi Á, Bánlaki Z, Pozsonyi É, Yunis EJ, Awdeh ZL, Hossó A, Rajczy K, Larsen CE, Fici DA, Alper CA, Füst G. Frequent occurrence of conserved extended haplotypes (CEHs) in two Caucasian populations. Mol Immunol 2010; 47:1899-904. [DOI: 10.1016/j.molimm.2010.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
|
31
|
HLA-A and breast cancer in West Peninsular Malaysia. Med Oncol 2010; 28:51-6. [PMID: 20069393 DOI: 10.1007/s12032-009-9414-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/30/2009] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common malignancy among females in Malaysia. Attempts have been made to investigate the association between breast cancer and human leukocyte antigen (HLA) types. However, data from those previous studies are highly variable. The aim of this study is to investigate the association between HLA-A types and clinicopathological factors in breast cancer. The frequencies of HLA-A type in 59 female patients with infiltrating ductal of the breast were determined by polymerase chain reaction method. HLA-A2/A30 and A2/A31 haplotype (5.1%; P = 0.045) as well as HLA-A30 (5.1%, P = 0.045) and A31 (6.8%; P = 0.020) allele were significant higher in the patients than controls (0%). HLA-A24 allele was negatively related to lymph node metastasis (r = -0.316; P = 0.021) whereas, A26 (r = -0.430; P = 0.001) and A36 (r = -0.430; P = 0.001) alleles were negatively correlated to distant metastasis in breast cancer. Negative correlations between HLA-A26/A36 (r = -0.430; P = 0.001), A2/A11 (r = -0.276; P = 0.044), A24/A34 (r = -0.430; P = 0.001) haplotypes and distant metastasis were identified. Interestingly, Her2 expression in breast carcinoma was negatively correlated to A11/24 haplotypes (r = -0.294; P = 0.034) but positively correlated to homozygous HLA-A24 (r = 0.396; P = 0.040). In conclusion, HLA-A2, -A30 and A31 were associated with breast cancer.
Collapse
|
32
|
Vandiedonck C, Knight JC. The human Major Histocompatibility Complex as a paradigm in genomics research. BRIEFINGS IN FUNCTIONAL GENOMICS & PROTEOMICS 2009; 8:379-94. [PMID: 19468039 PMCID: PMC2987720 DOI: 10.1093/bfgp/elp010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Since its discovery more than 50 years ago, the human Major Histocompatibility Complex (MHC) on chromosome 6p21.3 has been at the forefront of human genetic research. Here, we review from a historical perspective the major advances in our understanding of the nature and consequences of genetic variation which have involved the MHC, as well as highlighting likely future directions. As a consequence of its particular genomic structure, its remarkable polymorphism and its early implication in numerous diseases, the MHC has been considered as a model region for genomics, being the first substantial region to be sequenced and establishing fundamental concepts of linkage disequilibrium, haplotypic structure and meiotic recombination. Recently, the MHC became the first genomic region to be entirely re-sequenced for common haplotypes, while studies mapping gene expression phenotypes across the genome have strongly implicated variation in the MHC. This review shows how the MHC continues to provide new insights and remains in the vanguard of contemporary research in human genomics.
Collapse
Affiliation(s)
- Claire Vandiedonck
- Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, UK.
| | | |
Collapse
|
33
|
Talja I, Reimand T, Uibo O, Reimand K, Aun S, Talvik T, Janmey PA, Uibo R. Antibodies to Neurofilaments. Ann N Y Acad Sci 2009; 1173:130-6. [DOI: 10.1111/j.1749-6632.2009.04624.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Abstract
Several associations have been described between the frequency of human leukocyte antigen (HLA) class I genes in certain populations and the risk of developing nasopharyngeal carcinoma (NPC). Associations between ethnic background and geographic distribution, and relative disease incidence have been reported. Populations in geographical areas at higher risk of developing NPC display HLA distribution patterns different and sometimes opposite from areas of low incidence, whereas populations in areas with intermediate incidence display a totally independent pattern. Two main reasons may explain this association between HLA phenotype distribution and the risk of developing NPC in various populations. First, given the fact that expression of Epstein-Barr Virus (EBV) proteins by cancer cells is tightly linked with NPC development, HLA may influence the development of NPC by modulating the expression of EBV proteins. This explanation is, however, based primarily on theoretical assumptions given that no clear definition of HLA binding pattern of EBV epitopes has been directly shown to significantly alter the recognition of EBV proteins and the risk of developing the disease. Alternatively, HLA may represent a genetic marker flagging the presence of a NPC predisposition locus in close linkage disequilibrium with the HLA class I region. A critical review of known HLA associations in various geographical areas and their interpretation will be presented in this review.
Collapse
Affiliation(s)
- Xin Li
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
35
|
Rajagopalan G, Mangalam AK, Sen MM, Cheng S, Kudva YC, David CS. Autoimmunity in HLA-DQ8 transgenic mice expressing granulocyte/macrophage-colony stimulating factor in the beta cells of islets of langerhans. Autoimmunity 2009; 40:169-79. [PMID: 17453715 DOI: 10.1080/08916930701201083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease with a strong HLA association particularly, HLA-DQ8. We investigated whether islet-specific expression of granulocyte/macrophage colony-stimulating factor (Ins.GM-CSF) in A Beta degrees.NOD.DQ8 mice (HLA-DQ8 transgenic mice on a NOD background lacking endogenous mouse MHC class II molecules) would predispose to development of spontaneous autoimmune diabetes. A Beta degrees.NOD.DQ8 mice expressing GM-CSF in the pancreatic ss cells (8+ G+) as well as litter mates lacking either HLA-DQ8 (8 - G+) or GM-CSF (8+ G -) or both (8 - G -) exhibited insulitis and sialadenitis of varying degrees. But none of the mice progressed to develop T1D. Other than the marked mononuclear cell infiltration in livers of mice expressing GM-CSF irrespective of HLA-DQ8 expression (8+ G+ or 8 - G+), no other changes were observed in the animals. Thus, we have shown for the first time that expression of HLA-DQ8 in the diabetes-predisposing mileu of NOD genetic background is not sufficient to predispose to development of autoimmune diabetes even when the potent immunostimulatory cytokine, GM-CSF is expressed in the pancreatic islets.
Collapse
|
36
|
Ichii H, Ricordi C. Current status of islet cell transplantation. ACTA ACUST UNITED AC 2008; 16:101-12. [PMID: 19110649 DOI: 10.1007/s00534-008-0021-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 07/15/2008] [Indexed: 02/08/2023]
Abstract
Despite substantial advances in islet isolation methods and immunosuppressive protocol, pancreatic islet cell transplantation remains an experimental procedure currently limited to the most severe cases of type 1 diabetes mellitus. The objectives of this treatment are to prevent severe hypoglycemic episodes in patients with hypoglycemia unawareness and to achieve a more physiological metabolic control. Insulin independence and long term-graft function with improvement of quality of life have been obtained in several international islet transplant centers. However, experimental trials of islet transplantation clearly highlighted several obstacles that remain to be overcome before the procedure could be proposed to a much larger patient population. This review provides a brief historical perspective of islet transplantation, islet isolation techniques, the transplant procedure, immunosuppressive therapy, and outlines current challenges and future directions in clinical islet transplantation.
Collapse
Affiliation(s)
- Hirohito Ichii
- Cell Transplant Center, Diabetes Research Institute, University of Miami Leonard M Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
37
|
Wei WZ, Jacob J, Radkevich-Brown O, Whittington P, Kong YCM. The "A, B and C" of Her-2 DNA vaccine development. Cancer Immunol Immunother 2008; 57:1711-7. [PMID: 18273615 DOI: 10.1007/s00262-008-0464-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 01/24/2008] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The development of Her-2 DNA vaccine has progressed through three phases that can be categorized as phase "A": the pursuit of Her-2 as a tumor-associated "antigen", phase "B": tilting the "balance" between tumor immunity and autoimmunity and phase "C": the on-going "clinical trials". MATERIALS AND METHODS In phase "A", a panel of human ErbB-2 or Her-2 plasmids were constructed to encode non-transforming Her-2 derivatives. The immunogenicity and anti-tumor activity of Her-2 DNA vaccines were tested in human Her-2 transgenic mice with or without the depletion of regulatory T cells (Tregs). However, Treg depletion or other immune modulating regimens may increase the risk of autoimmunity. In phase "B", the balance between tumor immunity and autoimmunity was assessed by monitoring the development of experimental autoimmune thyroiditis (EAT). To test the efficacy of Her-2 DNA vaccines in cancer patients, clinical trials have been initiated in phase "C". RESULTS AND CONCLUSIONS Significant anti-Her-2 and anti-tumor activity was observed when Her-2 transgenic mice were electro-vaccinated after Treg depletion. Susceptibility to EAT was also enhanced by Treg depletion and there was mutual amplification between Her-2 immunity and EAT development. Although Tregs regulate both EAT and Her-2 immunity, their effector mechanisms may differ. It may be possible to amplify tumor immunity with improved strategies that can by-pass undue autoimmunity. Critical information will be revealed in the next decade to expedite the development of cancer vaccines.
Collapse
Affiliation(s)
- Wei-Zen Wei
- Karmanos Cancer Institute and Department of Immunology and Microbiology, Wayne State University, 110 E. Warren Ave, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
38
|
Husain Z, Kelly MA, Eisenbarth GS, Pugliese A, Awdeh ZL, Larsen CE, Alper CA. The MHC type 1 diabetes susceptibility gene is centromeric to HLA-DQB1. J Autoimmun 2007; 30:266-72. [PMID: 18065200 DOI: 10.1016/j.jaut.2007.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 10/19/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
HLA-DQB1 is widely considered to be the major histocompatibility complex (MHC) susceptibility gene for type 1 diabetes (T1D). However, since inheritance of the gene in T1D is recessive, the presence of the protective HLA-DQB1 0602 allele with normal nucleotide sequence in some patients raises the question of whether HLA-DQB1 is not the susceptibility locus itself but merely a good marker. HLA-DQB1 0602 is part of a conserved extended haplotype (CEH) [HLA-B7, SC31, DR2] (B7, DR2) with fixed DNA over more than 1Mb of genomic DNA that normally carries a protective allele at the true susceptibility locus. We postulated that, in patients with HLA-DQB1 0602, the protective allele at the susceptibility locus has been replaced by a susceptibility allele through an ancient crossover at meiosis centromeric to HLA-DQB1. We analyzed single nucleotide polymorphisms (SNPs) distinguishing the HLA-DQA2 (the first expressed gene centromeric to HLA-DQB1) allele on the normal HLA-B7, DR2 CEH from those on susceptibility CEHs in T1D patients and controls with HLA-DQB1 0602. All but 1 of 20 healthy control HLA-DQB1 0602 haplotypes had identical (consensus) first intron HLA-DQA2 5-SNP haplotypes. Fifteen of 19 patients with HLA-DQB1 0602 were homozygous for 1 or more HLA-DQA2 SNPs differing from consensus HLA-DQA2 SNPs, providing evidence of crossover involving the HLA-DQA2 locus. The remaining 4 patients were heterozygous at all positions and therefore uninformative. The loss of dominant protection usually associated with HLA-DQB1 0602 haplotypes is consistent with a locus centromeric to HLA-DQB1 being a major determinant of MHC-associated susceptibility, and perhaps the true T1D susceptibility locus.
Collapse
Affiliation(s)
- Zaheed Husain
- Immune Disease Institute, 800 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Eller E, Vardi P, McFann KK, Babu SR, Yu L, Bugawan TL, Erlich HA, Eisenbarth GS, Fain PR. Differential effects of DRB1*0301 and DQA1*0501-DQB1*0201 on the activation and progression of islet cell autoimmunity. Genes Immun 2007; 8:628-33. [PMID: 17728790 DOI: 10.1038/sj.gene.6364425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autoimmune diabetes shows extreme variation in age of onset and clinical presentation, although most studies have been done in children with the most severe subtype. Disease risk is strongly associated with HLA-DRB1*0301-DQA1*0501-DQB1*0201 (DR3-DQ2), but it has not been possible to separate the effects of the DR and DQ alleles. We have identified a large Bedouin kindred in which a high prevalence of islet autoimmunity is associated with two different DR3 haplotypes, one carrying the usual DQ2 and the other carrying DQA1*0102-DQB1*0502 (DQ5). Results of prospective follow-up studies indicate that DR3 is associated with the initial activation of islet autoimmunity whereas DQ2 is associated with early-onset and severe clinical disease. The association signals map to a 350-kb interval, thus implicating primary effects for DR3 and DQ2. Overall, our results emphasize the importance of prospective genetic studies that examine the full range of variation in the initiation, progression and expression of autoimmune disease.
Collapse
Affiliation(s)
- E Eller
- Department of Pediatrics, Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Evensen E, Joseph-McCarthy D, Weiss GA, Schreiber SL, Karplus M. Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4. J Comput Aided Mol Des 2007; 21:395-418. [PMID: 17657565 DOI: 10.1007/s10822-007-9119-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 04/19/2007] [Indexed: 01/02/2023]
Abstract
Combinatorial synthesis and large scale screening methods are being used increasingly in drug discovery, particularly for finding novel lead compounds. Although these "random" methods sample larger areas of chemical space than traditional synthetic approaches, only a relatively small percentage of all possible compounds are practically accessible. It is therefore helpful to select regions of chemical space that have greater likelihood of yielding useful leads. When three-dimensional structural data are available for the target molecule this can be achieved by applying structure-based computational design methods to focus the combinatorial library. This is advantageous over the standard usage of computational methods to design a small number of specific novel ligands, because here computation is employed as part of the combinatorial design process and so is required only to determine a propensity for binding of certain chemical moieties in regions of the target molecule. This paper describes the application of the Multiple Copy Simultaneous Search (MCSS) method, an active site mapping and de novo structure-based design tool, to design a focused combinatorial library for the class II MHC protein HLA-DR4. Methods for the synthesizing and screening the computationally designed library are presented; evidence is provided to show that binding was achieved. Although the structure of the protein-ligand complex could not be determined, experimental results including cross-exclusion of a known HLA-DR4 peptide ligand (HA) by a compound from the library. Computational model building suggest that at least one of the ligands designed and identified by the methods described binds in a mode similar to that of native peptides.
Collapse
Affiliation(s)
- Erik Evensen
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
41
|
Rodríguez-Rodero S, González S, Rodrigo L, Fernández-Morera JL, Martínez-Borra J, López-Vázquez A, López-Larrea C. Transcriptional regulation of MICA and MICB: a novel polymorphism in MICB promoter alters transcriptional regulation by Sp1. Eur J Immunol 2007; 37:1938-1953. [PMID: 17557375 DOI: 10.1002/eji.200737031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MHC class I-related genes A/B (MICA/B) are ligands of the NKG2D receptor expressed on T and NK cells. Their expression is highly restricted in normal tissues, but is up-regulated in tumoral and infected cells. We show that the minimal promoter of both genes contains a CCAAT box, which binds to NF-Y, and a GC box, which binds to Sp1, Sp3 and Sp4. We also demonstrate that MICB promoter is polymorphic, showing three single nucleotide polymorphisms (C>G at +16, -341, -408) and a deletion of two base pairs at -66 (AG>--) that is located close to the CCAAT box (-70) and the GC box (-86). Transcriptional activity associated with MICB promoter variants carrying this deletion, present in the 45.3% of Spanish population, showed a remarkable decrease (18-fold, p <0.01). By functional analysis, we show that the deletion plays a critical role in MICB promoter activity by diminishing Sp1 transcriptional activation. These important variations in MICB expression among normal individuals could imply a significant difference in the natural immune response against infections or tumor transformation, and might thereby contribute to an increased aberrant immune response against self cells, providing the molecular basis for the associations of the MICB gene to different autoimmune diseases.
Collapse
Affiliation(s)
- Sandra Rodríguez-Rodero
- Unidad de Histocompatibilidad y Transplantes, Hospital Universitario Central de Asturias Oviedo, Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Van Walle I, Gansemans Y, Parren PWHI, Stas P, Lasters I. Immunogenicity screening in protein drug development. Expert Opin Biol Ther 2007; 7:405-18. [PMID: 17309332 DOI: 10.1517/14712598.7.3.405] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Most therapeutic proteins in clinical trials or on the market are, to a variable extent, immunogenic. Formation of antidrug antibodies poses a risk that should be assessed during drug development, as it possibly compromises drug safety and alters pharmacokinetics. The generation of these antibodies is critically dependent on the presence of T helper cell epitopes, which have classically been identified by in vitro methods using blood cells from human donors. As a novel development, in silico methods that identify T cell epitopes have been coming on line. These methods are relatively inexpensive and allow the mapping of epitopes from virtually all human leukocyte antigen molecules derived from a wide genetic background. In vitro assays remain important, but guided by in silico data they can focus on selected peptides and human leukocyte antigen haplotypes, thereby significantly reducing time and cost.
Collapse
Affiliation(s)
- Ivo Van Walle
- Algonomics NV, Technologiepark 4, 9052 Gent-Zwijnaarde, Belgium.
| | | | | | | | | |
Collapse
|
43
|
Barbeau WE, Bassaganya-Riera J, Hontecillas R. Putting the pieces of the puzzle together - a series of hypotheses on the etiology and pathogenesis of type 1 diabetes. Med Hypotheses 2006; 68:607-19. [PMID: 17045415 DOI: 10.1016/j.mehy.2006.07.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 07/20/2006] [Indexed: 01/09/2023]
Abstract
This paper presents a series of 10 hypotheses on the etiology of type 1 diabetes. We begin with the hypothesis that wheat gluten is one of the elusive environmental triggers in type 1 diabetes. Habitual consumption of wheat gluten increases the intestinal synthesis of dipeptidyl peptidase IV. This enzyme helps to shape the repertoire of peptides released into the small intestine following the ingestion of wheat gluten by catalyzing the release of X-Pro dipeptides from the N-terminus of the proline-rich glutenins and gliadins in wheat gluten. The release of gluten-derived peptides causes the tight junctions of the small intestine to open through a zonulin-dependent mechanism, which allows these peptides to enter the lamina propria where they get presented as antigens by HLA-DQ, -DR and CD1d molecules. Binding of one or more gluten peptides by CD1d leads to abrogation of oral tolerance, and a marked increase in peripheral immune responses to wheat proteins. Furthermore, it is our contention, that in response to beta cell apoptosis during normal remodeling of the pancreas and CCL19/CCL21 expression within the pancreatic lymph nodes (PLNs), gluten-loaded dendritic cells migrate from the small intestine to the PLNs. These dendritic cells present gluten-derived antigens on the surface of the PLNs, which leads to migration of CD4(-)CD8(-) gammadelta and CD4(-)CD8(+) alphabeta T cells to the pancreas where they mediate Fas and perforin dependent cytotoxicity. We also hypothesize that at least one of the type 1 diabetes associated HLA-DR molecules that bind and present wheat-derived peptide(s) also bind and present an islet cell antigen(s), activating plasma cell synthesis of islet cell autoantibodies and irrevocable, complement-dependent destruction of islet cells. Our final two hypotheses state that type 1 diabetes morbidity is reduced in those areas of globe where genetically susceptible individuals get adequate amounts of vitamin D, in the diet and/or through exposure to sunlight, and in areas where people are exposed to bacterial, viral, or parasitic infections in early childhood.
Collapse
Affiliation(s)
- William E Barbeau
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University (Virginia Tech), 327 Wallace Hall, Blacksburg, VA 24061-0430, USA.
| | | | | |
Collapse
|
44
|
Alper CA, Husain Z, Larsen CE, Dubey DP, Stein R, Day C, Baker A, Beyan H, Hawa M, Ola TO, Leslie RD. Incomplete penetrance of susceptibility genes for MHC-determined immunoglobulin deficiencies in monozygotic twins discordant for type 1 diabetes. J Autoimmun 2006; 27:89-95. [PMID: 17029885 PMCID: PMC1810396 DOI: 10.1016/j.jaut.2006.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/21/2006] [Accepted: 07/23/2006] [Indexed: 01/31/2023]
Abstract
Incomplete intrinsic penetrance is the failure of some genetically susceptible individuals (e.g., monozygotic twins of those who have a trait) to exhibit that trait. For the first time, we examine penetrance of susceptibility genes for multiple MHC gene-determined traits in the same subjects. Serum levels of IgA, IgD, IgG3, but not IgG4, in 50 pairs of monozygotic twins discordant for type 1 diabetes (T1D) correlated more closely in the twins than in random paired controls. The frequencies of subjects deficient in IgA (6%), IgD (33%) and IgG4 (12%), but not in IgG3, were higher in the twins than in controls. We postulate that this was because the MHC haplotypes (and possible non-MHC genes) that predispose to T1D also carry susceptibility genes for certain immunoglobulin deficiencies. Immunoglobulin deficiencies were not associated with T1D. Pairwise concordance for the deficiencies in the twins was 50% for IgA, 57% for IgD and 50% for IgG4. There were no significant associations among the specific immunoglobulin deficiencies except that all IgA-deficient subjects had IgD deficiency. Thus, intrinsic penetrance is a random process independently affecting different MHC susceptibility genes. Because multiple different external triggers would be required to explain the results, differential environmental determinants appear unlikely.
Collapse
Affiliation(s)
- Chester A Alper
- The CBR Institute for Biomedical Research, Harvard Medical School, 800 Huntington Avenue, Boston, MA 02115, USA. . edu
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Seppänen M, Suvilehto J, Lokki ML, Notkola IL, Järvinen A, Jarva H, Seppälä I, Tahkokallio O, Malmberg H, Meri S, Valtonen V. Immunoglobulins and complement factor C4 in adult rhinosinusitis. Clin Exp Immunol 2006; 145:219-27. [PMID: 16879240 PMCID: PMC1809671 DOI: 10.1111/j.1365-2249.2006.03134.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We assessed whether complement and its factor C4 or abnormal immunoglobulin levels are associated with chronic or recurrent rhinosinusitis. We used multiple patient and control groups to obtain clinically meaningful data. Adult chronic or recurrent rhinosinusitis and acute purulent rhinosinusitis patients were compared with unselected adults and controls without previous rhinosinusitis. Associated clinical factors were reviewed. Levels of immunoglobulins, plasma C3, C4 and classical pathway haemolytic activity were analysed. C4 immunophenotyping was used to detect C4A and C4B deficiencies as null alleles. Complement was up-regulated in rhinosinusitis. C4A nulls and low IgA, IgG, IgG1, IgG2, IgG3 and IgG4 levels were all more common in chronic or recurrent rhinosinusitis patients than in unselected and healthy controls. We searched for relevant differences between the patient groups. According to stepwise logistic regression analysis, nasal polyposis [odds ratio (OR) 10.64, 95% confidence interval (CI) 2.5-45.7, P = 0.001], bronchial asthma (OR 8.87, 95% CI 2.3-34.9, P = 0.002), C4A null alleles (OR 5.84, 95% CI 1.4-24.9, P = 0.017) and low levels of IgG4 together with either IgG1 or IgG2 (OR 15.25, 95% CI 1.4-166.8, P = 0.026) were more common in chronic or recurrent rhinosinusitis than in acute rhinosinusitis patients. Isolated low IgG subclasses had limited value in patient assessment. C4A null alleles are associated with chronic or recurrent rhinosinusitis, potentially through their effect on immune defence and inflammation control. Multiple clinical and immunological parameters may need to be evaluated when searching for prognostic variables.
Collapse
Affiliation(s)
- M Seppänen
- Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, PO Box 348, FI-00029 HUS, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aly TA, Ide A, Jahromi MM, Barker JM, Fernando MS, Babu SR, Yu L, Miao D, Erlich HA, Fain PR, Barriga KJ, Norris JM, Rewers MJ, Eisenbarth GS. Extreme genetic risk for type 1A diabetes. Proc Natl Acad Sci U S A 2006; 103:14074-9. [PMID: 16966600 PMCID: PMC1563993 DOI: 10.1073/pnas.0606349103] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Indexed: 01/06/2023] Open
Abstract
Type 1A diabetes (T1D) is an autoimmune disorder the risk of which is increased by specific HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201 (DR3) or DRB1*04-DQB1*0302 (DR4)]. The genotype associated with the highest risk for T1D is the DR3/4-DQ8 (DQ8 is DQA1*0301, DQB1*0302) heterozygous genotype. We determined HLA-DR and -DQ genotypes at birth and analyzed DR3/4-DQ8 siblings of patients with T1D for identical-by-descent HLA haplotype sharing (the number of haplotypes inherited in common between siblings). The children were clinically followed with prospective measurement of anti-islet autoimmunity and for progression to T1D. Risk for islet autoimmunity dramatically increased in DR3/4-DQ8 siblings who shared both HLA haplotypes with their diabetic proband sibling (63% by age 7, and 85% by age 15) compared with siblings who did not share both HLA haplotypes with their diabetic proband sibling (20% by age 15, P < 0.01). 55% sharing both HLA haplotypes developed diabetes by age 12 versus 5% sharing zero or one haplotype (P = 0.03). Despite sharing both HLA haplotypes with their proband, siblings without the HLA DR3/4-DQ8 genotype had only a 25% risk for T1D by age 12. The risk for T1D in the DR3/4-DQ8 siblings sharing both HLA haplotypes with their proband is remarkable for a complex genetic disorder and provides evidence that T1D is inherited with HLA-DR/DQ alleles and additional MHC-linked genes both determining major risk. A subset of siblings at extremely high risk for T1D can now be identified at birth for trials to prevent islet autoimmunity.
Collapse
Affiliation(s)
- Theresa A. Aly
- Barbara Davis Center for Childhood Diabetes and
- Human Medical Genetics Program, University Colorado Health Sciences Center, Aurora, CO 80045
| | - Akane Ide
- Barbara Davis Center for Childhood Diabetes and
| | | | | | | | | | - Liping Yu
- Barbara Davis Center for Childhood Diabetes and
| | | | | | - Pamela R. Fain
- Barbara Davis Center for Childhood Diabetes and
- Human Medical Genetics Program, University Colorado Health Sciences Center, Aurora, CO 80045
| | | | - Jill M. Norris
- Department of Preventive Medicine and Biometrics, University of Colorado at Denver and Health Sciences Center, Denver, CO 80262
| | - Marian J. Rewers
- Barbara Davis Center for Childhood Diabetes and
- Department of Preventive Medicine and Biometrics, University of Colorado at Denver and Health Sciences Center, Denver, CO 80262
| | - George S. Eisenbarth
- Barbara Davis Center for Childhood Diabetes and
- Human Medical Genetics Program, University Colorado Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
47
|
Bilbao JR, Calvo B, Aransay AM, Martin-Pagola A, Perez de Nanclares G, Aly TA, Rica I, Vitoria JC, Gaztambide S, Noble J, Fain PR, Awdeh ZL, Alper CA, Castaño L. Conserved extended haplotypes discriminate HLA-DR3-homozygous Basque patients with type 1 diabetes mellitus and celiac disease. Genes Immun 2006; 7:550-4. [PMID: 16929349 DOI: 10.1038/sj.gene.6364328] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The major susceptibility locus for type 1 diabetes mellitus (T1D) maps to the human lymphocyte antigen (HLA) class II region in the major histocompatibility complex on chromosome 6p21. In southern European populations, like the Basques, the greatest risk to T1D is associated with DR3 homo- and heterozygosity and is comparable to that of DR3/DR4, the highest risk genotype in northern European populations. Celiac disease (CD) is another DR3-associated autoimmune disorder showing certain overlap with T1D that has been explained by the involvement of common genetic determinants, a situation more frequent in DR3-rich populations, like the Basques. As both T1D- and CD-associated HLA alleles are part of conserved extended haplotypes (CEH), we compared DR3-homozygous T1D and CD patients to determine whether CEHs were equally distributed between both disorders or there was a differential contribution of different haplotypes. We observed a very pronounced distribution bias (P<10(-5)) of the two major DR3 CEHs, with DR3-B18 predominating in T1D and DR3-B8 in CD. Additionally, high-density single nucleotide polymorphism (SNP) analysis of the complete CEH [A*30-B*18-MICA*4-F1C30-DRB1*0301-DQB1*0201-DPB1*0202] revealed extraordinary conservation throughout the 4.9 Mbp analyzed supporting the existence of additional diabetogenic variants (other than HLA-DRB1*0301-DQB1*0201), conserved within the DR3-B18 CEH (but not in other DR3 haplotypes) that could explain its enhanced diabetogenicity.
Collapse
Affiliation(s)
- J R Bilbao
- Endocrinology and Diabetes Research Group, Hospital de Cruces, Barakaldo, Bizkaia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Farjadian S, Moqadam FA, Ghaderi A. HLA class II gene polymorphism in Parsees and Zoroastrians of Iran. Int J Immunogenet 2006; 33:185-91. [PMID: 16712649 DOI: 10.1111/j.1744-313x.2006.00594.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extensive polymorphism of the HLA genes in different ethnic groups has been used as an invaluable tool for anthropological studies. In this study, HLA-DRB1, DQA1 and DQB1 allele frequencies and haplotypes were determined in 72 Parsees and 65 Zoroastrians living in Iran. The predominant DRB1 allele was *1103 = 4 in Parsees and *0701 in Zoroastrians. DQA1*0501 was the most common alleles in both spopulations. The most frequent DQB1 allele was *0301 in Parsees and *0201 in Zoroastrians. DRB1*1103 = 4-DQA1*0501-DQB1*0301 and DRB1*0701-DQA1*0201-DQB1*0201 were the most prevalent haplotypes in Parsees and Zoroastrians, respectively. Significant deviation from Hardy-Weinberg equilibrium was observed in DQA1 and DQB1 loci of Zoroastrians. The former locus also departed from neutrality due to balancing selection. All pairs of the studied loci in this study showed significant linkage disequilibrium. Analysis of molecular variance indicated that the main variation was confined to individuals within the studied populations. Neighbour-joining tree based on Nei's genetic distances according to DRB1 and DQB1 allele frequencies showed that Parsees and Zoroastrians of Iran were located in the same cluster of the phylogenetic tree. Furthermore, Zoroastrians of Iran and Pakistan are very close to each other. This study will serve as a reference for further anthropological studies when the HLA profile of all ethnic groups of Iran is investigated.
Collapse
Affiliation(s)
- S Farjadian
- Immunology Department, Shiraz University of Medical Sciences, Iran
| | | | | |
Collapse
|
49
|
Abstract
DM (diabetes mellitus) is a metabolic disorder of either absolute or relative insulin deficiency. Optimized insulin injections remain the mainstay life-sustaining therapy for patients with T1DM (Type I DM) in 2006; however, a small subset of patients with T1DM (approx. 10%) are exquisitely sensitive to insulin and lack counter-regulatory measures, putting them at higher risk of neuroglycopenia. One alternative strategy to injected insulin therapy is pancreatic islet transplantation. Islet transplantation came of age when Paul E. Lacy successfully reversed chemical diabetes in rodent models in 1972. In a landmark study published in 2000, Shapiro et al. [A. M. Shapiro, J. R. Lakey, E. A. Ryan, G. S. Korbutt, E. Toth, G. L. Warnock, N. M. Kneteman and R. V. Rajotte (2000) N. Engl. J. Med. 343, 230-238] reported seven consecutive patients treated with islet transplants under the Edmonton protocol, all of whom maintained insulin independence out to 1 year. Substantial progress has occurred in aspects of pancreas procurement, transportation (using the oxygenated two-layer method) and in islet isolation (with controlled enzymatic perfusion and subsequent digestion in the Ricordi chamber). Clinical protocols to optimize islet survival and function post-transplantation improved dramatically with the introduction of the Edmonton protocol, but it is clear that this approach still has potential limitations. Newer pharmacotherapies and interventions designed to promote islet survival, prevent apoptosis, to promote islet growth and to protect islets in the long run from immunological injury are rapidly approaching clinical trials, and it seems likely that clinical outcomes of islet transplantation will continue to improve at the current exponential pace.
Collapse
Affiliation(s)
- Shaheed Merani
- Clinical Islet Transplant Program, University of Alberta, Roberts Centre, 2000 College Plaza, Edmonton, Alberta, Canada T6G 2C8
| | | |
Collapse
|
50
|
Lee HS, Li W, Lee A, Rodine P, Graham RR, Ortmann WA, Batliwalla F, Lee KW, Bae SC, Behrens TW, Gregersen PK. Microsatellite typing for DRB1 alleles: application to the analysis of HLA associations with rheumatoid arthritis. Genes Immun 2006; 7:533-43. [PMID: 16855621 DOI: 10.1038/sj.gene.6364325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The current methods for molecular typing of HLA-DR alleles incur a substantial financial burden when performing large population studies. In the current study, we aimed to provide much less expensive typing approach with high predictability for DRB1 genotype. We have used a panel of three microsatellite markers in the class II region (D6S2666, D6S2665 and D6S2446) for genotyping and haplotype reconstruction in a total of 1687 Caucasian (1313 RA patients and 374 controls) and 1364 Korean individuals (744 RA patients and 620 controls), all of whom were previously genotyped for DRB1. We found that a total of 88.4 and 87.4% of all observed three-marker haplotypes could determine the DR type with a positive predictive value >0.8 with high sensitivity and specificity. There was a high degree of haplotype conservation when comparing Caucasian and Asian populations. Interestingly, we found that the majority of DRB1*09 and DRB1*10 alleles share a common three-marker haplotype in both Caucasian and Asian populations. This is unexpected, since these two alleles are found on very different haplotype families. In addition, these two alleles are both associated with rheumatoid arthritis, making the elucidation of these haplotype relationships potentially important for understanding disease susceptibility.
Collapse
Affiliation(s)
- H-S Lee
- Feinstein Institute for Medical Research, North Shore LIJ Health System, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|